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1 Introduction

Convertible bond (abbreviated to CB) is the most popular hybrid security with debt and equity‐
like features: A CB holder is entitled to receive fixed coupon payments as well as the principal

repayment at maturity like a straight bond. He also has the right to forgo the fixed‐income

components and convert CB into the underlying common stock according to pre‐specified con‐

ditions, i.e., a conventional CB may be converted at any time until a pre‐specified maturity date

into stocks at a fixed conversion ratio. Hence, it might be said that a CB is equivalent to a bond

with an embedded American‐style call option for conversion. CBs are attractive to investors

due to their flexibility, and also to issuers due to the fact that CB yields are lower than those of

equivalent straight bonds. This is the principal reason why CBs become an important segment
of worldwide corporate bond markets.

The hybrid feature offers potentially unlimited gain to investors when the issuer�s stock

performs well. The investor is, however, exposed to the credit risk of default at the same

time. Default occurs when the total firm value falls below the total redemption value of debt

at maturity. Merton [25] applied the option pricing framework of Black and Scholes [10] and

Merton [24] to develop a fundamental model for valuing a defaultable CB as a contingent claim

on firm value, obtaining a partial differential equation (PDE) for the CB value. Ingersoll [14]
used this PDE to discuss optimal policies for call and conversion, assuming that CB is the only
senior debt in the firm�s capital structure. Most of the structural models established previously
are considered as extensions of the framework of Merton [25] and Ingersoll [14]; see Batten et

al. [8] and Bhattacharya [9] for surveys.

To solve the PDE for CBs under more general assumptions, we need numerical methods

such as finite difference and finite element methods. Brennan and Schwartz [11] adopted a

finite‐difference method to value calable CBs with discrete coupons and dividends. Barone‐

Adesi et al. [7] used a finite element method for solving a two‐factor model of CBs under

stochastic interest rate and volatility. See Table 3 of Batten et al. [8] for recent references on

these numerical methods as well as lattice‐based and simulation methods.

As another alternative, Fourier or Laplace transform (LT) method has been known as a

powerful tool of solving general PDEs. In particular, Laplace‐Carson transform (LCT), a minor

variant of LT, has been extensively used in the context of option pricing [4, 12, 13, 16, 17, 18,

19, 20, 26, 28]. In the randomization of Carr [12], the LCT approach is used to obtain the

*

This is an early draft of my paper [22] in preparation. All of the proofs of Lemmas and Theorems are omitted

here.

数理解析研究所講究録
第2029巻 2017年 29-42

29



value of an American put option with random maturity distributed exponentially. For a general
one‐factor valuation problem, the basic LCT approach consists of the following three steps:

i) Taking the LCT of the PDE with respect to the remaining time to maturity, we have an

associated ordinary differential equation (ODE).

ii) Solving this ODE together with appropriate boundary conditions, we obtain the LCT of

the original value.

iii) The original value in the real‐time domain can be computed by an algorithm for inverting

LTs/LCTs numerically.

For multi‐factor problems, multidimensional LTs and their numerical inversion are required in

the steps i) and iii), respectively. For optimal stopping problems such as valuing American

options, the LCT of the optimal stopping boundary can be jointly obtained in the step ii). For

the step iii), various efficient methods have been developed for inverting LTs/LCTs; see, e.g.,

Abate and Whitt [1] for one‐dimensional cases and Abate et al. [2] for multidimensional cases.

The expression for the solution obtained in the step ii) is seriously affected by the payoff
function at maturity. If the payoff is a piecewise function defined on some separate intervals, then

the LCT of the value becomes extremely complex. As we will see in Section 2, the payoff function

of a typical defaultable CB is defined on three separate intervals. Hence, the plain LCT approach

generates a cumbersome expression including six coefficients to be determined by boundary
conditions. The purpose of this paper is to develop a refined LCT approach that generates

a much simpler solution than the plain LCT approach. A primal target is the CB valuation

problem. In recent years, various CBs have been issued with additional conversion provisions,

including international CBs [5], CBs with reset clauses [15], reverse CBs [27], mandatory CBs [3]
and so on; see Table 2 of Batten et al. [8] for detailed features of these variants. However, we

only focus on a simple CB with no coupon payments, no call provision and voluntary conversion

prior to maturity, because what we are actually aiming at is refining the LCT approach to meet

more general claims.

2 The Plain LCT Approach

2.1 Assumptions

Following the framework of Merton [25] and Ingersoll [14], we consider a CB issued by a firm in

frictionless markets, assuming that the CB is the only senior debt in the firm�s capital structure

except for common stock. Hence, a default would occur when the firm value falls below the

total redemption value of the CBs. Let (V_{t})_{t\geq 0} denote the aggregate value process of the firm.

Assume that (V).\geq 0 is a diffusion process with the Black‐Scholes‐Merton dynamics

\mathrm{d}V_{t}=(r- $\delta$)V_{t}\mathrm{d}t+ $\sigma$ V_{t}\mathrm{d}W_{t}, t\geq 0 (1)

where r>0 is the risk‐free rate of interest,  $\delta$\geq 0 is the instantaneous rate of the cash payments

by the firm to either its shareholders or liabilities‐holders (e.g., dividends or interest payments),
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and  $\sigma$>0 is the volatility coefficient of the firm value, all of which are assumed to be constants.

