
A Study on Cryptographic Protocols:
Achieving Strong Security for

Zero-knowledge Proofs and Secure Computation

Susumu Kiyoshima

© 2018 Susumu Kiyoshima
All rights reserved.

Abstract

This thesis studies zero-knowledge proofs and secure computation, two of the most
fundamental protocols in cryptography. Zero-knowledge proofs are counter-intuitive
protocols that allow provers to convince verifiers of the correctness of mathematical
statements without revealing any additional knowledge about the statements, and secure
computation protocols are powerful protocols that enable mutually distrustful parties
to jointly compute any public functions on their secret inputs without compromising
the correctness of the outputs and the privacy of the inputs. Zero-knowledge proofs are
fundamental in cryptography because they are used as key building blocks in numerous
other protocols, and secure computation protocols are fundamental in cryptography
because their powerful generality allows us to obtain strong feasibility results about
cryptographic protocols.

The focus of this thesis is to obtain new constructions that (provably) satisfy strong
security notions such as concurrent security and leakage resilience. Concurrent secu-
rity guarantees that a protocol remains secure even when it is executed multiple times
in an arbitrary schedule, and leakage resilience guarantees that a protocol remains se-
cure even when adversaries obtain leakages of honest parties’ secret internal memo-
ries. Concurrent security is motivated by the use of cryptographic protocols on large
asynchronous networks like the Internet, and leakage resilience is motivated by the de-
velopment of various “side-channel” attacks that obtain partial information of honest
parties’ secret memories via physical measurements on their implementations.

This thesis gives four theoretical results about the problem of achieving strong se-
curity at as low cost as possible, where the cost is defined in terms of (asymptotic)
efficiency and hardness assumptions. At a high level, these four results can be viewed
as a step to solve a fundamental problem about concurrent security and leakage re-
silience, that is, the problem of constructing secure computation protocols that satisfy
concurrent security and leakage resilience with optimal efficiency under minimum as-
sumptions. Specifically, these four results concern natural simplified versions of this
fundamental problem (where the simplification is to focus on zero-knowledge proto-
cols rather than secure computation and/or to focus on only either concurrent security
or leakage resilience) and show that concurrent security and leakage resilience can be
achieved at much lower cost than previously known. Concretely, the results of this
thesis are the following.

The first result is about statistical concurrent non-malleable zero-knowledge argu-
ments, which are zero-knowledge protocols that currently satisfy the strongest notion
of concurrent security in the plain model (i.e., in the model where no trusted third party
is available). This thesis shows, in essence, that statistical concurrent non-malleable
zero-knowledge protocols can be obtained at no additional cost in terms of hardness as-
sumptions. In other words, this thesis constructs a statistical concurrent non-malleable
zero-knowledge argument that is proven secure under the same assumption as the best
constructions of (standard) zero-knowledge protocols.

The second result is about leakage-resilient zero-knowledge arguments, which are
zero-knowledge protocols that satisfy leakage resilience. While the existing construc-
tions are either inefficient in terms of round complexity or secure only under a strong
hardness assumption, the construction in this thesis has optimal asymptotic efficiency
in terms of round complexity and is secure under a weak hardness assumption.

The third result is about non-black-box concurrent zero-knowledge arguments,
which are concurrently secure zero-knowledge protocols whose security is proven
via a specific technique called non-black-box simulation. The motivation behind this
result is the long-standing open question of constructing constant-round concurrent
zero-knowledge protocols (i.e., concurrent zero-knowledge protocols that have optimal
asymptotic efficiency in terms of round complexity), which is known to be solvable
only via non-black-box simulation. This thesis gives a construction that has more than
constant number of rounds just like the existing construction, but it has an arguably
simpler proof of security and therefore can be a useful starting point of future research.

The last result is about composable secure multi-party computation protocols,
which are secure computation protocols that satisfy concurrent security in a strong
sense. The construction in this thesis is proven secure under a well-studied security
definition called angel-based UC security. Compared with the existing constructions,
which are inefficient either because of “non-black-box” use of underlying cryptographic
primitives or because of large round complexity, the construction in this thesis is effi-
cient thanks to its “black-box” use of the underlying cryptographic primitives and small
round complexity.

Contents

1 Introduction 1
1.1 Zero-knowledge Proofs and Secure Computation 1
1.2 Quest for Stronger Security . 3
1.3 Our Results . 6

1.3.1 Results about Zero-knowledge Protocols 7
1.3.2 Result about Secure Computation 10

1.4 Outline . 11

2 Preliminaries 13
2.1 Notations . 13
2.2 Basic Definitions . 14
2.3 Commitment Schemes . 16

2.3.1 Basic Definitions . 16
2.3.2 Extractability . 18
2.3.3 Concurrent Extractability . 18
2.3.4 Non-malleability . 21
2.3.5 CCA Security . 22

2.4 Interactive Proofs . 24
2.4.1 Basic Definitions . 25
2.4.2 Witness Indistinguishability 25
2.4.3 Zero Knowledge . 26
2.4.4 Proof of Knowledge . 26

2.5 Universal Arguments . 27

3 Statistical Concurrent Non-malleable Zero-knowledge from One-way
Functions 29
3.1 Background . 29

3.1.1 Our Result . 30
3.1.2 Outline . 30

3.2 Overview of Our Techniques . 31
3.2.1 Previous Techniques . 31
3.2.2 Our Techniques . 32

3.3 Preliminaries . 36
3.3.1 Concurrently Extractable Commitment Schemes 36
3.3.2 One-one CCA-secure Commitment Schemes 38

i

3.3.3 Witness Indistinguishable Proofs and Arguments 38
3.3.4 Statistical Concurrent Non-malleable Zero-knowledge Argu-

ments . 38
3.4 Our Statistical Concurrent Non-malleable ZK Argument 39

3.4.1 Proof of Soundness . 40
3.4.2 Proof of Statistical CNMZK Property 43

3.5 Appendices to Chapter 3 . 56
3.5.1 Constant-round One-one CCA-secure Commitment Scheme

from OWF . 56
3.5.2 On the Robust Extractability of CECom 63

4 Constant-round Leakage-resilient Zero-knowledge from Collision Resis-
tance 65
4.1 Background . 65

4.1.1 Our Results . 66
4.1.2 Open Questions . 67
4.1.3 Related Works . 68
4.1.4 Outline . 69

4.2 Overview of Our Techniques . 69
4.2.1 Previous Techniques . 69
4.2.2 Our Techniques . 71

4.3 Preliminaries . 75
4.3.1 Notations . 75
4.3.2 Leakage-resilient Zero-knowledge 75
4.3.3 Hamiltonicity Commitment Scheme 76
4.3.4 Adaptive Hamiltonicity Commitment Scheme 77
4.3.5 Barak’s Non-black-box Zero-knowledge Protocols 78
4.3.6 Somewhat Extractable Commitment Schemes 81

4.4 Building Blocks . 82
4.4.1 Special-purpose Encrypted Barak’s Preamble 83
4.4.2 Special-purpose Instance-dependent Commitment 87

4.5 Our Leakage-resilient Zero-knowledge Argument 93
4.5.1 Soundness . 93
4.5.2 Leakage-resilient Zero-knowledgeness 93

5 Non-black-box Zero-knowledge in the Fully Concurrent Setting 101
5.1 Background . 101

5.1.1 Our Result . 103
5.1.2 Outline . 105

5.2 Overview of Our Techniques . 105
5.2.1 Known Techniques . 105
5.2.2 Our Techniques . 110
5.2.3 Comparison with the Non-black-box Simulation Technique of

Goyal [Goy13] . 116
5.3 Preliminaries . 116

5.3.1 Notations . 116

ii

5.3.2 Tree Hashing . 116
5.3.3 Concurrent Zero-Knowledge Arguments 117
5.3.4 PCP and Universal Argument 117
5.3.5 Forward-secure PRG . 119

5.4 Our Public-Coin Concurrent Zero-Knowledge Argument 120
5.4.1 Concurrent Zero-knowledge Property 121
5.4.2 Argument of Knowledge Property 135

