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ABSTRACT  
As Learners move from one learning environment to another, there 
is a key necessity of taking with them a proof of previous learning 
achievements or experiences. In most cases, this is either expressed 
in terms of receipt of scores or a certificate of completion. While 
this may be sufficient for enrollment and other administrative 
decisions, it poses some limitations to the depth of learning 
analytics and consequently a slow onboarding process. Also, with 
different institutions having their learning data isolated from each 
other, it becomes more difficult to easily access a learner’s learning 
history for all learning activities on other systems. In this paper, we 
propose a blockchain based approach for connecting learning data 
across different Learning Management Systems (LMS), Learning 
Record Stores (LRS), institutions and organizations. Leveraging on 
unique properties of blockchain technology, we also propose 
solutions to ensuring learning data consistency, availability, 
immutability, security, privacy and access control. 
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1 INTRODUCTION 
Learning data reflect the activities performed by learners while 
learning. From information on a learner’s behavior to performance 
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in quizzes and assignments, these data form a reference point for 
evaluating and improving engagement and performance towards 
realization of learning goals. With many learning organizations and 
institutions, the multiplicity of different implementations of 
learning platforms is inevitable. As such, it becomes necessary to 
ensure a standard for learning data. Common standards such as Tin 
Can Experience API [1], IMS Caliper Discovery API [2] have been 
developed to help reduce the burden of system interoperability. It 
is on the awareness of these standards that learning data silos 
otherwise known as Learning Record Stores (LRS) are maintained. 
These record stores form the backbone for learning analytics. 

1.1 Limitations of Learning Analytics Platforms 
Despite the availability of reference standards for maintaining 
learning data on an LRS, it is still difficult to achieve 
interoperability without some limitations. These problems include:  

•  Connecting learning histories of a learner on different learning 
platforms on a single immutable trail. 

•  Ensuring privacy of learners’ records with ease of access control. 

•  Integrating research and production systems for advancing 
learning.  

1.1.1 Connecting Learning Histories. While learners typically 
move from one provider’s learning platform to another, their 
learning records are stored distinctly and in a disconnected fashion 
in separate LRSs. Consequently, each system has to pay the cost of 
growing learner’s data from scratch even for very simple cases. 
While this might not be a repeated effort for first time learners, it is 
almost impossible to tell if they are truly first timers or not. This 
also causes a “cold start” problem in training recommender systems 
due to unavailability of students’ previous learning actions [16]. 
Proposed systems should allow learners to take their learning data 
with them in the same way they can take their certificates easily 
from one institution to another. 

1.1.2    Privacy, Security and Access Control. This is another 
challenge faced when sharing learning records with third parties. 
Although, learning analytics helps in improving the performance of 
learners [3] [4], Alan and Kyle [5] in one wide and four narrow 
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questions about conditions for learner’s privacy, argue that 
whatever the gains of learning analytics are, they must be 
commensurate to respecting learner’s privacy and associated rights. 
The psychological trauma that could result from a single point of 
privacy compromise can be quite devastating as it is possible to 
reveal more confidential information from a single point [6]. 
Proposed systems should ensure prioritization of learner’s privacy 
and learners should be in control of their learning data. 

1.1.3    Integrating Research and Production Systems. Availability 
of learning data for research fosters innovation. In cases where 
learning data are collected from production and/or research systems, 
learning analytics researchers are often faced with the heinous task 
of anonymizing personally identifying information in order to 
protect privacy of stakeholders and consequently impacting 
negatively on personalized results [7]. As real-time learning data 
becomes more desirable for learning analytics research [7], it is 
crucial to develop new ideas on how to carry out such seamless 
integration and interoperability of both research and production 
systems while maintaining privacy of stakeholders involved. 

1.2 Blockchain Features as a Solution 
This work addresses previously identified limitations of current 
systems in enhancing learning analytics. We propose solutions to 
mobility of learner’s learning records, distributed consensus in 
maintaining learning history, privacy and access control 
mechanisms with prioritized learner’s interest and interoperability 
of different systems (production and research). A blockchain is a 
distributed database of records or public ledger of all transactions 
or digital events that have been executed and shared among 
participants [8]. Below, we identify some of the features of 
blockchain technology that are key to our proposed solution. 

