A Support Problem for Superprocesses in Terms of Random Measure

Isamu DÔKU

Department of Mathematics, Saitama University

§1. Introduction

The purpose of this expository article is to investigate the support problem for a special class of superprocesses in terms of random measure. In the theory of measure-valued stochastic processes, compact support problems have been discussed for many years. For instance, in the case of typical super-Brownian motion $X = \{X_t; t \geq 0\}$, Iscoe (1988) proved that if the initial measure $X_0(dx)$ has a compact support, then for every t > 0, X_t possesses a compact support. Let \mathcal{B}_+ $\equiv \mathcal{B}_+(\mathbb{R}^n)$ be the totality of nonnegative Borel measurable functions on \mathbb{R}^n , and let $L \equiv L(dx)$ be a locally finite random measure on \mathbb{R}^n . For $\mathcal{B}_+ \ni f$, we define $\langle f, L \rangle := \int f(x)L(dx)$. Furthermore, $M_F(\mathbb{R}^n)$ denotes the totality of finite Borel measures on \mathbb{R}^n equipped with weak convergence topology. We define a differential operator P by

$$P := \frac{1}{2} \sum_{k=1}^{n} a_k(x) \frac{\partial^2}{\partial x_k^2} + \sum_{k=1}^{n} b_k(x) \frac{\partial}{\partial x_k} + c(x)(\cdot)$$
 (1)

where we assume that $a_k, b_k, c \in C_b^{\infty}(\mathbb{R}^n)$ satisfy $\exists \delta > 0 : a_j > \delta > 0$. As a matter of fact, our target process $X = (\{X_t, t \geq 0\}, P_{\mu})$ in terms of measure L is an $M_F(\mathbb{R}^n)$ -valued Markov process, and its Laplace transition functional is given by

$$\mathbb{E}_{\mu}[e^{-\langle \varphi, X_t \rangle}] = e^{-\langle u(t), \mu \rangle}.$$
 (2)

Here the function $u(t) \equiv u(t, x)$ satisfies

$$\begin{cases} \partial_t u = Pu - \dot{L}(dx)u^2 \\ u(t,x)|_{t=0+} = \varphi(x) \end{cases}$$
 (3)

where the symbol $\dot{L}(dx)$ means $\frac{L(dx)}{dx}$. For brevity's sake, in what follows we shall proceed the argument simply for d=1. Our discussion on construction of superprocesses can be extended up to multi-dimensional case. However, the argument on the compact support problem for superprocesses is restricted to one-dimensional case.

§2. Main result

For $\mu \in M_F(\mathbb{R})$, the support of μ , say, supp (μ) is defined by

$$\operatorname{supp}(\mu) := \{ A \in \mathcal{B}(\mathbb{R}) : \mu(A^c) = 0 \}. \tag{4}$$

While, the global support of superprocess $X(\cdot)$, say, Gsupp(X) is defined by

$$Gsupp(X) := \bigcup_{t>0} supp(X_t(dx)).$$
 (5)

It is a key point that we relate the support Gsupp(X) of superprocess X_t in terms of locally finite measure L = L(dx) on \mathbb{R} to a nonlinear singular elliptic boundary problem.

Let d=1, a(x)>0. We consider the associated boundary problem: for a differential operator $P=\frac{1}{2}a(x)\frac{d^2}{dx^2}+b(x)\frac{d}{dx}+c(x)$,

$$\begin{cases} Pv = v^{2}(x) \frac{L(dx)}{dx}, & a_{1} < x < a_{2} \\ v(a_{1}) = \beta_{1}, & v(a_{2}) = \beta_{2}. \end{cases}$$
 (6)

When we denote the solution of (6) by $v(x; \beta_1, \beta_2)$, since $\exists \{\beta_1^{(n)}\}_n \nearrow \infty$, $\exists \{\beta_2^{(n)}\}_n \nearrow \infty$, the problem (6) possesses a unique solution $v(x; \beta_1^{(n)}, \beta_2^{(n)})$. Note that the solution v(x) is a continuous convex function defined on the interval $I = [a_1, a_2]$. Moreover, for $\forall a_1 \le x_0 \le x \le a_2$, v(x) satisfies

$$v(x) = v(x_0) + \Phi_0(x_0)(x - x_0) + \int_{x_0}^x \Phi_1(y)v(y)dy + \int_{x_0}^x dy \int_{x_0}^y \Phi_2(z)v(z)dz + \int_{x_0}^x dy \int_{x_0}^y \frac{2v^2(z)}{a(z)}L(dz),$$
(7)

where

$$\begin{split} &\Phi_0(x) = v'(x+) + \frac{2b(x)}{a(x)}, \qquad \Phi_1(x) = \frac{2b(x)}{a(x)}, \\ &\Phi_2(x) = \frac{2b(x)a'(x) - 2b'(x)a(x) + 2a(x)c(x)}{a(x)^2}. \end{split}$$