6 Round-Efficient Black-Box Construction of Composable Multi-Party Com-
putation 143
6.1 Background . 143

6.1.1 Our Result . 146
6.1.2 Outline . 146

6.2 Overview of Our CCA-Secure Commitment Scheme 147
6.2.1 Building Block 1: Strongly Extractable Commitment Scheme 147
6.2.2 Building Block 2: One-One CCA-Secure Commitment Scheme 150
6.2.3 CCA-Secure Commitment Scheme from the Building Blocks . 150

6.3 Preliminaries . 155
6.3.1 Shamir’s Secret Sharing . 155
6.3.2 Strong Computational Binding Property of Commitment

Schemes. 156
6.3.3 Strongly/Weakly Extractable Commitment Schemes 157
6.3.4 Trapdoor Commitment Schemes 158

6.4 Building Blocks . 159
6.4.1 Strongly Extractable Commitment Scheme 159
6.4.2 One-One CCA-Secure Commitment Scheme 170

6.5 CCA-Secure Commitment Scheme 172
6.5.1 Proof of CCA Security . 173
6.5.2 Proof of Robustness . 194

6.6 Black-Box Composable MPC Protocol 196
6.7 Appendix to Chapter 6 . 197

6.7.1 One-One CCA Commitment for Long Tags from Parallel CCA
Commitment for Short Tags 197

7 Conclusion 201

Acknowledgment 205

Bibliography 207

List of Earlier Publications 219

iii

iv

Chapter 1

Introduction

1.1 Zero-knowledge Proofs and Secure Computation
Modern cryptography is not equal to the study of encryption schemes. While clas-
sical cryptography only studied the schemes for private communication (namely en-
cryption schemes), modern cryptography also studies the schemes for other various
tasks—message authentication, identification, key exchange, and more generally, any
tasks that need be done securely over digital networks. Since today’s digital life is no
longer limited to simple private communication, the study of such schemes is, in mod-
ern cryptography, as important as the study of encryption schemes.

The study of cryptographic protocols, which constitutes a major part of modern
cryptography, involves designing interactive protocols that enable multiple (possibly
mutually distrustful) parties to perform predetermined tasks securely. Cryptographic
protocols have been studied for various tasks, and some of them have played fundamen-
tal roles in modern cryptography. Two main examples of such protocols, which are also
those that are studied in this thesis, are zero-knowledge proofs and secure computation.

Zero-knowledge Proofs. A zero-knowledge (interactive) proof is a somewhat
counter-intuitive cryptographic protocol that allows a prover to convince a verifier of
the correctness of a mathematical statement without giving any additional knowledge
about the statement. In cryptography, the statement is usually formalized as an instance
x of an NP language L such that the prover knows a witness w for x ∈ L. In this sce-
nario, the prover uses a zero-knowledge proof to convince the verifier that x belongs
to L, and the two properties of zero-knowledge proofs, zero-knowledgeness and sound-
ness, respectively guarantee that no information about w is revealed to the verifier from
the proof and that the prover cannot convince the verifier when the statement is false
(i.e., when x < L).1 The notion of zero-knowledge proofs was introduced by Gold-
wasser, Micali, and Rackoff in 1985 [GMR85, GMR89] and has been a central object
of research in cryptography since then.

1Formally, zero-knowledge proofs guarantee soundness against any (not necessary polynomial-time)
prover, and zero-knowledge arguments guarantee soundness only against polynomial-time provers. In
this chapter, however, we use the term “zero-knowledge proofs” or “zero-knowledge protocols” to refer
to both zero-knowledge proofs and zero-knowledge arguments.

1

A direct application of zero-knowledge proofs is identification. Suppose that a
party, Alice, has a password pwd and another party, Bob, has a hash value d = h(pwd)
of pwd, where h is a “secure” hash function (that is, h is a hash function such that find-
ing pwd′ such that h(pwd′) = d is hard given d). Now, by using zero-knowledge proofs,
Alice can prove her identity to Bob securely as follows: Alice gives a zero-knowledge
proof to Bob about the knowledge of pwd such that h(pwd) = d. Bob can be sure about
the validity of Alice’s identity because of the soundness, and Alice can be sure about
the secrecy of pwd against Bob because of the zero-knowledgeness.2

A more technical, but equally important, application of zero-knowledge proofs is
the use as building blocks in other cryptographic protocols. Very roughly speaking,
zero-knowledge proofs are used in other cryptographic protocols to force the protocol
participants to follow the protocol specifications. More precisely, in those protocols
each party is required to give a zero-knowledge proof about the existence of an in-
put and randomness such that the messages from him/her are correctly computed w.r.t.
those input and randomness. (An important point is that this kind of statements can be
expressed as an NP language.) The soundness of the zero-knowledge proof guaran-
tees that each party need to follow the protocol specification to give a convincing proof,
so even malicious parties cannot deviate from the protocol specification; on the other
hand, the zero-knowledgeness guarantees that the inputs of the honest parties remain
hidden even after the proofs are given. Using zero-knowledge proofs in this way to en-
sure correct behavior is one of the most influential techniques in cryptography, and is a
major reason why zero-knowledge proofs are fundamental in the area of cryptographic
protocols.

Secure Computation. A secure computation protocol is a powerful protocol that en-
ables mutually distrustful parties to jointly compute any public function f on their se-
cret inputs without compromising the correctness of the outputs and the privacy of the
inputs. (In general, f is randomized and reactive, and gives different outputs to dif-
ferent parties.) A classical example of secure computation is Yao’s millionaires’ prob-
lem [Yao82]: Suppose that there is a set of millionaires who wish to know who is the
richest but would not like to disclose the exact amounts of their wealth to each other;
in this scenario, the millionaires can find the richest person securely by using a secure
computation protocol for the following function (assume for simplicity that there is no
tie).

f (x1, . . . , xN) = i,where xi > x j for every j , i .

A more realistic example is conducting statistical analysis on patient data that are stored
at multiple hospitals; with secure computation protocols, the hospitals can conduct the
analysis without disclosing their patient data to each other.

An advantage of secure computation is its generality, which allows us to obtain
strong feasibility results thorough the study of secure computation. Indeed, since any
digital task can be formalized as computation of some functions, secure computation

2Formally, the underlying zero-knowledge proof is required to have a property called proof of knowl-
edge [BG93].

2

enables us to perform arbitrary task on digital networks, so one can show that any task
can be performed securely in a setting by designing a secure computation protocol in
that setting. A seminal work by Goldreich, Micali, Wigderson [GMW87] showed that
secure computation is possible even in a very severe setting where an arbitrary fraction
of the parties are malicious and deviate from the protocol specification.

A research direction about zero-knowledge proofs and secure computation. Even
though both zero-knowledge proofs and secure computation have been studied for more
than 30 years, they are still actively studied objects in cryptography. A major research
direction about them is to give constructions that have stronger security, and this is the
topic that we discuss in the next section.

1.2 Quest for Stronger Security
One of the main goals of modern cryptography is to design schemes that have secu-
rity proofs under rigorous security definitions. While classical cryptographic schemes
were mainly designed by heuristic and their security often relied on the mere fact that
the schemes looked secure, most schemes in modern cryptography are designed by re-
lying on rigorously defined hardness assumptions and have mathematical proofs guar-
anteeing that the schemes are secure as long as the underlying hardness assumptions
hold. The purpose of proving security is to obtain strong confidence in the security—
indeed, if a scheme has a security proof under a simple assumption that is easy to study
and refute, analyzing the security of that scheme becomes considerably easier. (If the
assumption is already well studied, one can also use past experience in the analysis.)
A celebrating example of modern cryptography is the work by Goldwasser and Mi-
cali [GM84], which showed the first encryption scheme that has a security proof under
a rigorous security definition (under an assumption about the hardness of computing
quadratic residue modulo composite numbers).

Defining security rigorously is, of course, a very delicate task, and much effort
was devoted to obtaining a satisfactory definition for each cryptographic task. For-
tunately, cryptography made great success in this process, and by 2000, satisfac-
tory security definitions were obtained for many cryptographic tasks such as encryp-
tion schemes [GM84], digital signatures [GMR88], zero-knowledge proofs [GMR85,
GMR89], and secure computation [GL91, MR92, Bea92, Can00].

