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概要

本稿では,低ランクテンソルTucker分解のための新し
い幾何空間 �Scaled Tucker .Manifold� による � テンソル補完
問題� の効率的な手法を提案した論文 [1] の概要を記す.提案
手法は,.一般的なテンソル回帰問題に対して,Scaled Tucker

Manifold により効率的な解法を確立することが可能となる.
Scaled Tucker Manifol の導出にあたっては,Tucker 分解の
対称構造と回帰問題の最小自乗構造に着目した新しいリーマ
ン計量を提案し,幾何空間を定義する数々の構成要素を導出
している.

1 Introduction

This paper addresses the problem of low‐rank tensor completion when the rank is a

priori known or estimated. Without loss of generality, we focus on 3‐order tensors. Given

a tensor \mathcal{X}^{n}1^{\mathrm{X}n}2\times n_{3}
,

whose entries \mathcal{X}_{i_{1},i_{2},i_{3}}^{\star} are only known for some indices (i_{1}, i_{2}, i_{3})\in $\Omega$,
where  $\Omega$ is a subset of the complete set of indices \{(i_{1}, i_{2}, i_{3}) : i_{d}\in\{1, . . . , n_{d}\},  d\in

\{1 , 2, 3 the fixed‐rank tensor completion problem is formulated as

\displaystyle \min_{\mathcal{X}\in \mathbb{R}^{n}1^{\mathrm{X}n}2^{\mathrm{X}n}3}\frac{1}{| $\Omega$|}\Vert \mathcal{P}_{ $\Omega$}(\mathcal{X})-P_{ $\Omega$}(\mathcal{X}^{\star})\Vert_{F}^{2}
subject to rank (\mathcal{X})=\mathrm{r},

where the operator \mathcal{P}_{ $\Omega$}(\mathcal{X})_{i_{1}i_{2}i_{3}}=\mathcal{X}_{i_{1}i_{2}i_{3}} if (i_{1}, i_{2}, i_{3})\in $\Omega$ and \mathcal{P}_{ $\Omega$}(X)_{i_{1}i_{2}i_{3}}=0 otherwise

and (with a slight abuse of notation) \Vert \Vert_{F} is the Frobenius norm. rank(X) (=\mathrm{r}=
(r_{1}, r_{2}, r_{3} called the multilinear rank of \mathcal{X}

, is the set of the ranks of for each of mode‐

d unfolding matrices. r_{d}\ll n_{d} enforces a low‐rank structure. The mode is a matrix

obtained by concatenating the mode‐d fibers along column and mode‐d unfolding of \mathcal{X} is

\mathrm{X}_{d}\in \mathbb{R}^{n}d\times d1D\ldots d-1 for d=\{1, . . . , D\}.
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The optimization problem (1) has many variants, and one of those is extending the

nuclear norm regularization approach from the matrix case [2] to the tensor case. While

this generalization leads to good results [3−5], its scalabilityto large‐scale instances is not

trivial, especially due to the necessity of high‐dimensional singular value decomposition
computations. A different approach exploits Tucker decomposition [6, Section 4] of a

low‐rank tensor \mathcal{X} to develop large‐scale algorithms for (1), e.g., in [7, 8]. The present

paper exploits both the symmetry present in Tucker decomposition and the least‐squares
structure of the cost function of (1) by using the concept of preconditioning. While precon‐

ditioning in unconstrained optimization is well studied [9, Chapter 5], preconditioning on

constraints with symmetries, owing to non‐uniqueness of Tucker decomposition[6, Sec‐

tion 4.3], is not straightforward. We build upon the recent work [10] that suggests to

use Riemannian preconditioning with a tailored metric (inner product) in the Rieman‐

nian optimization framework on quotient manifolds [11−13]. Our proposed preconditioned
nonlinear conjugate gradient algorithm is implemented in the Matlab toolbox Manopt [14]
and it outperforms state‐of‐the‐art methods. \mathrm{I}\mathrm{n}\cdot \mathrm{t}\mathrm{h}\mathrm{e} supplementary material section, we

show concrete mathematical derivations and additional numerical comparisons. We also

provide a generic Manopt factory (a manifold description Matlab file) with additional

support for second‐order implementations, e.g., the trust‐region method.

