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'§1. Introduction v
The purpose of this expository article is to investigate the support problem
for a special class of superprocesses in terms of random measure. In the theory
~of measure-valued stochastic processes, compact support problems have been dis-
cussed for many years. For instance, in the case of typical super-Brownian motion
X = {X;;t > 0}, Iscoe (1988) proved that if the initial measure Xy(dz) has a
compact support, then for every ¢ > 0, X; possesses a compact support. Let B
= B, (R") be the totality of nonnegative Borel measurable functions on R™, and
let L = L(dz) be a locally finite random measure on R™. For B, > f, we define

(f,L) = / f(z)L(dz). Furthermore, Mr(R") denotes the totality of finite Borel

measures on R” equipped with weak convergence topology. We define a differential
operator P by

1 R 8
=5 ;ak(x)a_ﬂﬁ% + kz::lbk(x)éx—k + (@) (") (1)

where we assume that ag,bx,c € C°(R") satisfy 360 > 0: a; > 6 > 0. As a
matter of fact, our target process X = ({X;,t > 0}, P,) in terms of measure L is
an Mp(R™)-valued Markov process, and its Laplace transition functional is given
by
]E#[e—(%xt)] = e~ (u®)m) (2)
Here the function u(t) = u(t, z) satisfies
Oyu = Pu — L(dx)u2
fouerecs .

u(t, z)]i=o+ = 90(5'3_)

where the symbol L(dx) means = (d’”) . For brevity’s sake, in what follows we shall
proceed the argument simply for d = 1. Our discussion on construction of super-
processes can be extended up to multi-dimensional case. However, the argument
on the compact support problem for superprocesses is restricted to one-dimensional.
case.
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§2. Main result
For u € Mp(R), the support of u, say, supp(u) is defined by

supp(u) := {A € B(R) : u(A°) = 0}. (4)
While, the global support of superprocess X (-), say, Gsupp(X) is defined by
Gsupp(X) := | supp(Xi(dx)). (5)
: >0

It is a key point that we relate the support Gsupp(X) of superprocess X; in terms
of locally finite measure L = L(dz) on R to a nonlinear singular elliptic boundary
problem.

Let d = 1,a(z) > 0. We consider the associated boundary problem: for a
2 .

d
differential operator P = %a(z)% + b(z)— + c(z),
T

dz
{ Pv = v*(x) Lgix)’ a4 <z <as (©)
v(a1) = b1, v(az) = fo.

When we denote the solution of (6) by v(z; 1, 52), since 3{,8@},, /0o, 3{,3§-")}n a
00, the problem (6) possesses a unique solution v(z; ,Bf") y é")). Note that the so-
lution v(z) is a continuous convex function defined on the interval I = [aq,as)].
Moreover, for Va; < o < = < ag, v(z) satisfies

v(z) = v(z0) + Bo(z0)(x — o) + / "8y w)u(y)dy

zo

! /” W /y ®i(z)u(e)z + dy / y 2;’:2; ) 1(dz); (7)
where

Bola) = vet) + 20, @) = 20,

Bolc) = 2b(z)a’(z) — Qb;(g;(x) + 2a(z)e(z)

Then we can obtain an explicit expression; of the approximate solution. For ¢ €
C*(R),supp(¥) C (—K, K),6 > 0, when we denote by vk(t, z; 8¢) the solution of

u(t,z) =0, z € (-K,K)°

t K
u(t, ) =_0/0 /_Kpg(t — 8,2,y)¢(y)dyds

- /Ot /-pr(t —s,z,y)u’(s,y)L(dy)ds, z¢€ (-K,K), | (8)
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then a simple fact vg > 0 yields concurrently to vk Aint 2D vg Sin v, and
_ furthermore it follows immediately that

us(t,2:00) < sup / / pr(t — 5,2, )09(y)dyds < co.

On the other hand, vk (0,t, z; a1, az) denote the solution of (8) with the test func-
tion replaced by ¥ = 1jg, a,c-

For simplicity, we assume henceforth that supp(Xo) C [a1,a0) C (—K,K),
b(z) = 0,c(x) > 0. We shall represent the positive support probability of su-
perprocess X; by tthe solution ?f (6). The argument of Iscoe (1988) for occupation

time processes / XKds or / X,ds implies that
0 0

B {0 [ X2 (fm et
~ exp {— / " (6,251, a2) Xo(de) } )