However, the security definitions that were obtained in the early stage of modern
cryptography are, while being satisfactory in many settings, not necessarily satisfactory
in every setting. Indeed, when cryptographic schemes find new applications, they are
often used in a way that is quite different than before, and are sometimes required to
have a new security notion that is stronger than the existing ones. An example of this
phenomenon is the introduction of non-malleability [DDN00]. Originally, encryption
schemes were used only for secret communication, and their security notion (such as
semantic security [GM84]) only concerns the ability to hide information of encrypted
messages. If, however, an encryption scheme is used in an online auction where each
participant sends a single bid price to the auctioneer in an encrypted form and the one

3

who bids the highest price wins, the underlying encryption scheme is required to have
an additional security guarantee that one cannot transform a ciphertext of a message m
into a ciphertext of a related message m′. (If the underlying encryption scheme does
not have such a security notion, a participant, Alice, might be able to bit a price that
is higher than another participant, Bob, by obtaining Bob’s ciphertext via wiretapping
and then transforming it to a ciphertext of a higher bit price. Note that Alice does
not necessarily break the secrecy of Bob’s ciphertext in this attack because Alice does
not necessarily learn Bob’s bit price during the transformation from Bob’s ciphertext.)
Non-malleability was introduced as a formulation of this additional security guarantee.

When it turns out that the “standard security definition” of a cryptographic scheme
does not provide satisfactory security in a setting, the first task for cryptographers is
to strengthen the security definition so that it provides satisfactory security even in
that setting. Ideally this strengthening should be done in a way that is as general as
possible—that is, in such a way that the strengthened security provides security not
only in the specific setting that is considered currently but also in the settings that are
obtained by adding conceivable extensions to it. Major examples of such strengthening
are the following.

• Security against stronger computational power. The first example is perhaps
the most natural strengthening: defining security against adversaries that have
stronger computational power.
Statistical security is, informally speaking, security against unbounded-time
adversaries. For example, while the basic definition of zero-knowledge
proofs [GMR85, GMR89] guarantees that no additional information can be ob-
tained from proofs in polynomial time, statistical zero-knowledgeness guarantees
that no additional information can be obtained even in unbounded time. (Statis-
tical zero-knowledgeness was also introduced in [GMR89]). An advantage of
statistical seucrity is that it is robust against future progress on computation. For
example, statistical zero-knowledgeness guarantees that, however faster comput-
ers become in future, no additional information will be revealed from proofs.

• Security under multiple executions. The second example is defining security
under multiple executions of protocols. The motivation behind such security
is the use of cryptographic protocols on large asynchronous networks like the
Internet: The basic security of most cryptographic protocols, including zero-
knowledge proofs and secure computation, is defined in the stand-alone setting
(i.e., the setting where only a single instance of the protocol is executed at a time)
and does not necessarily provide security when multiple instances are executed
concurrently; thus, unless there is a guarantee that only a single instance of a
protocol is executed at a time on the whole network, the basic security might
not provide any security. (Indeed, somewhat counter intuitively zero-knowledge
proofs do not necessarily remain zero-knowledge when they are executed con-
currently [FS90a].)
Concurrent security is, informally speaking, security in the setting where proto-
cols are executed multiple times in an arbitrary (possibly maliciously designed)
schedule. In the case of zero-knowledge proofs, concurrent zero-knowledge

4

proof

proof

proof proof proof

Figure 1.1: Settings for concurrent zero-knowledge (left) and non-malleable zero-
knowledge (right). In the figure, P represents the prover, V represents the verifier, and
A represents the man-in-the-middle adversary.

[DNS04] guarantees zero-knowledgeness even when the prover gives multiple
proofs to the verifier concurrently in an arbitrary schedule, and non-malleable
zero-knowledge [DDN00] guarantees zero-knowledgeness even when a man-in-
the-middle adversary interacts with a prover and a receiver simultaneously (Fig-
ure 1.1). In the case of secure computation (and more generally in the case
of general cryptographic protocols), more general notions of concurrent secu-
rity are studied, and the most general one is universally composable (UC) secu-
rity [Can01], which guarantees that a protocol remains secure even when it is
concurrently executed with arbitrary (possibly maliciously designed) protocols
in an arbitrary schedule.

• Security with limited randomness resources. The third example is defining
security in the setting where perfect randomness is not always available. The
motivation behind such security is the use of cryptographic protocols on compu-
tationally weak devices like smart cards, which cannot necessarily produce good
randomness by themselves.

Resettable security is, informally speaking, security in the setting where protocols
are executed multiple times with the same randomness. Resettable security was
first introduced for zero-knowledge proofs [CGGM00, BGGL01, DGS09] and
later extended for secure computation [GS09].

• Security against “side-channel” attacks. The last example is defining security
in a setting where adversary might employ side-channel attacks. Side-channel at-
tacks significantly differ from other attacks in cryptography in that, unlike most
cryptographic attacks that obtain information about honest parties through wire-
tapping or participating in the communication among them, side-channel attacks
obtain information about honest parties by measuring physical properties of their
devices, such as the running time, power consumption, and electromagnetic ra-
diation [Koc96, KJJ99, QS01]. Surprisingly, side-channel attacks are feasible in
practice: For example, a recent work showed that full key recovery of RSA secret
keys is feasible by observing sounds on common software and hardware [GST17].
The standard definitions of most cryptographic schemes implicitly assume that

5

the adversary does not employ any side-channel attack, so it does not guarantee
any security against side-channel attacks.
Leakage resilience guarantees security even when some secret information of
honest parties is leaked to the adversary. (This leakage to the adversary is in-
troduced to model the information that the adversary obtains via side-channel
attacks.) Leakage resilience was first studied for some cryptographic primitives
such as encryption schemes and signature schemes, and later extended for zero-
knowledge proofs and secure computation (e.g., [GJS11, BGJ+13]).

Once a strengthened notion of security is introduced, the next task for cryptogra-
phers is to obtain a construction that satisfies the strengthened security notion at as low
cost as possible, where a popular way to define the cost is to define it in terms of effi-
ciency and hardness assumptions. (The ideal goal is of course to achieve the strength-
ened security notion at the same cost as the basic one.) The main benefit of reducing the
cost in terms of efficiency and hardness assumptions is that good efficiency allows us to
use the constructions in broad applications, and security under weak hardness assump-
tions allows us to have strong confidence in the security of the constructions (recall
that security proofs tell us that the constructions are secure as long as the underlying
hardness assumptions hold).

This research direction—the direction of strengthening security notions and then
providing constructions that satisfy the strengthened security notions at as low cost
as possible—is one of the main research directions in cryptography, and this thesis
follows this research direction with the focus being on concurrent security and leakage
resilience.

1.3 Our Results
In this thesis, we show four results about zero-knowledge proof and secure computation
with strong security guarantees; the first three are about zero-knowledge proofs and the
last one is about secure computation. All of these results are theoretical feasibility
results—our focus is to obtain constructions that satisfy the desired security notions
with good asymptotic efficiency and under weak hardness assumptions.

At a high level, our results can be viewed as a step to solve a fundamental problem
about concurrent security and leakage resilience, that is, the problem of constructing
secure computation protocols that satisfy concurrent security and leakage resilience
with optimal efficiency under minimum assumptions. (This problem is fundamental
because by solving it, we can obtain a strong feasibility result about concurrent secu-
rity and leakage resilience thorough the generality of secure computation.) Concretely,
each of our results concerns a natural simplified version of this fundamental problem,
where the simplification is to focus on zero-knowledge protocols rather than secure
computation3 and/or to focus on either concurrent security or leakage resilience (i.e.,
not to consider them simultaneously).

3Studying a security notion on zero-knowledge protocols is a natural first step to study it on secure
computation since zero-knowledge protocols are key building blocks of existing secure computation
protocols.

6

In what follows, we give informal descriptions of our results. Formal descriptions
of our results can be found in subsequent chapters (see the outline in Section 1.4).

1.3.1 Results about Zero-knowledge Protocols
1.3.1.1 Statistical Concurrent Non-malleable Zero-knowledge from One-way

Functions

The first result is about zero-knowledge protocols with very strong concurrent security
called statistical concurrent non-malleable zero-knowledge (statistical CNMZK).

