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Forensic age prediction for saliva 
samples using methylation-
sensitive high resolution melting: 
exploratory application for 
cigarette butts
Yuya Hamano1,2, Sho Manabe1, Chie Morimoto1, Shuntaro Fujimoto1 & Keiji Tamaki1

There is high demand for forensic age prediction in actual crime investigations. In this study, a novel 
age prediction model for saliva samples using methylation-sensitive high resolution melting (MS-
HRM) was developed. The methylation profiles of ELOVL2 and EDARADD showed high correlations 
with age and were used to predict age with support vector regression. ELOVL2 was first reported as 
an age predictive marker for saliva samples. The prediction model showed high accuracy with a mean 
absolute deviation (MAD) from chronological age of 5.96 years among 197 training samples. The model 
was further validated with an additional 50 test samples (MAD = 6.25). In addition, the age prediction 
model was applied to saliva extracted from seven cigarette butts, as in an actual crime scene. The MAD 
(7.65 years) for these samples was slightly higher than that of intact saliva samples. A smoking habit 
or the ingredients of cigarettes themselves did not significantly affect the prediction model and could 
be ignored. MS-HRM provides a quick (2 hours) and cost-effective (95% decreased compared to that of 
DNA chips) method of analysis. Thus, this study may provide a novel strategy for predicting the age of a 
person of interest in actual crime scene investigations.

In forensic science, predicting the age of a victim or a suspect can trigger the quick solution of a crime. 
Nonetheless, forensic scientists have had few options for estimating the age of the person of interest in actual 
practice, such as examining bones morphologically1 or analysing the amino acid racemization of teeth2. These 
techniques are not versatile methods, as they limit sample sources. In addition, biological fluids, which are more 
commonly found at crime scenes, cannot be analysed with these morphological techniques. For this reason, 
forensic scientists have begun to apply knowledge of genetics to forensic cases, e.g. signal joint T-cell receptor 
excision circles (sjTREC)3, telomere length4, and somatic gene arrangements5. However, these genetic biomarkers 
exhibit relatively low accuracy or are severely influenced by the degradation of DNA collected from evidentiary 
materials found in actual crime scenes.

Epigenetics have recently come to play an important role in forensic age prediction. Cytosine methylation 
at CpG sites has been well investigated as a novel epigenetic marker of chronological age6–17. Hannum et al. 
built a predictive model for aging blood with 71 methylation markers selected from the Illumina Infinium 
HumanMethylation450 BeadChip, resulting in an error of 4.89 years6. Huang et al. also developed a predictive 
model for bloodstains using 5 CpG sites analysed by pyrosequencer with a mean absolute deviation (MAD) of 
7.98 years7. Although these methods are novel, none are routinely applied for actual criminal investigations cur-
rently, likely because of their high cost and time requirements.

Traditional polymerase chain reaction (PCR), which is a universal and cost- and time-effective method, may 
be the key technique for the realization of forensic age prediction in actual crime investigations owing to its 
many advantages18. Recently, Mawlood et al. developed a useful age prediction method based on a qPCR sys-
temme19. We have newly developed a novel age prediction model that involves the use of methylation-sensitive 
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high resolution melting (MS-HRM) for blood samples20. Antunes et al. also described the application poten-
tial of MS-HRM for forensic use21. MS-HRM is a method that measures methylation profiles easily, quickly, 
and cost-effectively, where the PCR amplification of bisulphite-treated DNA is followed by melting analysis22–24. 
In bisulphite-treated DNA analysis, unmethylated cytosines are converted into uracils by bisulphite conversion 
while methylated cytosines are kept intact. Therefore, the methylation status of each cytosine is directly converted 
into the sequence, where it alters the thermodynamic stability of double-stranded DNA. Thus, a novel age predic-
tion model that is suitable for actual crime investigations using MS-HRM has been developed.

However, in most of the studies performed previously6–8, 10–17, 19, 20, the research object has been limited 
to blood samples. DNA methylation profiles can differ depending on the cell type from which the DNA is 
derived25–27. Therefore, an age prediction model established from blood DNA may not be applicable for DNA 
derived from other biological fluids. To the best of our knowledge, only Bocklandt et al.28 and Horvath9 have 
investigated saliva samples, which are also commonly found at crime scenes. During the writing of this man-
uscript, Hong et al. also developed an age estimation model for saliva samples29. However, all of these methods 
suffer from the abovementioned difficulties in practical use.

Here, we report a practical age prediction method that involves analysing the methylation status of ELOVL2 
and EDARADD via MS-HRM of saliva samples. ELOVL2 is newly reported to correlate with chronological age in 
saliva samples. In this study, 197 saliva samples were analysed to develop an age prediction model, and the model 
was further validated using 50 additional samples. The cost and time required for analysis were dramatically 
reduced with this method. In addition, saliva DNA was extracted from cigarette butts, and then age prediction 
was performed as in an actual crime scene for the first time ever. This HRM-based method has great potential 
for predicting age and is quite useful, especially when DNA data for the person of interest are not recorded in 
criminal databases.

Results
Identification of optimal age markers for saliva samples with MS-HRM. In previous work, we 
developed an age prediction model for blood samples by analysing methylation profiles of the promoter regions 
of ELOVL2 and FHL220. The degrees of methylation for both these markers increased with chronological age in 
blood samples. Therefore, we first investigated whether these markers could be applied for the analysis of saliva 
samples with MS-HRM. The methylation profile of ELOVL2 clearly correlated with the age of the saliva samples, 
while that of FHL2 exhibited no correlation with chronological age in the preliminary test (Supplementary Fig. 1).