2 Exploiting the problem structure

We focus on the two fundamental structures present in (1): symmetry in the constraints,
and the least‐squares structure of the cost function. Finally, a novel metric is proposed.

The quotient and least‐squares structures. The Tucker decomposition of a tensor

X\in \mathbb{R}^{n}1\times 2 of rank \mathrm{r} (=(r_{1}, r_{2}, r_{3})) is [6, Section 4.1] X=\mathcal{G}\times 1\mathrm{U}_{1}\times 2\mathrm{U}_{2^{\times}3}\mathrm{U}_{3} , where

\mathrm{U}_{d}\in \mathrm{S}\mathrm{t}(r_{d}, n_{d}) for d\in\{1 , 2, 3 \} belongs to the Stiefel manifold of matrices of size n_{d}\times r_{d}

with orthogonal columns and \mathcal{G}\in \mathbb{R}^{r_{1}\times r_{2}\times r_{3}} . Here, \mathcal{W}\times d\mathrm{V}\in \mathbb{R}^{n1\times}\ldots n_{d-1}\times m\times n_{d+N}\mathrm{u}\times\cdots n

computes the d‐mode product of a tensor \mathcal{W}\in \mathbb{R}^{n1\times\cdots \mathrm{x}n}\backslash .N and a matrix V \in \mathbb{R}^{m\times n}d.

Tucker decomposition is not unique as X remains unchanged under the transforma‐

tion (\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathcal{G})\mapsto(\mathrm{U}_{1}\mathrm{O}_{1}, \mathrm{U}_{2}\mathrm{O}_{2}, \mathrm{U}_{33,1123}\mathrm{O}\mathcal{G}\times \mathrm{O}^{T}\mathrm{x}_{2}\mathrm{O}^{T}\times \mathrm{O}_{3}^{T}) for all \mathrm{O}_{d}\in O(r_{d}) ,

which is the set of orthogonal matrices of size of r_{d}\times r_{d} . The classical remedy to

remove this indeterminacy is to have additional structures on \mathcal{G} like sparsity or re‐

stricted orthogonal rotations [6, Section 4.3]. In contrast, we encode the transforma‐

tion in an abstract search space of equivalence classes, defined as, [(\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathcal{G})] :=

\{(\mathrm{U}_{1}\mathrm{O}_{1}, \mathrm{U}_{2}\mathrm{O}_{2}, \mathrm{U}_{3}\mathrm{O}_{3}, \mathcal{G}\times \mathrm{O}^{T_{\mathrm{X}_{2}}}\mathrm{O}^{T}\times \mathrm{O}_{3}^{T}) : 0_{d}\in \mathcal{O}(r_{d})\}| . The set of equivalence classes

is the quotient manifold [15, Theorem 9.16]

\mathcal{M}/\sim :=\mathcal{M}/(\mathcal{O}(r_{1})\times \mathcal{O}(r_{2})\times \mathcal{O}(r_{3})) ,

where \mathcal{M} is called the total space (computational space) that is the product space \mathcal{M} :=

\mathrm{S}\mathrm{t}(r_{1}, n_{1})\times \mathrm{S}\mathrm{t}(r_{2}, n_{2})\times \mathrm{S}\mathrm{t}(r_{3}, n_{3})\times \mathbb{R}^{r}1\times 23 . Due to the invariance of the Tucker de‐
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composition, the local minima of (1) in \mathcal{M} are not isolated, but they become isolated on

\mathcal{M}/\sim . Consequently, the problem (1) is an optimization problem on a quotient mani‐

fold for which systematic procedures are proposed in [11−13] by endowing \mathcal{M}/\sim with a