Statistical CNMZK is a notion that is obtained by combining three security no-
tions that are mentioned in Section 1.2 (namely statistical zero-knowledge, concur-
rent zero-knowledge, and non-malleable zero-knowledge) and it guarantees that any
man-in-the-middle adversary that interacts with multiple provers and verifiers concur-
rently (Figure 1.2) cannot use any “left proofs” to give meaningful “right proofs,”
and furthermore the left proofs do not reveal any additional information even in un-
bounded time. Statistical CNMZK is currently the strongest notion of concurrent secu-
rity that is achievable for zero-knowledge proofs,4 and it can be seen as a culmination
of a long line of research about statistical zero-knowledge, concurrent zero-knowledge,
non-malleable zero-knowledge, and their combinations [BCC88, BCY91, NOVY98,
HNO+09, DNS04, RK99, KP01, PRS02, Goy13, CLP13b, PTV14, PPS15, CLP15,
DDN00, Bar02, PR08, COSV17, BPS06, GMOS07, LPTV10, LP11a].

left proofs right proofs

Figure 1.2: Man-in-the-middle adversary for statistical CNMZK. As in Figure 1.1, P
represents the prover, V represents the verifier, andA represents the man-in-the-middle
adversary.

The first statistical CNMZK protocol was recently shown by Orlandi et al.
[OOR+14], but their protocol has a drawback that it requires a seemingly much stronger
hardness assumption than standard stand-alone zero-knowledge protocols. Specifically,
even though standard zero-knowledge protocols require only the existence of one-way
functions (which is the “minimum” assumption in cryptography and known to be nec-
essary for almost all cryptographic schemes such as encryption schemes and signature
schemes [IL89, OW93]), the statistical CNMZK protocol of Orlandi et al. requires the
decisional Diffie–Hellman (DDH) assumption, which is a widely believed assumption
in cryptography but seemingly much stronger than the existence of one-way functions.

4We restrict our attention to the security notions that are achievable in the plain model, where no
trusted third party is available.

7

(A reason why the DDH assumption is considered to be much stronger than the ex-
istence of one-way functions is that the DDH assumption implies public-key encryp-
tion schemes [ElG85] while it is widely believed that obtaining public-key encryption
schemes from one-way functions is very difficult [IR89].) This state-of-the-art imme-
diately raises the following important question: Does statistical CNMZK inherently
require stronger assumptions than standard zero-knowledge?

In this thesis, we show that a statistical CNMZK protocol can be obtained under
the same assumption as standard zero-knowledge protocols. That is, we construct a
statistical CNMZK protocol under the sole assumption of the existence of one-way
functions. The first implication of this result is that the strongest concurrent security
of zero-knowledge protocols can be achieved at no additional cost in terms of hardness
assumptions. The second implication is that, since the existence of one-way functions
is as stated above the minimum assumption in cryptography, the quest for achieving
statistical CNMZK protocols from weaker assumptions is essentially completed.

1.3.1.2 Leakage-resilient Zero-knowledge from Collision-resistant Hash Func-
tions

The second result is about leakage-resilient zero-knowledge protocols, which are, as
mentioned in Section 1.2, zero-knowledge protocols that are secure against adversaries
that obtain secret information of honest parties through physical measurements.

A motivation behind this result is that the existing constructions of leakage-resilient
zero-knowledge protocols are not quite satisfactory. The first construction by Garg et
al. [GJS11] has a drawback that it has large round complexity (that is, the number of
interactions between the prover and the receiver is large). Specifically, the construction
of Garg et al. has O(poly(n)) rounds when only the existence of one-way functions is
assumed, where n is the security parameter5 and poly(·) represents a polynomial. The
round complexity of their protocol can be reduced to ω(log n) if the existence of a little
stronger cryptographic primitive, a family of collision-resistant hash functions, is as-
sumed, but it is still super-constant. (Another drawback of the construction of Garg et
al. is that it only satisfies a slightly relaxed version of leakage resilience.) The subse-
quent construction by Pandey [Pan14] has an advantage that it has only constant number
of rounds, but it has a drawback that it uses a seemingly much stronger assumption than
the existence of collision-resistant hash functions (namely the DDH assumption).

A natural question to investigate is whether this unsatisfactory state-of-the-art is
inherent—that is, whether leakage-resilient zero-knowledge protocols inherently re-
quire either large round complexity or strong hardness assumptions. Given the state-
of-the-art, a natural first step to this question is to investigate whether a constant-round
leakage-resilient zero-knowledge protocol can be constructed by assuming only the ex-
istence of collision-resistant hash functions—in other words, whether it is possible to
construct a leakage-resilient zero-knowledge protocol that has the same round com-
plexity as the protocol of Pandey [Pan14] while relying on the same assumption as (the

5The security parameter is a parameter that determines the strength of security. Informally speaking,
when the security parameter is n, the security holds against all adversaries that run in time polynomial
in n.

8

round-efficient version of) the protocol of Garg et al. [GJS11].
In this thesis, we show that neither large round complexity nor strong hardness as-

sumptions are required for leakage-resilient zero-knowledge protocols. Specifically,
we construct a constant-round leakage-resilient zero-knowledge protocol under the as-
sumption of the existence of collision-resistant hash functions. Furthermore we observe
that our protocol has an additional advantage that it is simultaneous leakage-resilient
zero-knowledge, meaning that our protocol satisfies both zero-knowledgeness and
soundness in the leakage setting. (The definition of leakage-resilient zero-knowledge
only requires that zero-knowledgeness holds in the leakage setting, and indeed the
constant-round construction of Pandey [Pan14] is not necessarily sound in the leakage
setting.) An implication of this result is that zero-knowledge protocols can have strong
security against side-channel attacks even in constant number of rounds and under a
very weak assumption.

1.3.1.3 Non-black-box Concurrent Zero-knowledge

The third result is about concurrent zero-knowledge protocols with an additional prop-
erty that the zero-knowledgeness is proven with non-black-box simulation.

This result is motivated by the following central question about concurrent zero-
knowledge protocols: Is it possible to construct a constant-round concurrent zero-
knowledge protocol? Round complexity is, as mentioned above, the number of in-
teractions between the prover and the verifier, and it is one of the most important ef-
ficiency factors of cryptographic protocols (this is because communication over net-
works is often a dominant factor of the running time of protocols). The round com-
plexity of (standard) zero-knowledge protocols is indeed very well studied, and there
exist zero-knowledge protocols that have only four rounds under standard assump-
tions [FS90b, BJY97].6

Unlike standard zero-knowledge protocols, the existing constructions of concurrent
zero-knowledge protocols require super-constant number of rounds.7 Concretely, the
state-of-the-art is the work by Prabhakaran, Rosen, and Sahai [PRS02], which obtained
aω(log n)-round construction by refining the analysis of previous works [RK99, KP01].
Although concurrent zero-knowledge protocols have been extensively studied since
then, and in particular it has been shown that constant-round concurrent zero-knowledge
is possible in various relaxed settings (e.g., the setting where there is an a-priori upper
bound on the number of sessions or players [Bar01, GJO+13] and the setting where
a relaxed security definition is sufficient [PV08]), the ω(log n)-round construction
of [PRS02] remains to be the best construction for 15 years.

Indeed, there is an evidence that constructing constant-round concurrent zero-
knowledge protocols is inherently difficult: There is a negative result stating that a

6It is known that two-round zero-knowledge protocols are impossible [GO94], and constructing a
three-round zero-knowledge protocol is a major open problem in the area of zero-knowledge proofs.
(There exist three-round zero-knowledge protocols that are obtained under strong non-standard assump-
tions, e.g., [HT98]. In this thesis, we focus on constructions that can be obtained under standard assump-
tions.)

7Again, there exist constant-round concurrent zero-knowledge protocols that are obtained under
strong non-standard assumptions [CLP13b, PPS15, CLP15].

9

constant-round concurrent zero-knowledge protocol is impossible to construct as long
as the zero-knowledgeness is proven under a commonly used technical called black-box
simulation [CKPR02]. Black-box simulation is a technique that is used to prove zero-
knowledgeness in the very first work of zero-knowledge proofs [GMR85, GMR89], and
had been the only technique to prove zero-knowledgeness for more than a decade. This
situation changed dramatically when Barak [Bar01] introduced the first non-black-box
simulation technique, with which he showed that some of the black-box impossibility re-
sults can be overcome. However, constant-round concurrent zero-knowledge protocols
have been out of our reach even with his technique (and even with the other non-black-
box technique by Bitansky and Paneth [BP12, BP13, BP15]). Indeed, even constructing
a super-constant-round concurrent zero-knowledge protocol by using Barak’s technique
was considered to be very difficult.