To identify another methylation marker for MS-HRM, the top five markers positively correlated with 
age (KCNG3, NPTX2, GREM, VGF, and PDE4C) and the top five negatively correlated with age (ASPA, 
Bles03, EDARADD, TCEA2, and ELN) were selected from the study of Bocklandt et al., in which Illumina 
HumanMethylation27 microarrays were used to analyse saliva samples28. Bisulphite PCR primers were newly 
designed for these 10 markers for HRM, though only EDARADD showed site-specific bisulphite PCR amplifi-
cation due to the sequence simplicity of bisulphite-modified DNA (i.e. most cytosines are converted to uracils, 
which act as thymines in the PCR amplification process). Thus, ELOVL2 and EDARADD were selected as age 
prediction candidate markers for use with MS-HRM of saliva samples. The sequences of the PCR primers used in 
this study are shown in Table 1.

PCR bias often occurs when amplifying bisulphite-treated DNA30, 31, since unmethylated DNA tends to be 
amplified more efficiently than methylated DNA. To analyse methylation profiles accurately, therefore, an inter-
polation line or curve must be obtained before measuring unknown methylated samples with MS-HRM. Thus, a 
standard line and curve were first established (Fig. 1). The promoter region of ELOVL2 showed some PCR bias, as 
expected20. In contrast, EDARADD showed no PCR bias; thus, the standard line was linear. The maximum abso-
lute relative signal difference values (Df values) obtained following HRM analysis of each sample were plotted, 
and a non-linear regression model was developed for ELOVL2, as depicted in Eq. (1):
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where M1 is the methylation score of ELOVL2 and Dfmax is the Df value of a 100% methylated control sample. For 
EDARADD, a simple linear regression model was developed, as depicted in eq. (2):

= . + . ×M Df1 765 0 737 (2)2

where M2 is the methylation score of EDARADD. Thereafter, the methylation scores of ELOVL2 and EDARADD 
were calculated by substituting the Df value into the corresponding regression model.

Target marker Sequence

ELOVL2
Fw CGATTTGTAGGTTTAGT

Rv ACTACCAATCTAAACAA

EDARADD
Fw AGAAGGTTTGATTTTGGTTAGAT

Rv CCTCTCCCCATCTATTTAAT

Table 1. Sequences of PCR primers for ELOVL2 and EDARADD.
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Developing an age prediction model. Next, we analysed the methylation scores of ELOVL2 and 
EDARADD in 197 saliva samples with MS-HRM (Fig. 2). Detailed information for the samples is shown in 
Table 2. ELOVL2 was positively correlated with the logarithm of chronological age (Pearson’s correlation coef-
ficient r = 0.868), while EDARADD showed a negative correlation (r = −0.519). The relationship between the 

Figure 1. MS-HRM analysis of DNA methylation. (a) Schematic representation of MS-HRM. Normalized 
melting curve. Control DNA samples were mixed and adjusted to 0%, 25%, 50%, 65%, 80%, 90%, 95%, and 
100% methylated. (b) Normalized difference plot of control DNA samples. Melting data of 0% methylated 
standard sample was set to baseline (grey). (c) Standard curve of ELOVL2. Error bars represent standard errors. 
(d) Standard line of EDARADD. Error bars represent standard errors.

Figure 2. Relationship between age and methylation score for (a) ELOVL2 and (b) EDARADD.

Training set Test set

Male Female Male Female

under 20 5 5 2 3

20–39 51 49 10 16

40–59 45 36 13 6

over 60 5 1

Table 2. Age and gender information for 197 training and 50 test samples used in this study.
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methylation score and the chronological age fit the logarithmic curve well for ELOVL2. The methylation score of 
EDARADD showed a linear decrease with chronological age. No statistically significant difference was observed 
between male and female samples for either of the two markers when performing analysis of co-variance 
(ANCOVA) (Supplementary Fig. 2; p = 0.849 and 0.382 for ELOVL2 and EDARADD, respectively). Subsequently, 
a final age prediction model was developed with support vector regression16 using information from both mark-
ers (Fig. 3). The MAD was 5.96 years for the training set (adjusted R2 = 0.69). Then, an additional independent set 
of 50 saliva samples was analysed to validate this model. The accuracy of the age prediction model was demon-
strated with a MAD of 6.25 years for the test set (adjusted R2 = 0.60). However, the MAD was smaller for younger 
individuals than for seniors (Supplementary Table 1).

Exploratory application. Until now, a few groups had developed age prediction models for saliva samples9, 28, 29  
and buccal epithelial cells9, 32, 33. However, no researcher have yet examined the utility of these methods for the 
analysis of forensic trace evidence, such as cigarette butts. In this study, we extracted DNA from seven cigarette 
butts and performed age estimation as an exploratory application (Fig. 3). The applicability of our model to ciga-
rette butts was thus demonstrated, although the MAD of 7.65 years was slightly higher than that of intact saliva.