—00

holds. And besides we have

vg(0,T;a1,a) = hm(hm vk (0¢n; t, x)),
—00 N—00

and we can deduce that v(z) = vK(H,q:, a1,as) satisfies that its second derivative
v” is a signed measure, and also that for z € (- K, K),

o [ 2el) [ 20)
iz i’“/m, a(w) "’“/zo a0y L)

T+
— 26 / Lia1,a0)c(¥)dy + (Constant).
o :

Thus the representation of probability for the support can be derived.
PL(supp(X:) N [a1,a0]° =B, V¢ >0)
= Alim P)%o(supp(Xf{) N [a1,a2]* = 0,Vt > 0)
—00 i

<= by virtue of the right continuity of the path X (w)

= Jim 7%, ([ X 0apyas = )

< by the expreésion of the occupation time process (9)

= lim lim exp{ / vK(G,x;al,ag)Xo(dx)}

K—-)oo 6—0c0 —00

= lim exp{— IRCLE é"))xo(dx)} (10)

n—>00
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By virtue of the above-mentioned facts we can get the following principal result,
the theorem for compact support.

Theorem 1. (Main Result)  Let p € Mp(R) and supp(p) C [a1,az]. Suppose
that d = 1,a(z) > 0,b(z) = 0,c(z) > 0. For Ve > 0 (¢ << 1 : sufficiently small),
there ezist proper real numbers 3z = z(e) < a1, 3T = Z(e) > ap such thatv is a
nonnegative solution of (7) on the interval (z,%), i.e. v(z) > 0 for z € (z,Z). Ifv
satisfies the conditions . '

< i —d 1 = .
aliggazv(w)\e, lim v(z) = lim v(z) = co, (11)

then the superprocess X = {X;,t > 0} has the compact support.

§3. Formulation of superprocess by admissible functional

Let us denote by X = {X;,t > 0} the measure-valued branching process
corresponding to a locally finite random measure L, and Plf denotes the probability
~ law of the measure-valued process X. Then a measure-valued process (Xj, PL)in
terms of random measure L is given by the following Laplace transition functional.

Ef;[e*«p’x‘)] = e~ (ulthn) with Xp = p € Mp(R). (12)

Here the function u(t, z) satisfies the following Cauchy problem.

Oyu = Pu — Mu2,

dz
u(0,z) = ¢ € Cf (R).

(13)

Now, suggested by a formulation by Dawson-Fleischmann (1995), we shall consider
the above initial value problem as an integral equation. As a matter of fact, when
we write the fundamental -solution to the aforementioned Cauchy problem by p,
then we have '

o) = [ ey — [ [ole-smupie i 1)

This means that we consider the mild solution to the .above Cauchy problem. We
shall assume henceforth:

[Assumption] For any ¢ > 0,

/ e’ L(dz) < 00, as. (15)

—00

Recall a method to apply admissible Brownian functional in the studies on super-
processes by E.B. Dynkin (1994). Roughly speaking, it is nothing but a special
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case that the branching rate term 7 in the super-Brownian motion or the Dawson-
Watanabe superprocess would be changed into a general additive functional which
does not always possess its density. For a finite measure L on R and a local time
£t 2(w) of Browninan motion B;, we define the additive functional Kt[L](w) by

K (w) = / a(w) E(de). (16)

We shall impose the following admissible conditions.
[Dynkin’s Admissibility] For a Brownian motion (B, Ilp),

(i) I,z [KH(r,1)] < 00, for Vr<tz .

(ii) IL . [K)(r,#)] = 0 uniformly in z (r,t —s) Vs
Theorem 2. (Dynkin, 1994) If the transition function P(r,u;t,C) = P, (X; €
- C) satisfied the following two conditions, then the measure-valued Markov process
named (&, K, 1)-superprocess with parameters X = (X3, P;,) can be determined.

/ Plr, sty dv)e™) = exp{—{u(r), )}, (17)
o(r,z) +11,,, / (s, 0(5))(€)AK, = T4 £ (&). (18)

' §4. Construction of sequence of approximate measure-valued processes
“ In this section we shall construct a basic process as a limit of increasing
sequence of finite measure Mp(R)-valued processes realized on the common basic
probability space. This provides us with a proto-type in the construction of our

target superprocess. For each K € N, we put

K
Eg := U{n} X (—n,n), (19)

n=1

and we denote by XX = XX (dz) an Mp(Ex)-valued process. We shall first of all
construct this measure-valued baisc process X in what follows. For z € (—n,n),
a Markov process wx on Ek starting at a point (2, ) can be defined as

wg(t) :== ({n}, w(t)), for 1<t< 7, v
wi (1) = ({n + 1}, w(m)), Tp =1Inf{t > 0: w(t) = £n}

where w is a P—diffusion starting at a point . Notice that the stochastic process,
wg dies out finally at time 7. Next we consider a randam measure Lg. In fact,
we define

Lg({n} x (a,b)).:= L((—n, n) N (a, b)), for n<K. |



On this account, we can define the admissible additive functional IC[ k] (wk) by
making use of this random measure L, i.e.