A step towards overcoming the black-box impossibility result of constant-round
concurrent zero-knowledge was taken by Goyal [Goy13], who showed a non-black-
box simulation technique (which is based on that of Barak [Bar01]) that can be used
to obtain a concurrent zero-knowledge protocol. His non-black-box simulation tech-
nique is quite powerful and was used in a subsequent work to obtain new results about
concurrent security [GGS15].

The non-black-box technique of Goyal [Goy13] is however still not powerful enough
to be used for constant-round concurrent zero-knowledge protocols. (Indeed, his con-
current zero-knowledge protocol has poly(n) rounds.) Thus, studying more on non-
black-box simulation techniques and developing new ones that can be used for concur-
rent zero-knowledge is still an important research direction.

In this thesis, we give another non-black-box simulation technique (which is also
based on that of Barak [Bar01]) that can be used to obtain a concurrent zero-knowledge
protocol. Our technique is, just like the technique of Goyal [Goy13], not powerful
enough to be used for constant-round concurrent zero-knowledge protocols. (Indeed,
our concurrent zero-knowledge protocol also has poly(n) rounds.) However, our tech-
nique is different from that of Goyal [Goy13], and it is arguably much simpler. Hence,
even though our technique itself does not directly lead to constant-round concurrent
zero-knowledge protocols, it might become a useful starting point in future.

1.3.2 Result about Secure Computation
The last result is about concurrently secure multi-party computation with an additional
advantage that the underlying cryptographic primitives are used only in a ”black-box”
way. Before elaborating on this result, we first give some backgrounds.

Currently the most powerful notion of concurrent security for secure computation
(and for cryptographic protocols in general) is, as mentioned in Section 1.2, UC se-
curity [Can01]. UC security guarantees concurrent security in a strong sense since
it guarantees security even in the setting where a protocol is executed concurrently
with arbitrary (possibly maliciously designed) other protocols in an arbitrary schedule.
Furthermore, as observed by [CLP16], UC security also guarantees “environmental
friendliness,” which guarantees that the security of any other protocol is not adversely
affected when they are concurrently executed with any UC-secure protocol.

10

UC security however has a big drawback that it is too strong to achieve. Specifi-
cally, it is known that large classes of functions cannot be computed in the UC-secure
way in the standard setting of secure computation, i.e., the setting where no trusted
third party is available [CF01, CKL06]. (It is known, however, that computing any
function in the UC-secure way is possible if a little help from trusted third party is
available [CLOS02].)

Because of this drawback, several alternatives to UC security have been pro-
posed, and one of the most popular ones among them is angel-based UC secu-
rity [PS04, CLP16]. Angel-based UC security is a relaxed version of UC security and
considered to guarantee meaningful security in many situations. Angel-based UC secu-
rity also has an advantage that, unlike UC security, angel-based UC security is possible
to achieve without any help from trusted third party [PS04].

The existing constructions of angel-based UC secure computation, however, have
disadvantages. Specifically, the constructions by early works [PS04, MMY06, CLP10,
CLP16, GLP+15] are not satisfactory since they do not make black-box use of the under-
lying cryptographic primitives, where black-box use of a primitive is the use through
the input/output interfaces. (Non-black-box use of a primitive, in contrast, uses the
code that implements the primitive, and is considered to be unsatisfactory since it often
makes the whole construction computationally inefficient.) The only existing construc-
tion that makes only black-box use of the underlying primitives is the one by Lin and
Pass [LP12], but their construction is also not satisfactory since it has polynomially
many number of rounds.

Summarizing the state-of-the-art, a question that is left open by previous works is
whether angel-based UC secure computation inherently requires either non-black-box
use of primitives (which leads to poor efficiency) or large round complexity (which
also leads to poor efficiency), and this is the question that we answer negatively in this
thesis. Concretely, we give a secure multi-party computation protocol that satisfies
angel-based UC security, has only ω(log2 n) rounds, and makes only black-box use of
the underlying cryptographic primitive.8 Since black-box use of primitives and small
round complexity are both related to efficiency, this result roughly implies that very
strong concurrent security of secure computation can be achieved with relatively good
efficiency.

1.4 Outline
In Chapter 2, we give basic notions and definitions that are used throughout this the-
sis. We show our four results formally in Chapters 3, 4, 5, 6, where each of these
chapters consists of detailed background, an overview of the techniques, preliminar-
ies, a formal description of the protocol, and a formal proof of security. (Concretely,
the result about concurrent non-malleable zero-knowledge is shown in Chapter 3, the
result about leakage-resilient zero-knowledge is shown in Chapter 4, the result about
non-black-box zero-knowledge is shown in Chapter 5, and the result about secure com-

8Just like the construction by Lin and Pass [LP12], our construction can be constructed from a basic
cryptographic primitive called oblivious transfer.

11

putation is shown in Chapter 6. These chapters are independent of each other and can
be read in any order.) In Chapter 7 we give a conclusion.

12

Chapter 2

Preliminaries

In this chapter, we give basic notations and definitions that are used throughout this
thesis. (The notions and definitions that are used solely in a single chapter are given in
the preliminaries section of that chapter.) The description in this chapter is based on
those in several textbooks [Gol01, Gol04, KL14].

2.1 Notations
Throughout this thesis, we use n to denote a parameter called security parameter. Al-
most all algorithms in this thesis take the security parameter as input and run in poly-
nomial time in n. (Formally, the security parameter is given as an n-bit unary string 1n

so that the input length is polynomially related with n.)
We use N to denote the set of all natural numbers, poly(·) to denote an arbitrary

polynomial, and ⊥ to denote a special error symbol. For any k ∈ N, we use [k] to
denote the set {1, 2, . . . , k}. For any randomized algorithm Algo, we use Algo(x; r) to
denote the output of Algo with input x and randomness r, and Algo(x) to denote the
random variable that represents the output of Algo with input x and uniformly chosen
randomness. Additionally, for any random variable X, we use Algo(X) to denote the
random variable that represents the output of Algo with input x and uniformly chosen
randomness, where x is chosen according to the distribution of X.

We use ppt as an abbreviation of “probabilistic polynomial time,” and ITM as an
abbreviation of “interactive Turing machine.” (Interactive Turing machines are, roughly
speaking, Turing machines that have ability to interact with each other via their “com-
munication tapes.” For a formal definition, see [Gol01].) For any two ITMs A and B,
we use the following notations.

• trans
[
A(x)↔ B(y)

]
is a random variable representing the transcript of the inter-

action between A and B with input x and y respectively.

• outputA
[
A(x)↔ B(y)

]
(resp., outputB

[
A(x)↔ B(y)

]
) is a random variable rep-

resenting the output of A (resp., B) in the interaction between A and B with input
x and y respectively.

13

• viewA
[
A(x)↔ B(y)

]
(resp., viewB

[
A(x)↔ B(y)

]
) is a random variable represent-

ing the view of A (resp., B) in the interaction between A and B with input x and y
respectively, where the view of an ITM during an interaction with another ITM
consists of the input and randomness to that ITM plus all the messages that it
received from the other ITM during the interaction.

2.2 Basic Definitions
Negligible functions. A function f (·) is negligible if f grows slower than the inverse
of any polynomial. More precisely, a function f is negligible if for every polynomial
p(·), there exists N ∈ N such that for every n > N, it holds f (n) < 1/p(n). Throughout
this thesis, we use negl(·) to denote an arbitrary negligible function.

Indistinguishability. Two probabilistic ensembles9 X = {Xk}k∈N and Y = {Yk}k∈N are
computationally indistinguishable, denoted by X c≈ Y, if for every ppt algorithm (or
distinguisher) D, there exists a negligible function negl(·) such that for every n ∈ N,
we have ∣∣∣∣∣Pr [D(1n, Xn) = 1] − Pr [D(1n, Yn) = 1]

∣∣∣∣∣ < negl(n) . (2.1)

If Equation (2.1) holds for every (computationally unbounded) D, two probabilistic
ensembles X and Y are statistically indistinguishable, denoted by X s≈ Y.