Based on this, the effects of smoking habits and the ingredients in the cigarettes themselves were further 
examined. Tsaprouni et al. investigated the effect of a smoking habit on genome-wide DNA methylation and 
found some significant smoking-related markers34. The methylation statuses of 54 people (50 ± 1 years old) 
were retrieved from publicly available data sets (GSE50660), and the effect of a smoking habit was analysed 
for cg16867657 (ELOVL2) and cg09809672 (EDARADD) (Supplementary Fig. 3). No statistically significant dif-
ferences were observed among non-, former, or current smokers according to analysis of variance (ANOVA; 
p = 0.075 and 0.332 for ELOVL2 and EDARADD, respectively). Moreover, we collected nine cigarette butts and 
nine saliva samples from the same volunteers for use as smokers’ samples, as well as seven saliva samples from 
non-smokers. All of the sample donors were 40 years old. For these 25 samples (nine cigarette butts, nine smok-
ers’ saliva samples, and seven non-smokers’ saliva samples), we analysed the methylation scores of ELOVL2 
and EDARADD with MS-HRM (Supplementary Fig. 4). No statistically significant differences in methylation 
scores were observed among cigarette butts, smokers’ saliva, or non-smokers’ saliva for EDARADD (ANOVA; 
p = 0.072). For ELOVL2, a statistically significant difference was observed (p = 0.012), but the difference was very 
slight. Subsequently, age predictions were successfully performed on these samples, resulting in MADs of 4.07, 
2.56, and 2.79 years for cigarette butts, smokers’ saliva, and non-smokers’ saliva, respectively (Fig. 4). No statisti-
cally significant difference in prediction was observed among these categories according to ANOVA (p = 0.22). 
This demonstrates that the effect of a smoking habit and the contents of cigarettes themselves can be ignored 
when performing age prediction using the method developed in this study.

Discussion
Age prediction has long been one of the most practically important goals for forensic scientists. Recently, novel 
age estimation models were developed by analysing the methylation degrees of some CpG markers for blood 
samples6–8, 10–17. However, none of these methods has been applied in actual crime investigations due to the high 
cost and extended length of time required for analysing DNA chips or pyrosequencing. In addition, only blood 
samples have been well investigated; thus, other forensically relevant body fluids—such as saliva—have been less 
discussed. The current study represents an age prediction model for saliva samples using MS-HRM, and it may 
solve the abovementioned problems of age prediction analysis.

Figure 3. Correlation between predicted age and chronological age. In total, 197 training set samples plotted as 
white circles, 50 test set samples plotted as black squares, and seven cigarette butts plotted as red stars. The black 
line represents the y = x diagonal line.
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MS-HRM is a real-time PCR-based technique that measures the integrated methylation statuses of multi-
ple CpG sites in a single assay that is quick (2 hours) and cost-effective (approximately £3 for age prediction 
based on two markers). According to Mawlood et al., 35 hours are essential for pyrosequencing and next gen-
eration sequencing (NGS)19, which cost £75 and £90, respectively. Therefore, many other groups have begun to 
use MS-HRM for various aspects of forensic research, such as differentiating monozygotic twins35, identifying 
body fluids21, and discriminating between tigers36. Notably, Migheli et al. showed that MS-HRM gave estimates 
of APC and CDKN2A gene methylation that were similar to those obtained by pyrosequencing37. Amornpisutt 
et al. also referred to the presence of a significant agreement between MS-HRM and pyrosequencing38. However, 
MS-HRM has some disadvantages. The biggest may be that individual methylation rates cannot be measured by 
MS-HRM. For 427 blood samples, Zbieć-Piekarska et al. investigated the methylation rates of seven CpG sites in 
ELOVL2 with pyrosequencing (from C1 to C7 in their study)12, which are also included in our analysing region 
with MS-HRM. The MAD of their model was 5.03 and 5.75 years for 303 training set and 124 test set, respectively. 
To evaluate the ability of MS-HRM in age prediction, another model was generated by performing support vector 
regression using the methylation score of ELOVL2 only (the methylation score of EDARADD was not used). The 
MAD of this model (6.59 and 6.83 years for training set and test set, respectively) was a little higher than that of 
Zbieć-Piekarska’s model (Supplementary Table 2). It is important to note that there is the difference in body fluids; 
they investigated blood samples, but we analysed saliva samples.

In the study of Zbieć-Piekarska et al., the methylation rates of all seven CpG sites showed nearly the same 
correlation with chronological age (r = 0.798–0.913)12. Likewise, Garagnani et al. indicated that the methylation 
rates of CpG sites neighbouring an age-related CpG site were also associated with chronological age in ELOVL28. 
Moreover, Day et al. investigated the effect of age-related CpG sites to methylation on neighbouring CpG sites in 
detail39. In his research, age-related CpG sites that were proximal to the same gene region showed a ~91% overlap 
in association with age. These findings are consistent with our results that a certain level of accurate age predic-
tion can be performed with MS-HRM. As mentioned previously, MS-HRM has its advantages in time and cost 
required for analysis. While less information is obtained with MS-HRM as compared to other techniques meas-
uring individual CpG methylation rates; however, our model has a potential to provide scientists with another 
option to predict a subject’s age in an actual crime investigation and maybe useful to screen samples.

Another disadvantage may be the issue of PCR bias. In this study, the interpolation curve for ELOVL2 showed 
non-linearity, indicating the presence of PCR bias, while EDARADD exhibited little PCR bias. Warnecke et al. 
proposed that the presence of PCR bias depends on the sequence of the bisulphite-treated DNA30. Thus, an inter-
polation curve must be obtained for each marker before analysing the methylation profile with MS-HRM, even 
when adapting the strategy for reversing PCR bias31.

The prediction accuracy of our model (MAD = 6.25 years) was a little lower than that of Bocklandt et al. 
(MAD = 5.2 years)28. As for blood samples, increasing the number of target sites tends to improve the age predic-
tion accuracy. For example, Weidner et al. developed a prediction model with three CpG markers (MAD = 5.4 
years), while a more accurate model required 102 markers (MAD = 3.34 years)10. Park et al. investigated the 
relationship between the age prediction accuracy and the number of target sites and suggested that the most 
preferable number of target sites might be three for practical reasons40. In this study, two markers were used to 
predict age; however, additional markers may improve the prediction accuracy. We initially selected 10 candidate 
CpG sites for age estimation using data from Illumina HumanMethylation27, which assesses 27,578 CpG sites. 
HumanMethylation450, which assesses > 450,000 CpG sites, may result in better candidate markers for enhanc-
ing prediction accuracy. Thus, further studies may be required to incorporate at least one more marker to estab-
lish a useful model for practical application.

