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1 Introduction

In this report, we consider the following Schrédinger equation with time-dependent short-
range potentials:

0 1~ &
(1) 5= H(t)u, H(t)=Hy+V(t), HO_—Eg_g_,

in the Hilbert space ## = L?(R"), where V(t) is the multiplication operator of a function
V(t,z) and the domain D(Hy) = H?(R") is the Sobolev space of order two. We give a
characterization of the ranges of the wave operators for Schrédinger equation with time-
dependent potentials which are short-range in space by using wave packet transform, which
is different from the characterization in Kitada—Yajima [10]. We also give an alternative
proof of the existence of the wave operators, which has been firstly proved by D. R. Yafaev
[15].

We assume that V' (¢, z) satisfies the following conditions, which is called short-range.

Assumption (A). (i) V(t,z) is a real-valued Lebesgue measurable function of (¢,z) €
R x R™.
(ii) There exist real constants § > 1 and C' > 0 such that

V(t,2)| < C(1+ |a)~°
for all (t,z) € R x R™.

Assumption (B). There exists a family of unitary operators (U(t,7))(,r)er? in # sat-
isfying the following conditions.
(i) For f € o2, U(t,T)f is strongly continuous function with respect to ¢ and satisfies

U@, myU(r',7r)=U(t,7),U(t,t) =1 forallt, 7,7 €R,

where [ is the identity operator on S#.
(ii) For f € H*(R™), U(t,7)f is strongly continuously differentiable in s# with respect
to t and satisfies 5
EU(t, 7)f =—tHQ)U{,7)f forallt,7 €R.

Remark 1. If Assumption (A) is satisfied and V(t)f is strongly differentiable in ¢ for
f € H*(R"), Assumption (B) is satisfied (c.f. T. Kato [9]).
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Let . be the Schwartz space of all rapidly decreasing functions on R™ and &’ be the
space of tempered distributions on R™. For positive constants a and R, we put I'; g =

{(z,6) eR" xR"[|¢| < a or || > R} and # = {@ € #| ||l = 1 and &(0) # 0}

Definition 2 (Wave packet transform ([3])). Let ¢ € &\ {0} and f € &’. We define the
wave packet transform W, f(z,£) of f with the wave packet generated by a function ¢ as
follows:

W, f(z,€) = /R P D dy for (5,) R xR

Its inverse is the operator W ! which is defined by
1 .
w1l _— - 8 gy dé
o Fla) 2m)" el % / /mzn oz —yFy, e dy

for z € R™ and a function F(z,¢) on R” x R™.

Definition 3. Let & € % and we put ®(t) = e~tHod. We define DE:2(7) by the set of
all functions in J# such that

t—ljglznoo ”XI‘.,,RW@(t—'r) [U(ta T)f] (.’1: + (t - 7')5, €)|IL2(R§‘ XR?) =0
+,&

for some positive constants a and R. For 7 € R, D, ;(7) is defined by the closure of
DE2(7) in the topology of 2.

The main state of this report is the following.

Theorem 4 (Y. and K. Kato [16]). Suppose that (A) and (B) be satisfied. Then the wave
operators

— o li —i{t—T)Ho
Wi(r) 5; _l}inoo U(r,t)e

exist for any 7 € R and their ranges Z(W4 (7)) coincide with chf:(r) for any ® € . In

particular, DX:2(r) is independent of ®.