Then we can obtain an explicit expression of the approximate solution. For $\psi \in C^+(\mathbb{R})$, supp $(\psi) \subset (-K, K)$, $\theta > 0$, when we denote by $v_K(t, x; \theta \psi)$ the solution of

$$u(t,x) = 0, \qquad x \in (-K,K)^c$$

$$u(t,x) = \theta \int_{0}^{t} \int_{-K}^{K} p_{K}(t-s,x,y)\psi(y)dyds - \int_{0}^{t} \int_{-K}^{K} p_{K}(t-s,x,y)u^{2}(s,y)L(dy)ds, \quad x \in (-K,K),$$
 (8)

then a simple fact $v_K \geq 0$ yields concurrently to $v_K \nearrow$ in $t \not v_K \nearrow$ in ψ , and furthermore it follows immediately that

$$v_K(t, x; \theta \psi) \leqslant \sup_{t, x} \int_0^t \int_{-K}^K p_K(t - s, x, y) \theta \psi(y) dy ds < \infty.$$

On the other hand, $v_K(\theta, t, x; a_1, a_2)$ denote the solution of (8) with the test function replaced by $\psi = 1_{[a_1, a_2]^c}$.

For simplicity, we assume henceforth that $\operatorname{supp}(X_0) \subset [a_1, a_2] \subset (-K, K)$, b(x) = 0, c(x) > 0. We shall represent the positive support probability of superprocess X_t by the solution of (6). The argument of Iscoe (1988) for occupation time processes $\int_0^t X_s^K ds$ or $\int_0^t X_s ds$ implies that

$$E_{X_0}^{L}[\exp\left\{-\theta \int_0^\infty X_s^K([a_1, a_2]^c) ds\right\}] = \exp\left\{-\int_{-\infty}^\infty v_K(\theta, x; a_1, a_2) X_0(dx)\right\}$$
(9)

holds. And besides we have

$$v_K(\theta, x; a_1, a_2) = \lim_{t \to \infty} (\lim_{n \to \infty} v_K(\theta \psi_n; t, x)),$$

and we can deduce that $v(x) \equiv v_K(\theta, x; a_1, a_2)$ satisfies that its second derivative v'' is a signed measure, and also that for $x \in (-K, K)$,

$$\frac{dv}{dx}(x\pm) = \int_{x_0}^{x\pm} \frac{2c(y)v(y)}{a(y)} dy + \int_{x_0}^{x\pm} \frac{2v^2(y)}{a(y)} L(dy) - 2\theta \int_{x_0}^{x\pm} 1_{[a_1,a_2]^c}(y) dy + (Constant).$$

Thus the representation of probability for the support can be derived.

$$P_{x_0}^L(\operatorname{supp}(X_t) \cap [a_1, a_2]^c = \emptyset, \quad \forall t \ge 0)$$

$$= \lim_{K \to \infty} P_{X_0}^L(\operatorname{supp}(X_t^K) \cap [a_1, a_2]^c = \emptyset, \forall t \ge 0)$$

 \iff by virtue of the right continuity of the path $X_t^K(\omega)$

$$= \lim_{K \to \infty} P_{X_0}^L \left(\int_0^\infty X_s^K([a_1, a_2]^c) ds = 0 \right)$$

 \iff by the expression of the occupation time process (9)

$$= \lim_{K \to \infty} \lim_{\theta \to \infty} \exp \left\{ -\int_{-\infty}^{\infty} v_K(\theta, x; a_1, a_2) X_0(dx) \right\}$$

$$= \lim_{n \to \infty} \exp \left\{ -\int_{a_1}^{a_2} v(x; \beta_1^{(n)}, \beta_2^{(n)}) X_0(dx) \right\}$$
(10)

By virtue of the above-mentioned facts we can get the following principal result, the theorem for compact support.