Suppose an economy with finite time period [0, T] , a complete probability space ( $\Omega$, \mathcal{F}, \mathbb{P}) , and

a filtration \mathbb{F}\equiv(\mathcal{F}_{t})_{t\in[0,T]}. W\equiv(W_{t})_{t\in[0,T]} is a one‐dimensional standard Brownian motion

process defined on ( $\Omega$, \mathcal{F}) and takes values in \mathbb{R} . The filtration \mathrm{F} is the natural filtration

generated by W and \mathcal{F}_{T}=\mathrm{F} . The firm value process defined in (1) is represented under the

equivalent martingale measure \mathbb{P} , which implies that the firm value has mean rate of return r,

and the conditional expectation \mathbb{E}_{t}[\cdot]\equiv \mathrm{E}[\cdot|\mathcal{F}_{t}] is calculated under the measure \mathbb{P}.

Consider a defaultable CB with maturity date T and face value F . For simplicity, we focus on

CBs with no coupon payments, no call provision and defaultable only at maturity. Assume that

there are P outstanding CBs of this firm in markets, and each CB is convertible into n shares. The

holders who choose to convert their CBs into shares will dilute current shareholders� ownership.
If there are m shares of common stock outstanding, the conversion value is given by  $\gamma$ V_{t} , where

 $\gamma$ is defined by

 $\gamma$=\displaystyle \frac{n}{m+\ell n} , (2)

for which  $\gamma$ P(<1) is called the dilution factor, indicating the fraction of the common stock held

by the CB holders.

2.2 CB value and its LCT

Let B(t, V_{t}) denote the CB value at time t\in[0, T). From the assumptions on the capital
structure and the default time, we see that there are three possible payoffs at maturity: CB

holders receive either the conversion value  $\gamma$ V_{T} if it exceeds the face value F , the face value F

if it exceeds the conversion value  $\gamma$ V_{T} , or the proportional firm value V_{T}/P if the firm value is

less than the par value of outstanding CBs, i.e.,

B(T, V_{T})=\displaystyle \max( $\gamma$ V_{T}, \min(\frac{1}{p}V_{T}, F))
=\displaystyle \frac{1}{l}V_{T}1_{\{V_{T}\leq F\ell\}}+F1_{\{Fl<V_{\mathrm{T}}\leq\frac{F}{ $\gamma$}\}}+ $\gamma$ V_{T}1_{\{V_{T}>\frac{F}{ $\gamma$}\}}
=\displaystyle \frac{1}{\ell}V_{T}-\frac{1}{p}(V_{T}-F\ell)^{+}+ $\gamma$(V_{T}-\frac{F}{ $\gamma$})^{+} (3)

where (x)^{+}\displaystyle \equiv\max(x, 0) for x\in \mathbb{R} . Figure 1 illustrates the payoff value B(T, V_{T}) at maturity as

a function of the firm value V_{T}.

From the payoff value (3) and the theory of arbitrage pricing, the fair CB value at time t is

given by solving the optimal stopping problem

B(t, V_{t})=\displaystyle \mathrm{e}\mathrm{s}\mathrm{s}\sup_{$\tau$_{\mathrm{C}}\in[t,T]}\mathbb{E}_{t}[\mathrm{e}^{-r($\tau$_{\mathrm{c}}-t)}\max( $\gamma$ V_{$\tau$_{\mathrm{c}}}, \min(\frac{1}{p}V_{$\tau$_{\mathrm{c}}}, F))], 0\leq t\leq T , (4)

where $\tau$_{c} is a stopping time of the filtration (\mathcal{F}_{t})_{t\in[0,T]} . The random variable $\tau$_{c}^{*}\in[t, T] is

called the optimal conversion time if it gives the supremum value of the right‐hand side of (4).
Ingersoll [14] proved that $\tau$_{\mathrm{c}}=T (a.s.) if  $\delta$=0 , i.e., it is not optimal for investors to convert

early before maturity if there are no dividends; see Theorem 3.2 below.
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Figure 1: Payoff from CB at maturity.

Let \mathcal{D}=[0, T]\times \mathbb{R}+\cdot Solving the optimal stopping problem (4) is equivalent to finding the

points (t, V_{t}) in \mathcal{D} for which early conversion is optimal. Let \mathcal{E} and C denote the early conversion

region and continuation region, respectively. The early conversion region \mathcal{E} is defined by

\mathcal{E}=\{(t, V_{t})\in \mathcal{D}|B(t, V_{t})=p(V_{t})\},

where p(V_{t}) is a virtual payoff at time t , which is defined by

p(V_{t})=\displaystyle \max( $\gamma$ V_{t}, \min(\frac{1}{p}V_{t}, F)) . (5)

No doubt, the continuation region C is the complement of \mathcal{E} in D . The boundary that separates

\mathcal{E} from C is referred to as the early conversion boundary (ECB), which is defined by

V_{\mathrm{c}}(t)=\displaystyle \inf\{V_{t}\in \mathbb{R}+|B(t, V_{t})=p(V_{t})\} , t\in[0, T].

For simplicity, let V\equiv V_{t} . In much the same way as in the valuation of American options, the

value B(t, V) and the ECB V_{c}(t) can be jointly obtained by solving a free boundary problem [11],
which is specified by the Black‐Scholes‐Merton PDE

\displaystyle \frac{\partial B}{\partial t}+\frac{1}{2}$\sigma$^{2}V^{2}\frac{\partial^{2}B}{\partial V^{2}}+(r- $\delta$)V\frac{\partial B}{\partial V}-rB=0, V<V_{c}(t) , (6)

together with the boundary conditions

\displaystyle \lim_{V\downarrow 0}B(t, V)=0

\displaystyle \lim_{V\uparrow V_{c}(t)}B(t, V)= $\gamma$ V_{\mathrm{c}}(t) (7)

\displaystyle \lim_{V\uparrow V_{\mathrm{C}}(t)}\frac{\partial B}{\partial V}= $\gamma$,
and the terminal condition

B(T, V)=p(V) . (8)
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The second condition in (7) is often called the value‐matching condition, while the third one is

called the smooth‐pasting condition.

