
混合整数非線形計画問題に対する DC 計画法
DC programming approach for mixed‐integer

nonlinear programming problems
*

奥野貴之 (Takayuki Okuno) 池辺淑子 (Yoshiko Ikebe)  $\ddagger$

松尾 健太(Kenta Matsuo)
東京理科大学工学部情報工学科

Department of Information and Computer Technology
Tokyo University of Science

Abstract

In this paper, we consider a class of mixed integer programming problems
(MIPs) whose objective functions are DC functions, that is, functions repre‐

sentable in terms of a difference of two convex functions, and particularly focus

on the nonconvex case. Recently, Maehara, Marumo, and Murota provided a

continuous reformulation without integrality gaps, for discrete DC programs

having only integral variables. They also presented a new algorithm to solve

the reformulated problem. Our aim is to extend their results to MIPs and

further give a new algorithm to solve them. Specifically, we propose an algo‐
rithm based on DCA originally proposed by Pham Dinh and Le Thi, where

convex MFs are solved iteratively.

1 Introduction

Let us consider the following optimization problem:

\displaystyle \min f(x) sub.to x\in S, x_{N}\in \mathbb{Z}^{N}.

Here f : \mathbb{R}^{n}\rightarrow \mathbb{R}\cup\{\infty\} is a closed proper function, i.e., f is lower semicontinuous

and its effective domain dom f :=\{x\in \mathbb{R}^{n}|f(x)<\infty\} is not empty. Moreover,
S\subseteq \mathbb{R}^{n} is a nonempty closed convex set, and x_{N}=(x_{i})_{i\in N} where N\subseteq\{1, 2, . . . , n\}.

In the case where f is a linear or convex quadratic function and S is represented
with only linear or convex quadratic inequalities, the branch‐and‐bound method

and cutting plane techniques work nicely in the practical sense. Indeed, there are

many commercial and free solvers implementing them, e.g. CPLEX [16], gurobi
[13] and SCIP [1]. On the other hand, for the general nonlinear case, the above
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problem is extremely difficult to solve. There are a number of ways to approach
such nonlinear mixed‐integer problems. One method is to extend the framework

of branch‐and‐Uound to the continuous spaces [10, 25, 26]. Another is to utilize

sequential quadratic programming (SQP) [9, 17, 7, 8]. These algorithms incorpo‐
rate such techniques as trust regions, outer approximations and branch‐and‐bound

techniques to solve quadratic problems approximating the original one. In particu‐
lar, in applying these SQP‐type algorithms to mixed‐integer convex problems with

continuously differentiable convex functions, global convergence to an optimum can

be proved. There are also algorithms which deal solely with mixed‐integer nonlinear

programs with convex  f[11 , 12, 6, 28, 2] . See, for example, the surveys [3] and [5].
In this paper, we consider the case where f is a so‐called DC function, that is, \mathrm{a}

function representable as the difference of two convex functions:

\displaystyle \min f(x)=g(x)-h(x)
sub.to x\in S, x_{N}\in \mathbb{Z}^{N}. (1.1)

where g:\mathbb{R}^{n}\rightarrow \mathbb{R}\cup\{\infty\} and h:\mathbb{R}^{n}\rightarrow \mathbb{R} are closed proper convex functions.

The class of DC functions covers are a very wide range of functions. For example,
any twice continuously differentiable function is DC, moreover, functions generated
by applying operators such as \displaystyle \sum,  $\Pi$, |\cdot| ,

and \displaystyle \max ) to DC functions also belong
to the class DC [14, 15]. Hence, the problem of our focus,(1.1) covers a wide class

of nonlinear mixed integer programs. Note however, that given a DC function  f,
finding two explicit convex functions g and h representing f is a hard open problem.
Among the functions for which a DC representation is easily found, perhaps the

most common are the quadratic functions. In this paper, we assume that one DC

representation is explicitly given; how we obtain it will not enter our discussion.

The DC programming in continuous variables is an important field of research

in continuous optimization, and theoretical and practical aspects have been exten‐

sively studied [23, 24]. For example, the global optimality condition is completely
characterized by the Toland‐Singer duality theorem. This duality theorem in turn

forms the basis for the fundamental DC programming algorithm known as DCA[23],
which is known have nice convergence properties.

