リーマン計量調整に基づく Tucker多様体の
 幾何の提案と最適化問題への応用

電気通信大学•大学院情報理工学研究科情報ネットワーク工学専攻 笠井 裕之
Amazon Development Centre India，Bamdev Mishra

Hiroyuki Kasa，
Department of Computer and Network Engineering， The University of Electro－Communications Bamdev Mishra

Amazon Development Centre India

概要

本稿では，低ランク・テンソル Tucker 分解のための新し い幾何空間＂Scaled Tucker Manifold＂による＂テンソル補完問題＂の効率的な手法を提案した論文［1］の概要を記す。提案手法は，一般的なテンソル回帰問題に対して，Scaled Tucker Manifold により効率的な解法を確立することが可能となる。 Scaled Tucker Manifol の導出にあたりては，Tucker 分解の対称構造と回帰問題の最小自乗構造に着目した新しいリーマ ン計量を提案し，幾何空間を定義する数々の構成要素を導出 している。

1 Introduction

This paper addresses the problem of low－rank tensor completion when the rank is a priori known or estimated．Without loss of generality，we focus on 3 －order tensors．Given a tensor $\mathcal{X}^{n_{1} \times n_{2} \times n_{3}}$ ，whose entries $\mathcal{X}_{i_{1}, i_{2}, i_{3}}^{\star}$ are only known for some indices $\left(i_{1}, i_{2}, i_{3}\right) \in \Omega$ ， where Ω is a subset of the complete set of indices $\left\{\left(i_{1}, i_{2}, i_{3}\right): i_{d} \in\left\{1, \ldots, n_{d}\right\}, d \in\right.$ $\{1,2,3\}\}$ ，the fixed－rank tensor completion problem is formulated as

$$
\begin{aligned}
& \min _{\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}} \frac{1}{|\Omega|}\left\|\mathcal{P}_{\Omega}(\mathcal{X})-\mathcal{P}_{\Omega}\left(\mathcal{X}^{\star}\right)\right\|_{F}^{2} \\
& \text { subject to } \operatorname{rank}(\mathcal{X})=\mathbf{r},
\end{aligned}
$$

where the operator $\mathcal{P}_{\Omega}(\mathcal{X})_{i_{1} i_{2} i_{3}}=\mathcal{X}_{i_{1} i_{2} i_{3}}$ if $\left(i_{1}, i_{2}, i_{3}\right) \in \Omega$ and $\mathcal{P}_{\Omega}(\boldsymbol{\mathcal { X }})_{i_{1} i_{2} i_{3}}=0$ otherwise and（with a slight abuse of notation）$\|\cdot\|_{F}$ is the Frobenius norm． $\operatorname{rank}(\mathcal{X})(=\mathbf{r}=$ $\left(r_{1}, r_{2}, r_{3}\right)$ ），called the multilinear rank of $\boldsymbol{\mathcal { X }}$ ，is the set of the ranks of for each of mode－ d unfolding matrices．$r_{d} \ll n_{d}$ enforces a low－rank structure．The mode is a matrix obtained by concatenating the mode－d fibers along column and mode－d unfolding of \mathcal{X} is $\mathbf{X}_{d} \in \mathbb{R}^{n_{d} \times n_{d+1} \cdots n_{D} n_{1} \cdots n_{d-1}}$ for $d=\{1, \ldots, D\}$ ．

The optimization problem (1) has many variants, and one of those is extending the nuclear norm regularization approach from the matrix case [2] to the tensor case. While this generalization leads to good results [3-5], its scalabilityto large-scale instances is not trivial, especially due to the necessity of high-dimensional singular value decomposition computations. A different approach exploits Tucker decomposition [6, Section 4] of a low-rank tensor $\boldsymbol{\mathcal { X }}$ to develop large-scale algorithms for (1), e.g., in [7,8]. The present paper exploits both the symmetry present in Tucker decomposition and the least-squares structure of the cost function of (1) by using the concept of preconditioning. While preconditioning in unconstrained optimization is well studied [9, Chapter 5], preconditioning on constraints with symmetries, owing to non-uniqueness of Tucker decomposition [6, Section 4.3], is not straightforward. We build upon the recent work [10] that suggests to use Riemannian preconditioning with a tailored metric (inner product) in the Riemannian optimization framework on quotient manifolds [11-13]. Our proposed preconditioned nonlinear conjugate gradient algorithm is implemented in the Matlab toolbox Manopt [14] and it outperforms state-of-the-art methods. In the supplementary material section, we show concrete mathematical derivations and additional numerical comparisons. We also provide a generic Manopt factory (a manifold description Matlab file) with additional support for second-order implementations, e.g., the trust-region method.