With the change of variables  $\tau$=T-t , let

\tilde{B}( $\tau$, V)=B(T- $\tau$, V)=B(t, V) and \overline{V}_{c}( $\tau$)=V_{c}(T- $\tau$)=V_{c}(t) ,  $\tau$\geq 0.

For  $\lambda$\in C({\rm Re}( $\lambda$)>0) , define the LCT of these time‐reversed functions with respect to  $\tau$ as

 B^{*}( $\lambda$, V)=\displaystyle \mathcal{L}C[\tilde{B}( $\tau$, V)]( $\lambda$)\equiv\int_{0}^{\infty} $\lambda$ \mathrm{e}^{- $\lambda \tau$}\tilde{B}( $\tau$, V)\mathrm{d} $\tau$
and

 V_{c}^{*}( $\lambda$)=\displaystyle \mathcal{L}\mathcal{C}[\overline{V}_{c}( $\tau$)]( $\lambda$)\equiv\int_{0}^{\infty} $\lambda$ \mathrm{e}^{- $\lambda \tau$}\overline{V}_{\mathrm{c}}(\prime r)\mathrm{d} $\tau$.
Obviously, there is no essential difference between the LCT and the LT, i.e.,

\displaystyle \mathcal{L}[\overline{B}( $\tau$, V)]( $\lambda$)=\frac{B^{*}( $\lambda$,V)}{ $\lambda$}, {\rm Re}( $\lambda$)>0.
Also, this relation implies that the LCT can be inverted by using previously established methods

developed for inverting LTs; see Abate and Whitt [1].

Remark 2.1 In the context of option pricing, LCTs have been first adopted in the randomiza‐

tion of Carr [12] for valuing an American vanilla put option, of which maturity T is exponentially
distributed random variable with mean \mathbb{E}[T]=1/ $\lambda$ . The idea of randomization gives us another

interpretation that the LCT  B^{*}( $\lambda$, V) can be regarded as an exponentially weighted sum (in‐
tegral) of the time‐reversed value \overline{B}( $\tau$, V) for (infinitely many) different values of the maturity

T\in \mathbb{R}+ , and hence for  $\tau$\in \mathbb{R}_{+} , which makes LCTs be well defined. From the viewpoint of

Carr�s randomization, we assume  $\lambda$ is a positive real number.

FYom the PDE (6) with the conditions (7) and (8), we see that the LCT  B^{*}( $\lambda$, V) satisfies

the ODE

\displaystyle \frac{1}{2}$\sigma$^{2}V^{2}\frac{\mathrm{d}^{2}B^{*}}{\mathrm{d}V^{2}}+(r- $\delta$)V\frac{\mathrm{d}B^{*}}{\mathrm{d}V}-( $\lambda$+r)B^{*}+ $\lambda$ p(V)=0, V<V_{c}^{*} , (9)

together with the boundary conditions

\displaystyle \lim_{V\downarrow 0}B^{*}( $\lambda$, V)=0
\displaystyle \lim B^{*}( $\lambda$, V)= $\gamma$ V_{c}^{*}

V\uparrow V_{\mathrm{C}^{*}} (1O)

\displaystyle \lim_{V\uparrow V_{c}^{*}}\frac{\mathrm{d}B^{*}}{\mathrm{d}V}= $\gamma$.
It is straightforward but cumbersome to solve (9) with the boundary conditions (10) and the

continuity conditions of B^{*}( $\lambda$, V) and its first derivatives at V=F\ell,  V=F/ $\gamma$ and  V=V_{\mathrm{c}}^{*} . By
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this plain LCT approach, Hayashi et al. [13] obtained

B^{*}( $\lambda$, V)=\left\{\begin{array}{ll}
A_{1}V^{$\theta$_{1}}+\frac{1}{\ell}\frac{ $\lambda$ V}{ $\lambda$+ $\delta$}, & V\leq F\ell\\
 A_{2}V^{$\theta$_{1}}+A_{3}V^{$\theta$_{2}}+\frac{ $\lambda$ F}{ $\lambda$+r} , & FP<V\leq\frac{F}{ $\gamma$}\\
A_{4}V^{$\theta$_{1}}+A_{5}V^{$\theta$_{2}}+\underline{ $\lambda \gamma$} , & \underline{F}<V<V_{c}^{*}\\
 $\lambda$+ $\delta$' &  $\gamma$\\
 $\gamma$ V, & V\geq V_{c}^{*},
\end{array}\right. (11)

where A_{i}(i=1, \ldots, 5) are constants given by

A_{1}=\displaystyle \frac{ $\lambda$( $\lambda$+r+( $\delta$-r)$\theta$_{2})($\gamma$^{$\theta$_{1}}-\ell^{-$\theta$_{1}})F^{1-$\theta$_{1}}}{($\theta$_{1}-$\theta$_{2})( $\lambda$+ $\delta$)( $\lambda$+r)}
-\displaystyle \frac{$\theta$_{2} $\lambda$( $\lambda$+r+( $\delta$-r)$\theta$_{1})($\gamma$^{$\theta$_{2}}-\ell^{-$\theta$_{1}})F^{1-$\theta$_{2}}}{$\theta$_{1}($\theta$_{1}-$\theta$_{2})( $\lambda$+ $\delta$)( $\lambda$+r)}(V_{c}^{*})^{$\theta$_{2}-$\theta$_{1}}+\frac{ $\gamma \delta$}{$\theta$_{1}( $\lambda$+ $\delta$)}(V_{c}^{*})^{1-$\theta$_{1}},