scat

We use the following notations throughout the report. i = v/—1,n € N. For a
subset 2 in R™ or in R2", the inner product and the norm on L?() are defined by
(£, D@ = fo fdz and ||f|| 2y = (f, f)lL’:‘;Q) for f,g € L?(), respectively. We write
azj = 0/0z;, 8; = 0/ot, Lg,g = LZ(R;: X R?)» () =0 ')L:’ea I l=1- ”L?M’ (t) =1+t
Il = Xjars=t 12205 flle and Wou(t,z,€) = Wylu(t)l(z,€). || - |acx) denotes the
operator norm on the Hilbert space X. % and #~! are the Fourier transform and the
inverse Fourier transform defined by Zf(€) = f(¢) = [gn e ¢ f(z)dz and F1f(¢) =
(2m) ™™ fon €€ £(£)dE, respectively. We often write {¢ = 0} as {(z,¢) € R?*|¢ = 0}. For
sets A and B, A\ B denotes the set {a € Ala ¢ B}. xa(z) the characterization function
of a measurable set A, which is defined by x4(z) = 1 on A and xa(z) = 0 otherwise.
F(---) denotes the multiplication operator of a function X{zckn|-}(z). For an operator T
on 5, D(T) and %Z(T) denote the domain and the range of T, respectively. 7%,(T) and
H,(T)* denote pure point subspace of a self-adjoint operator T on # and its orthogonal
complement space, respectively.
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The proof of the existence of the wave operators is relied on Cook—Kuroda’s method.
That is, we prove

m .
/ IV (e f| s
0

for any f € 9, a dense set in . In our proof, taking f € Wz [CS(R2" \ {¢ = 0})] we
have

®) [V(@)e o flle < [V (t)e o W5 xre |20 |We fll#
for some positive numbers a and R. Using the representation
(B)  Weole™ Ut 0)9](z,¢)

= Weot(z,€) — i /0 LW, V(U (s, 00 + o6, €)ds,
which is developed by K. Kato, M. Kobayashi and S. Ito ([7], [8]), we obtain
(4) IV ()e™ oWz xrs , lmr) = Ixrg xWale ™oV (O)lllgz ) < O~

(See Lemma 8.)
V. Enss [4] and H. Kitada—K. Yajima [10] use the phase space decomposition operators

Pir and Ryg as follows: Pyrf(z) = [[ [ >k eev% g2 (2, &)n(y — 2) f(y)dzdyd€ and

Porf(@) = [ [ [l j<p @ ¥n(y—2)f (y)dzdydé. Here g% (z,£) (92 (,€)) is smooth cut-off
function whose support is contained in the set that || < aand 2 £ < 0(>0) and nis a
smooth function such that [7ndz = 1 and supp1 is included in a small ball in R”. Since
P_RrU(t,0)f, BLrU(t,0)f = 0ast— +oc and Py gU(t,0)f ~ Py gpe~Hof as R — oo,
we have U(t,0)f ~ Py ge ®Hof as Rt — co. By using this formula, V. Enss [4] has
proved that the ranges of the wave operators are the continuous spectral subspace of time-
independent Hamiltonian H = Hy + V and H. Kitada—K. Yajima [10] has characterized
the ranges of the wave operators for time-independent potentials.

On the contrary, our proof is simple. We decompose the phase space R} x R% into
only two parts I'; g and I' g, and estimate the wave packet transform of the solution in
each part.

The above arguments are applied to the Laplacian with coefficients. The proof would
be given in the forth-coming paper.

In the case that V' does not depend on ¢, the following well-known theorem holds for
H = Hp + V. We give an alternative proof of the theorem by using our characterization.

Theorem 5 (J. Cook [2], S. T. Kuroda [11], E. Mourre [13] and V. Enss [4]). Suppose
that (A) be satisfied and that V do not depend on ¢. Then the wave operators Wy =
§-limy_y 00 itV H=i(t=7)Ho exist, are independent of 7 and are strongly complete:

(6) R(Wy) = 24 (H).

The plan of this report is as follows. In section 2, we recall the properties of the wave
packet transform. In section 3, we give a proof of Theorem 4). In section 4 we prove
Theorem 5 by using our characterization.
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2 Properties of wave packet transform

In this section, we explain the properties of the wave packet transform and give the
representation of solutions to (1) via wave packet transform, which is introduced in [7],

(8- '

Proposition 6. Let ¢,9 € & \ {0} and f € &'. Then the wave packet transform
W, f(z,£) has the following properties:

() Wef(z,€) € C(RE x RY).