DC programming also has many useful applications. One example is in mixed‐

integer linear programs, where integer constraints on variables are incorporated into

the objective functions via penalty functions [22]. Other notable results have been

reported in sparse optimization [27, 19] and portfolio selection [18]. This is an active

field, with remarkable recent progress in both theory and applications.
On the other hand, discrete DC programming, which concerns DC programs

with integrally constrained variables, that is, (1.1) with N=\{1, 2, . . . , n\} ,
is a

still a relatively unexplored area, Recently, a promising approach was proposed by
Maehara and Murota [20], who showed how the framework of discrete convex analysis
can be applied, to export results in continuous DC theory to a discrete setting. This

was further pursued in Maehara, Marumo and Murota [21], who proved a powerful
result in constructing continuous relaxations of discrete DC programs. The simplest
continuous relaxation for (1.1) may just replace \mathbb{Z}^{N} by \mathbb{R}^{N} . As is well known, this

does not work effectively in general, since an integrality gap usually occurs, that

is, the optimal values of the original and relaxed problems do not coincide. On the

other hand, the new continuous relaxation proposed in [21] replaces g with its closed
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convex closure (and h with an arbitrary relaxation). Its notable property is that no

integrality gap is generated.
In this paper we extend the theorem of Maehara, Marumo and Murota to mixed

integer DC programs, and propose a new algorithm based on the DCA originally
proposed by Pham Dinh and Le Thi [23], where we iteratively solve a sequence of

convex mixed integer programs. This paper is organized as follows. In Section 2 we

briefly describe existing results in continuous and discrete DC programming, and in

Section 3, we show how to extend the theorem of Maehara, Marumo and Murota to

obtain a continuous relaxation of (1.1) with no integrality gap. Next, in Section 4

we describe our algorithm.
Throughout the paper, we will use the following notations: For any nonempty set

X\subseteq \mathbb{R}^{n} , we denote the convex hull and closure of X by co X and cl X
, respectively.

Let  $\varphi$ : \mathbb{R}^{n}\rightarrow \mathbb{R}\cup\{+\infty\} be a convex function. For  x\in dom  $\varphi$ , the subdifferential

of  $\varphi$ at  x , that is, the set of all subgradients of  $\varphi$ at  x , is denoted by \partial $\varphi$(x) . We

write the conjugate of  $\varphi$ as  $\varphi$^{*} , that is, a function $\varphi$^{*}:\mathbb{R}^{n}\rightarrow \mathbb{R}\cup\{+\infty\} defined by
$\varphi$^{*}(y)=\displaystyle \sup_{x\in \mathbb{R}^{n}}\{\{y, x\}- $\varphi$(x)\} where \{y,  x\rangle represents the inner product of  y and

x , i.e., \langle y, x)=y^{\mathrm{T}}x . Recall that the function $\varphi$^{*} is convex, moreover if  $\varphi$ is a closed

proper convex function, then ($\varphi$^{*})^{*}= $\varphi$ . For  $\varphi$_{2} : \mathbb{Z}^{n}(resp. , \mathbb{R}^{n})\rightarrow \mathbb{R}\cup\{+\infty\} the

\mathbb{R}^{n+1}
epigraph of $\varphi$_{2} is the set epi $\varphi$_{2} :=\{(x, x_{n+1})|x_{n+1}\geq$\varphi$_{2}(x), x\in \mathbb{Z}^{n}(resp. , \mathbb{R}^{n})\}\subseteq

2 A brief review of continuous and discrete DC

programming
We begin by considering (1.1) with  S=\mathbb{R}^{n} and  N=\emptyset ,

more specifically,

\displaystyle \min_{x\in \mathbb{R}^{n}}\{g(x)-h(x)\} . (2.1)

Then, the following proposition holds.