A_{2}=\displaystyle \frac{ $\lambda$( $\lambda$+r+( $\delta$-r)$\theta$_{2})$\gamma$^{$\theta$_{1}}F^{1-$\theta$_{1}}}{($\theta$_{1}-$\theta$_{2})( $\lambda$+ $\delta$)( $\lambda$+r)}
-\displaystyle \frac{$\theta$_{2} $\lambda$( $\lambda$+r+( $\delta$-r)$\theta$_{1})($\gamma$^{$\theta$_{2}}-l^{-$\theta$_{2}})F^{1-$\theta$_{2}}}{$\theta$_{1}($\theta$_{1}-$\theta$_{2})( $\lambda$+ $\delta$)( $\lambda$+r)}(V_{c}^{*})^{$\theta$_{2}-$\theta$_{1}}+\frac{ $\gamma \delta$}{$\theta$_{1}( $\lambda$+ $\delta$)}(V_{\mathrm{c}}^{*})^{1-$\theta$_{1}},

A_{3}=-\displaystyle \frac{ $\lambda$( $\lambda$+r+( $\delta$-r)$\theta$_{1})l^{-$\theta$_{2}}F^{1-$\theta$_{2}}}{($\theta$_{1}-$\theta$_{2})( $\lambda$+ $\delta$)( $\lambda$+r)},
A_{4}=-\displaystyle \frac{$\theta$_{2} $\lambda$( $\lambda$+r+( $\delta$-r)$\theta$_{1})($\gamma$^{$\theta$_{2}}-l^{-$\theta$_{2}})F^{1-$\theta$_{2}}}{$\theta$_{1}($\theta$_{1}-$\theta$_{2})( $\lambda$+ $\delta$)( $\lambda$+r)}(V_{\mathrm{c}}^{*})^{$\theta$_{2}-$\theta$_{1}}+\frac{ $\gamma \delta$}{$\theta$_{1}( $\lambda$+ $\delta$)}(V_{c}^{*})^{1-$\theta$_{1}},
A_{5}=\displaystyle \frac{ $\lambda$( $\lambda$+r+( $\delta$-r)$\theta$_{1})($\gamma$^{$\theta$_{2}}-\ell^{-$\theta$_{2}})F^{1-$\theta$_{2}}}{($\theta$_{1}-$\theta$_{2})( $\lambda$+ $\delta$)( $\lambda$+r)}.

The parameters $\theta$_{1}\equiv$\theta$_{1}( $\lambda$)>1 and $\theta$_{2}\equiv$\theta$_{2}( $\lambda$)<0 are two real roots of the quadratic equation

\displaystyle \frac{1}{2}$\sigma$^{2}$\theta$^{2}+(r- $\delta$-\frac{1}{2}$\sigma$^{2}) $\theta$-( $\lambda$+r)=0 . (12)

From the value‐matching condition in (10), the LCT V_{\mathrm{c}}^{*} is given by

V_{c}^{*}( $\lambda$)=[\displaystyle \frac{ $\gamma \delta$($\theta$_{1}-1)( $\lambda$+r)F^{$\theta$_{2}-1}}{ $\lambda$( $\lambda$+r+( $\delta$-r)$\theta$_{1})($\gamma$^{$\theta$_{2}}-\ell^{-$\theta$_{2}})}]^{\frac{1}{$\theta$_{2}-1}} (13)

3 A Refined LCT Approach

From the complex solutions (11) and (13), it is really hard to have any prospect of further

analysis. To refine these solutions, we will use the notion of premium decomposition: For the

CB value B(t, V) , we can decompose it into two parts, i.e.,

B(t, V)=b(t, V)+ $\pi$(t, V) , t\in[0, T] , (14)

where b(t, V) is the European CB value and  $\pi$(t, V) is the premium for early conversion. Note

that both B(t, V) and b(t, V) have the same terminal value at t=T , i.e.,

b(T, V)=B(T, V)=p(V) , (15)
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which is an important key of our refinement.

method to b(t, V_{t}) , we obtain

Applying the standard risk‐neutral valuation

b(t, V)=\mathrm{E}_{t}[\mathrm{e}^{-r(T-t)}p(V)]

=\displaystyle \frac{1}{\ell}\mathrm{E}_{t}[\mathrm{e}^{-r(T-t)}V]-\frac{1}{\ell}\mathrm{E}_{t}[\mathrm{e}^{-r(T-t)}(V-FP)^{+}]+ $\gamma$ \mathbb{E}_{t}[\mathrm{e}^{-r(T-t)}(V-\frac{F}{ $\gamma$})^{+}]
=\displaystyle \frac{1}{p}c(t, V;0)-\frac{1}{\ell}c(t, V;F\ell)+ $\gamma$ c(t, V;F/ $\gamma$) , (16)

where c(t, V;K) denotes the value of a European vanilla call option with maturity T and strike

price K(K=0, F\ell, F/ $\gamma$) . This value is well known and is given by

c(t, V;K)=V\mathrm{e}^{- $\delta$(T-t)} $\Phi$(d_{+}(V, K, T-t))-K\mathrm{e}^{-r(T-t)} $\Phi$(d_{-}(V, K, T-t (17)

where  $\Phi$(\cdot) is the standard normal cumulative distribution function defined by