Theorem 1. (Main Result) Let $\mu \in M_F(\mathbb{R})$ and $\operatorname{supp}(\mu) \subset [a_1, a_2]$. Suppose that d = 1, a(x) > 0, b(x) = 0, c(x) > 0. For $\forall \varepsilon > 0$ ($\varepsilon << 1$: sufficiently small), there exist proper real numbers $\exists \underline{x} = \underline{x}(\varepsilon) < a_1, \ \exists \overline{x} = \overline{x}(\varepsilon) > a_2 \text{ such that } v \text{ is a nonnegative solution of (7) on the interval <math>(\underline{x}, \overline{x})$, i.e. $v(x) \geq 0$ for $x \in (\underline{x}, \overline{x})$. If v satisfies the conditions

$$\sup_{a_1 \leqslant x \leqslant a_2} v(x) \leqslant \varepsilon, \quad \lim_{x \to \underline{x}} v(x) = \lim_{x \to \bar{x}} v(x) = \infty, \tag{11}$$

then the superprocess $X = \{X_t, t \geq 0\}$ has the compact support.

§3. Formulation of superprocess by admissible functional

Let us denote by $X = \{X_t, t \geq 0\}$ the measure-valued branching process corresponding to a locally finite random measure L, and P_{μ}^{L} denotes the probability law of the measure-valued process X. Then a measure-valued process (X_t, P_{μ}^{L}) in terms of random measure L is given by the following Laplace transition functional.

$$E^{L}_{\mu}[e^{-\langle \varphi, X_{t} \rangle}] = e^{-\langle u(t), \mu \rangle} \quad \text{with} \quad X_{0} = \mu \in M_{F}(\mathbb{R}).$$
 (12)

Here the function u(t,x) satisfies the following Cauchy problem.

$$\begin{cases} \partial_t u = Pu - \frac{L(dx)}{dx} u^2, \\ u(0, x) = \varphi \in C_b^+(\mathbb{R}). \end{cases}$$
 (13)

Now, suggested by a formulation by Dawson-Fleischmann (1995), we shall consider the above initial value problem as an integral equation. As a matter of fact, when we write the fundamental solution to the aforementioned Cauchy problem by p, then we have

$$u(t,x) = \int p(t,x,y)\varphi(y)dy - \int_0^t \int p(t-s,x,y)u^2(s,y)L(dy)ds.$$
 (14)

This means that we consider the mild solution to the above Cauchy problem. We shall assume henceforth:

[Assumption] For any c > 0,

$$\int_{-\infty}^{\infty} e^{-cx^2} L(dx) < \infty, \quad \text{a.s.}$$
 (15)

Recall a method to apply admissible Brownian functional in the studies on superprocesses by E.B. Dynkin (1994). Roughly speaking, it is nothing but a special case that the branching rate term γ in the super-Brownian motion or the Dawson-Watanabe superprocess would be changed into a general additive functional which does not always possess its density. For a finite measure \tilde{L} on \mathbb{R} and a local time $\ell_{t,x}(\omega)$ of Brownian motion B_s , we define the additive functional $K_t^{[\tilde{L}]}(\omega)$ by

$$K_t^{[\tilde{L}]}(\omega) := \int \ell_{t,x}(\omega) \tilde{L}(dx). \tag{16}$$

We shall impose the following admissible conditions.

[Dynkin's Admissibility] For a Brownian motion $(B_t, \Pi_{0,x})$,

- (i) $\Pi_{r,x}[K^{[\tilde{L}]}(r,t)] < \infty$, for $\forall r < t, x$
- (ii) $\Pi_{r,x}[K^{[\tilde{L}]}(r,t)] \to 0$ uniformly in $x (r,t \to s) \forall s$

Theorem 2. (Dynkin, 1994) If the transition function $\mathcal{P}(r,\mu;t,C) = P_{r,\mu}(X_t \in C)$ satisfied the following two conditions, then the measure-valued Markov process named (ξ, K, ψ) -superprocess with parameters $X = (X_t, P_{r,\mu})$ can be determined.

$$\int \mathcal{P}(r,\mu;t,d\nu)e^{-\langle f,\nu\rangle} = \exp\{-\langle v(r),\mu\rangle\},\tag{17}$$

$$v(r,x) + \Pi_{r,x} \int_{r}^{t} \psi(s,v(s))(\xi_{s}) dK_{s} = \Pi_{r,x} f(\xi_{t}).$$
 (18)

