
An approximation algorithm
for the covering 0‐1 integer program

Yotaro Takazawa *

Shinji Mizuno \dagger

Abstract

The covering 0‐1 integer program is a generalization of fundamental combinatorial

optimization problems such as the vertex cover problem, the set cover problem, and

the minimum knapsack problem. In this article, extending a 2‐approximation algorithm
for the minimum knapsack problem by Carnes and Shmoys (2015), we propose a \triangle_{2^{-}}

approximation algorithm, where Δ_{2} is the second largest number of non‐zero coefficients

in the constraints.

1 Introduction

For a given minimization problem having an optimal solution, an algorithm is called an α-

approximation algorithm if it runs in polynomial time and produces a feasible solution whose

objective value is less than or equal to α times the optimal value. We study the covering 0‐1

integer program (CIP), which is formulated as follows:

CIP
\displaystyle \min\sum_{j\in N}c_{j}x_{i}
s.t. \displaystyle \sum_{j\in N}a_{ij}x_{\dot{}}\geq b_{i}, \forall i\in M=\{1, \cdots , m\} , (1)

x_{j}\in\{0 , 1 \}, \forall j\in N=\{1, \cdots, n\}.

where b_{i}, a_{ij} , and c_{j}(i\in M, j\in N) are nonnegative. Assume that \displaystyle \sum_{j\in N}a_{ij}\geq b_{i} for any

i\in M , so that the problem is feasible. Let \triangle_{i} be the number of non‐zero coefficients in the i‐th

constraint \displaystyle \sum_{j\in N}a_{ij}x_{j}\geq b_{i} . Without loss of generality, we assume that Δ_{1}\geq\triangle_{2}\geq\cdots\geqΔ_{m}
and \triangle_{2}\geq 2.

CIP is a generalization of fundamental combinatorial optimization problems such as the

vertex cover problem, the set cover problem, and the minimum knapsack problem. There are

some \triangle_{1} ‐approximation algorithms for CIP, see Koufogiannakis and Young [4] and references

therein.

*

Department of Industrial Engineering and Management, Tokyo Institute of Technology
�Department of Industrial Engineering and Economics, Tokyo Institute of Technology

数理解析研究所講究録
第2027巻 2017年 10-14

10

In this article, we propose a \triangle_{2}‐approximation algorithm for CIP. Our algorithm is an

extension of a 2‐approximation algorithm for the minimum knapsack problem which is a

special case of CIP where m=1 by Carnes and Shmoys [1]. Part of this article is included

in Takazawa and Mizuno [5].

2 An algorithm and its analysis
Carnes and Shmoys [1] used an LP relaxation of the minimum knapsack problem, which was

presented by Carr et al. [2]. We also use the following LP relaxation of (1):

\displaystyle \min\sum c_{j}x_{\mathrm{j}}
s.t. \displaystyle \sum_{j\in N\backslash A}^{j\in N}a_{ij}(A)x_{j}\geq b_{i}(A) , \forall A\subseteq N, \forall i\in M , (2)

x_{j}\geq 0, \forall j\in N,

where

b_{ ι}(A) =\displaystyle \max\{0, b_{i}-\sum_{j\in A}a_{ij}\}, \forall i\in M, \forall A\subseteq N, (3)
a_{i\dot{}}(A) =\displaystyle \min\{a_{ij}, b_{i}(A)\}, \forall i\in M, \forall A\subseteq N, \forall j\in N\backslash A.

Carr et al. [2] show that any feasible 0‐1 solution of (2) is feasible for (1). The dual problem
of (2) can be stated as

\displaystyle \max\sum\sum b_{i}(A)y_{i}(A)
s.t. \displaystyle \sum_{i\in M}^{i\in M}\sum_{A\subseteq N:j\not\in A}^{A\subseteq N}a_{ij}(A)y_{i}(A)\leq c_{j}, \forall j\in N , (4)

y_{i}(A)\geq 0, \forall A\subseteq N, \forall i\in M.

Now we introduce a well‐known result for a primal‐dual pair of linear programming [3].

Lemma 1. Let \overline{x} and \overline{y} be feasible solutions for the following primal and dual linear pro‐

gramming problems:

\displaystyle \min\{c^{T}x| Ax\geq b, x\geq 0\} and \displaystyle \max\{b^{T}y|A^{T}y\leq c, y\geq 0\}.