 $\Phi$(x)=\displaystyle \int_{-\infty}^{x} $\phi$(y)\mathrm{d}y with  $\phi$(x)=\displaystyle \frac{1}{\sqrt{2 $\pi$}}\mathrm{e}^{-\frac{1}{2}x^{2}}, x\in \mathbb{R},

and

d_{\pm}(x, y,  $\tau$)=\displaystyle \frac{\log(x/y)+(r- $\delta$\pm\frac{1}{2}$\sigma$^{2}) $\tau$}{ $\sigma$\sqrt{ $\tau$}}.
Clearly, c(t, V;0)=V\mathrm{e}^{- $\delta$(T-t)} . With the change of variables  $\tau$=T-t , let \tilde{c}( $\tau$, V;K)=
c(T- $\tau$, V;K)=c(t, V;K) and \tilde{b}( $\tau$, V)=b(T- $\tau$, V)=b(t, V) . For  $\lambda$>0 , define the LCTs

c^{*}( $\lambda$, V;K)=\mathcal{L}C[\tilde{c}( $\tau$, V;K)]( $\lambda$) and b^{*}( $\lambda$, V)=\mathcal{L}C[\tilde{b}( $\tau$, V)]( $\lambda$) . Then, from (16), the LCT

b^{*}( $\lambda$, V) can be represented as

b^{*}( $\lambda$, V)=\displaystyle \frac{1}{p}\frac{ $\lambda$ V}{ $\lambda$+ $\delta$}-\frac{1}{\ell}c^{*}( $\lambda$, V;FP)+ $\gamma$ c^{*}( $\lambda$, V;F/ $\gamma$) . (18)

In order to carry out a further analysis, we need the following lemmas:

Lemma 3.1

\left\{\begin{array}{l}
 $\lambda$+r=-\frac{1}{2}$\sigma$^{2}$\theta$_{1}$\theta$_{2},\\
 $\lambda$+ $\delta$=-\frac{1}{2}$\sigma$^{2}($\theta$_{1}-1)($\theta$_{2}-1) .
\end{array}\right.
Lemma 3.2

c^{*}( $\lambda$, V;K)=\left\{\begin{array}{ll}
$\xi$_{1}(V) , & V<K\\
$\xi$_{2}(V)+\frac{ $\lambda$ V}{ $\lambda$+ $\delta$}-\frac{ $\lambda$ K}{ $\lambda$+r}, & V\geq K,
\end{array}\right.
where for i=1 , 2,

$\xi$_{i}(V)\displaystyle \equiv$\xi$_{i}(V;K)=\frac{2}{$\sigma$^{2}}\frac{ $\lambda$ K}{$\theta$_{i}($\theta$_{i}-1)($\theta$_{1}-$\theta$_{2})}(\frac{V}{K})^{$\theta$_{i}}
For ease of exposition, for i=1 , 2, we write

$\eta$_{i}\equiv$\eta$_{i}(V)=$\xi$_{i}(V;F\ell) and $\zeta$_{i}\equiv$\zeta$_{i}(V)=$\xi$_{i}(V;F/ $\gamma$) .
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Then, from (18) and Lemma 3.2, we obtain

b^{*}( $\lambda$, V)=\left\{\begin{array}{ll}
-\frac{1}{\ell}$\eta$_{1}(V)+ $\gamma \zeta$_{1}(V)+\frac{1}{\ell}\frac{ $\lambda$ V}{ $\lambda$+ $\delta$}, & V\leq FP\\
-\frac{1}{p}$\eta$_{2}(V)+ $\gamma \zeta$_{1}(V)+\frac{ $\lambda$ F}{ $\lambda$+r}, & FP<V\leq\frac{F}{ $\gamma$}\\
-\frac{1}{p}$\eta$_{2}(V)+ $\gamma \zeta$_{2}(V)+ $\gamma$\frac{ $\lambda$ V}{ $\lambda$+ $\delta$}, & V>\frac{F}{ $\gamma$}.
\end{array}\right. (19)

As we saw in Section 2, the LCT B^{*}( $\lambda$, V) satisfies the boundary conditions in (10), from

which the corresponding boundary conditions for the LCT $\pi$^{*}( $\lambda$, V)=\mathcal{L}C[\tilde{ $\pi$}( $\tau$, V)]( $\lambda$) for \tilde{ $\pi$}( $\tau$, V)=

 $\pi$(T- $\tau$, V)= $\pi$(t, V) can be written as

\displaystyle \lim_{V\downarrow 0}$\pi$^{*}( $\lambda$, V)=0

\displaystyle \lim_{V\uparrow V_{\mathrm{c}}^{*}}$\pi$^{*}( $\lambda$, V)= $\gamma$ V_{c}^{*}-b^{*}( $\lambda$, V_{c}^{*}) (20)

\displaystyle \lim_{V\uparrow V_{\mathrm{c}}^{*}}\frac{\mathrm{d}$\pi$^{*}}{\mathrm{d}V}= $\gamma$-\frac{\mathrm{d}b^{*}}{\mathrm{d}V}|_{V=V_{\mathrm{C}^{*}}}
The LCT $\pi$^{*}( $\lambda$, V) satisfies the ODE