K g [stworxtay (20)

where £, ; is a positive random variable given by

- 1t
b p(w) : —lelﬁ)l% L(a—e,ate)(w(s))ds. (21)

Then an application of the previous Dynkin’s existence theorem (Theorem 2) with
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this admissible additive functional IClLK ] gives us a superprocess, which we denote

by XX = XX(dz). That is to say,
EZ0e X0 = exp{~(u(r), )}, (22)

u(r,z) + l:Ifz /t v(s, wi(s ))ZdIC[LK] = HP +P(wi (1)) (23)

Next we shall construct a new approximate sequence of branching measure-valued
processes by employing the above-mentioned process, and shall give its charac-
terization. Before constructing the superprocess in question, we consider first the
initial measure as its initial value. We choose a finite measure 1 € Mp(R) as a

candidate of the initial measure for our measure-valued process XX. For n > 1,

for each subset B C R we define
X5 ({n} x B) := p(BN {[n — L,n)U(—n,—n+1]}). (24)

Then, if it is the case of the number M € N satisfying M > K, the law of the
process XM restricted to a set Ex = UK {n} x (—n,n) is equivalent to the law
of the process XX. In other words,

L(XM | Ex) = L(XEK), for VM >K.
Let us now denote by P K the probability law of the measure-valued process XK ,

and we put Ey = U{n} x (—=n,n) and X* denotes an M (Eoo)-valued process.
n=1

Then note that sirce the law {P)%OK }x of XX becomes a consistent family, its

projective limit induces the law of M(E,,)-valued process X Hence, if we define

a new Mp((—K, K))-valued process XX as

K
XK (B) =Y X({n} x B), (25)

n=1
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then an increasing sequence of stochastic processes {X{*(B)}x * is obtained.

Proposition 3. (Characterization)  Let uk(t,z) be a log-Laplace function of
XK. Then XK satisfies the following \

Exple®X] = e~wx®u) | with  XX(dz) = p(dz). (26)
Moreover, the function uK(t,.x) satisfies uniquely the follwoing integral equation:
for ¢ € Co(R),

X .
uk(t,z) = / pr(t, z,y)e(y)dy
- /Ot /_KpK(t-—s,x,y)uﬁ((s,y)L(dy)ds, | (27)

K
EXKB) = | . /B pic(t, 2, y)u(de)dy, (28)

where px(t,z,y) is the fundamental solution of the Dirichlet boundary value prob-

lem:
Btu — Pu= 0, . ula(_K,K) =0 (29)

§5. Existence of superprocess in terms of finite measure :
Therefore Mp(R)-valued process X = {X;,t > 0} with the initial measure
u € Mp(R) can be defined by the following limit

Xi(dz) = él_r)réoXtK(dx) (30)

'We call this stochastic process X; a superprocess in terms of randam measure L

which represents a random media. Next we shall extend pg(t,-,-) onto R x R.

Namely, ' o ‘
pr(t,z,y) =0 if zoryé¢ (—K,K).

Then, since pk(t,-,-) /* p(t,-,-), we may apply the monotone convergence theorem
to obtain

BBl = [ [ty VB e BE) (31)

On the other hand, since we have {XX(-)}x *in K, the sequence of log-Laplace
functions {uk(t,:)}x associated with the sequence of those measure-valued pro-
cesses is also increasing " in K. As a consequence, by using the monotone con-
vergence theorem again, the log-Laplace function u(t,z) of the above-mentioned
limit process X;(dz) can also be obtained by

u(t,z) = Kh_I}I;o ug(t, ). (32)



Finally, an application of the monotone convergence theorem again leads to the
following :

u(t,z) = lim ug(t,z)
K
= lim K;DK(t, z,y)e(y)dy

K—oo f_

t rK
— lim / / pK(t- s’x7y)u§{(3,y)l’(dy)ds
0 J-K )

K—o00

- /—oo p(t, z,y)p(y)dy — /0 /_oo p(t — 5,2, y)u*(s, y) L(dy)ds. (33)

Remark. 1t is interesting to note that the above construction requires us only
local finiteness of the random measure L(dx).
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