Proposition 2.1 ([23]). Suppose that the DC program (2.1) has an optimal solution

x^{*} . Then, we have

1. \partial g(x^{*})\supseteq\partial h(x^{*}) ,

2. \overline{y}\in\partial h(x^{*})\Leftrightarrow x^{*}\in\partial h^{*}(\overline{y}) , and

3. \overline{y}\in\partial h(x^{*})\Rightarrow\overline{y} is an optimal solution to \displaystyle \inf_{y\in \mathbb{R}^{n}}\{h^{*}(y)-g^{*}(y)\}.

The following theorem is known as Toland‐Singer duality, and forms the basis

for DC minimization algorithms.

Theorem 2.2. (Toland‐Singer duality)

\displaystyle \inf_{x\in \mathbb{R}^{n}}\{g(x)-h(x)\}=\inf_{y\in \mathrm{R}^{n}}\{h^{*}(y)-g^{*}(y)\}
We next define stationary points for the DC program that contains the global

optima.
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Definition 2.3. A stationary point for g-h is a point x^{*} such that

\partial g(x^{*})\cap\partial h(x^{*})\neq\emptyset.

Let us introduce an existing algorithm for solving the DC program which will

become the base of our proposed algorithms and cite its convergence results. For

details we refer the reader to [23].

SIMPLIFIED DC ALGoRITHM(DCA)

Step 0 : Choose x^{0}\in \mathbb{R}^{n} . Set k=0

Step 1: Choose y^{k}\in\partial h(x^{k}) and x^{k+1}\in\partial g^{*}(y^{k})

Step 2: If stopping criterion is satisfied stop,

else set k=k+1 and go to Step 1

Theorem 2.4 ([23]). Let \{x^{k}\} and \{y^{k}\} be the sequences generated by the simplified
DCA. Then, the following statements hold.

1. g(x^{k+1})-h(x^{k+1})\leq g(x^{k})-h(x^{k}) .

2. h^{*}(y^{k+1})-g^{*}(y^{k+1})\leq h^{*}(y^{k})-g^{*}(y^{k}) .

3. Every accumulation point x^{*}(y^{*}) of the sequence \{x^{k}\}(\{y^{k}\}) is a stationary
point of g-h(h^{*}-g^{*}) .

We now turn to DC programs with discrete variables. Before introducing the

results of Maehara, Marumo and Murota, we define some concepts related to discrete

functions. Consider a function on discrete variables,  $\varphi$ : \mathbb{Z}^{n}\rightarrow \mathbb{R}\cup\{+\infty\}.

Definition 2.5. A convex function \hat{ $\varphi$} : \mathbb{R}^{n}\rightarrow \mathbb{R}\cup\{+\infty\} is a convex extension of  $\varphi$

if
\hat{ $\varphi$}(x)= $\varphi$(x) (x\in \mathbb{Z}^{n}) .

The convex closure of  $\varphi$ is the function  $\varphi$^{\mathrm{c}1}:\mathbb{R}^{n}\rightarrow \mathbb{R}\cup\{+\infty\} whose epigraph is

equal to the closed convex hull of the epigraph of  $\varphi$.

While the convex closure can be defined for any  $\varphi$ , clearly, not all discrete func‐

tions have convex extensions. If the discrete function  $\varphi$ does have a convex extension

\hat{ $\varphi$} , then we always have

$\varphi$^{\mathrm{c}1}(x)=\hat{ $\varphi$}(x) (x\in \mathbb{Z}^{n}) .

As, in this paper, we will be concerned only with discrete functions which are the

restrictions of continuous convex functions on \mathbb{R}^{n} to \mathbb{Z}^{n}
, all discrete functions will

trivially have convex extensions.

Let us consider the DC program (1.1) with S=\mathbb{R}^{n} in which all variables are

restricted to integer values, i.e., N=\{1, 2, . . . , n\} :

\displaystyle \min_{x\in \mathbb{Z}^{n}}\{g(x)-h(x)\} . (2.2)
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If we define the discrete functions g_{\mathrm{Z}}, h_{\mathrm{Z}} : \mathbb{Z}^{n}\rightarrow \mathbb{R}\cup\{+\infty\} as the restrictions

of g and h to \mathbb{Z}^{n} :

g_{\mathrm{Z}}(x)=g(x) , h_{\mathrm{Z}}(x)=h(x) (x\in \mathbb{Z}^{n}) (2.3)
and let \hat{g}, \hat{h} : \mathbb{R}^{n}\rightarrow \mathbb{R}\cup\{+\infty\} be any convex extensions of g_{\mathrm{Z}} and h_{\mathrm{Z}} , then the

following continuous DC program is clearly a relaxation of (2.2)