(ii) If f,g € 5, we have

(6) (W¢fa W‘!t'g) = (QO, %L')%’(f, g).%” = ("pa SO).W(f’ g)a”f"
(iii) The inversion formula (¢, @)‘IW,’; YW, f] = f holds for f € &' if (,¢) #0.
Proof. See [5]. O

Let @ € & \ {0}, ¢(t,z) = e~*Hopy(z) and 9 € H#°. Integrating by parts, we have
Wy [Au](t, z,€) = / oy — z)Au(t,y)e ¥dy
= / Ap(y — zyult,y)e ¥ dy — 2i / & Vyp(y — z)u(t,y)e”%dy
~leP [P Duttve ey
= WA(p(t)u(tv z, 6) + 2:¢ - V:L‘Wgo(t)'u’(t7 T, 6) - Iélzww(t)u(t, Z, 6)
Since W(p(t) ["‘atu] (t, L, f) = iatW<p(t)u(t)x1£) + [’V.,;Bﬂp(t)u(t, Z, f) and ’llatQO(t) = H0¢(t)a
we transform (1) to
. . 1
(’I.at + 7’6 : Va: - 5'5'2) W(p(l)u(trza €) = W(p(t) [V(t)u’] (tv Z, é)’ .
We have by the method of characteristic curve that
() WUt to)¥)(=, &) =e~ 3 ORPW, gz — (t - to)6, €)
t .
i /t WP V(U (s, to)] (& — (¢ — 8)E, E)ds.

0

In particular, we have for the case that V' =0
8 W le " Hoy)(z,€) = e 2P W, (o - 16,€).
By (7) and (8), we have (3) and '
9) Wl the “Hoy)(@ + 1,¢)
tl
t

=~ Wab(@,) +i [ KV W, ) [V(9)U(s, ) oy] o+ 56, €)ds.
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3 Proof of Theorem 4

In this section, Theorem 4 by using the wave packet transform which is defined in the
previous section.
The following well-known propagation estimate is used in the proof of Lemma 8.

Lemma 7. Let f € .. Suppose that supp f ¢ K with some compact set K which does
not contain the origin. For any open set K’ O K and any non-negative integer [, there
exists a positive constant C such that

leHo f(z)| < C(z) Y| £ s
for any (t,z) € R x R™ with 2/t ¢ K’ and t # 0.
Proof. See [12] or [6]. O
Using the above lemma, we obtain the following lemma.

Lemma 8. Suppose that (A) be satisfied. Let a and R be positive constants. Then for
any L € (0,a/6] and po € &\ {0} with supp o C {¢ € R*| L/2 < [{| < L}, there exists a
positive constant C satisfying

(10) ” o(s) V(s)¥] (z + €, £)||L2(R2n\ra R) < C(s)” 6”"/’“.#
for any s > 0 and any ¢ € 57.

Proof. Let p = a/6 and let I be an integer satisfying [ > 6 + (n+ 1)/2. We put V,(t,z) =
XQ(;%—tyz)V(t,w), where xo € C®(R"™) satisfies xo(z) = 1 for |z| > 1 and xp(z) = 0 for
|z} < 1/2. Thus there exists a positive constant C such that |V,(t,z)| < C(t)~? for any
t € R and any z € R™.

For (z,£) € R?™ \ Ty g, we decompose R™ into &1 = {y € R"||y — (z + s¢)| < as/3}
and 05 = {y € Ry — (z + s€)| > as/3}. Then the inequality that |y| > |z + s&| — |y —
(z + s€)| > (as — R) — 4§ > p(s) for (z,£) € R?™ \ Ty g and y € 61 and the equality that
Vo(s,9) = V(s,y) for [y 2 p(s) imply

/ e g0(y — (@ 1 SOV (s, 1)pw)e Yy
veo L2(R?"\T, )

< ” / e Hogo(y — 2)V,(s, y)b(y)e SV dy
< He‘“f"’soo(y —z)Vo(s,9)¢(y)

<Vl oo @y lloll |91l 2
<C(s)~*|lplle-

L2(R2XRY)



On the other hand, Lemma. 7 shows that

/ e~Hopo(y — (z + s€))V (s, y)p(y)e “Vdy }

yeD,

= | Gett-sis s o0 =2)) V.98 )|, g ey
z X Ry

<C(s) D gy 5 [ = )~V (5, ) (w)

=C(s) D2 g s | @) e
<C(s) e,

since supp @o C {¢£ € R"|0 < €] < a/6}.
Hence (10) is obtained. O

L2(REXR})

We shall use the following lemma in Section 4. Let I‘z’i = {(z,¢) € R27| €] > a,|z] >
band +z-£>0}.