One-way functions. A function f : {0, 1}∗ → {0, 1}∗ is one-way if the following two
conditions hold.

• Easy to compute: There exists a deterministic polynomial-time algorithm M
such that M(x) = f (x) holds for every x ∈ {0, 1}∗.

• Hard to invert: For any ppt algorithm (or adversary)A, consider the following
probabilistic experiment Expinv(f ,A, n) betweenA and a challenger.

1. The challenger chooses uniformly random x ∈ {0, 1}n and computes y =
f (x).

2. On input 1n and y, the adversaryA outputs x′.

Then, for any ppt adversary A, there exists a negligible function negl(·) such
that for every n ∈ N, it holds Pr

[
f (x′) = y

] ≤ negl(n) in the experiment
Expinv(f ,A, n).

9A probability ensemble is a family of random variables.

14

Pseudorandom generators. A deterministic polynomial-time algorithm G is a pseu-
dorandom generator if it satisfies the following two properties.

• Expansion: There exists a function ℓ : N→ N such that ℓ(n) > n holds for every
n ∈ N, and that |G(s)| = ℓ(n) holds for every s ∈ {0, 1}∗.

• Pseudorandomness: For any ppt distinguisher D, there exists a negligible func-
tion negl(·) such that for every n ∈ N, we have∣∣∣∣∣Pr [D(r) = 1] − Pr [D(G(s)) = 1]

∣∣∣∣∣ < negl(n)

where r is chosen uniformly at random from {0, 1}ℓ(n) in the first probability and
s is chosen uniformly at random from {0, 1}n in the second probability. ^

Collision-resistant hash functions. A family of functions H = {hs : {0, 1}∗ →
{0, 1}|s|}s∈{0,1}∗ is called collision resistant if the following two conditions hold.

• Easy to compute: There exists a deterministic polynomial-time algorithm M
such that M(s, x) = hs(x) holds for every s ∈ {0, 1}∗ and x ∈ {0, 1}∗.

• Hard to find collision: For any ppt adversaryA, consider the following proba-
bilistic experiment Expcoll(H ,A, n) betweenA and a challenger.

1. The challenger chooses hs ∈ Hn uniformly at random, whereHn
def
= {hs ∈ H

s.t. |s| = n}. (Formally, the challenger chooses s ∈ {0, 1}n uniformly at
random.)

2. On input 1n and hs, the adversaryA outputs x, x′.

Then, for any ppt adversaryA, there exists a negligible function negl(·) such that
for every n ∈ N, it holds Pr [x , x′ ∧ hs(x) = hs(x′)] ≤ negl(n) in the experiment
Expcoll(H ,A, n).

We call the functions in a collision-resistant family H “collision-resistant hash func-
tions.”

Remark 2.1. Compared with the definitions in textbooks like [Gol04, KL14], the above
definition is simplified since it is assumed that (1) all strings correspond to valid keys
(i.e., hs ∈ H exists for every s ∈ {0, 1}n) and that (2) the image is {0, 1}n when the key
length is n (i.e., the image of hs is {0, 1}n when |s| = n.) All the results in this thesis
hold even when the definitions in [Gol04, KL14] are used.

Decisional Diffie–Hellman (DDH) assumption. Let GenG be a ppt algorithm that,
on input 1n, outputs a description of a cyclic groupG, its order q, and a generator g ∈ G.
Then, the DDH assumption on GenG is defined as follows. (In the following, we use
Zq to denote the set {0, . . . , q − 1}.)

15

Definition 2.1 (DDH assumption). The DDH assumption holds on GenG if for any
ppt algorithmA, it holds∣∣∣∣∣∣∣∣∣∣∣∣

Pr
[
A(G, q, g, gx, gy, gxy) = 1

∣∣∣∣∣∣ (G, q, g)← GenG(1n);
randomly choose x, y ∈ Zq

]
− Pr

[
A(G, q, g, gx, gy, gz) = 1

∣∣∣∣∣∣ (G, q, g)← GenG(1n);
randomly choose x, y, z ∈ Zq

]
∣∣∣∣∣∣∣∣∣∣∣∣ < negl(n).

We say that the DDH assumption holds if there exists a ppt algorithm GenG such that
the DDH assumption holds on GenG. ^

Remark 2.2. It is well known the DDH assumption implies the existence of one-way
functions (this is because the DDH assumption implies the hardness of the discrete log-
arithm problem). Also, it is well known that the DDH assumption implies the existence
of collision-resistant hash function families when the underlying group has a prime or-
der (this is because a family of collision-resistant hash function can be constructed by
relying on the hardness of the discrete-logarithm problem in prime-order groups). For
details, see textbooks like [KL14].

2.3 Commitment Schemes
In this section, we recall security definitions of commitment schemes. In subsequent
chapters, we use commitment schemes with various advanced security notions as build-
ing blocks of our protocols.

2.3.1 Basic Definitions
We first describe the basic security definitions of commitment schemes. Commitment
schemes, often described as a digital equivalent of sealed envelopes, are two-party pro-
tocols between a committer and a receiver. Commitment schemes have two phases: the
commit phase and the decommit phase. In the commit phase, the committer commits to
a secret input v ∈ {0, 1}n by interacting with the receiver; the transcript of the commit
phase is called the commitment. In the decommit phase, the committer decommits the
commitment to v by sending the receiver a message called the decommitment; the re-
ceiver then outputs either 1 (accept) or 0 (reject). It is required that the receiver accepts
the decommitment with probability 1 when both the committer and the receiver behave
honestly. Additionally, it is required that the committer cannot decommit a commit-
ment to two different values and that the committed value is hidden from the receiver
in the commit phase; the former is called the binding property and the latter is called
the hiding property. Formal definitions of these two properties are given below.

Definition 2.2 (Binding property). For a commitment scheme ⟨C,R⟩ and any (not nec-
essarily ppt) adversarial committer C∗, consider the following probabilistic experiment
Expbind(⟨C,R⟩,C∗, n, z) for any n ∈ N and z ∈ {0, 1}∗.

16

On input 1n and auxiliary input z, the adversary C∗ interacts with an hon-
est receiver in the commit phase of ⟨C,R⟩ and then outputs two decommit-
ments, (v0, d0) and (v1, d1). Then, C∗ is said to win the experiment if v0 , v1

but the receiver accepts both (v0, d0) and (v1, d1) in the decommit phase.

Then, ⟨C,R⟩ is statistically binding if for any sequence of auxiliary inputs {zn}n∈N, the
probability that C∗ wins the experiment Expbind(⟨C,R⟩,C∗, n, zn) is negligible. If the
binding property holds only against ppt adversarial committers, ⟨C,R⟩ is said to be
computationally binding. ^

Definition 2.3 (Hiding property). For a commitment scheme ⟨C,R⟩ and any
ppt adversarial receiver R∗, consider the following probabilistic experiment
Exphide

b (⟨C,R⟩,R∗, n, z) for any b ∈ {0, 1}, n ∈ N, and z ∈ {0, 1}∗.

On input 1n and auxiliary input z, the adversary R∗ chooses a pair of chal-
lenge values v0, v1 ∈ {0, 1}n and then interacts with an honest committer in
the commit phase of ⟨C,R⟩, where the committer commits to vb. The output
of the experiment is the view of R∗

Let Exphide
b (⟨C,R⟩,R∗, n, z) denote the output of experiment Exphide

b (⟨C,R⟩,R∗, n, z).
Then, ⟨C,R⟩ is computationally hiding if the following indistinguishability holds.{

Exphide
0 (⟨C,R⟩,R∗, n, z)

}
n∈N,z∈{0,1}∗

c≈
{
Exphide

1 (⟨C,R⟩,R∗, n, z)
}

n∈N,z∈{0,1}∗

If the indistinguishability holds statistically, ⟨C,R⟩ is said to be statistically hiding.
^

Unless stated otherwise, all the commitment schemes in this thesis are statistically bind-
ing and computationally hiding. We say that a commitment is accepting if the receiver
does not abort in the commit phase, and valid if there exists a value to which the commit-
ment can be decommitted (i.e., if there exists a decommitment that the verifier accepts
in the decommit phase). A committed value of a commitment is a value to which the
commitment can be decommitted; we define the committed value of an invalid com-
mitment as ⊥.