2 Exploiting the problem structure

We focus on the two fundamental structures present in (1): symmetry in the constraints, and the least-squares structure of the cost function. Finally, a novel metric is proposed.

The quotient and least-squares structures. The Tucker decomposition of a tensor $\mathcal{X} \in \mathbb{R}^{n_{1} \times n_{2} \times n_{3}}$ of rank $\mathbf{r}\left(=\left(r_{1}, r_{2}, r_{3}\right)\right)$ is [6, Section 4.1] $\mathcal{X}=\mathcal{G} \times{ }_{1} \mathbf{U}_{1} \times{ }_{2} \mathbf{U}_{2} \times{ }_{3} \mathrm{U}_{3}$, where $\mathbf{U}_{d} \in \operatorname{St}\left(r_{d}, n_{d}\right)$ for $d \in\{1,2,3\}$ belongs to the Stiefel manifold of matrices of size $n_{d} \times r_{d}$ with orthogonal columns and $\mathcal{G} \in \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$. Here, $\mathcal{W} \times_{d} \mathbf{V} \in \mathbb{R}^{n_{1} \times \cdots n_{d-1} \times m \times n_{d+1} \times \cdots n_{N}}$ computes the d-mode product of a tensor $\mathcal{W} \in \mathbb{R}^{n_{1} \times \cdots \times n_{N}}$ and a matrix $\mathbf{V} \in \mathbb{R}^{m \times n_{d}}$. Tucker decomposition is not unique as \mathcal{X} remains unchanged under the transformation $\left(\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}, \mathcal{G}\right) \mapsto\left(\mathbf{U}_{1} \mathbf{O}_{1}, \mathbf{U}_{2} \mathbf{O}_{2}, \mathbf{U}_{3} \mathbf{O}_{3}, \mathcal{G} \times{ }_{1} \mathbf{O}_{1}^{T} \times_{2} \mathbf{O}_{2}^{T} \times_{3} \mathbf{O}_{3}^{T}\right)$ for all $\mathbf{O}_{d} \in \mathcal{O}\left(r_{d}\right)$, which is the set of orthogonal matrices of size of $r_{d} \times r_{d}$. The classical remedy to remove this indeterminacy is to have additional structures on \mathcal{G} like sparsity or restricted orthogonal rotations [6, Section 4.3]. In contrast, we encode the transformation in an abstract search space of equivalence classes, defined as, $\left[\left(\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}, \mathcal{G}\right)\right]:=$ $\left\{\left(\mathbf{U}_{1} \mathbf{O}_{1}, \mathbf{U}_{2} \mathbf{O}_{2}, \mathbf{U}_{3} \mathbf{O}_{3}, \mathcal{G} \times{ }_{1} \mathbf{O}_{1}^{T} \times{ }_{2} \mathbf{O}_{2}^{T} \times_{3} \mathbf{O}_{3}^{T}\right): \mathbf{O}_{d} \in \mathcal{O}\left(r_{d}\right)\right\}$. The set of equivalence classes is the quotient manifold [15, Theorem 9.16]

$$
\mathcal{M} / \sim:=\mathcal{M} /\left(\mathcal{O}\left(r_{1}\right) \times \mathcal{O}\left(r_{2}\right) \times \mathcal{O}\left(r_{3}\right)\right)
$$

where \mathcal{M} is called the total space (computational space) that is the product space $\mathcal{M}:=$ $\operatorname{St}\left(r_{1}, n_{1}\right) \times \operatorname{St}\left(r_{2}, n_{2}\right) \times \operatorname{St}\left(r_{3}, n_{3}\right) \times \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}$. Due to the invariance of the Tucker de-
composition, the local minima of (1) in \mathcal{M} are not isolated, but they become isolated on \mathcal{M} / \sim. Consequently, the problem (1) is an optimization problem on a quotient manifold for which systematic procedures are proposed in [11-13] by endowing \mathcal{M} / \sim with a Riemannian structure. We call \mathcal{M} / \sim the Tucker manifold.