\displaystyle \frac{1}{2}$\sigma$^{2}V^{2}\frac{\mathrm{d}^{2}$\pi$^{*}}{\mathrm{d}V^{2}}+(r- $\delta$)V\frac{\mathrm{d}$\pi$^{*}}{\mathrm{d}V}-( $\lambda$+r)$\pi$^{*}=0, V>0 . (21)

From the first boundary condition \displaystyle \lim_{V\downarrow 0}$\pi$^{*}( $\lambda$, V)=0 , we have

$\pi$^{*}( $\lambda$, V)=A_{0}V^{$\theta$_{1}}, V\geq 0 , (22)

where A_{0} is a constant. Applying the smooth‐pasting condition in (20) to $\pi$^{*}( $\lambda$, V) and using

b^{*}( $\lambda$, V) for  V>F/ $\gamma$ , we obtain

 A_{0}=\displaystyle \frac{1}{$\theta$_{1}}[\frac{ $\gamma \delta$ V_{c}^{*}}{ $\lambda$+ $\delta$}+$\theta$_{2}\{\frac{1}{p}$\eta$_{2}(V_{c}^{*})- $\gamma \zeta$_{2}(V_{\mathrm{c}}^{*})\}](V_{c}^{*})^{-$\theta$_{1}},
so that for V<V_{\mathrm{c}}^{*}

$\pi$^{*}( $\lambda$, V)=\displaystyle \frac{1}{$\theta$_{1}}[\frac{ $\gamma \delta$ V_{c}^{*}}{ $\lambda$+ $\delta$}+$\theta$_{2}\{\frac{1}{\ell}$\eta$_{2}(V_{\mathrm{c}}^{*})- $\gamma \zeta$_{2}(V_{\mathrm{c}}^{*})\}](\frac{V}{V_{\mathrm{c}}^{*}})^{$\theta$_{1}}
=\displaystyle \frac{1}{$\theta$_{1}}[\frac{ $\gamma \delta$ V_{c}^{*}}{ $\lambda$+ $\delta$}+\frac{$\theta$_{1}-1}{$\theta$_{1}-$\theta$_{2}}\frac{ $\lambda$ F}{ $\lambda$+ $\delta$}(1-( $\gamma$ P)^{-$\theta$_{2}})(\frac{ $\gamma$ V_{c}^{*}}{F})^{$\theta$_{2}}](\frac{V}{V_{c}^{*}})^{$\theta$_{1}} (23)

In addition, from the value‐matching condition in (20), we obtain the LCT V_{c}^{*} for the conversion

boundary as

V_{c}^{*}( $\lambda$)=\displaystyle \frac{F}{ $\gamma$}[-\frac{ $\delta \theta$_{2}}{ $\lambda$(1-( $\gamma$\ell)^{-$\theta$_{2}})}]^{\frac{1}{$\theta$_{2}-1}} (24)
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which enables us to simplify $\pi$^{*}( $\lambda$, V) in (23) down to

$\pi$^{*}( $\lambda$, V)=\displaystyle \frac{ $\gamma$ V_{c}^{*}}{$\theta$_{1}}\frac{1}{ $\lambda$+ $\delta$}[ $\delta$+\frac{$\theta$_{1}-1}{$\theta$_{1}-$\theta$_{2}} $\lambda$(1-( $\gamma$ P)^{-$\theta$_{2}})(\frac{ $\gamma$ V_{c}^{*}}{F})^{$\theta$_{2}-1}](\frac{V}{V_{c}^{*}})^{$\theta$_{1}}
=\displaystyle \frac{ $\gamma \delta$ V_{\mathrm{c}}^{*}}{$\theta$_{1}}\frac{1}{ $\lambda$+ $\delta$}(1-\frac{$\theta$_{1}-1}{$\theta$_{1}-$\theta$_{2}}$\theta$_{2})(\frac{V}{V_{\mathrm{c}}^{*}})^{$\theta$_{1}}=\frac{ $\gamma \delta$ V_{\mathrm{c}}^{*}}{ $\lambda$+ $\delta$}\frac{1-$\theta$_{2}}{$\theta$_{1}-$\theta$_{2}}(\frac{V}{V_{\mathrm{c}}^{*}})^{$\theta$_{1}}
=\displaystyle \frac{2}{$\sigma$^{2}}\frac{ $\gamma \delta$ V_{c}^{*}}{($\theta$_{1}-1)($\theta$_{1}-$\theta$_{2})}(\frac{V}{V_{\mathrm{c}}^{*}})^{$\theta$_{1}}

Since the European CB value b(t, V) is explicitly given in (16) and (17), it would suffice to

invert $\pi$^{*}( $\lambda$, V) for obtaining the target CB value B(t, V) . Hence, we summarize the results as

Theorem 3.1 The value B(t, V) of the CB with voluntary conversion prior to maturity and no

coupon payments is given by

B(t, V)=\left\{\begin{array}{ll}
b(t, V)+\mathcal{L}C^{-1}[$\pi$^{*}( $\lambda$, V)](T-t) , & V<\mathcal{L}C^{-1}[V_{\mathrm{c}}^{*}( $\lambda$)](T-t)\\
 $\gamma$ V, & V\geq LC^{-1}[V_{c}^{*}( $\lambda$)](T-t) ,
\end{array}\right. (25)

where b(t, V) is the associated European CB value given by

b(t, V)=\displaystyle \frac{1}{p}V\mathrm{e}^{- $\delta$(T-t)}-\frac{1}{\ell}c(t, V;FP)+ $\gamma$ c(t, V;F/ $\gamma$) ,

c(t, V;K) is the value of the associated vanilla call option with strike price K(K=FP, F/ $\gamma$)
given by (17), and