Existing construction: Naor’s commitment scheme. In the following we describe
Naor’s statistically binding commitment scheme, which can be constructed from one-
way functions [Nao91, HILL99].

• Commit phase. The commit phase consists of two rounds. In the first round,
the receiver sends a random 3n-bit string r ∈ {0, 1}3n. In the second round,
the committer chooses a random seed s ∈ {0, 1}n for a pseudorandom genera-
tor PRG : {0, 1}n → {0, 1}3n and then sends PRG(s) when committing to 0 and
sends PRG(s) ⊕ r when committing to 1.

• Decommit phase. In the decommit phase, the committer reveals the seed s.

17

• Security. Naor’s commitment scheme is statistically binding and computational
hiding. Furthermore, the binding and hiding properties hold even when the same
first-round message r is used in multiple commitments.

• Committing to strings. For any ℓ ∈ N, one can commit to an ℓ-bit string by sim-
ply committing to each bit by using Naor’s commitment scheme. Furthermore,
the binding and hiding properties hold even when the same first-round message
r is used in all the commitments.

2.3.2 Extractability
We next recall the definition of extractable commitment schemes from [PW09].
Roughly speaking, a commitment scheme is extractable if there exists an expected
polynomial-time oracle machine, called extractor E, such that for any adversarial com-
mitter C∗ that gives a commitment to honest receiver, EC∗ extracts the committed value
of the commitment from C∗ as long as the commitment is valid. We note that when
the commitment is invalid, E can output an arbitrary garbage value; this is called over-
extraction. A formal definition is given below.

Definition 2.4 (Extractability). A commitment scheme ⟨C,R⟩ is extractable if there ex-
ists an expected polynomial-time extractor E such that for any ppt committer C∗, the
extractor EC∗ outputs a pair (τ, σ) that satisfies the following properties.

• τ is identically distributed with the view of C∗ that interacts with an honest re-
ceiver R in the commit phase of ⟨C,R⟩. Let cτ be the commitment that C∗ gives in
τ.

• If cτ is accepting, then σ , ⊥ except with negligible probability.

• If σ , ⊥, then it is statistically impossible to decommit cτ to any value other than
σ. ^

Existing construction. There exists a four-round extractable commitment scheme
based on one-way functions [PW09], which satisfies extractability in a stronger sense:
Extractability holds even against adversarial committers that give polynomially many
commitments in parallel. (The extractor outputs (τ, σ1, σ2, . . .) for such committers.)
This extractable commitment scheme is described in Figure 2.1.

2.3.3 Concurrent Extractability
We next recall the notion of concurrently extractable commitment schemes. Roughly
speaking, a commitment scheme is concurrently extractable if there exists a polynomial-
time extractor such that for any adversarial committer that commits to polynomially
many values concurrently, the extractor can extract the committed values of all the
valid commitments from the committer.

18

Let Com be any two-round statistically binding commitment scheme that can be
constructed from one-way functions (e.g., Naor’s commitment scheme in Sec-
tion 2.3.1).

Commit Phase
The committer C and the receiver R take common input 1n, and C additionally takes
private input v ∈ {0, 1}n. To commit to v, the committer C does the following with
the receiver R.

commit stage. C chooses n independent random pairs {(ai
0, a

i
1)}i∈[n] such that ai

0⊕
ai

1 = v for every i ∈ [n]. Then, C commits to ai
0 and ai

1 for every i ∈ [n] by
using Com. For each i ∈ [n] and b ∈ {0, 1}, let ci

b be the commitment to ai
b.

challenge stage. R sends uniformly random bits {ei}i∈[n] to C.

reply stage. C decommits ci
ei

to ai
ei

for every i ∈ [n].

Decommit Phase
C sends v to R and decommits ci

0 and ci
1 to ai

0 and ai
1 for every i ∈ [n]. Then, R

checks whether a0
0 ⊕ a0

1 = · · · = an
0 ⊕ an

1 = v.

Figure 2.1: Extractable commitment scheme of [PW09].

Existing construction. There exists a ω(log n)-round concurrently extractable com-
mitment based on one-way functions [MOSV06]. This is an abstraction of the preamble
stage of the concurrent zero-knowledge protocol of Prabhakaran et al. [PRS02], and its
extractor performs the extraction by rewinding the adversarial committer according to
the carefully designed rewinding strategy of [PRS02, PTV14]. A detailed description
of this scheme is given in Figure 2.2. We remark that this scheme has a parameter
ℓ, which is the number of extractable commitments that are generated in the commit
phase. (In [MOSV06], ℓ = ω(log n).)

2.3.3.1 Robust Concurrent Extraction Lemma

On the concurrently extractable commitment scheme CECom of Micciancio et al.
[MOSV06], a useful lemma called the robust concurrent extraction lemma was shown
by Goyal et al. [GLP+15]. Roughly speaking, the robust concurrent extraction lemma
states that when the adversarial committer additionally participates in an external pro-
tocol, the values that are committed to by the adversarial committer can be extracted
without “rewinding” the external protocol. More precisely, consider any ppt adversar-
ial committer A that commits to multiple values in concurrent sessions of CECom—
these sessions are denoted as the right sessions—and simultaneously participates in an
execution of an arbitrary protocol Π B ⟨B, A⟩ with an honest B—this session is de-

19

CECom is based on the extractable commitment scheme ExtCom of Pass and Wee
[PW09] in Figure 2.1, which consists of three stages—commit, challenge, and
reply.

Commit Phase

The committer C and the receiver R take common input 1n and parameter ℓ.
(In [MOSV06], ℓ = ω(log n).) To commit to v ∈ {0, 1}n, the committer C com-
mits to v concurrently ℓ times by using ExtCom as follows.

1. C and R execute commit stage of ExtCom ℓ times in parallel.

2. C and R do the following for each j ∈ [ℓ] in sequence.

(a) R sends the challenge message of ExtCom for the j-th session.
(b) C sends the reply message of ExtCom for the j-th session.

Decommit Phase

C sends v to R and decommits all the ExtCom commitments.

Figure 2.2: Concurrently extractable commitment of [MOSV06].

noted as the left session. The robust concurrent extraction lemma states that for every
A, there exists an extractor E that extracts the committed values fromA in every valid
right session without “rewinding” the external party B in the left session. The extrac-
tor E fails with probability that is exponentially small in ℓ − O(k log n), where ℓ is the
parameter of CECom and k is the round complexity of Π. Hence, E fails only with
negligible probability if we set ℓ B ω(k log n).

A formal description of the robust concurrent extraction lemma is given below.
(Large parts of the text below are taken from [GLP+15].)

The external protocol Π. Let Π B ⟨B, A⟩ be an arbitrary two-party protocol. Let
domB(n) denote the domain of the input for B and k B k(n) denote the round complexity
of Π.

The robust-concurrent attack. Let x ∈ domB(n). In the robust-concurrent attack,
the adversaryA interacts with a special (possibly super-polynomial-time) partyE called
the online extractor. The online extractor E simultaneously participates in one exe-
cution of Π and several executions of CECom, where E interacts with A as an hon-
est B(1n, x) in the execution of Π and interacts with A as an honest receiver in each
execution of CECom. The scheduling of all messages in all sessions—Π as well as
CECom—is controlled byA. WhenA successfully completes a CECom commitment
s, the online extractor E sends a value αs toA.

For n ∈ N, x ∈ domB(n), z ∈ {0, 1}∗, let RealAE,Π(n, x, z) denote the following prob-
abilistic experiment: On inputs 1n, x, z, the experiment starts an execution ofA(1n, z),

20

which launches the robust-concurrent attack by interacting with E(1n, x, z); the output
of the experiment is the view of A and the output of B (who was emulated by E). Let
RealAE,Π(n, x, z) denote the output of RealAE,Π(n, x, z).