Figure 4. The results of age prediction for nine cigarette butts, nine smokers’ saliva samples, and seven non-
smokers’ saliva samples. All sample donors were 40 years old. Cigarette butts and smokers’ saliva samples were 
collected from the same nine individuals (connected by straight lines).
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The MAD was smaller for younger individuals than for seniors, which is consistent with the results of a study 
by Branicki13. In our study, the speed of methylation change of ELOVL2 was significantly higher in youth. Thus, 
the prediction is more precise in young people. Addition of another CpG site that undergoes a change its meth-
ylation profile in older individuals will improve the accuracy of the predictive model in the senior segment of 
the population. ELOVL2 is a promising age marker for blood samples8, 12, but methylation profiles for many 
CpG markers can change dramatically depending on cell type41. This is the first report to demonstrate the utility 
of ELOVL2 in the determination of age using saliva samples. In our study, EDARADD (r = −0.519) showed a 
modest correlation coefficient compared to that of ELOVL2 (r = 0.868). Huang et al. developed an age predic-
tion model7 with four CpG markers ranging in absolute correlation coefficient (|r|) from 0.409 to 0.857. Higher 
marker correlations will also improve the age prediction model.

Individual lifestyles can cause changes in DNA methylation. The effect of a smoking habit on DNA meth-
ylation profiles has been particularly well investigated34, 42. According to previous studies, some loci (AHRR, 
F2RL3, etc.) showed significant differences in methylation between smokers and non-smokers. To the best of our 
knowledge, none of these smoking-associated markers were also identified as age-predictive markers. ELOVL2 
and EDARADD showed almost no relationship with smoking habit in this study; however further study might 
be required due to the small sample size of this study. Notably, the smoking habit did not significantly affect the 
accuracy of age prediction in our study. Thus, we conclude that when performing age prediction with saliva sam-
ples extracted from cigarette butts, any effects of a smoking habit or of the ingredients of cigarettes themselves 
can be ignored. Age prediction with nine cigarette butts from 40-year-old donors resulted in accurate predictions 
(MAD = 4.07 years), though the MAD of seven cigarette butts from volunteers ranging in age from 29 to 51 years 
was higher (MAD = 7.65 years). This difference may be attributed to the small sample size. In total, the MAD was 
5.64 for 16 cigarette butts analysed in this study, although further research is necessary to support these findings. 
Saliva consists mainly of leucocytes and epithelial cells43. According to Weidner et al.33, a smaller MAD may be 
achieved by adding cell type markers to the prediction model.

In conclusion, a novel age prediction model for saliva samples using MS-HRM was developed in this study. 
There are three major points of caution before applying this method to actual forensic investigations. First, inter-
polation curves must be established for each instrument or reaction reagent, as the methylation score is affected 
by these conditions. Second, body fluid identification must be performed prior to age prediction. It is not appro-
priate to apply an age prediction model developed for saliva samples to blood or mixed samples. Third, since 
forensic samples are left in various conditions, the effect of prolonged storage and sample preservation methods 
must be investigated before applying this model to practice. When these requirements are fulfilled, the analysis of 
the methylation profiles of saliva samples with MS-HRM offers great potential for predicting age in actual crime 
scene investigations.

Methods
Ethic statement. All samples in this study were collected with permission for research use from the ethical 
committee of the Graduate School of Medicine of Kyoto University with approval number G1036. All experi-
ments of this study were carried out in accordance with the Japanese ethical guidelines for human genome/gene 
analysis research, Ministry of Health, Labour and Welfare of Japan.

Sample collection, DNA extraction, and bisulphite conversion. Saliva samples from 263 healthy 
donors ranging in age from 1 to 73 years were collected using plastic tubes. Cigarette butts were collected from 16 
volunteers. All samples were immediately stored in a −30 °C freezer until use. All donors or their parents signed 
written consent forms including specific consent to publish the images in an online open-access publication prior 
to donation. Ethical approval was received from the ethical committee of the Graduate School of Medicine of 
Kyoto University. We obtained participants’ informed consent for all samples collected. For these samples, DNA 
was extracted and bisulphite-modified according to our previously published methods20.

High resolution melting. PCR primers were designed with either BiSearch44, 45 or manually. For ELOVL2, 
the amplicon is 91 bp long and includes 10 CpG markers between primer binding sites (chr6: 11,044,611–
11,044,701; UCSC Genome Browser GRCh38). For EDARADD, the amplicon is 139 bp long and includes four 
CpG sites (chr1: 236,394,341–236,394,480). PCR amplification was carried out with a Roche LightCycler 480 
Instrument II (Roche Diagnostics GmbH, Mannheim, Germany) equipped with the Gene Scanning Software 
(version 1.5.1.62 SP2) in a 25 μL total volume containing 1 × EpiTect HRM PCR Master Mix, 250 nM of each 
primer, and 10 ng of bisulphite-modified template. When HRM analysis was performed, we set the pre-melt 
temperature region to 68–69 °C and the post-melt temperature region to 82–83 °C for ELOVL2. For EDARADD, 
these were set to 65–66 °C and 80–81 °C, respectively. In total, 263 saliva samples (197 in the training set, 50 in the 
test set, and 16 to examine the effect of smoking) were analysed using HRM in duplicate. Other variables were set 
appropriately according to our previous methods20.