Lemma 9. Suppose that (A) be satisfied. Let a and b be positive constants. Then for
any L € (0,a/6] and @o € &\ {0} with supp ¢o C {{ € R"|L/2 < [¢| < L}, there exists a
positive constant C independent of b satisfying

[Weo) V($)¥] (2 % 5, €)| oty < Cls + )~ [llor
for any s > 0 and any ¢ € €.

Proof. The proof is obtained by the similar argument as in the proof of Lemma 8. O

Now we give an alternative proof of the existence of the wave operators Wi () by
using wave packet transform.

Proposition 10 (D. R. Yafaev [15]). Suppose that (A) and (B) be satisfied. Then the
wave operators Wy (7) exist for any 7 € R.

Proof. Substituting V(t — 7,z) for V(¢,z), it suffices to show the case 7 = 0. We prove
the existence in the case t — +00 only. Let ® € # and up € 7.

First, we show the existence of W (0)up for Weup € C§°(R?™\ {¢ = 0}). Let a and R
be positive constants satisfying

(11) supp Waup C R?\ T, g

and o € & \ {0} satisfying

(12) supp Qo C {{ € R"‘ —< ¢ < L} with 0 < L < and |(®,o)s| > 0.

a
=8
By (2), (3), (4), (6), (11) and Lemma 8, we have

V()" Foupl| < rr——gs—lixrs ;Wale ™V (®)lllgqa ) < CH~°

| (o )I
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for ¢t > 0 The above inequality implies the existence of W, (0)uo for ug € Wz (C§(R*™ \
{¢=0}).

For ug € #, the existence of W_.(0)ug follows from the fact that Wz (CZ(R?™\ {¢ =
0})) is dense in S#. Indeed, let ¢ be a fixed positive number. Since C°(R?" \ {¢ = 0})
is dense in L2(R?"), there exists w € C°(R*™ \ {¢ = 0}) satisfying |[Wauo — w| < e.
Putting 1o = Wz 'w, we have ||U(0,t')e~% Houg—U (0, t)e~*Houg|| 5 < [|U(O, t')e~# Hoqjy —
U(0,t)e~Hogy| s + 2¢ for any t' > t > 0. (U(0,t)e"**Hoqgp) is a Cauchy sequence with
respect to t as t — 0o in 2, so is (U(0, t)e™#Hou,). m|

Next, we characterize the ranges of the wave operators by the wave packet transform.

Proposition 11. Suppose that (A) and (B) be satisfied. Then we have
R(W(r)) = Dy (7)
for any ® € .

Proof. 1t suffices to prove that Z(W.(0)) = D:cf; (0).
Let ® € % and € be a fixed positive number. Until the end of the proof, we abbreviate
W, = W(0), Dy = Dyt (0) and Dy = D33 (0).

scat

We first prove that Z(W,) C DY, Let f € Z(W.) and we fix g € Wz (CP(R?" \
{¢ = 0})) satisfying

(13) If —Wiglowe <e.

Then there exist positive constants a and R such that xr, ,(z,&)Wag(z,£) = 0 for all
(z,€) € R*™. By (8) and the definition of W, we obtain

limsup [[xr,s Wao [U (¢, OW-gl(@ + €, &)

(>}

< lim (llxr, zWale “™gl(z + 1€, Ol + [Wa [U £, 0)Wag — e~ *og]]))
= xr, zWagll + lim [[U(t,00W..g — e~ Hog|

=0.

