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On a filtered probability space let us consider the following interactions of N (> 2) Brownian
particles each of which diffuses on the nonnegative half line R, and is attracted towards the
average position of all the particles. When a particle ¢ attains the boundary 0, it is annihilated
(default) and a new particle (also called i) spikes immediately in the middle of particles. More
precisely, let us denote by X; := (X},..., X}N) the positions of these particles, where Xi(>0)
is the position of particle i at time ¢ > 0 for i = 1,...,N. With the average X; := (X} +
-+-+X) /N the dynamics of the system is determined by '
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for i = 1,...,N, k € N, where W; := (th,...,VVtN), t > 0 is an N -dimensional
Brownian motion, M; is the cumulative number of defaults by time ¢ > 0, i is the k-th
default time with 7§ = 0 of particle i. Here we assume that b : R?% — R is (globally) Lipschitz
continuous, i.e., there exists a constant k > 0 such that’

|b(z1;m1) — b(zg, m2)| < K,(I:vl — Zo| + M1 — m2|) )

for all z1, 22, m1, me € Ry, and we also impose the condition
N
> b(a',z) =0 3)
i=1 :

forevery z := (z!,...,2V) € RY and 7 := (2! +--- +z") / N on the drift function b(,-).

Given a standard Brownian motion W. we shall consider a system X. := (X 1L...,XxN,
M. := (M},..., MY)) described by (1) with (2)-(3) on a filtered probability space (2, F,F,P)
with filtration F := (F;,¢t > 0). In particular, we are concerned with (1) that there might be
multiple defaults at the same time with positive probability, i.e.,

P(3(i,5) 3t € [0,00) suchthat X; = X = 0) > 0.

We shall construct a solution to (1) with a specific boundary behavior of defaults until the
time 7o := inf{s > 0 : max;<;<ny X! = 0}. Let us define the following map ®(z) :=
(@Y (z),...,2N(z)) : [0,00)Y > [0,00)Y and set-valued function I' : RY — {1,...,N}
defined by Tg(z) := {i € {1,...,N}:z* = 0},

. k _ k
Tppa(z) = {ie{l,...,N}\Ul“g(:x) : xi—%|un(x)’ 50}; k=0,1,2,...,N-3
=1 £=1
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for z = (z!,.. ,a:N) GRN i=1,...,N with 7 := (' +---+zn) /N > 0. Note that
2(10,00% \ {0}) € [0,00)" \ {0} and B(0) = 0 = (0,...,0).

Lemma 1 ([3]). Given a standard Brownian motion W. and the initial configuration Xo €
(0,00)N one can construct the process (X., M.) which is the unique, strong solution to (1) with
(2), (3) on [0,70], such that if there is a default, i.e., |I'(X;—)| > 1 at time t, then the post-default
behavior is determmed by the process with X} = ®(X;_) fori = 1,...,N.
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Now let us discuss the system (1) with (2)-(3) as a mean-field approximation for nonlinear

equation of MCKEAN-VLASOV type. For the sake of concreteness, let us assume b(z,m) =
—afz —m), z,m € [0,00) for some a > 0. By the theory of propagation of chaos (e.g.,
TANAKA (1984), SHIGA & TANAKA (1985) and SZNITMAN (1991)) as N — oo, the dynamics
of the finite-dimensional marginal distribution of limiting representative process is expressed by

t i
X =%-a / (X, — E[4])ds + Wi + /0 ElX,_Jd(M, —EIM)); ¢20, ()

where W. is the standard Brownian motion, M; := Y32, likgyy, 7 = inf{s > 7F~1
X, <0}, k>1, 79 = 0. Then taking expectations of both sides of (5), we obtain E[X;] =
E[X], t > 0. When Xy = x0 a.s. for some z¢ > 0 , substituting this back into (5), we obtain

¢
X, = Xo—a/ (X — Xo)ds + Wi + Xo(M, — E[Md]); ¢ 0.
0
Transforming the state space from [0, 00) to (—o00,1] by X, := (zo — X;) / 2o, we see
. ‘
xt=—/ a®yds + W, - My +E[M,]; t>0, ©)
0

where we denote W. = W. / g, M =M.
This transformed process X is similar to the nonlinear MCKEAN-VLASOV- -type stochastlc
differential equation