$\pi$^{*}( $\lambda$, V)=\displaystyle \frac{2}{$\sigma$^{2}}\frac{ $\gamma \delta$ V_{c}^{*}}{($\theta$_{1}-1)($\theta$_{1}-$\theta$_{2})}(\frac{V}{V_{c}^{*}})^{$\theta$_{1}} V<V_{c}^{*}.
The LCT V_{c}^{*}\equiv V_{c}^{*}( $\lambda$) for the early conversion boundary is given by

V_{c}^{*}( $\lambda$)=\displaystyle \frac{F}{ $\gamma$}[-\frac{ $\delta \theta$_{2}}{ $\lambda$(1-( $\gamma$\ell)^{-$\theta$_{2}})}]^{\frac{1}{$\theta$_{2}-1}}
Theorem 3.2 If  $\delta$=0 , then it is not optimal for investors to convert early before maturity.

Assume hereafter that  $\delta$>0.

Theorem 3.3 For the time‐reversed early conversion boundary (\overline{V}_{\mathrm{c}}( $\tau$))_{ $\tau$\geq 0} , we have

\displaystyle \lim_{ $\tau$\rightarrow 0}\tilde{V}_{\mathrm{c}}( $\tau$)=\lim_{t\rightarrow T}V_{c}(t)=\frac{F}{ $\gamma$} . (26)

Theorem 3.4 For the time‐reversed early conversion boundary (\overline{V}_{c}( $\tau$))_{ $\tau$\geq 0} , we have

\displaystyle \lim_{ $\tau$\rightarrow\infty}\tilde{V}_{c}( $\tau$)=\lim_{T\rightarrow\infty}V_{c}(t)=0 , (27)

i. e., for the perpetual case, it is optimal for investors to convert quickly after purchase.

Remark 3.1 In general, the assertion of Theorem 3.4 does not hold for conventional CBs. The

quick conversion of the perpetual CB is primarily due to the assumption of no‐coupon payments.
There would be no rational reason for holding bonds with neither redemption nor coupons.
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4 Broad Applicability

A remarkable feature of our refined LCT approach is that the early conversion premium does

not depend on the complex terminal condition of the value, because the premium is defined by
the difference of the American and European values, both of which are equal at maturity. As a

result, the ODE for the LCT of the premium is given in a very concise form, together with a little

bit modified boundary conditions. We immediately see that this idea is also applicable to other

American‐style claims, provided that the associated European claims have closed‐form solutions

for the value and its LCT. For example, consider an American vanilla call option with maturity
T and strike price K

, written on a dividend‐paying asset. Let (S_{t})_{t\geq 0} be the price process of

the underlying asset, and assume that (S_{t})_{t\geq 0} is a geometric Brownian motion process with the

same dynamics as (1). Then, the value of the American vanilla call option at time t\in[0, T],
C(t, S_{t}) , is decomposed as

C(t, S_{t})=c(t, S_{t})+$\pi$_{\mathrm{c}}(t, S_{t}) , t\in[0, T] , (28)

where c(t, S_{t})=c(t, S_{t};K) is the value of the associated European vanilla call option given
in (17) with V :=S_{t} , and $\pi$_{c}(t, S_{t}) is the early exercise premium. Applying the refined LCT

approach to this pricing problem, we see that the LCT $\pi$_{\mathrm{c}}^{*}( $\lambda$, S)=\mathcal{L}C[\tilde{ $\pi$}_{\mathrm{c}}( $\tau$, S)]( $\lambda$) satisfies the

ODE

\displaystyle \frac{1}{2}$\sigma$^{2}S^{2}\frac{\mathrm{d}^{2}$\pi$_{c}^{*}}{\mathrm{d}S^{2}}+(r- $\delta$)S\frac{\mathrm{d}$\pi$_{\mathrm{c}}^{*}}{\mathrm{d}S}-( $\lambda$+r)$\pi$_{c}^{*}=0, S<S_{\mathrm{c}}^{*} , (29)

with the boundary conditions

\displaystyle \lim_{S\downarrow 0}$\pi$_{c}^{*}( $\lambda$, S)=0

\displaystyle \lim_{s\uparrow S_{\mathrm{c}}^{*}}$\pi$_{c}^{*}( $\lambda$, S)=S_{c}^{*}-K-c^{*}( $\lambda$, S_{c}^{*}) (30)

\displaystyle \lim_{S\uparrow S_{\mathrm{c}}^{*}}\frac{\mathrm{d}$\pi$_{c}^{*}}{\mathrm{d}S}=1-\frac{\mathrm{d}c^{*}}{\mathrm{d}S}|_{S=S_{c}^{*}},
where c^{*} is given in Lemma 3.2 and S_{c}^{*}\equiv S_{c}^{*}( $\lambda$)=\mathcal{L}C[\tilde{S}_{c}( $\tau$)]( $\lambda$) is the LCT of the early exercise

boundary (S_{\mathrm{c}}(t))_{t\in[0,T]} . Solving the ODE (29) with (30), we obtain