Hence we have W, g € DY, which and (13) show Z(W,) C D},

Next we prove Z(W.) D D} .. If the inverse wave operator

-1, _ 1o itHo
(14) W ug = t_lg_‘xpooe U(t,0)ug

exists for any ug € D, we obtain Z(W,) D D}, It suffices to prove that (14) exists
for ug € Dy, since Dy, is the closure of DF;.
Let ug € D}, and let a and R be positive constants satisfying

(1) Jim [lxr,  Wa{U (6 O)usl(z + #£,€)] = 0.
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Until the end of the proof, we abbreviate I' = ', g and I'* = R?* \ T". Take ¢ € % \ {0}
satisfying (12). By (6), we have for ¢ > ¢ >0

(e®HoU (¢, 0)uo, ¥) s = (U(t,0)uo, eitHoy) -

(16) = m (Waw[U (¢, 0)uo), W,y [e~ o))
- @E}E_ (xr(z — t€,€)Wa U (t, 0)uo), Wi [e*Hoy)])
(<,0_1<I>_ (xre( — t€,€)Wa [U (£, 0)uo], Wiy leHowp])

and

(eit,HoU(t’) 0)uo, ¥)sr
— 1y, —it' H
11 = (U0, Ut t)eHop)

= —((po ];I))” ((Xl" + xre)(z — t{,ﬁ)Wq,(t) [U(t,0)uo], W¢(t) [U(t,t')e-it,HOzw]) .

By (9), we have
Woole oy~ U2, ¢)e™* Hoy)(z,€)

(1) =i [ I W [V U 6,100y 2 (1~ 96, O,
t
By (15), (16), (17), (18) and Lemma 8 show that

sup_||(¢0, @) (£0U (¢, 0)uo — e HoU (¢, O)uo, ) |
)l e =1 #

(19) = ||XI‘W<I>(t)[U (t, 0)uo](z + t€, &)

/ [Woio) [Vo)U (s, ) o] (@ + 58,)

-0 ast,t — oo.

ds
L2(re)
(14) follows from (19). O

Theorem 4 is obtained by Proposition 10 and 11.

4 Proof of Theorem 5

In this section, we give an alternative proof of Theorem 5 by using our characterization.

Proof. We shall only prove for 7 = 0 and for the case that ¢ — +o0o. We fix & € %.
We use the same notations D, = D22(0) and D}, = D22(0) as in the proof of
Proposition 11.

Firstly, we prove 5%(H)* > Df,,,. For up € DZ,,,, we have

(20) Jim {|xr, s Wa() e Hug)(z + t&,¢)|| =
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for some positive constants a and R. On the other hand, for w € 5 (H), without loss of
generality, e *H = e~#Ay for some A € R and for any t € R. Taking @ € % satisfying
(12), we get for t > 0

( —ttHuo, —:t).w)#

(21) = s (rea Vel “Muel(e +16,6) P Wou(e +16,9))

1 = .
+ ———————(% 3, (Wq,(t) e tHuo](:B + t€,§), Xre ,€ t/\W<p(t)w(x + tg,g)) .

By (20), the first term of (21) is estimated by
lim (Xra,RWQ(t) [e_“HuO] (.’B + t£$ 6)) e_itAW¢(t)w(x + tﬁs f)) |

t—+o00
< Cllwllo Jim_[ixr, s Wagole™*uol(a + i€,€)]| = 0.
By Lemma 7, the second term of (21) is estimated by

Jim | (Wagle™Huol(z + 16,€), xrg e~ Wou(a + t6,)) |

< lluolle, lim llxre ,Woew(z + €, 6)|

- —iy
ey @8 [ oty = @+ e |
< ol lim_(IF(al > at/3)p0) Lol + ol 1Fle] > at/6)oe)
=0.

< Jluolls#  lim

Thus we obtain J4,(H)* > Df, ,.

Secondly, we prove J%,(H)* C Dsmt It suffices to prove J&(H )J- C Dsmt, where
H(H): = {Ex((«, b’))f]f € H(H) and 0 < @ < V'}. Let f € S (H)* and be a
positive constant d and ¢ € C§°([0,00)) satisfying that ¢(H)f = f and that ¢ = 0 on
[0,d%/2). Since w-lim;_,o e 7 f = 0 in S# and (¢(H) — ¢(Hp)) is a compact operator on
¥, we have

(22) Jim [|($(H) — ¢(Ho)) e £ ,p = 0

Let 24 = {(z,£) € R™||¢| < d} and E = {(z,£) € R?"||¢| > d and |z| < r}. Then we
obtain