1.3.1    Distributed Consensus and Immutability Features. With its 
first implementation in Bitcoin [9], blockchain technology is based 
on a distributed consensus where nodes on the network have access 
to and keep track of all events that occur on the network. Ledger 
entries are stored as timestamped, chained immutable blocks. To 
ensure security and consistency of ledger entries, some nodes on 
the network offer to add new blocks to the ledger by competing 
among themselves to solve a computationally intensive puzzle 
known as the Proof of Work. These nodes are called miners and are 
rewarded for being the first to provide a correct solution to the 
Proof of Work. The computing power required for solving this 
puzzle makes it more difficult to rewrite blocks as such rewrite by 
dishonest nodes would require resolving associated Proof of Work 
and acceptance of such solution by honest nodes. These features of 
blockchain technology provide answers to connecting different 
learning records from different learning providers with high data 
consistency. 

1.3.2    Smart Contract-based Privacy, Security and Access Control. 
The blockchain technology has a smart contract feature that 
facilitates enforcing the terms of agreement between two parties in 
a contract; in this case, between learners and learning providers or 
between learning providers. We propose policies that are 

deployable on the blockchain to control data access and ensure 
privacy of learner’s records and mutual interests of learning 
providers.  

1.3.3    Single Ledger, Multiple Participants. We leverage on the 
distributed consensus and single ledger-multiple-participants 
features of the blockchain technology to enhance interoperability 
of both research and production systems. We propose Learning 
Blockchain APIs and Datastore Wrappers for ensuring seamless 
and secure communications between the blockchain and LRSs of 
learning providers. We suggest potential candidates for enforcing 
non-intrusive access request and provision for foreign systems. 

1.3 Related Work 
We are aware of only one other effort in the application of 
blockchain technology to education; Sony [13]. Apart from a press 
release [13], no specific methods or summary of technical approach 
has been published yet. To the best of our knowledge, we are the 
first to provide a system design for a blockchain based network of 
learning records for learning analytics. 
In fields other than education and learning analytics, there is 
existing research on applying blockchain technology to non-
financial products, such as: medical information [10] and domain 
name registry [11]. Zyskind et al’s work on using blockchain to 
protect personal data provides insight on achieving privacy 
preservation on a decentralized network with user control and 
auditing [12]. While these ideas are fundamental to our discovery 
of our novel approach, there are many aspects of learning systems 
that present unique problems that need to be solved, such as: 
connecting distributed or disconnected learning data, smart contract 
based privacy and access control frameworks, and interoperability 
of different learning systems for both research and production 
environments. This paper proposes an innovative blockchain based 
system with important modifications to address the specific needs 
of education and learning systems. 

2 PROPOSED BLOCKCHAIN FOR 
LEARNING ANALYTICS 

2.1 Overview 
Our design will specify processes for creating, adding and 
retrieving learning data on the blockchain. In figure 1, we propose 
a paradigm shift from current implementations of learning 
management systems and platforms to the blockchain technology. 
Block content represent pointers to learning data with ownership 
and access policies. Nodes on the peer-to-peer network represent 
learning providers and learners. Learning activities performed by 
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learners on the learning platforms of learning providers on the 
network are logged on the blockchain as string representation of 
queries that can be executed on an external database of learning 
providers to retrieve such activities. To ensure data consistency and 
immutability, at block creation time, we execute accompanying 
queries on the external database and include a cryptographic hash 
of obtained result as part of the block information. Future response 
from the execution of this query can be compared to the stored hash 
and if different, the response is invalid and rejected. We propose 
herein a secure box for executing these queries against providers’ 
databases with reference to the blockchain network in order to 
maintain established permissions.  
In the next sections, we will discuss further the design of our 
proposed system and the underlying principles. 