Calculating methylation scores. Fully methylated control DNA and fully unmethylated DNA were pur-
chased from Qiagen (Hilden, Germany) and mixed in appropriate ratios to make 0%, 25%, 50%, 65%, 80%, 90%, 
95%, and 100% methylated control DNA. The Df value of each sample obtained by HRM was plotted, and a 
non-linear regression model was developed for ELOVL2 with R (version 3.2.2)46 using the “nls” command. For 
EDARADD, a simple linear regression model was developed with R using the “lm” command. HRM measure-
ments were performed in triplicate to obtain the interpolation curve or line. We newly defined the methylation 
score, since HRM provides the overall methylation profile of PCR-amplified products rather than the methylation 
rates of the individual CpG markers. The methylation rates of all CpG markers present in the region of interest 
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were integrated to determine the value of the methylation score and analysed with one pair of PCR primers in 
one measurement.

Developing an age prediction model. First, to predict age, a non-linear regression model for ELOVL2 
was built from 197 saliva samples with R using the “nls” command. For EDARADD, a linear regression model was 
built using the “lm” command. Secondly, ANCOVAs were performed with IBM SPSS Statistics 20 to determine 
whether gender affected the regression models (p < 0.05 was considered statistically significant). Finally, a sup-
port vector regression model was built using the “e1071” package47. Support vector regression parameters were 
optimized with “tune.svm” command and set as “Cost = 1.1, gamma = 0.1”. The final model was further validated 
using an additional set of 50 test samples.

Assessing the impact of smoking. The methylation profiles of 54 people ranging in age from 49 to 51 
years were retrieved from a publicly available dataset (GSE50660)34. They were categorized into three groups by 
their smoking habits (non-smokers, former smokers, and current smokers) according to Tsaprouni34. ANOVA 
was performed for those data with R using the “anova” and “aov” commands (p < 0.05 was considered statistically 
significant). In addition, to evaluate if a smoking habit or the ingredients of the cigarettes themselves affected 
the methylation score, we collected nine cigarette butts and nine saliva samples from the same volunteers for 
use as smokers’ samples, as well as seven saliva samples from non-smokers. All sample donors were 40 years old. 
ANOVAs were performed on the methylation scores and the predicted ages of these samples with R using the 
“anova” and “aov” commands with default settings.

Availability of data and material. The datasets generated during and/or analysed during the current study 
are not publicly available due to protecting participant confidentiality but are available from the corresponding 
author on reasonable request.
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Age prediction with epigenetic information is now edging closer to practical use in forensic community.
Many age-related CpG (AR-CpG) sites have proven useful in predicting age in pyrosequencing or DNA
chip analyses. In this study, a wide range methylation status in the ELOVL2 and FHL2 promoter regions
were detected with methylation-sensitive high resolution melting (MS-HRM) in a labor-, time-, and
cost-effective manner. Non-linear-distributions of methylation status and chronological age were newly
fitted to the logistic curve. Notably, these distributions were revealed to be similar in 22 living blood sam-
ples and 52 dead blood samples. Therefore, the difference of methylation status between living and dead
samples suggested to be ignorable by MS-HRM. Additionally, the information from ELOVL2 and FHL2were
integrated into a logistic curve fitting model to develop a final predictive model through the multivariate
linear regression of logit-linked methylation rates and chronological age with adjusted R2 = 0.83. Mean
absolute deviation (MAD) was 7.44 for 74 training set and 7.71 for 30 additional independent test set,
indicating that the final predicting model is accurate. This suggests that our MS-HRM-based method
has great potential in predicting actual forensic age.

� 2016 Elsevier Ireland Ltd. All rights reserved.
1. Introduction

Although age is one of the most important pieces of information
for criminal investigations, there are few techniques available to
predict age in actual practice, such as examining bones or teeth
morphologically. These techniques require expert medical experi-
ence, but the result of prediction might not be ‘‘objective”. More-
over, these are not versatile methods and are limited to samples
such as bones or teeth in actual practice.

Age-related changes in cytosine methylation have been recently
reported by many groups [1–7]. For example, Hannum et al. built a
predictive model of aging blood with the use of 71 methylation
markers selected from the Illumina Infinium HumanMethyla-
tion450 BeadChip, which measures more than 450,000 CpG mark-
ers [8]. Branicki et al. investigated the usefulness of CpGs located in
the promoter region of ELOVL2 with pyrosequencing [9,10]. The
promoter region of FHL2 has also been identified as a useful age-
predictive marker in many studies [4,10]. Owing to these studies,
knowledge on the relationships between methylation patterns
and chronological age has accumulated. However, the BeadChip
method requires specialized instruments and analyzing machines
followed by complex bioinformatic analysis for age prediction.
The pyrosequencing method also requires specialized instruments.
In general, very few forensic laboratories are equipped with these
kinds of machines. Even if so, high costs has prevented these meth-
ods from being routinely used in criminal investigations.

Methylation-sensitive high resolution melting (MS-HRM) is a
method that measures methylation statuses easily, quickly and
cost effectively, where bisulfite-treated DNA is PCR amplified fol-
lowed by melting analysis [11–15]. In bisulfite-treated DNA analy-
ses, unmethylated cytosines are converted to uracil by bisulfite
conversion while methylated cytosines are kept intact. Therefore,
the information of methylation status is directly converted to the
sequence, where it alters the thermodynamic stability of double-
stranded DNA, enabling quantitative methylation assessment.
The unique characteristic of MS-HRM is that it measures the over-
all methylation status of amplified PCR products, rather than the
individual CpG marker. As a result, the information of many CpG
markers present in the region of interest can be integrated and
analyzed with one pair of PCR primers in one measurement.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.legalmed.2016.05.001&domain=pdf
http://dx.doi.org/10.1016/j.legalmed.2016.05.001
mailto:ktamaki@fp.med.kyoto-u.ac.jp
http://dx.doi.org/10.1016/j.legalmed.2016.05.001
http://www.sciencedirect.com/science/journal/13446223
http://www.elsevier.com/locate/legalmed


Table 1
The sequence of PCR primers.