Another structure that is present in (1) is the least-squares structure of the cost function. A way to exploit it is to endow the search space with a metric (inner product) induced by the Hessian of the cost function [9]. This induced metric (or its approximation) resolves convergence issues of first-order optimization algorithms. Specifically for the case of quadratic optimization with rank constraint (matrix case), Mishra and Sepulchre [10, Section 5] propose a family of Riemannian metrics from the Hessian of the cost function. Since applying this approach directly for (1) is computationally costly, we consider a simplified cost function by assuming that Ω contains the full set of indices, i.e., we focus on $\left\|\mathcal{X}-\mathcal{X}^{\star}\right\|_{F}^{2}$ to propose a metric candidate. A good candidate is by considering only the block diagonal elements of the Hessian of $\left\|\mathcal{X}-\mathcal{X}^{\star}\right\|_{F}^{2}$. It should emphasized that the cost function $\left\|\mathcal{X}-\mathcal{X}^{\star}\right\|_{F}^{2}$ is convex and quadratic in $\boldsymbol{\mathcal { X }}$. Consequently, it is also convex and quadratic in the arguments ($\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathcal{G}$) individually. The block diagonal approximation of the Hessian of $\left\|\mathcal{X}-\mathcal{X}^{\star}\right\|_{F}^{2}$ in $\left(\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}, \mathcal{G}\right)$ is $\left(\left(\mathbf{G}_{1} \mathbf{G}_{1}^{T}\right) \otimes \mathbf{I}_{n_{1}},\left(\mathbf{G}_{2} \mathbf{G}_{2}^{T}\right) \otimes \mathbf{I}_{n_{2}},\left(\mathbf{G}_{3} \mathbf{G}_{3}^{T}\right) \otimes \mathbf{I}_{n_{3}}, \mathbf{I}_{r_{1} r_{2} r_{3}}\right)$, where \mathbf{G}_{d} is the mode-d unfolding of \mathcal{G} and is assumed to be full rank. The terms $\mathbf{G}_{d} \mathbf{G}_{d}^{T}$ for $d \in\{1,2,3\}$ are positive definite when $r_{1} \leq r_{2} r_{3}, r_{2} \leq r_{1} r_{3}$, and $r_{3} \leq r_{1} r_{2}$.

A novel Riemannian metric and its motivation. An element x in the total space \mathcal{M} has the matrix representation $\left(\mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{U}_{3}, \mathcal{G}\right)$. Consequently, the tangent space $T_{x} \mathcal{M}$ is the Cartesian product of the tangent spaces of the individual manifolds, i.e., $T_{x} \mathcal{M}$ has the matrix characterization [13] $T_{x} \mathcal{M}=\left\{\left(\mathbf{Z}_{\mathbf{U}_{1}}, \mathbf{Z}_{\mathbf{U}_{2}}, \mathbf{Z}_{\mathbf{U}_{3}}, \mathbf{Z}_{\mathcal{G}}\right) \in \mathbb{R}^{n_{1} \times r_{1}} \times \mathbb{R}^{n_{2} \times r_{2}} \times\right.$ $\mathbb{R}^{n_{3} \times r_{3}} \times \mathbb{R}^{r_{1} \times r_{2} \times r_{3}}: \mathbf{U}_{d}^{T} \mathbf{Z}_{\mathbf{U}_{d}}+\mathbf{Z}_{\mathbf{U}_{d}}^{T} \mathbf{U}_{d}=0$, for $\left.d \in\{1,2,3\}\right\}$. The earlier discussion on symmetry and least-squares structure leads to the novel metric $g_{x}: T_{x} \mathcal{M} \times T_{x} \mathcal{M} \rightarrow \mathbb{R}$

$$
\begin{aligned}
g_{x}\left(\xi_{x}, \eta_{x}\right) & =\left\langle\xi_{\mathbf{U}_{1}}, \eta_{\mathbf{U}_{1}}\left(\mathbf{G}_{1} \mathbf{G}_{1}^{T}\right)\right\rangle+\left\langle\xi_{\mathbf{U}_{2}}, \eta_{\mathbf{U}_{2}}\left(\mathbf{G}_{2} \mathbf{G}_{2}^{T}\right)\right\rangle \\
& +\left\langle\xi_{\mathbf{U}_{3}}, \eta_{\mathrm{U}_{3}}\left(\mathbf{G}_{3} \mathbf{G}_{3}^{T}\right)\right\rangle+\left\langle\xi_{\mathcal{G}}, \eta_{\mathcal{G}}\right\rangle,
\end{aligned}
$$

where $\xi_{x}, \eta_{x} \in T_{x} \mathcal{M}$ are tangent vectors with matrix characterizations, $\left(\xi_{\mathrm{U}_{1}}, \xi_{\mathrm{U}_{2}}, \xi_{\mathrm{U}_{3}}, \xi_{\mathcal{G}}\right)$ and $\left(\eta_{\mathrm{U}_{1}}, \eta_{\mathrm{U}_{2}}, \eta_{\mathrm{U}_{3}}, \eta_{\mathcal{G}}\right)$, respectively and $\langle\cdot, \cdot\rangle$ is the Euclidean inner product. As contrasts to the classical Euclidean metric, the metric (2) scales the level sets of the cost function on the search space that leads a preconditioning effect on the algorithms developed on the Tucker manifold.