If the conditions

(a):\displaystyle \forall j\in\{1, \cdots, n\}, \overline{x}_{j}>0\Rightarrow\sum_{i=1}^{m}a_{ij}\overline{y}_{i}=c_{j},
(b) : \forall i\in\{1, \cdots , m\}, \displaystyle \overline{y}_{i}>0\Rightarrow\sum_{j=1}^{n}a_{ij}\overline{x}_{j}\leq α b_{i}

hold, then \overline{x} is a solution within a factor of or of the optimal solution, that is, the primal
objective value c^{T}\overline{x} is less than or equal to α times the optimal value. (Note that the primal
problem has an optimal solution because both the primal and dual problems are feasible

By applying Lemma 1 to the LP problems (2) and (4), we have the following result.

11

Lemma 2. Let x and y be feasilbe solutions for (2) and (4), respectively. If these solutions

satisfy

(a):\displaystyle \forall j\in N, x_{j}>0\Rightarrow\sum_{i\in M}\sum_{A\subseteq N:.i\not\in A}a_{ij}(A)y_{i}(A)=c_{j}, (5)
(b):\displaystyle \forall i\in M, \forall A\subseteq N, y_{i}(A)>0\Rightarrow\sum_{j\in N\backslash A}a_{ij}(A)x_{j}\leq\triangle_{2}b(A) ,

then x is a solution within a factor of \triangle_{2} of the optimal solution of (1).

Corollary 1. Let x be a feasible 0‐1 solution of (2) and y be a feasible solution of (4). If
these solutions satisfy (5), x is a solution within a factor of Δ_{2} of the optimal solution of
(1).

Our algorithm is presented in Algorithm 1 below. The goal is to find x and y which

satisfy the conditions in Corollary 1. The algorithm generates a sequence of points x and y

which always satisfy the following conditions:

x\in\{0, 1\}^{n}.

\bullet y is feasible for (4).

\mathrm{o}x and y satisfy (5).

In Algorithm 1, we use the symbols S=\{j\in N|x_{j}=1\}, b_{i}(S)=\displaystyle \max\{0, b_{i}-\sum_{j\in S}a_{ij}\} for

i\in M , and \displaystyle \overline{c_{j}}=c_{j}-\sum_{i\in M}\sum_{A\subseteq N:j\not\in A}a_{ij}(A)y_{i}(A) for j\in N.

Algorithm 1

Input: M, N, a_{i\dot{}}, b_{i} and c_{j}(i\in M, j\in N) .

Output: \tilde{x} and ỹ.

Step 0 : Set x=0, y=0 , and S=\emptyset . Let N\'{i}=\{j\in N|a_{ij}>0\} for i\in M, \overline{c}_{j}=c_{j} for

j\in N , and i=m.

Step 1: If i=0 , then output \tilde{x}=x and ỹ = y and stop. Otherwise set b_{i}(S)=\displaystyle \max\{0, b_{i}-

\displaystyle \sum_{j\in S}a_{ij}\} and go to Step 2.

Step 2: If b_{i}(S)=0 , then update i=i-1 and go to Step 1. 0therwise calculate a_{ij}(S) for

any j\in N_{i}'\backslash S by (3). Increase y_{l}(S) while maintaining dual feasibility until at least

one constraint s\in N_{i}'\backslash S is tight. Namely set

y_{i}(S)=\displaystyle \frac{\overline{c}_{s}}{a_{is}(S)} for s=\displaystyle \arg\min_{j\in N_{i}\backslash S}\{\frac{\overline{c}_{j}}{a_{ij}(S)}\}.
Update \overline{c}_{j}=\overline{c}_{\dot{}}-a_{ij}(S)y_{i}(S) for j\in N'\backslash S, x_{s}=1, S=S\cup\{s\} , and b_{i}(S)=
\displaystyle \max\{0, b_{i}(S)-a_{is}\} . Go back to the top of Step 2.

12

For the outputs \tilde{x} and ỹ of Algorithm 1, we have the following results.

Lemma 3. \tilde{x} is a feasible 0‐1 solution of (2) and ỹ is a feasible solution of (4).

Proof By the assumption that (1) is feasible, x=(1, \cdots, 1) is feasible for the LP relaxation

problem (2). Algorithm 1 starts from x=0 and updates a variable x_{j} from 0 to 1 at each

iteration until each constraint in (2) is satisfied. Hence \tilde{x} is a feasible 0‐1 solution of (2).
Algorithm 1 starts from the dual feasible solution y=0 and maintains dual feasibility

throughout the algorithm. Hence ỹ is feasible for (4). \square

Lemma 4. \tilde{x} and ỹ satisfy (5).

