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An advantage of using category theory is that it can visualize relations be-
tween different mathematical fields. Further, when we find a relation between
different mathematical fields, it sometimes helps for developing a theory in
a new direction. This fact motivates us to use category theory for studying
probability theory.

One of the most prominent trials of applying category theory to proba-
bility theory so far is Lawvere and Giry’s approach of formulating transition
probabilities in a monad framework ([Lawvere, 1962], [Giry, 1982]).. How-
ever, their approach is based on two categories, the category of measurable
spaces (objects are measurable spaces and arrows are measurable maps) and
the category of measurable spaces of a Polish space (objects are measurable
spaces of a Polish space with a Borel g-algebra and arrows are continuous
maps) , not a category of probability spaces. Further, there are few trials of
making categories consisting of all probability spaces due to a difficulty of
finding an appropriate condition of their arrows.

Our approach is one of this simple-minded trials. We mtroduce a cate-
gory Prob of all probability spaces in order to see a possible generalization
of some classical tools in probability theory including conditional expecta-
tions. Actually, [Adachi; 2014] provides a simple category for formulating
conditional expectations, but its objects and arrows are so limited that we
cannot use it as a foundation of categorical probability theory.

Definition 1 (Category of Probablhty Spaces). A category Prob is the cat-
egory whose objects are all probability spaces and the set of arrows between
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them are defined by
Prob(X,Y):={f"| f: Y — X : measurable with Py o f_1 < Px},

where X := (X, ) %, Px),Y := (Y,Zy,Py) and f~ is a symbol corresponding
uniquely to a measurable functlon fo \

We write X —> Y in Prob, however note that the arrow f~ has an
opposite direction of the function f.

Now we are going to find a kind of conditional expectation in our category
Prob. Let f~ : X — Y be an arbitrary arrow in Prob. For any v €
LY(Y, 3y, Py), define a signed measure v* : ¥y — R as '

v*(B) = /B vdPy (B € Ty).

Then, by the definition of arrow in Prob, a signed measure v* o f~! on Xx

is absolutely continuous relative to Px. So that, thanks to Radon-Nikodym

theorem, we can find E/™ (v) € L}(X,Xx,Px) as a Radon-Nikodym deriva- -
tive of this signed measure v* o f~! which is satisfying

/Ef“(v)dpxz/ v dPy
A e

for all A € ©x. We call Ef (v) a (version of) conditional expectation of
v along f~. This is a generalization of conditional expectation, because if
f=idg: (Q,F,P)— (QG7P) and G C F, then Eié(v) becomes a usual
conditional expectation E(v|G). Further, we can think of an arrow f~ in

(Q2, F,P) identifies a sub

Prob as a o-algebra since the arrow (2,G,P) —» ‘%

o-algebra G of F as its domain.
Additionally, let ~p be P-a.s. equivalence relation, then one can show

o ~py v = B (0) ~p B (12),
Elx (U) ~Px U,
ET (B (w)) ~py B7° (w)
for all u € LY(X,Zx,Px), vi,v2 € LYY, Zy,Py) and w € LY(Z,Zz,Pz),

_e— o _ _ Idz _
where X 25V 95 Z and X =% X. These imply well-definedness, identity-
preservility and composition preservility of the map [v]., + [Ef ()]~ -
So we have the first theorem:
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Theorem 2 (Conditional Expectation Functor). There ezists a contravari-
ant functor £ from Prob to Set (the category of all sets and all functions)
as following:

X X|—8>5X = LI(X;EX)]P)X) 3 [Ef—(v)]b"’ll”x

Ef~ . [Sf_

Y  YV—EsEV = LNY,Sy,Py) 3 [V]ay,-

7 =

We call £ a conditional expectation functor.
Continually, we define a concept of measurability for our setting.

Definition 3 (Measurability). A random variable v € L>®(Y,Zy,Py) is
called f~-measurable if there exists w € L®(X,Xx,Px) such that v ~p,
wo f.

It seems natural because f~ is a ”o-algebra”. More precisely, the arrow
f~ identifies the o-algebra f~1(Xx) = o(f) and this definition is almost
saying that v is o(f)-measurable. Due to this definition, our second theorem
is obtained.

Theorem 4 (Measurability). Let u be an element of L}(Y,Zy,Py) and v be

a random variable in LX®(Y, Sy, Py), and assume that v is f~-measurable.

Then we have _ .
' Ef (v-u) ~p, w- EY (u),

where w € L®(X,Xx,Px) is a random variable satisfying v ~p, wo f.

A proof of theorem 4 can be obtained by using a usual step by step
argument as the following: Firstly show it when w is an indicator function;
Secondly show it if w is a simple function; Finally show it for general w.

This theorem shows that our ”conditional expectation” still has a similar
property about measurability.

" Next definition is a modification of [Franz, 2003].
Definition 5 (Independence). We say v € L!(Y, Zy, Py) is independent of
f~ if there exists a measure preserving map ¢ which makes the following
diagram commute:

(R,B,Pyov™") <~ (Rx X,B®Tx, (Pyov™!) ® (By o f7)) > X.
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By a straightforward calculation, we see that this definition means usual
independence in the case of two o-algebras. Indeed, by commutativity of the
diagram, the map ¢ must be equal to the map (v, f). Hence for all C € B
and A € Yx;

Py(vTHC) N FTHA) =Pr({(v, f) € C x A})
=Py(q7'(C x A))
= (Pyov™) ® (Pyo f7)(C x A)
=Py(v7(0)) - Py(f7(4)).