~ ~ t —_ — —
P xo+/ b(&,)ds + W, — My + aE[M,]; ¢ >0, @
0 ) .

studied by DELARUE, INGLIS, RUBENTHALER & TANRE (2015 a,b). Here Xp < 1, a € (0,1),
b : (—00,1] = R is assumed to be Lipschitz continuous W1th at most linear growth. W. is the
standard Brownian motion, M. Zk_l 1r<y with #* = inf{s > 751 : X,_ > 1},
k=1, 7 = 0. When we specify X =0, , b(z) = —az, z € Ry ,and o = 1, the solution
(X M. ) to (7) reduces to the solution (X M. ) to (6), however, the prev:ous study of (7) does
not guarantee the uniqueness of solution to (7) in the case a = 1.

Proposition 1 ([3]). Assume E[Xy]) > 1 and b(z,m) = —a(z —m), z,m € [0,00) for some
a > 0. There exists a unique strong solution to (5) on [0,T]. Moreover, for every T > 0, there
exists a constant c such that every solution to (5) satisfies (d/dt)E[M;] < cp for 0<t<T.
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The proof is based on a fixed point argument. For example, when a = 0, we may reformulate
the solution (X, M.) in (6) as

Z, = X%+ M, = W, +E[M)], M, = [sup (Z)*]; t>0, ®)
. 0<s<t

where || is the integer part. Given a candidate solution e; for E[Mj], ¢ > 0, we shall consider

Zg = Wy+e,, M :=|sup(Z9t]; t>0, )
0<s<t
where the superscripts e of Ze and ./T/i\? represent the dependence on e.. Then uniqueness
of the solution to (6) is reduced to uniqueness of the fixed point e* = 91.(e*) of the map
M: C(R+,Ry) = C(R4,Ry) defined by
My(e) := E[| sup (Z)*]] = E[M;]; t>0. (10)
0<s<t _
To solve the equation (10) let us define recursively e® =0, Y = o (e™) for n € -

Np . Then one can verify e.(n) < e.(nH) for n € Np. Let us also define
L = {e€ C'([0,00)) : & >0,e0 = 0,e; < L(t) := t/x0,t > 0}.

Then one can show that if e ¢ £, then e™+) € L. (For example, if ¢ = 0 and 29 > 1,
then Z = W.+e = = (W./zo) +e. forevery e € L, and hence by an application of the renewal
theory

My (e) = Z]P( sup (W +e)t > k) < Z]P’( sup (W + 8)*t > kzo) < -+
oy 0<s<t = 0<s< zg

for ¢ > 0.) By utilizing this monotone property of the map 9%, and the first passage time
distribution for diffusions, we verify the contraction property and then find a unique fixed point in
the class of continuously differentiable, nonnegative functions bounded by a linear line with slope
1/zo. Note that in some numerical evaluation we observe the slow convergence of PICARD
iteration even for the case 2o < 1.

For the stationary distribution of the solution X. to (5) we have the following proposition.

Proposition 2 ([3]). When a > 0, the stationary distribution of

X = X -a/:(x; — zo)ds + W + zo(My — EIM); ¢ >0
has the density . »
' pa(z) = 200( /0 Ao eayz+2zo(co+a)ydy)e—a:c2—2a:o(00+a)x; 23>0,

where co = lim; o dE[M;] / dt is a unique solution to

2a
Co/ V/2/acozo 2/2(/°°e—y2/2dy)dx'= 1
/aco \/2_awo z

When a = 0, we have .co = l/x?, and po(z) = (1 — e 22/%0) /x4 if 0 < z < x¢ and
po(z) = e=22/%0(e? — 1)/zo if > wo. ‘
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It follows from Proposition 1 that the propagation-of-chaos result holds for the reformulated
solution (Z., M.) from the original X. in (1). Thus we have the following.

Proposition 3 ([3]). Let us assume that X§, i € N are independently, identically distributed with
a finite mean. Under the same assumption as in Proposition I, forevery k > 1, £> 1, t1,...1,,
as N — oo the vector (X} ,M{), 1 <i<k, 1< j</{ defined from (1) converges towards
the finite dimensional marginals at times t1, .. .,t; of k independent copies of (X., M.) in (5).
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