2.2 Ethereum Blockchain 
Technically, a blockchain can be viewed as consisting of state 
transition machines. In this case, a state transition machine’s state 
is identified by ownership status of transaction outcomes (as in 
bitcoin) and a state transition function that specify conditions for 
valid state transition. To create a new state, an existing state with 
valid transaction is passed as input to the state transition function 
which outputs a new state on the blockchain. Thus, the blocks 
logically represent all the valid state transitions on the network. 
One may think that with such an easy sequence of steps, states 
could be easily generated uncontrollably or even modified. 
However, this is not true because of the existence of the Proof of 
Work. The Proof of Work required before new states are created 
makes it computationally difficult to modify states and controls the 
rate at which new states are generated. For example, if the Proof of 
Work requires that the double-SHA256 hash [15] of every state, 
treated as a 256-bit number, must be less than 2180, it will require a 
successful node on the network to make an average of 
approximately 276 tries before a valid state is found. When a valid 
state is found, the information is broadcast to all nodes on the 
network to verify correctness of the solution before the new state is 
accepted and the successful node is rewarded. Subsequently, nodes 
can query the state machines at any time to obtain a correct and 
valid state already verified by everyone else. 
Thus, it is possible to express real-world processes as states and 
state transition functions. This code representation of real-world 
processes on a blockchain loosely defines smart contracts. 
Although present in bitcoin blockchain, Ethereum (eth) is the first 
to implement a blockchain with a Turing-complete smart contract 
programming feature [14]. Being Turing-complete is important 
because it enables writing programs (especially with loop 
directives) in fewer instructions with efficient use of space. The 
concept of smart contract lies at the heart of our proposed design as 
it makes it feasible to enforce required policies and processes by 
expressing them as executable codes on the blockchain. 

 
Figure 1. Current learning systems design vs proposed design 
of learning blockchain 

2.3 System Access and Privacy Control 
We propose contracts that contain learning data access permissions, 
ownership and a mapping of the two. The state transition functions 
of these contracts can be modified to reflect the conditions that must 
be met before data read or write access is granted. In figure 2, we 
show the structure of the three main smart contracts namely; 
Registrar – Learning Provider Contract (RLPC), Learner – 
Learning Provider Contract (LLPC) and Index Contract (IC). 
2.3.1    Registrar – Learning Provider Contract (RLPC). This 
contract controls how organizations and institutions become 
authorized learning providers on the learning blockchain. As these 
requirements are administratively decided, we propose that typical 
implementations should consider existing structures for 
establishing communication and accessing information in 
institutions and organizations. An example could be the use of 
special identifiers (ID-1, ID-2, and ID-3 in figure 2) and/or tokens 
to verify that a node requesting access to the network is actually a 
known party to the other nodes. This and other conditions can be 
coded into the RLPC. 
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2.3.2    Learner – Learning Provider Contract (LLPC). It represents 
a proof of existence of a learner’s learning data on a learning 
provider’s platform.  

 
 

RLPC 

ID-1 Eth address IC 

ID-2 Eth address IC 

ID-3 Eth address IC 

  
 
 

 
It contains information about the owning learner, address of 
learning provider’s LRS or database with required authentication 
parameters, queries that can be executed on learning provider’s 
LRS to retrieve learning data, a hash of expected learning data for 
ensuring data has not been tampered with and a list of access 
permissions. LLP Contract empower learners with the ability of 
controlling who can view their learning data by maintaining a list 
of access permissions granted to other learning providers.  
2.3.3    Index Contract (IC). An Index Contract contains all LLPCs 
established between learners and learning providers and by 
extension, the trail of all learning activities on the blockchain. This 
is necessary to provide a mechanism for fast lookup of entries and 
access permissions on the blockchain. We suggest a hash-table 
based implementation for the list mapping learners to their LLPCs 
and another one mapping learning providers to LLPCs they have 
with learners and with or learning providers that learners have 
granted access permission.  
For example, in figure 2, we show two entries of the Index Contract. 
ID-2’s entry refers to a mapping for the learner to LLPCs while ID-
1 and ID-3 entries represent a learning provider to LLPCs mapping. 
As with all other smart contracts, the IC is broadcast on the network. 
This makes it possible for learners and learning providers to leave 
and return to the network without losing their data. In a case where 
a learning provider wants to request access to learner’s learning 
data on another provider’s platform, a disabled IC is issued and 
only becomes active when the learner approves the request. It is 
important to also note that even though a node does not have 
permission to a LLPC which means no access to any learner’s 

learning data, it still maintains a reference (a stewardship 
requirement) to the LLPCs issued and/or accessible by other 
participants on the network. 