So o-algebras v~}(B) and f~!(Xx) are independent under Py. Furthermore,

v~}(B) is nothing but o(v), and we think of f~}(Zx) as a given o-algebra for

conditional expectation. Thus the diagram just implies usual independence.
Finally, we encounter our last theorem.

Theorem 6 (Independence). Let.v e LYY, ZY;]P’Y) be a random variable
that is independent of f~. Then we have,

ET" (v) ~py EPY U] B (1y).

When f is measure preserving, E” (ly) ~p, lx, then the above formula
turns to a well known formula of conditional expectation with independence,
since E/” (ly) is the Radon-Nikodym derivative d(Py o f~1)/dPy. |

Regarding proofs of theorem 6, one can prove this theorem by a usual
method (using step functions and the dominated convergence theorem), but
- we want Share a proof which is using commutatlve diagrams and functors.
For this purpose, let us list some lemmas.

Lemma 7 (Functor L). There exists a covariant functor L : Prob — Set
such that

X X—EsLX = L®(X,Yx,Px) 5 [u]NPX‘

Y Y+—>LY = L®(Y,Zy,Py) 5 [uo f].,

[y

Sketch of Proof. Straightforward calculation with the definition of arrows in
Prob, especially their absolute continuity. O
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Lemma 8 (Commutativity with Measure-Preserving). If f~ : X — Y in
Prob is measure-preserving, then we have Ef~ oidyy oLf™ =idyx, t.e. the
diagram ' . '

Ly ‘%% ey

A

LX —&X

’LdL}_(

commutes.

Proof. By theorem 4, for any w € L2(X, Xx,Px), we have
Ef (wo f) ~p, w- Ef (1y).

However, since E/™(1y) is nothing but a Radon-Nikodym derivative d(Py o
f1)/dPx and f : (Y,Zy,Py) = (X,Xx,Px) is measure-preserving, we see

that . i(P . 1) P
EF (1v) . YOS ) OEX
(Iy) ~rx dPx - X Py

" Thus B (wo f) ~py w. In other words £f~ oidyg oLf~ =idpg. - O

~py 1x.

Lemma 9 (Linearity). Let f~ : X — Y be an arbitrary arrow in Prob. For
all u,v € LYY, Zy,Py) and any o, B € R,

E' (au + Bv) ~p, aE? (u) + BET (v).

Sketch of Proof. Using a property of a Radon—Nikodym derivative with inte-
gral over subsets and linearity of integral. - O

Lemma 10 (Monotone Convergence). Let f~ : X — Y be an arbitrary
arrow in Prob. Suppose that for any n € N, v,v, € LYY, Zy,Py) and
0<uv,tv (Py-as.). Then0< E' (v,) t Ef” (v), Px-almost surely.-

Sketch of Proof. Show that E/” is positive. Then put u := limsup,, ., E/™ (v,)
and prove this u is equal to £ (v) with the monotone convergence theo-
rem. a

So we are ready to see a proof with diagrams.
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Proof of Theorem 6. From the definition of independence, we have a com-
mutative diagram '

Y
i
q
VeV X —X,
Ty Ty

where V := (R, B, Py o v;l) and X7 := (X, Zx,Py o f71). Then, because L
and &£ are functors and lemma 8, each part of the diagram ‘

Ly — % ey
Loy~ . TLq_ gq_l ' EfT
LV—_>L(V®Xfi)—>5(V ® X)) —EX
Ly duvexs) - &my

commutes, hence the whole diagram also commutes. So that for any [u]Nw},, €
L*(R,B,Py o v™!), we obtain the following commutative diagram:

ide o - _
[0 U], s [ 0 U]y, e [BY (w0 V)] g
Lv—
[“]:leg,

Ly

_ iy veoxf ' Eny -
[uo 7r1]N]Puy®1P{/ —lue wl]NP’{z@P{z BT (ue ﬂl)]“""X’ :

here PY := Py ov~! and P}, := Py o f~1. Thus B/ (uov) ~p, E™ (uom).
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However, for all A € Sy,

/E”;(UOW)d]P’X=/ wom d(PY ® PL)
A 73 1 (A)

=/ (wom)- (14 0m)d(P% @ PL)
RxX _ )
= EP O [y om] - EWEPY (14 079
=E%[u]- EPV [y
=E™[uov] -EFY[l40 f]
=IEPY[uov]/ ly dPy
F=1(4)

_ / B [uo ] - B (ly) dPx.

A .

Therefore
Ef (uov) ~p, E™ (uom) ~p, EF¥[ucv]Ef (1y).

Now put u, := @dR * li—p,n), for any n € N. Then obviously u, — idr as
n — 00. So by lemma 9 and lemma 10, we obtain
ET(v) ~py lim B (uy, o v)
~Py JLI{:O]EPY [un 0 v] ES (1y)
N]PX EPY [’U]Ef—(ly). D
In conclusion, we provide a category Prob and a generalization of condi-
tional expectation for this category which is called a conditional expectation
functor £. Also we show this generalized conditional expectation still has
nice properties for measurability and independence. In addition, we give an

unusual proof in probability theory which heavily uses the comutativity of
diagrams and functors.
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