3 Notions of optimization on quotient manifolds

Each point on a quotient manifold represents an entire equivalence class of matrices in the total space. Abstract geometric objects on a quotient manifold call for matrix representatives in the total space. Similarly, algorithms are run in the total space \mathcal{M},
but under appropriate compatibility between the Riemannian structure of \mathcal{M} and the Riemannian structure of the quotient manifold \mathcal{M} / \sim, they define algorithms on the quotient manifold. Once we endow \mathcal{M} / \sim with a Riemannian structure, the constraint optimization problem (1) is conceptually transformed into an unconstrained optimization over the Riemannian quotient manifold (2). When the points x and y in \mathcal{M} belong to the same equivalence class, they represent a single point $[x]:=\{y \in \mathcal{M}: y \sim x\}$ on the quotient manifold \mathcal{M} / \sim. The abstract tangent space $T_{[x]}(\mathcal{M} / \sim)$ at $[x] \in \mathcal{M} / \sim$ has the matrix representation in $T_{x} \mathcal{M}$, but restricted to the directions that do not induce a displacement along the equivalence class $[x]$. This is realized by decomposing $T_{x} \mathcal{M}$ into two complementary subspaces. The vertical space, \mathcal{V}_{x} is the tangent space of the equivalence class $[x]$. On the other hand, the horizontal space \mathcal{H}_{x} is the orthogonal subspace to \mathcal{V}_{x}, i.e., $T_{x} \mathcal{M}=\mathcal{V}_{x} \oplus \mathcal{H}_{x}$. The horizontal subspace provides a valid matrix representation to the abstract tangent space $T_{[x]}(\mathcal{M} / \sim)$ [11, Section 3.5.8]. An abstract tangent vector $\xi_{[x]} \in T_{[x]}(\mathcal{M} / \sim)$ at $[x]$ has a unique element $\xi_{x} \in \mathcal{H}_{x}$ that is called its horizontal lift. Endowed with the Riemannian metric (2), the quotient manifold \mathcal{M} / \sim is a Riemannian submersion of \mathcal{M}. The submersion principle then allows to work out concrete matrix representations of abstract object on \mathcal{M} / \sim. Particularly, starting from an arbitrary matrix (with appropriate dimensions), two linear projections are needed: the first projection Ψ_{x} is onto the tangent space $T_{x} \mathcal{M}$, while the second projection Π_{x} is onto the horizontal subspace \mathcal{H}_{x}. The computation cost of these projections is $O\left(n_{1} r_{1}^{2}+n_{2} r_{2}^{2}+\right.$ $n_{3} r_{3}^{2}$).

Finally, we propose a Riemannian nonlinear conjugate gradient algorithm for (1) that scales well to large-scale instances. Specifically, we use the conjugate gradient implementation of Manopt with the ingredients described in Table ??. The convergence analysis of this method follows from $[11,16,17]$. If $f(\mathcal{X})=\left\|\mathcal{P}_{\Omega}(\mathcal{X})-\mathcal{P}_{\Omega}\left(\mathcal{X}^{\star}\right)\right\|_{F}^{2} /|\Omega|$, then the Riemannian gradient $\operatorname{grad}_{x} f$, which has the matrix characterization $\Psi\left(\operatorname{egrad}_{x} f\right)$, where egrad ${ }_{x} f$ is the Euclidean gradient of f. We show a way to compute a step-size guess effectively. The total computational cost per iteration of our proposed algorithm is $O\left(|\Omega| r_{1} r_{2} r_{3}\right)$, where $|\Omega|$ is the number of known entries.

4 Numerical comparisons

We show numerical comparisons of our proposed algorithm with state-of-the-art algorithms that include TOpt [7] and geomCG [8], for comparisons with Tucker decomposition based algorithms, and HaLRTC [3], Latent [4]; and Hard [5] as nuclear norm minimization algorithms. All simulations are performed in Matlab on a 2.6 GHz Intel Core i7 machine with 16 GB RAM. For specific operations with unfoldings of \mathcal{S}, we use the mex interfaces that are provided in geomCG. For large-scale instances, our algorithm is only . compared with geomCG as other algorithms cannot handle these instances. We randomly and uniformly select known entries based on a multiple of the dimension, called the over-
sampling（OS）ratio，to create the training set Ω ．Algorithms（and problem instances） are initialized randomly，as in［8］，and are stopped when either the mean square error （MSE）on the training set Ω is below 10^{-12} or the number of iterations exceeds 250 ．We also evaluate the mean square error on a test set Γ ，which is different from Ω ．Five runs are performed in each scenario．