(23) (X2 + X=5 + Xpy- + Xy ) (@,€) = 1

for almost all (z,¢) € R?", where l"g’ are defined in Section 2. Since ¢(|¢|2/2)xz,(y,£) =0
for any (y,&) € R?™, we obtain

$(Ho)Wg ' [x=,¥] = [ <|§| )‘?W<I> X=4 \1;]

P [ ('5' ) [ Jo6 - v )W(y,e)dy]]
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Thus we have for t > 0

(xz,Wale ™ f](z,€), )
(249) = ($(H)e ™ £, W5 x=,7)
= (e7 ™ f,¢(Ho)W5 ' x=,¥) ,p + (($(H) — $(Ho))e ™ f,W5'x=,¥)
= ((8(H) — ¢(Ho))e ™™ f,W5'x=,7) ,, -

(22), (24) and the fact that |[W5'x=,¥|l# < ||¥| yield that there exists a sequence (ty)
tending to oo as N — oo such that

(25) Aim [|xz, Wale™ ¥ £]]| = 0
and
26) dim_ [l Wale ™ ]| = 0

for any positive constant r. Fix & € C§°(R") with |(®,%'),| > 0. For any pos-
itive constant r, there exists a positive constant 1’ satisfying xaz;War[e™H f](z,£) =
xz;Wer [F (|| < 7' e ®H f](z,€) for any t > 0. By the RAGE theorem ([1], [14]), there ex-
ists a sequence (¢y) tending to oo as N — oo such that imy_,oo || F(|z] < 7)e #NH f|| 5 =
0. Hence we get (26). For any positive number €, we take a positive constant r sufficiently
large so that C||f]lx(r)1~% < e/4. By (23), we have for ¢,# >ty

(eit'Ho e~WHf _ gitHog—itH ¢ ¢)”
= ((xza + Xz + Xpo- ) Wale ™V f], W (e iCtw—)H g~ Ho
_ e‘i(tN—t)He—itHo),‘/}])

+ (Wq>[e_itNHf],xF;.+ (I(t' —tn;z, &) — It — tN;:I:,f))) ,

where I(t;z,8) = —i f(; e%("_t”fle@(s) [Veis-OH g=ilt+tn)Hoy| (¢ + s¢,£)ds.
By (7) with t = 0 and ty = —tx, we obtain

e Wale=4 f](z,€)
(27) = X[‘;'— We [U(O) _tN)f](x: £)
= XP;"WQ(—tN)f(x - tN£:£)

tN ‘ .
— 1/0 ei(—s-!-tN)szP;’_ W@(—s) [Vet(s+tN)Hf](x _ sﬁ,ﬁ)ds.
Lemma 9 implies that
t—in
8 I T =t O < Cllle [ (s+7)70ds < Ol (r)'~?
and

iN .
(29) /0 Ixpr, - Wa(—s) [Ve T f](z — ¢, €)llds < C| flla(r)*~°,
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where C and C' is a positive constant and independent of » and N. Taking g € &
satisfying (12) with a = d, we have by Lemma 7

N,li_l)noo "XI‘;'_ WQ(—tN)f(a" - tN€1 €)"
30) < lim C(|F(la] > dtn/3)e(=tw)l#llf e + lipolllF (x| > din/6)flle)

=0.
By (27), (29) and (30), we obtain

s e —itNH
(31) T - Wale™ 4 ] < .
Thus (25), (26), (28) and (31) imply that Timy g, e Hoe=#H f — eitHoe—itH f|| ,, < ¢,
Hence there exists 2 € 5 such that
: itHo ,—itH o : itHo ,—itH o __ —

(2 Jim [lxe,  Wale®™e  — QI] < Jim |*Hoc 7 — O = 0.

Since Wz (Cg°(R?™ \ {¢ = 0})) is dense in ##, for any positive number £’ there exist
@ € Wzl (Co(R?™ \ {¢ = 0})) and positive constants a and R satisfying

(33) 92— || < ¢ and xr, ,WeQ' = 0.
(32) and (33) yield #4(H)* c D{,,, This and the former part implies (5). a
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