\displaystyle \min_{x\in \mathbb{R}^{n}}\{\hat{g}(x)-\hat{h}(x)\} (2.4)

The original functions g and h are obvious candidates for the convex extensions

\hat{g} and h
,

but this is usually a poor choice as the two optimal values of (2.2) and

(2.4) generally do not coincide. Maehara, Marumo and Murota [21] proved that the

appropriate choice of \hat{g} ensures this will not happen.

Theorem 2.6 ([21]). If \hat{g} is the convex closure of g_{\mathrm{Z}} , then the optimal values of the

two problems (2.2) and (2.4) coincide.

We now turn to our main concern, mixed integer DC programs.

3 Continuous relaxation with no integrality gap

We begin by rephrasing problem (1.1). By using the indicator function of set S,
that is, the function $\delta$_{S}:\mathbb{R}^{n}\rightarrow \mathbb{R}\cup\{+\infty\} defined by

$\delta$_{S}(x)=\left\{\begin{array}{ll}
0 & (x\in S)\\
+\infty & (x\not\in S)
\end{array}\right.
(1.1) can be written as

\displaystyle \min ($\delta$_{S}(x)+g(x))-h(x)
sub.to x_{N}\in \mathbb{Z}^{N}. (3.1)

Since S is a closed convex set, $\delta$_{S} , and hence $\delta$_{S}+g are closed proper convex functions.

For convenience of notations, we set M=\{1, 2, . . . , n\}\backslash N , and express x\in \mathbb{R}^{n}

as x=(x_{M}, x_{N}) . Now define \tilde{g} and \tilde{h} respectively as the restrictions of $\delta$_{S}+g and

h to \mathbb{R}^{M}\times \mathbb{Z}^{N} . We also denote the convex closure of \tilde{g} by \tilde{g}^{\mathrm{c}1} . Convex extensions,
epigraphs, and convex closures of \tilde{g} and \tilde{h} are defined in a manner analogous to the

discrete functions in Section 1; for example, the epigraph of \tilde{g} is defined as the set

\{(x_{M}, x_{N}, x_{n+1})\in \mathbb{R}^{M}\times \mathbb{Z}^{N}\times \mathbb{R}|x_{n+1}\geq g(x_{M}, x_{N}

In the rest of this section, we extend the theorem of Maehara, Marumo and

Murota, to mixed‐integer DC programs (1.1), that is, DC programs involving both

integer‐valued and continuous variables. More precisely, we can prove the following
theorem. Here, we just state it without the proof.

Theorem 3.1. Let \hat{h} : \mathbb{R}^{n}\rightarrow \mathbb{R} be an arbitrary convex extension of \tilde{h} . Then, the

following (continuous) DC program:

\displaystyle \min_{x\in \mathbb{R}^{n}}\{\tilde{g}^{\mathrm{c}1}(x)-\hat{h}(x)\} . (3.2)

has the same optimal value as the mixed‐integer DC program (3.1), i. e., as (1.1). In

particular, the optimal set of (3.1) is contained in (3.2).
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By the above result, we have only to solve (3.2) instead of (1.1). In the remainder

of the paper, we propose a specific algorithm for solving (3.2). In our algorithm, we

choose h as \hat{h}
,
a convex extension of \tilde{h} . Therefore, our target is to solve the following

problem

\displaystyle \min_{x\in \mathbb{R}^{n}}\{\tilde{g}^{\mathrm{c}1}(x)-h(x)\} . (3.3)

4 A basic algorithm for the mixed integer DC

program

In this section, we formulate a basic algorithm based on the DCA of Section 2, for

solving (3.3). For the DC program (3.3), recall that the DCA involves finding x_{k}

and y_{k} with

y^{k+1}\in\partial h(x^{k}) , and x^{k+1}\in\partial(\tilde{g}^{\mathrm{c}1})^{*}(y^{k+1}) .