Case 1 considers synthetic small－scale tensors of size $100 \times 100 \times 100,150 \times 150 \times 150$ ， and $200 \times 200 \times 200$ and rank $\mathbf{r}=(10,10,10)$ are considered．OS is $\{10,20,30\}$ ．The result shows that the convergence behavior of our proposed algorithm is either competitive or faster than the others．Next，Case 2 considers large－scale tensors of size $3000 \times 3000 \times$ $3000,5000 \times 5000 \times 5000$ ，and $10000 \times 10000 \times 10000$ and ranks $\mathbf{r}=(5,5,5)$ and $(10,10,10)$ ． OS is 10．Our proposed algorithm outperforms geomCG．Case $\mathbf{3}$ considers instances where the dimensions and ranks along certain modes are different than others．Two cases are considered．Case（3．a）considers tensors size $20000 \times 7000 \times 7000,30000 \times 6000 \times 6000$ ， and $40000 \times 5000 \times 5000$ with rank $\mathbf{r}=(5,5,5)$ ．Case（3．b）considers a tensor of size $10000 \times 10000 \times 10000$ with ranks $(7,6,6),(10,5,5)$ ，and $(15,4,4)$ ．In all the cases，the proposed algorithm converges faster than geomCG．Finally，Case 4 considers MovieLens－ 10 M dataset that contains 10000054 ratings corresponding to 71567 users and 10681 movies．We split the time into 7 －days wide bins results，and finally，get a tensor of size $71567 \times 10681 \times 731$ ．The fraction of known entries is less than 0.002% ．We perform five random 80／10／10－train／validation／test partitions．The maximum iteration is set to 500 ． Our proposed algorithm consistently gives lower test errors than geomCG across different ranks．

5 Conclusion and future work

We have proposed a preconditioned nonlinear conjugate gradient algorithm for the tensor completion problem by exploiting the fundamental structures of symmetry，due to non－uniqueness of Tucker decomposition，and least－squares of the cost function．A novel Riemannian metric is proposed that enables to use the versatile Riemannian optimization framework．Numerical comparisons suggest that our proposed algorithm has a superior performance on different benchmarks．

参考文献

［1］H．Kasai and B．Mishra．Low－rank tensor completion：a Riemannian manifold pre－ conditioning approach．In ICML， 2016.
［2］E．J．Candès and B．Recht．Exact matrix completion via convex optimization．Found． Comput．Math．，9（6）：717－772， 2009.
[3] J. Liu, P. Musialski, P. Wonka, and.J. Ye. Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):208-220, 2013.
[4] R. Tomioka, K. Hayashi, and H. Kashima: Estimation of low-rank tensors via convex optimization. Technical report, arXiv preprint arXiv:1010.0789, 2011.
[5] M. Signoretto, Q. T. Dinh, L. D. Lathauwer, and J. A. K. Suykens. Learning with tensors: a framework based on convex optimization and spectral regularization. Mach. Learn.; 94(3):303-351, 2014.
[6] T. G. Kolda and B. W. Bader. Tensor decompósitions and applications. SIAM Rev., 51(3):455-500, 2009.
[7] M. Filipović and A. Jukić. Tucker factorization with missing data with application to low-n-rank tensor completion. Multidim. Syst. Sign: P., 2013.
[8]. D. Kressner, M. Steinlechner, and B. Vandereycken. Low-rank tensor completion by Riemannian optimization. BIT Numer. Math., 54(2):447-468, 2014.
[9] J. Nocedal and S. J. Wright. Numerical Optimization, volume Second Edition. Springer, 2006.
[10] B. Mishra and R. Sepulchre. Riemannian preconditioning. SIAM J. Optim., 26(1):635-660, 2016.
[11] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008.
[12] S. T. Smith. Optimization techniques on Riemannian manifold. In A. Bloch, editor, Hamiltonian and Gradient Flows, Algorithms and Control, volume 3, pages 113-136. Amer. Math. Soc., Providence, RI, 1994.
[13] A. Edelman, T.A. Arias, and S.T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2):303-353, 1998.
[14] N. Boumall, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt: a Matlab toolbox for optimization on manifolds. J. Mach. Learn. Res., 15(1):1455-1459, 2014.
[15] J. M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2003.
[16] H. Sato and T. Iwai. A new, globally convergent Riemannian conjugate gradient method. Optimization, 64(4):1011-1031, 2015.
[17] W. Ring and B. Wirth. Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim., 22(2):596-627, 2012.