Riemannian structure. We call \mathcal{M}/\sim the Tucker manifold.
Another structure that is present in (1) is the least‐squares structure of the cost func‐

tion. A way to exploit it is to endow the search space with a metric (inner product)
induced by the Hessian of the cost function [9]. This induced metric (or its approxi‐

mation) resolves convergence issues of first‐order optimization algorithms. Specifically
for the case of quadratic optimization with rank constraint (matrix case), Mishra and

Sepulchre [10, Section 5] propose a family of Riemannian metrics from the Hessian of the

cost function. Since applying this approach directly for (1) is computationally costly, we

consider a simplified cost function by assuming that  $\Omega$ contains the full set of indices,
i.e., we focus on \Vert \mathcal{X}-X^{\star}\Vert_{F}^{2} to propose a metric candidate. A good candidate is by
considering only the block diagonal elements of the Hessian of \Vert X-X^{\star}\Vert_{F}^{2} . It should

emphasized that the cost function ||X-X^{\star}\Vert_{F}^{2} is convex and quadratic in X . Conse‐

quently, it is also convex and quadratic in the arguments (\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathcal{G}) individually.
The block diagonal approximation of the Hessian of \Vert \mathcal{X}-\mathcal{X}^{\star}\Vert_{F}^{2} in (\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathcal{G}) is

((\mathrm{G}_{1}\mathrm{G}_{1}^{T})\otimes \mathrm{I}_{n}1, (\mathrm{G}_{2}\mathrm{G}_{2}^{T})\otimes \mathrm{I}_{n}2, (\mathrm{G}_{3}\mathrm{G}_{3}^{T})\otimes \mathrm{I}_{n3}, \mathrm{I}_{r1r2r}3) , where \mathrm{G}_{d} is the mode‐d unfolding of

\mathcal{G} and is assumed to be full rank. The terms \mathrm{G}_{d}\mathrm{G}_{d}^{T} for d\in\{1 , 2, 3 \} are positive definite
when r_{1}\leq r_{2}r_{3}, r_{2}\leq r_{1}r_{3} , and r_{3}\leq r_{1}r_{2}.

A novel Riemannian metric and its motivation. An element x in the total space

\mathcal{M} has the matrix representation (\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathcal{G}) . Consequently, the tangent space T_{x}\mathcal{M}
is the Cartesian product of the tangent spaces of the individual manifolds, i.e., T_{x}\mathcal{M}
has the matrix characterization [13]  T_{x}\mathcal{M}=\{(\mathrm{Z}_{\mathrm{U}_{1}}, \mathrm{Z}_{\mathrm{U}_{2}}, \mathrm{Z}_{\mathrm{U}_{3}}, \mathrm{Z}_{\mathcal{G}})\in \mathbb{R}^{n\mathrm{x}r_{1}}1\times \mathbb{R}^{n2\times r2}\times
\mathbb{R}^{n3\times r}3\times \mathbb{R}^{r\mathrm{x}r2\times r}13 : \mathrm{U}_{d}^{T}\mathrm{Z}_{\mathrm{U}_{d}}+\mathrm{Z}_{\mathrm{U}_{d}}^{T}\mathrm{U}_{d}=0 ,

for d\in\{1 , 2, 3 The earher discussion on

symmetry and least‐squares structure leads to the novel metric g_{x} : T_{x}\mathcal{M}\times T_{x}\mathcal{M}\rightarrow \mathbb{R}

 g_{x}($\xi$_{x}, $\eta$_{x}) =\langle$\xi$_{\mathrm{U}_{1}}, $\eta$_{\mathrm{U}_{1}}(\mathrm{G}_{1}\mathrm{G}_{1}^{T})\rangle+\langle$\xi$_{\mathrm{U}_{2}}, $\eta$_{\mathrm{U}_{2}}(\mathrm{G}_{2}\mathrm{G}_{2}^{T})\rangle
+\{$\xi$_{\mathrm{U}_{3}}, $\eta$_{\mathrm{U}_{3}}(\mathrm{G}_{3}\mathrm{G}_{3}^{T})\rangle+\{$\xi$_{\mathcal{G}}, $\eta$_{\mathcal{G}}\rangle,