§4. Construction of sequence of approximate measure-valued processes

In this section we shall construct a basic process as a limit of increasing sequence of finite measure $M_F(\mathbb{R})$ -valued processes realized on the common basic probability space. This provides us with a proto-type in the construction of our target superprocess. For each $K \in \mathbb{N}$, we put

$$E_K := \bigcup_{n=1}^K \{n\} \times (-n, n), \tag{19}$$

and we denote by $\tilde{X}_t^K \equiv \tilde{X}_t^K(dx)$ an $M_F(E_K)$ -valued process. We shall first of all construct this measure-valued baisc process \tilde{X}_t^K in what follows. For $x \in (-n, n)$, a Markov process w_K on E_K starting at a point (n, x) can be defined as

$$w_K(t) := (\{n\}, w(t)),$$
 for $1 \le t \le \tau_n$
 $w_K(\tau_n) := (\{n+1\}, w(\tau_n)),$ $\tau_n = \inf\{t > 0 : w(t) = \pm n\}$

where w is a P-diffusion starting at a point x. Notice that the stochastic process w_K dies out finally at time τ_K . Next we consider a randam measure L_K . In fact, we define

$$L_K(\lbrace n\rbrace \times (a,b)) := L((-n,n) \cap (a,b)), \quad \text{for} \quad n \leqslant K.$$

On this account, we can define the admissible additive functional $\mathcal{K}_t^{[L_K]}(w_K)$ by making use of this random measure L_K , i.e.

$$\mathcal{K}_t^{[L_K]}(w_K) := \int \tilde{\ell}_{t,y}(w_K) L_K(dy) \tag{20}$$

where $\tilde{\ell}_{t,x}$ is a positive random variable given by

$$\tilde{\ell}_{t,x}(w) := \lim_{\varepsilon \downarrow 0} \frac{1}{2\varepsilon} \int_0^t 1_{(a-\varepsilon, a+\varepsilon)}(w(s)) ds. \tag{21}$$

Then an application of the previous Dynkin's existence theorem (Theorem 2) with this admissible additive functional $\mathcal{K}_t^{[L_K]}$ gives us a superprocess, which we denote by $\tilde{X}_t^K = \tilde{X}_t^K(dx)$. That is to say,

$$E_{r,x}^{(L_K)} e^{-\langle \varphi, \tilde{X}_t^K \rangle} = \exp\{-\langle v(r), \mu \rangle\}, \tag{22}$$

$$v(r,x) + \tilde{\Pi}_{r,x}^{P} \int_{r}^{t} v(s, w_{K}(s))^{2} d\mathcal{K}_{t}^{[L_{K}]} = \tilde{\Pi}_{r,x}^{P} \varphi(w_{K}(t)). \tag{23}$$

Next we shall construct a new approximate sequence of branching measure-valued processes by employing the above-mentioned process, and shall give its characterization. Before constructing the superprocess in question, we consider first the initial measure as its initial value. We choose a finite measure $\mu \in M_F(\mathbb{R})$ as a candidate of the initial measure for our measure-valued process \tilde{X}_t^K . For $n \geq 1$, for each subset $B \subset \mathbb{R}$ we define

$$\tilde{X}_0^K(\{n\} \times B) := \mu(B \cap \{[n-1, n) \cup (-n, -n+1]\}). \tag{24}$$

Then, if it is the case of the number $M \in \mathbb{N}$ satisfying M > K, the law of the process \tilde{X}_t^M restricted to a set $E_K = \bigcup_{n=1}^K \{n\} \times (-n,n)$ is equivalent to the law of the process \tilde{X}_t^K . In other words,

$$\mathcal{L}(\tilde{X}_{t}^{M} \mid E_{K}) = \mathcal{L}(\tilde{X}_{t}^{K}), \quad \text{for } \forall M > K.$$

Let us now denote by $P_{X_0}^{L,K}$ the probability law of the measure-valued process \tilde{X}^K , and we put $E_{\infty} := \bigcup_{n=1}^{\infty} \{n\} \times (-n,n)$ and \tilde{X}^{∞} denotes an $M(E_{\infty})$ -valued process.

Then note that since the law $\{P_{X_0}^{L,K}\}_K$ of \tilde{X}^K becomes a consistent family, its projective limit induces the law of $M(E_{\infty})$ -valued process \tilde{X}^{∞} . Hence, if we define a new $M_F((-K,K))$ -valued process X_t^K as

$$X_t^K(B) := \sum_{n=1}^K \tilde{X}_t^{\infty}(\{n\} \times B),$$
 (25)

then an increasing sequence of stochastic processes $\{X_t^K(B)\}_K \nearrow$ is obtained.