Finding x^{k+1}\in\partial(\tilde{g}^{\mathrm{c}1})^{*}(y^{k+1}) can be accomplished by using the following relations:

x^{k+1}\in\partial(\tilde{g}^{\mathrm{c}1})^{*}(y^{k+1}) \Leftrightarrow \partial\tilde{g}^{\mathrm{c}1}(x^{k+1})\ni y^{k+1}
\Rightarrow  x^{k+1} is a solution of w\displaystyle \in \mathbb{R}\sup_{\text{れ}}(\langle y^{k+1}, w\rangle-\tilde{g}^{\mathrm{c}1}(w))

\Leftrightarrow  x^{k+1} is a solution of \displaystyle \inf_{w\in \mathbb{R}^{n}}(\tilde{g}^{\mathrm{c}1}(w)-\langle y^{k+1}, w) )
The rightmost optimization problem involves minimizing a convex function. How‐

ever, this cannot be solved by using standard convex optimization methodologies
such as the interior point method, since we do not have an explicit expression of \tilde{g}^{\mathrm{c}1}
in general. This can be overcome by using Theorem 3.1 to note that it corresponds
to solving the following convex mixed integer program:

\displaystyle \min  g(x)-\{y^{k} , x)
(4.1)sub.to x\in S, x_{N}\in \mathbb{Z}^{N}.

Hence, by replacing x^{k+1}\in\partial(\tilde{g}^{\mathrm{c}1})^{*}(y^{k+1}) with (4.1) in Step 2 of the simplified DCA,
we gain a specific algorithm for solving (1.1) as below:

\displaystyle \frac{\mathrm{s}_{\mathrm{E}\mathrm{Q}\mathrm{U}\mathrm{E}\mathrm{N}\mathrm{T}\mathrm{I}\mathrm{A}\mathrm{L}\mathrm{C}\mathrm{O}\mathrm{N}\mathrm{V}\mathrm{E}\mathrm{X}\mathrm{M}\mathrm{I}\mathrm{X}\mathrm{E}\mathrm{D}-\mathrm{I}\mathrm{N}\mathrm{T}\mathrm{E}\mathrm{G}\mathrm{E}\mathrm{R}}}{\mathrm{P}\mathrm{R}\mathrm{O}\mathrm{G}\mathrm{R}\mathrm{A}\mathrm{M}\mathrm{M}\mathrm{I}\mathrm{N}\mathrm{G}\mathrm{M}\mathrm{E}\mathrm{T}\mathrm{H}\mathrm{O}\mathrm{D}(\mathrm{S}\mathrm{C}\mathrm{M}\mathrm{I}\mathrm{P})}
Step 0 : Choose x^{0}\in \mathbb{R}^{n} . Set k=0.

Step 1: Choose y^{k+1}\in\partial h(x^{k}) and solve (4.1) to obtain x^{k+1}.

Step 2: If stopping criterion is satisfied, stop,

else set k=k+1 and goto step 1

Obviously, each iteration point x^{k} is feasible to (1.1). By applying existing results

on convergence for the DCA, we can make some observations for the case that at

least one of \tilde{g}^{\mathrm{c}1} and h is a strongly convex function.

both \tilde{g}^{\mathrm{c}1}(x^{k})-h(x^{k})(=f(x^{k})) and h^{*}(y^{k})-(\tilde{g}^{\mathrm{c}1})^{*}(y^{k}) strictly decrease
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if x^{*} (resp., y^{*} ) is an accumulation points of \{x^{k}\} (resp., {yk}), then x^{*}(resp. ,y^{*})
is a stationary point of \displaystyle \min\tilde{g}^{\mathrm{c}1}(x)-h(x) (resp., \displaystyle \min h^{*}(y)-(\tilde{g}^{\mathrm{c}1})^{*}(y) ). That

is to say, y^{*}\in\partial\tilde{g}^{\mathrm{c}1}(x^{*})\cap\partial h(x^{*}) and x^{*}\in\partial(\tilde{g}^{\mathrm{c}1})^{*}(y^{*})\cap\partial h^{*}(y^{*}) hold.

the x^{N}‐part of x^{k} converges to some point within finitely many iterations.