where $\xi$_{x}, $\eta$_{x}\in T_{x}\mathcal{M} are tangent vectors with matrix characterizations, ($\xi$_{\mathrm{U}_{1}}, $\xi$_{\mathrm{U}_{2}}, $\xi$_{\mathrm{U}_{3}}, $\xi$_{\mathcal{G}})
and ($\eta$_{\mathrm{U}_{1}}, $\eta$_{\mathrm{U}_{2}}, $\eta$_{\mathrm{U}_{3}}, $\eta$_{\mathcal{G}}) , respectively and \rangle is the Euclidean inner product. As contrasts

to the classical Euclidean metric, the metric (2) scales the level sets of the cost function

on the search space that leads a preconditioning effect on the algorithms developed on

the Tucker manifold.

3 Notions of optimization on quotient manifolds

Each point on a quotient manifold represents an entire equivalence class of matrices

in the total space. Abstract geometric objects on a quotient manifold call for matrix

representatives in the total space. Similarly, algorithms are run in the total space \mathcal{M},
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but under appropriate compatibility between the Riemannian structure of \mathcal{M} and the

Riemannian structure of the quotient manifold \mathcal{M}/\sim , they define algorithms on the

quotient manifold. Once we endow \mathcal{M}/\sim with a Riemannian structure, the constraint

optimization problem (1) is conceptually transformed into an unconstrained optimization
over the Riemannian quotient manifold (2). When the points  x and y in \mathcal{M} belong to

the same equivalence class, they represent a single point [x] :=\{y\in \mathcal{M} : y\sim x\} on the

quotient manifold \mathcal{M}/\sim . The abstract tangent space  T_{[x]}(\mathcal{M}/\sim) at [x]\in \mathcal{M}/\sim has

the matrix representation in  T_{x}\mathcal{M} , but restricted to the directions that do not induce

a displacement along the equivalence class [x] . This is realized by decomposing T_{x}\mathcal{M}
into two complementary subspaces. The vertical space, \mathcal{V}_{x} is the tangent space of the

equivalence class [x] . On the other hand, the horizontal space \mathcal{H}_{x} is the orthogonal
subspace to \mathcal{V}_{x} , i.e., T_{x}\mathcal{M}=\mathcal{V}_{x}\oplus \mathcal{H}_{x} . The horizontal subspace provides a valid matrix

representation to the abstract tangent space T_{[x]}(\mathcal{M}/\sim) [11
, Section 3.5.8]. An abstract

tangent vector $\xi$_{[x]}\in T_{[x]}(\mathcal{M}/\sim) at [x] has a unique element $\xi$_{x}\in \mathcal{H}_{x} that is called its

horizontal lift. Endowed with the Riemannian metric (2), the quotient manifold \mathcal{M}/\sim
is a Riemannian submersion of \mathcal{M} . The submersion principle then allows to work out

concrete matrix representations of abstract object on \mathcal{M}/\sim . Particularly, starting from

an arbitrary matrix (with appropriate dimensions), two linear projections are needed: the

first projection $\Psi$_{x} is onto the tangent space T_{x}\mathcal{M} , while the second projection $\Pi$_{x} is onto

the horizontal subspace \mathcal{H}_{x} . The computation cost of these projections is O(n_{1}r_{1}^{2}+n_{2}r_{2}^{2}+
n_{3}r_{3}^{2}) .