Primers Primer sequence (50 to 30)

ELOVL2-Fw CGATTTGTAGGTTTAGT
ELOVL2-Rv ACTACCAATCTAAACAA
FHL2-Fw TTTACCAAAACTCCTTTCTT
FHL2-Rv GTGGGTAGATTTTTGTTATT
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We have to consider the possibility that post-mortem changes
alter the methylation status when performing age prediction in
actual cases. For example, a forensic scientist is not always cog-
nizant of whether a victim is alive or deceased, as in abduction
cases. Before applying this technology to actual cases, we must
investigate the effect of post-mortem changes on forensic age pre-
diction. To our best knowledge, no one has focused on this point,
which might become a more significant issue when performing
age prediction for actual forensic cases.

Here, we report on a labor-, time-, and cost-effective method of
forensic age prediction using MS-HRM for the ELOVL2 and FHL2.
The analysis of 74 blood samples from 22 living and 52 dead
donors who varied in age from 0 to 95 years yielded a logistic curve
model. While the majority of previous studies constructed simple
linear models for this analysis, such models were not rational for
the purposes of our study. Finally, 30 independent dead blood sam-
ples were used to test the prediction accuracy of the model.
Fig. 1. Sequences of PCR target sites in this study (before bisulfite conversion). PCR
primer binding sites are boxed. CpG markers that can be analyzed by MS-HRM are
emphasized and underlined.
2. Materials and methods

2.1. Sample collection and DNA extraction

Blood samples from 19 healthy donors were collected at the
same time of health checking. Blood samples from three children
were collected from epistaxis caused by daily life hurt rather than
performing any operation. For these blood samples, DNA was
extracted with QIAamp DNA Investigator Kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s protocol. All donors or their
parents signed written consent form prior to donation. Addition-
ally, cadaver blood samples were collected from 82 autopsies per-
formed during 2006–2009 at Kyoto University, Kyoto, Japan.
Cadaver blood samples were collected in cases of extrinsic
death—such as burn cases or suicides—and all autopsies were per-
formed within 10 days of death. All dead bodies had no evidence of
disease (e. g. cancer) which affects the methylation status. DNA
from cadaver blood was extracted using the QIAprep DNA Blood
Kit and stored at -20 �C until use. All samples in this study were
used with permission for research use from the ethical committee
of Graduate School of Medicine of Kyoto University.

2.2. Bisulfite modification and control DNA

All DNA extracted from blood was treated with EpiTect Fast
Bisulfite Conversion Kit (Qiagen) and bisulfite-converted DNAwere
eluted with Buffer EB (10 mM Tris-Cl, pH 8.5). The concentration of
eluted DNA was then measured with the Nano Vue Plus (GE
Healthcare, Amersham, England) and subsequently adjusted to
10 ng/lL with Buffer EB. As a positive (fully methylated) or nega-
tive (fully unmethylated) control, we used ‘‘EpiTect Control DNA
(human), methylated/unmethylated and bisulfite converted (Qia-
gen)” respectively. Control DNA was stored in Buffer EB and
adjusted to 10 ng/lL.

2.3. High resolution melting step

PCR primers were designed with BiSearch [16,17] according to
Table 1. For ELOVL2, the amplicon is 91 bp long and includes 10
CpG markers between primer binding sites (chr6: 11,044,611–
11,044,701; Genome browser UCSC GRCh38, Fig. 1). For FHL 2,
the amplicon is 133 bp long and includes 14 CpG markers (chr2:
105,399,228–105,399,360). PCR amplification was carried out with
a Roche LightCycler 480 Instrument II (Roche Diagnostics GmbH,
Mannheim, Germany) equipped with the Gene Scanning Software
(version 1.5.1.62 SP2) in a 25 lL total volume containing: 1� Epi-
Tect HRM PCR Master Mix (EpiTect HRM PCR Kit, Qiagen), 250 nM
of each primer and 20 ng of bisulfite modified template. First, poly-
merase was activated at 95 �C for 5 min, followed by 45 cycles of
95 �C for 10 s, 50 �C for 30 s, and 72 �C for 10 s. After the amplifica-
tion, HRM analysis was initiated by denaturing all products at
95 �C for 1 min, followed by re-annealing at 40 �C for 1 min. Subse-
quently, the samples were quickly warmed to 50 �C and heated to
95 �C at 0.1 �C/s. Fluorescence intensity was measured at 25 acqui-
sitions/s. All reactions were performed in duplicate.