2.4 System Nodes and Utilities 
In our design, we require learning providers to join the blockchain 
through a node managed by them. It is not required for learners to 
maintain a node, they can easily join the learning blockchain by 
registering on any learning provider of their choice. The learning 
provider in turn creates an account on the blockchain for the learner 
and issue them a public-private key pair for tracking their content 
on the blockchain from any learning provider’s platform that is on 
the blockchain. We propose additional software components for 
managing data on the blockchain. This include Learning 
Blockchain APIs (LB API), a Secure Box with LRS Wrappers and 
customized Ethereum Client. 
2.4.1    Learning Blockchain APIs (LB APIs). With the 
understanding that interacting with the blockchain might be a tough 
hurdle especially for programmers that are not familiar with 
blockchain technology, we propose development of APIs for 
communicating with the learning blockchain. This should abstract 
processes such as creating transactions, monitoring its success or 
failure, creating and accessing smart contracts and triggering 
mining activities. However, our design assumes that nodes on the 
network have the required resources (gas measured in ethers; a unit 
representing the worth of computing time) for processing 
transactions. Future works will provide incentive mechanisms for 
mining. 
2.4.2    Secure Box with LRS Wrappers. We propose a tool for 
keeping all interactions between the learning blockchain and LRS 
of different learning providers secure. We establish all of such 
communications within a Secure Box that is bundled with all nodes. 
Within this Secure Box, Database Wrappers are provided to take 
care of the differences that exist between LRS of learning providers. 
We also keep a connection to the blockchain to verify that all query 
execution request made through the Secure Box are coming from 
authorized Learners or Learning Providers specified on the LLPC 
from which the query was obtained. 
2.4.3    Ethereum Client. This is a customized version of Ethereum 
blockchain network. It has full features required of a blockchain 
network with peer-to-peer networking, contracts, transaction 
handling and mining capabilities. In this work and future works, we 
build on Go Ethereum. Our proposed modifications include adding 
services to actively monitor contracts creation and index them 
appropriately on the Index Contract. The client should also be 
aware of unique identifier mappings to eth addresses as contained 
in RLPC. 
In figure 3, we show sequence of activities that occur on the 
blockchain and how they are handled. At S0, the blockchain 
contains only the boot node, RLPC and a Secure Box. KU node 
then attempts to join the network which prompts verification with 
established rules in RLPC. Upon successful verification, KU is 
added as a valid participant and an IC is generated. Learner A (L-
A) visits KU’s platform and since it is its first visit to any node on 
the network, a new account is created for L-A at S2. Subsequent 
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Figure 2. Proposed smart contracts on the learning blockchain. 
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learning activities leading to generation of learning data are logged 
on the blockchain as LLPC-An.  

Figure 3. Sample process of registering and accessing 
blockchain information. 
 
At Sn+1, edX attempts to read the learning data (LLPC-A1) of L-A, 
this is outrightly rejected as there is no proof of edX being aware 
of the existence of L-A. Later on, L-A decides to visit edX platform 
and provides their blockchain information to edX. Now, edX 
knows of the existence of L-A. This means that further request to 
access L-A’s learning data will be forwarded to L-A for approval. 
If approved, the permission is written on the LLPC and access to 
the learning data is granted. The queries stored on the LLPCs are 
then executed by the Secure Box on the LRS or DB. 

3    CONCLUSION AND FUTURE WORK 
We have shown how the blockchain technology can be used to 
establish connections between decentralized learning systems and 
maintaining a continuous log of learning activities performed by 
learners. Leveraging on smart contracts, we have also proposed 
how privacy and security policies can be implemented on the 
platform. In future works, we will build on this and provide 
implementations. We will also explore possibilities of storing 
actual learning data on the blockchain with a good compromise on 
storage requirements. 
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