In the above discussion, the assumption that at least one of \tilde{g}^{\mathrm{c}1} and h is strongly
convex is crucial. We place emphasis on the �at least one� phrase.

In problem (1.1), we did not assume strong convexity of either g or h . Thus,
at first glance, the above results may seem inapplicable, however, it can be easily
overcome by considering the equivalent problem for fixed  $\rho$>0

\displaystyle \min(g(x)+ $\rho$\frac{\Vert x\Vert^{2}}{2})-(h(x)+ $\rho$\frac{\Vert x\Vert^{2}}{2}) sub. to x^{N}\in \mathbb{Z}^{N}, x\in S. (4.2)

We note here that the convex closure of g + $\rho$\Vert\cdot\Vert^{2}/2 restricted to \mathbb{Z}^{N}\times \mathbb{R}^{M} is

usually not strongly convex, whereas h + $\rho$\Vert\cdot\Vert^{2}/2 always is. Thus it is important
that we do not need the strong convexity of both g and h.

Before ending this section, we make an important remark concerning the draw‐

backs of transforming (1.1) to (4.2). Consider two different DC‐decompositions
(g_{1}, h_{1}) and (g_{2}, h_{2}) for f , i.e., f=g_{1}-h_{1}=g_{2}-h_{2} , and corresponding continuous

DC programs of the form (3.3). Their two optimal sets are exactly the same. How‐

ever, their sets of stationary points may possibly differ. This phenomenon does not

occur in continuous DC programs without discrete variables, and thus it is charac‐

teristic of (3.3). To illustrate it, let us consider the following trivial mixed integer
program:

\displaystyle \min x s.t. x\in\{-1, 0, 1\} . (4.3)
Choose two DC‐decompositions (g_{1}, h_{1})=(x, 0) and (g_{2}, h_{2})=(x^{2}+x, x^{2}) . Then,
dom \tilde{g}_{1}^{\mathrm{c}1}= dom \tilde{g}_{2}^{\mathrm{c}1}=[-1, 1], \tilde{g}_{1}^{\mathrm{c}1}(x)=x , and \tilde{g}_{2}^{\mathrm{c}1} is the polygonal line connecting
the three points (-1,0) , (0,0) and (1, 2). Thus the resulting optimization problem
of the form (3.3) are:

\displaystyle \min\left\{\begin{array}{ll}
\infty & (x<-1)\\
x & (-1\leq x\leq 1)\\
\infty & (1\leq x)
\end{array}\right. and \displaystyle \min\left\{\begin{array}{ll}
\infty & (x<-1)\\
-x^{2} & (-1\leq x\leq 0)\\
2x-x^{2} & (0\leq x\leq 1)\\
\infty & (1\leq x)
\end{array}\right.
The set of stationary points of the former problem is nothing but the optimal set

\{-1\} of (4.3), while that of the latter is \{0, -1\} . This example indicates that the

choice of DC decomposition may affect efficiency in finding the optima.

5 Concluding remarks

In this paper, we have considered mixed integer programs having DC objective
functions and closed convex constraints. For these problems, we have extended

the result of Maehara, Marumo, and Murota concerning continuous relaxations of

discrete DC programs and obtained a continuous DC program whose optimal value

is exactly equal to the original one. We have also proposed an algorithm to solve

the obtained relaxed problem.
Our contribution can be summarized as follows:
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We have proposed a new framework for solving nonconvex mixed integer prob‐
Iems, which are notorious as being extremely difficult. Although our method

involves the computationally costly routine of repeatedly solving convex MlPs,
it still has significant merit, since it provides a practical way of dealing with

these tough problems.

We have theoretically proved convergence of generated sequences, thus the

solutions provided by our algorithm are stationary points which have good
chances of being the global optimum.

We conclude this paper by mentioning that while our method does not obtain

polynomial complexity, there may be some specific problems for which it is tractable.

For example, Maehara, Marumo and Murota [21] showed that their DCA‐based

algorithm can efficienly solve the degree‐concentrated spanning tree problem. The

search for such problems is a possible direction for future work.
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