Proposition 3. (Characterization) Let $u_K(t,x)$ be a log-Laplace function of X_t^K . Then X_t^K satisfies the following

$$E_{X_0^K}[e^{-\langle \varphi, X_t^K \rangle}] = e^{-\langle u_K(t), \mu \rangle}, \quad \text{with} \quad X_0^K(dx) = \mu(dx). \tag{26}$$

Moreover, the function $u_K(t,x)$ satisfies uniquely the following integral equation: for $\varphi \in C_0(\mathbb{R})$,

$$u_K(t,x) = \int_{-K}^{K} p_K(t,x,y)\varphi(y)dy$$
$$-\int_{0}^{t} \int_{-K}^{K} p_K(t-s,x,y)u_K^2(s,y)L(dy)ds, \tag{27}$$

$$E[X_t^K(B)] = \int_{-K}^K \int_B p_K(t, x, y) \mu(dx) dy,$$
 (28)

where $p_K(t, x, y)$ is the fundamental solution of the Dirichlet boundary value problem:

$$\partial_t u - Pu = 0, \qquad u|_{\partial(-K,K)} = 0 \tag{29}$$

§5. Existence of superprocess in terms of finite measure

Therefore $M_F(\mathbb{R})$ -valued process $X = \{X_t, t \geq 0\}$ with the initial measure $\mu \in M_F(\mathbb{R})$ can be defined by the following limit

$$X_t(dx) := \lim_{K \to \infty} X_t^K(dx). \tag{30}$$

We call this stochastic process X_t a superprocess in terms of randam measure L which represents a random media. Next we shall extend $p_K(t,\cdot,\cdot)$ onto $\mathbb{R}\times\mathbb{R}$. Namely,

$$p_K(t, x, y) = 0$$
 if x or $y \notin (-K, K)$.

Then, since $p_K(t,\cdot,\cdot) \nearrow p(t,\cdot,\cdot)$, we may apply the monotone convergence theorem to obtain

$$E[X_t(B)] = \int_{-\infty}^{\infty} \int_{B} p(t, x, y) \mu(dx) dy \qquad \forall B \in \mathcal{B}(\mathbb{R}).$$
 (31)

On the other hand, since we have $\{X_t^K(\cdot)\}_K \nearrow$ in K, the sequence of log-Laplace functions $\{u_K(t,\cdot)\}_K$ associated with the sequence of those measure-valued processes is also increasing \nearrow in K. As a consequence, by using the monotone convergence theorem again, the log-Laplace function u(t,x) of the above-mentioned limit process $X_t(dx)$ can also be obtained by

$$u(t,x) = \lim_{K \to \infty} u_K(t,x). \tag{32}$$

Finally, an application of the monotone convergence theorem again leads to the following:

$$u(t,x) = \lim_{K \to \infty} u_K(t,x)$$

$$= \lim_{K \to \infty} \int_{-K}^{K} p_K(t,x,y)\varphi(y)dy$$

$$- \lim_{K \to \infty} \int_{0}^{t} \int_{-K}^{K} p_K(t-s,x,y)u_K^2(s,y)L(dy)ds$$

$$= \int_{-\infty}^{\infty} p(t,x,y)\varphi(y)dy - \int_{0}^{t} \int_{-\infty}^{\infty} p(t-s,x,y)u^2(s,y)L(dy)ds.$$
(33)

Remark. It is interesting to note that the above construction requires us only local finiteness of the random measure L(dx).

Acknowledgements. This work is supported in part by Japan MEXT Grant-in-Aids SR(C) 24540114 and also by ISM Coop.Res. Program: 2016-ISM-CRP-5011.

References.

[1] Dawson, D. and Fleischmann, K.: Super-Brownian motions in higher dimensions with absolutely continuous measure states. J. Theoret. Probab. 8 (1995), 179–206.

2] Dôku, I.: A certain class of immigration superprocesses and its limit theorem. Adv. Appl. Stat. 6 (2006), 145–205.

[3] Dôku, I.: A limit theorem of superprocesses with non-vanishing deterministic immigration. Sci. Math. Japn. **64** (2006), 563–579.

[4] Dôku, I.: A limit theorem of homogeneous superprocesses with spatially dependent parameters. Far East J. Math. Sci. **38** (2010), 1–38.

[5] Dôku, I.: Tumour immunoreaction and environment-dependent models. Trans. Japn. Soc. Indu. Appl. Math. **26** (2016), 213–252.

[6] Dynkin, E. B.: An Introduction to Branching Measure-Valued Processes. Amer. Math. Soc., Providence, RI, 1994.

[7] Iscoe, I.: On the supports of measure-valued critical branching Brownian motion. Ann. Probab. 16 (1988), 200–221.

Department of Mathematics

Faculty of Education

Saitama University

338-8570 Saitama

JAPAN

E-mail: idoku@mail.saitama-u.ac.jp 埼玉大学·教育学部数学教室 道工 勇