Proof. All the conditions in (a) of (5) are naturally satisfied by the way the algorithm updates
primal variables. It suffices to show that all the conditions in (b) are satisfied. For any

i\in\{2, \cdots, m\} and any subset A\subseteq N such that ỹi(A) >0 , we obtain that

\displaystyle \sum_{j\in N\backslash A}a_{ij}(A)\tilde{x}_{j}\leq\triangle_{i}b_{i}(A)\leq\triangle_{2}b_{i}(A) ,

since a_{ij}(A)\leq b_{i}(A) by the definition (3) and the i‐th constraint has \triangle_{i} non‐zero coefficients.

Then, we consider the case of i=1 . Define \tilde{S}=\{j\in V|\tilde{x}_{j}=1\} . Let \tilde{x}_{\ell} be the variable

which becomes 1 from 0 at the last iteration of Step 2. From Step 2, ỹl (A)>0 implies

A\subseteq\tilde{S}\backslash \{\ell\} . (6)
Since the algorithm does not stop just before setting \tilde{x}_{\ell}=1 , we have

\displaystyle \sum_{j\in\tilde{S}\backslash \{\ell\}}a_{1j}<b_{1}
. (7)

By (6) and (7), we observe that for any subset A\subseteq N such that ỹl (A)>0

\displaystyle \sum_{j\in(\tilde{S}\backslash \{\ell\})\backslash A}a_{1j}(A)\leq\sum_{j\in(\overline{S}\backslash \{l\})\backslash A}a_{1j}=\sum_{j\in\tilde{S}\backslash \{l\}}a_{1j}-\sum_{j\in A}a_{1j}<b_{1}-\sum_{j\in A}a_{1j}\leq b_{1}(A) ,

where the first and last inequality follows from the definitions (3) of a_{j}(A) and b_{ ι}(A) . Thus,
we have that for any subset A\subseteq N such that ỹ1(A) >0

\displaystyle \sum_{j\in V\backslash A}a_{1j}(A)\tilde{x}_{j}=\sum_{j\in\overline{S}\backslash A}a_{1j}(A)=\sum_{j\in(\tilde{S}\backslash \{l\})\backslash A}a_{1j}(A)+a_{1l}(A)\leq\triangle_{2}b_{1}(A) ,

where the last inequality follows from a_{1\ell}(A)\leq b_{1}(A) and \triangle_{2}\geq 2. \square

Lemma 5. The running time of Algorithm 2 is O(\triangle_{1}(m+n

Proof. The running time of one iteration of Step 1 is O(\triangle_{1}) and the number of iterations in

Step 1 is at most m . On the other hand, the running time of one iteration of Step 2 is O(\triangle_{1})
and the number of iterations in Step 2 is at most m+n . Therefore the total running time of

the algorithm is O(\triangle_{1}m)+O(Δ_{1}(m+n))=O(\triangle_{1}(m+n \square

Fkom the results above, we can obtain the next theorem.

Theorem 1. Algorithm 2 is a \triangle_{2} ‐approximation algorithm for CIP.

13

3 Conclusion

The covering 0‐1 integer program (CIP) is a generalization of fundamental combinatorial

optimization problems. There are some \triangle_{1}‐approximation algorithms for CIP, where Δ_{1} is

the largest number of non‐zero coefficients in the constraints. In this article, we extend a

2‐approximation algorithm for the minimum knapsack problem by Carnes and Shmoys [1] to

CIP and propse a Δ_{2} ‐approximation algorithm, where the second largest number of non‐zero

coefficients in the constraints.

Acknowledgment
This research is supported in part by Grant‐in‐Aid for Science Research (A) 26242027 of

Japan Society for the Promotion of Science.

References

[1] T. Carnes and D. Shmoys: Primal‐dual schema for capacitated covering problems, Math‐

ematical Programming, 153 (2015), 289‐308.

[2] R. D. Carr, L. Fleischer, V. J. Leung and C. A. Phillips: Strengthening integrality gaps

for capacitated network design and covering problems, Proceedings of the 11th Annual

ACM‐SIAM Symposium on Discrete Algorithms (2000), 106‐115.

[3] D. Du, K. Ko and X. Hu: Design and Analysis of Approximation Algorithms, (Springer
optimization and Its Applications, 2011), 297‐303.

[4] C. Koufogiannakis and N.E. Young: Greedy δ‐approximation algorithm for covering with

arbitrary constraints and submodular cost, Algorithmica, 66 (2013), 113‐152.

[5] Y. Takazawa and S. Mizuno: A2‐approximation algorithm for the minimum knapsack
problem with a forcing graph, to appear Journal of Operations Research Research of

Japan (2017).

Yotaro Takazawa

Department of Industrial Engineering and

Management
Tokyo Institute of Technology
2‐12‐1 Ohokayama
Meguro‐ku Tokyo 152‐8552, Japan
\mathrm{E}‐mail: takazawa.y.ab@m.titech.ac.jp

14