When HRM analysis was performed, Gene Scanning Software
first normalized raw melt curves so that different samples can be
compared. In this normalizing process, we set the pre-melt tem-
perature region to 68–69 �C and the post-melt temperature region
to 82–83 �C. Although, the temperature shift process is often run
when the software is used for analyzing heterozygous mutant, no
adjustment was performed in this study by setting the threshold
to zero, because the shape of melt curve itself was important in
analysis of the overall methylation status of the amplicon. If the
temperature shift process was performed, the shape of melt curve
would be distorted. A difference curve was then derived from the
first derivative of the melt curves, after setting the data of fully
unmethylated sample as a baseline. Relative signal difference val-
ues were exported as .txt data, and the maximum absolute value
were defined as ‘‘Df value” for each sample (Fig. 2B).
2.4. Methylation analysis

In general, PCR bias occurs when amplifying bisulfite-treated
DNA [18,19], since unmethylated DNA (UG pair rich sequence after
bisulfite modification) tends to be amplified more efficiently than
methylated DNA (CG pair rich sequence). Therefore, a standard
curve was first established for each target site to accurately mea-
sure methylation status. Fully methylated control DNA and fully
unmethylated DNA were mixed in appropriate ratios to make 0%,
25%, 50%, 65%, 80%, 90%, and 100% methylated control DNA. For
the 90% and 100% methylated standard sample of ELOVL2, 40 ng
bisulfite-treated DNA was used as a template due to its small
amplification efficiency caused by PCR bias. Df values of each con-
trol sample were plotted and a non-linear regression model was
developed [18] with R (version 3.2.2) [20] depicted as Eq. (1) as
follows
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a �M
100�M

¼ Df
Dfmax � Df

ð1Þ

where M is the proportion of a methylation status and Dfmax is the
Df value of 100% methylated control sample and ‘‘a” is a coefficient.
Once the standard curve is established, the overall methylation sta-
tus of the sample can be calculated by substituting the Df value to
the Eq. (1). Therefore, Df values can be converted to methylation
status.
Table 2
Coefficients calculated in this study.

a ð�10�2Þ b c d e f

ELOVL2 19.7 �28.8 22.9
FHL2 9.8 �21.1 45.1
Combined �37.2 14.6 18.9
2.5. Statistical analysis

First, logistic curve fittings were performed with R to determine
the relationship between age andmethylation status. In this fitting,
the value of methylation status is converted to the logit form, and
it was fitted to a line by ordinary least squares depicted as Eq. (2)
for ELOVL2 and FHL2 each.

Predicted age ¼ bþ c � ln M
1�M

ð2Þ

where ‘‘b, c” are coefficients. Secondly, ANCOVA were performed
with IBM SPSS Statistics 20 to confirm whether live status (dead
or alive) affects the regression line or not (p < 0.05 is considered
as statistically significant).

Thirdly, a multivariate regression analysis was performed with
74 samples (22 living; 52 dead) as a training group to establish the
final age predicting model depicted as Eq. (3) as follows

Predicted age ¼ dþ e � ln ME

1�ME
þ f � ln MF

1�MF
ð3Þ

Where ME and MF stand for the proportion of a methylation status
of ELOVL2 and FHL2, respectively, and ‘‘d, e, f” are coefficients. The
prediction accuracy of the regression model was assessed using
the adjusted R2. The mean absolute deviation (MAD) was also calcu-
lated. The final model was further validated using an additional set
of 30 test samples (all dead).
3. Results

3.1. Methylation analysis with MS-HRM

Smooth melting curves were obtained from MS-HRM (Fig. 2A)
and difference curves were also obtained with Gene Scanning Soft-
ware using the 0% methylated data as a baseline (Fig. 2B). Table 2
shows the estimated ‘‘a” value of the Eq. (1) for ELOVL2 and FHL2,
meaning that unmethylated DNA exhibits a 5-fold or 5.6-fold
amplification efficiently in MS-HRM due to PCR bias (Fig. 2C). In
this study, methylation rate differences between 40% and 100%
can be detected clearly by the differences of Df values both for
ELOVL2 and FHL2, while those between 0% and 30% were hard to
detect.
3.2. Assessment of the methylation status difference between living
and dead

Fig. 3A and D shows the methylation status of ELOVL2 and FHL2
for 74 training samples (22 alive; 52 dead). Coefficient values of the
Eq. (2) (‘‘b”, ‘‘c”) are listed in Table 2. Chronological age and logit-
linked methylation status correlated well. Therefore, we decided to
adopt logistic curve model for predicting age, while simple linear
model is adopted in most of researches performed in past. Two
simple linear regression lines of logit-linked methylation status
and age derived from living or dead sample has no statistically sig-
nificant difference (pP 0.05) in slope and intercept for each target
site (Fig. 3B and E). New regression models explained nearly 80% of
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the variation in age when combining living samples and dead sam-
ples (Fig. 3C and F; adjusted R2 was 0.74 for ELOVL2 and 0.81 for
FHL2). Negative prediction values obtained for three or four young
individuals were set at 0 [9,10]. The mean absolute deviation
(MAD) was 9.67 for ELOVL2 and 7.71 for FHL2. The prediction accu-
racy was good for the youth but a little poor for the old. No statis-
tically significant difference in slope and intercept were observed
based on gender either (Fig. S1). Thus, we decided to ignore differ-
ences due to gender to keep the prediction model simple.
Fig. 4. Accuracy of the final age predicting model with combined information of the
methylation status of ELOVL2 and FHL2 for 74 training set and 30 test set.
3.3. Developing final age prediction model and its validation

The final age prediction model was developed combining the
methylation information of ELOVL2 and FHL2. Estimated coefficient
values of Eq. (3) (‘‘d”, ‘‘e”, ‘‘f”) are also listed in Table 2. This multi-
variate regression model showed further accuracy with MAD 7.44
(Fig. 4). In the end, holdout validation test was performed. The
methylation status of 30 additional independent samples was ana-
lyzed and applied for the final model. The result is also shown in
Fig. 4. MAD was slightly higher in this test group (7.71).
4. Discussion