Finally, we propose a Riemannian nonlinear conjugate gradient algorithm for (1) that

scales well to large‐scale instances. Specifically, we use the conjugate gradient implemen‐
tation of Manopt with the ingredients described in Table??. The convergence analysis
of this method follows from [11, 16, 17]. If f(X)=\Vert P_{ $\Omega$}(X)-P_{ $\Omega$}(\mathcal{X}^{\star})\Vert_{F}^{2}/| $\Omega$| , then

the Riemannian gradient \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{x}f , which has the matrix characterization  $\Psi$(\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{x}\prime f) ,

where \mathrm{e}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{\mathrm{x}}f is the Euclidean gradient of f . We show a way to compute a step‐size

guess effectively. The total computational cost per iteration of our proposed algorithm is

O(| $\Omega$|r_{1}r_{2}r_{3}) ,
where | $\Omega$| is the number of known entries.

4 Numerical comparisons
We show numerical comparisons of our proposed algorithm with state‐of‐the‐art algo‐

rithms that include TOpt [7] and geomCG [8], for comparisons with Tucker decomposition
based algorithms, and HaLRTC [3], Latent [4], and Hard [5] as nuclear norm minimiza‐

tion algorithms. All simulations are performed in Matlab on a 2.6 GHz Intel Core i7

machine with 16 GB RAM. For specific operations with unfoldings of S , we use the mex

interfaces that are provided in geomCG. For large‐scale instances, our algorithm is only.
compared with geomCG as other algorithms cannot handle these instances. We randomly
and uniformly select known entries based on a multiple of the dimension, called the over‐
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sampling (OS) ratio, to create the training set  $\Omega$ . Algorithms (and problem instances)
are initialized randomly, as in [8], and are stopped when either the mean square error

(MSE) on the training set  $\Omega$ is below  10^{-12} or the number of iterations exceeds 250. We

also evaluate the mean square error on a test set  $\Gamma$
,

which is different from  $\Omega$ . Five runs

are performed in each scenario.

Case 1 considers synthetic small‐scale tensors of size  100\times 100\times 100, 150\times 150\times 150,
and 200\times 200\times 200 and rank \mathrm{r}=(10,10,10) are considered. OS is {10, 20, 30}. The result

shows that the convergence behavior of our proposed algorithm is either competitive or

faster than the others. Next, Case 2 considers large‐scale tensors of size  3000\times 3000\times

3000,  5000\times 5000\times 5000 , and 10000\times 10000\times 10000 and ranks \mathrm{r}=(5,5,5) and (10,10,10).
OS is 10. Our proposed algorithm outperforms geomCG. Case 3 considers instances

where the dimensions and ranks along certain modes are different than others. Two cases

are considered. Case (3.a) considers tensors size 20000\times 7000\times 7000, 30000\times 6000\times 6000,
and 40000\times 5000\times 5000 with rank \grave{\mathrm{r}}=(5,5,5) . Case (3.b) considers a tensor of size

10000\times 10000\times 10000 with ranks (7, 6, 6), (10, 5, 5), and (15, 4, 4). In all the cases, the

proposed algorithm converges faster than geomCG. Finally, Case 4 considers MovieLens‐

10\mathrm{M} dataset that contains 10000054 ratings corresponding to 71567 users and 10681

movies. We split the time into 7‐days wide bins results, and finally, get a tensor of size

71567\times 10681\times 731 . The fraction of known entries is less than 0.002%. We perform five

random 80/10/10‐train/validation/test partitions. The maximum iteration is set to 500.

Our proposed algorithm consistently gives lower test errors than geomCG across different

ranks.

5 Conclusion and future work

We have proposed a preconditioned nonlinear conjugate gradient algorithm for the

tensor completion problem by exploiting the fundamental structures of symmetry, due to

non‐uniqueness of Tucker decomposition, and least‐squares of the cost function. A novel

Riemannian metric is proposed that enables to use the versatile Riemannian optimization
framework. Numerical comparisons suggest that our proposed algorithm has a superior

performance on different benchmarks.
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