$\pi$_{\mathrm{c}}^{*}( $\lambda$, S)=\displaystyle \frac{1}{$\theta$_{1}}\{\frac{ $\delta$}{ $\lambda$+ $\delta$}S_{c}^{*}-$\theta$_{2}$\xi$_{2}(S_{c}^{*})\}(\frac{S}{S_{\mathrm{c}}^{*}})^{$\theta$_{1}}
=\displaystyle \frac{2}{$\sigma$^{2}}\frac{ $\delta$}{($\theta$_{1}-1)($\theta$_{1}-$\theta$_{2})}(S_{c}^{*}-\frac{rK}{ $\delta$}\frac{$\theta$_{1}-1}{$\theta$_{1}})(\frac{S}{S_{c}^{*}})^{$\theta$_{1}} S<S_{c}^{*},

where the LCT S_{\mathrm{c}}^{*}(\geq K) is a unique positive solution of the functional equation

 $\lambda$(\displaystyle \frac{S_{c}^{*}}{K})^{$\theta$_{2}}+ $\delta \theta$_{2}\frac{S_{\mathrm{c}}^{*}}{K}+r(1-$\theta$_{2})=0.
Hence, the American vanilla call option has the value

C(t, S)=\left\{\begin{array}{ll}
c(t, S)+\mathcal{L}C^{-1}[$\pi$_{c}^{*}( $\lambda$, S)](T-t) , & S<\mathcal{L}C^{-1}[S_{\mathrm{c}}^{*}( $\lambda$)](T-t)\\
S-K, & S\geq \mathcal{L}C^{-1}[S_{c}^{*}( $\lambda$)](T-t) .
\end{array}\right.

38



As another example, consider a European continuous‐installment option with maturity T

and strike price K , written on a dividend‐paying asset (S_{t})_{t\in[0,T]} ; see Kimura [19]. Installment

options are path‐dependent claims in which a small amount of up‐front premium instead of a

lump sum is paid at the time of purchase, and then a sequence of installments are paid up to

maturity. If the installments are paid at a certain rate, say q>0 , per unit time, it is referred

to as a continuous‐installment option. The holder has the right of stopping payments at any

time, thereby terminating the option contract. Hence, an optimal stopping problem similar to

American‐style options arises for the installment option even in European style. Let t(\geq 0) be

the purchase time and let c_{i}(t, S_{t};q) denote the initial premium of the continuous‐installment

call option, assuming the same framework as that for the vanilla call option in this paper. Then,
the value c_{ $\eta$}(t, S_{t};q) can be decomposed as

\mathrm{c}_{\mathrm{t}}(t, S_{t};q)=c(t, S_{t})+$\pi$_{i}(t, S_{t};q)-K_{t}, t\in[0, T] , (31)

where

K_{t}=\displaystyle \frac{q}{r}(1-\mathrm{e}^{-r(T-t)}) , t\in[0, T],
is the NPV of the future payment stream at time t , and

$\pi$_{i}(t, S_{t};q)=\displaystyle \mathrm{e}\mathrm{s}\mathrm{s}\sup \mathrm{E}_{t}[\mathrm{e}^{-r(s-t)}(K_{s}-c(s, S_{s}))^{+}],s\in[t,T]

represents the American compound put option maturing in time T written on the vanilla call

option. Using the refined LCT approach combined with the decomposition (31), we have

$\pi$_{i}^{*}( $\lambda$, S;q)\displaystyle \equiv \mathcal{L}C[\overline{ $\pi$}_{i}( $\tau$, S;q)]( $\lambda$)=-\frac{2}{$\sigma$^{2}}\frac{q}{$\theta$_{2}($\theta$_{1}-$\theta$_{2})}(\frac{S}{s_{i}*})^{$\theta$_{2}} S>S_{i}^{*},
where S_{i}^{*}\equiv S_{i}^{*}( $\lambda$)=\mathcal{L}C[\tilde{S}_{i}( $\tau$)]( $\lambda$) is the LCT of the optimal stopping boundary (S_{i}(t))_{t\in[0,T]},
which is given by

S_{i}^{*}( $\lambda$)=K[\displaystyle \frac{q($\theta$_{1}-1)}{ $\lambda$ K}]^{\frac{1}{$\theta$_{1}}}
Hence, the initial premium of the continuous‐installment option is given by

c_{i}(t, S;q)=\left\{\begin{array}{ll}
0, & S\leq \mathcal{L}C^{-1}[S_{i}^{*}( $\lambda$)](T-t)\\
c(t, S)+\mathcal{L}C^{-1}[$\pi$_{i}^{*}( $\lambda$, S;q)](T-t)-K_{t}, & S>\mathcal{L}C^{-1}[S_{i}^{*}( $\lambda$)](T-t) .
\end{array}\right.
Note that the solutions for $\pi$_{i}^{*}( $\lambda$, S;q) and S_{i}^{*}( $\lambda$) have much simpler expressions as compared
with those in Kimura [19, Equations (32) and (25)].

Due to the simplicity of the idea, the refined LCT approach is broadly applicable to, e.g.,

American continuous‐installment options [17], American fractional lookback options [20], Amer‐

ican exchange options [21] and so on. Of course, the approach is also applicable to put counter‐

parts in the same way.

Finally, we make a brief remark about a certain similarity between our LCT approach and

the so‐called quadratic approximation (QA) developed by MacMillan [23] and Barone‐Adesi and

Whaley [6]. In the QA for an American vanilla option, the focus is also on the early exercise
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premium, for which an approximate ODE is derived. The option value is given by the sum

of the associated European value and an approximate solution for the early exercise premium.
The significant difference between these two approaches is that the ODE derived from the LCT

approach is exact in the Laplace domain, whereas the ODE derived from the QA approach is an

approximation in the real‐time domain. It has been known from numerical experiences that the

LCT approach generates almost exact values, while the QA approach generates less accurate

values, in particular, for options with long maturity.
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