Age prediction with the epigenetic techniques has attracted
increasing attention from the forensic science community. For
investigation of crimes, it is important to minimize the time
required to obtain test results. In this study, MS-HRM was adopted
to analyze the methylation status of the ELOVL2 and FHL2 pro-
moter regions, which is able to return a test result within half a
day after blood sample acquisition. The unique characteristic of
this method is that it can detect the overall methylation status of
the region of interest. Branicki et al. found that the methylation
rates of CpG sites near AR-CpG correlate well with chronological
age for ELOVL2 (C1-C7 in his study [9]). The methylation status of
many CpG sites can be detected with only one MS-HRM analysis,
while DNA chip can detect only a limited number of CpG sites.
On the other hand, MS-HRM has its limitations for practical usage.
The biggest limitation might be the issue of PCR bias [18,19], where
methylated templates (containing many Cs in the sequence) are
less effectively amplified than unmethylated templates (contain
many Us). Owing to the PCR bias, the methylation status
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differences are hard to detect in lower methylated region (e.g. 0–
30%). Therefore, if a researcher wanted to detect differences in
the lowly methylated region with MS-HRM, he/she would have
to identify a sequence without any PCR bias or design primers that
reverse the PCR bias [19]. As for this study, PCR bias does not affect
the detectability of methylation differences across samples for ana-
lyzing higher methylated regions. In addition, if CpG sites in a CpG
island were intended to be analyzed, designing primers might be a
little difficult because they should include as little CpG sites as
possible.

The speed of the methylation change with aging has been less
discussed. Most researchers have developed simple linear regres-
sion models for the methylation status and age (i.e. the speed of
methylation change is constant through one’s lifetime); however,
these models have not accounted for pediatric specimens. Alisch
et al. pointed out that the methylation changes accelerate in child-
hood for some CpG sites [21]. We found that changes of methyla-
tion status in the promoter region of ELOVL2 and FHL2 were not
linear, but rather increased dramatically in youth and slowed
down with increasing age. The methylation change for two target
sites could be fitted well with a logistic or growth curve (adjusted
R2 = 0.74 and 0.81). It is reasonable to hypothesize that the methy-
lation status plateaus with increasing age than to hypothesize that
it has no upper limit.

The prediction accuracy depended on sample donor’s chrono-
logical age in this study (Fig. 4), which was concordant with the
research performed by Branicki et al. Age estimation for youths
(0–20 years old) had little prediction error, but this error increased
with chronological age. This might be explained by individual dif-
ferences in the rate of methylation change. At first, individual dif-
ferences may be slight, but they accumulate with age. Therefore, a
prediction result must be handled carefully when the predicted age
is high (>50 years old). Similarly, it is highly reliable when the pre-
dicted age is low (0–20 years old).

To our best knowledge, it is unknown whether death affects the
methylation status. If post-mortem changes affect one’s methyla-
tion status, forensic researchers cannot predict age without infor-
mation about the sample donor’s safety. In this study, all blood
samples from dead bodies were collected within 10 days after
death and the methylation status was analyzed. The distribution
of age and methylation rate was similar regardless of the sample
donor’s life or death (Fig. 3A and D). Moreover, no statistically sig-
nificant change was observed between living and dead blood sam-
ples. These observations may suggest that the difference of
methylation status between living and dead samples is ignorable,
though sample size is limited. It was difficult to collect more living
blood samples especially for youths. Further analysis might be
required to support our findings.

Additionally, differences in methylation status due to gender
were considered (Fig. S1). No statistically significant change was
observed between male and female genders, which is consistent
with findings of other studies. Huang et al. developed an age pre-
diction model for the gender combined case and two additional
models for only male or only female cases; however, no statisti-
cally significant difference was observed between the gender-
based models [6]. Branicki et al. decided not to include gender in
prediction modeling (R2 improved by 0.001 with age as a covariate)
[10]. In our study, age prediction accuracy was minimally affected
by distinguishing gender, and therefore, the simplicity of the com-
bined model was preferred.

The multivariate regression model enhanced the prediction
accuracy when combining the information about the methylation
status of ELOVL2 and FHL2 in our study. It is well known that
increasing the number of target sites enhances age prediction
accuracy—Weidner et al. developed a prediction model with 3 tar-
get genes (MAD = 5.4), while more accurate model required 102
sites (MAD = 3.34) [2]. Additional target sites may also increase
the prediction accuracy of our method. The authors are investigat-
ing other target sites with MS-HRM in order to improve the predic-
tion accuracy now. However, analyzing more than 5 target sites
might be too labor-intensive to perform age prediction in actual
forensic cases.

Age prediction with epigenetic information has become popular
in the forensic science community. This knowledge should now be
used for actual criminal investigations. Most previous reports ana-
lyzed the methylation rate of CpG sites by using DNA chips or
pyrosequencing. However, these techniques are too labor-, time-,
and cost-intensive to apply to routine crime investigations. MS-
HRM has the potential to be a gold standard for usual forensic test
because of its convenience. However, there are a few causes for
caution before applying this method to actual cases. First, the stan-
dard curve of methylation rate and Df value must be determined
for each MS-HRM instrument and chemical because commercially
available fully unmethylated DNA may not be perfectly unmethy-
lated. Second, methylation analysis should be performed more
than twice to validate the obtained data. Third, test samples are
limited to blood samples. AR-CpG is considered to differ by tissue
[3,5,7]. We are attempting to develop an age prediction model
using saliva, semen, sweat, and bone samples with MS-HRM, but
only the blood model has been fully developed. Huang et al. have
shown that there was no statistically significant difference in age
prediction results from blood samples and those from bloodstain
[6]. When these points are considered, forensic age prediction for
dead or living samples can be performed with MS-HRM conve-
niently. For instance, analysis of a bloodstain left at a crime scene
could provide the approximate age of the suspect or victim. Thus,
we believe that this study opens new possibilities for forensic
DNA phenotyping.
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