The robust concurrent extraction lemma. Roughly speaking, the lemma states that
there exists an interactive Turing machine, called the robust simulator, that statistically
simulates RealAE,Π(n, x, z) even if the value that the online extractor E returns to A at
the end of each successful CECom commitment is the committed value of this com-
mitment. Furthermore, the robust simulator does not “rewind” B and runs in time poly-
nomial in the number of the sessions opened by A. A formal statement of the lemma
is given below.

Lemma 2.1 (Robust Concurrent Extraction Lemma [GLP+15]). There exists an inter-
active Turing machineS called a robust simulator such that for every adversaryA and
every two-party protocol Π B ⟨B, A⟩, there exists a party E called an online extractor
such that for every n ∈ N, x ∈ domB(n), and z ∈ {0, 1}∗, the following conditions hold:

1. Validity constraint. For every view ρ of A in RealAE,Π(n, x, z) and for every
CECom commitment s appearing in ρ, if there exists a unique value v ∈ {0, 1}n
to which the commitment s can be decommitted, then

αs = v,

where αs is the value that E sends toA at the end of s.

2. Statistical simulation. Let k = k(n) be the round complexity of Π. Then the
statistical distance between RealAE,Π(n, x, z) and outputB,S

[
B(1n, x)↔ SA(1n, z)

]
is given by

∆(n) ≤ 2−Ω(ℓ−k·log T (n)),

where outputB,S
[
B(1n, x)↔ SA(1n, z)

]
denotes the joint outputs of B(1n, x) and

S(1n, z) after an interaction between them, ℓ B ℓ(n) is the parameter of CECom,
and T (n) is the number of the CECom commitments betweenA and E. Further-
more, the running time of S is poly(n) · T (n)2.

2.3.4 Non-malleability
We next recall the definition of non-malleable commitment schemes from [LPV08].
For convenience, we use a slightly different presentation (based on indistinguishability
rather than simulation), which is used in [LP09, LP11a]. Let ⟨C,R⟩ be a tag-based
commitment scheme (i.e., ⟨C,R⟩ is a commitment scheme that takes an n-bit string—a
tag—as an additional input). For any man-in-the-middle adversary M, consider the
following experiment. On input security parameter n ∈ N and auxiliary input z ∈
{0, 1}∗,M participates in one left and one right interactions simultaneously. In the left
interaction,M interacts with a committer of ⟨C,R⟩ and receives a commitment to value
v using identity id ∈ {0, 1}n of its choice. In the right interaction, M interacts with a

21

receiver of ⟨C,R⟩ and gives a commitment using identity ĩd of its choice. Let ṽ be the
value thatM commits to on the right. If the right commitment is invalid or undefined,
ṽ is defined to be ⊥. If id = ĩd, value ṽ is also defined to be ⊥. Let mim(⟨C,R⟩,M, v, z)
denote a random variable representing ṽ and the view ofM in the above experiment.

Definition 2.5 (Non-malleability). A commitment scheme ⟨C,R⟩ is non-malleable if for
any ppt man-in-the-middle adversaryM, the following are computationally indistin-
guishable.

• {mim(⟨C,R⟩,M, v, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

• {mim(⟨C,R⟩,M, v′, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗ ^

Non-malleability w.r.t. κ-round protocols. We also recall the definition of non-
malleability w.r.t. κ-round protocols from [LP09]. In [LP09], this property is also re-
ferred to as κ-robustness. We refer to this property as non-malleability w.r.t. κ-round
protocols to distinguish it from the κ-robustness for CCA-secure commitment schemes,
which is also used in this thesis.

Consider a man-in-the-middle adversaryM that participates in a left interaction—
communicating with a machine B—and a right interaction—communicating with a
receiver of a commitment scheme ⟨C,R⟩, where M chooses the identity in the right
interaction. We denote by mim(⟨C,R⟩, B,M, y, z) the random variable consisting of
the view of M(z) in a man-in-the-middle execution when communicating with B(y)
on the left and an honest receiver on the right, combined with the values that M(z)
commits to on the right. Intuitively, we say that ⟨C,R⟩ is non-malleable w.r.t. B if
mim(⟨C,R⟩, B,M, y1, z) and mim(⟨C,R⟩, B,M, y2, z) are indistinguishable whenever in-
teractions with B(y1) and B(y2) cannot be distinguished.

Definition 2.6. Let ⟨C,R⟩ be a commitment scheme and B be a ppt ITM. We say that the
commitment scheme ⟨C,R⟩ is non-malleable w.r.t. B if the following holds: For every
two sequences {y1

n}n∈N and {y2
n}n∈N, if for every ppt ITMA it holds{

viewA
[
B(1n, y1

n)↔ A(1n, z)
]}

n∈N,z∈{0,1}∗
c≈
{
viewA

[
B(1n, y2

n)↔ A(1n, z)
]}

n∈N,z∈{0,1}∗
,

it also holds that for every ppt man-in-the-middle adversaryM,{
mim(⟨C,R⟩, B,M, y1

n, z)
}

n∈N,z∈{0,1}∗
c≈
{
mim(⟨C,R⟩, B,M, y2

n, z)
}

n∈N,z∈{0,1}∗
.

We say that ⟨C,R⟩ is non-malleable w.r.t. κ-round protocols if ⟨C,R⟩ is non-malleable
w.r.t. any machine B that interacts with the man-in-the-middle adversary in κ rounds.
^

2.3.5 CCA Security
We next describe the definitions of CCA security and κ-robustness of commitment
schemes [CLP10, CLP16]. (More precisely, we recall the definitions of CCA secu-
rity and κ-robustness w.r.t. the committed-value oracle [LP12].)

22

CCA security. Roughly speaking, a tag-based commitment scheme ⟨C,R⟩ (i.e., a
commitment scheme that takes an n-bit string—a tag—as an additional input) is
CCA-secure if it is hiding even against adversary A that interacts with the following
committed-value oracle: The committed-value oracle O interacts with A as an honest
receiver in many concurrent sessions of the commit phase of ⟨C,R⟩ using tags chosen
adaptively byA; at the end of each session, if the commitment of this session is invalid
or has multiple committed values, O returns ⊥ to A; otherwise, O returns the unique
committed value toA.

More precisely, CCA-secure commitment schemes are defined as follows. Con-
sider the following probabilistic experiment INDb(⟨C,R⟩,A, n, z) for each b ∈ {0, 1}.
On input 1n and auxiliary input z, adversaryAO adaptively chooses a pair of challenge
values v0, v1 ∈ {0, 1}n and an n-bit tag id ∈ {0, 1}n. Then, AO interacts with the chal-
lenger and obtains a commitment to vb with tag id. Let y be the output ofA. The output
of the experiment is ⊥ ifA sends O any commitment using tag id. Otherwise, the out-
put of the experiment is y. Let INDb(⟨C,R⟩,A, n, z) denote the output of experiment
INDb(⟨C,R⟩,A, n, z).

Definition 2.7 (CCA security). Let ⟨C,R⟩ be a tag-based commitment scheme andO be
the committed-value oracle of ⟨C,R⟩. Then, ⟨C,R⟩ is CCA-secure (w.r.t the committed-
value oracle) if for any ppt adversaryA, the following indistinguishability holds.

{IND0(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗
c≈ {IND1(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗ .

^

In the experiment, the session between the challenger and A is called the left session,
and the sessions betweenA and O are called the right sessions.

If ⟨C,R⟩ is CCA secure only against adversaries that start a single session with O,
we say that ⟨C,R⟩ is one-one CCA secure. That is, one-one CCA security is defined
as follows. Let one-session committed-value oracle be an oracle that is the same as
the committed-value oracle except that it interacts with the adversary only in a single
session of the commit phase of ⟨C,R⟩. Then, one-one CCA security is defined by replac-
ing the committed-value oracle in the definition of CCA security with the one-session
committed-value oracle.

Robustness. Roughly speaking, a tag-based commitment scheme is κ-robust if for
any adversaryA and any ITM B, the joint output of a κ-round interaction betweenAO
and B can be simulated in polynomial time.

Definition 2.8. Let ⟨C,R⟩ be a tag-based commitment scheme and O be the committed-
value oracle of ⟨C,R⟩. For any constant κ ∈ N, we say that ⟨C,R⟩ is κ-robust (w.r.t. the
committed-value oracle) if there exists a ppt oracle machine (or simulator) S such that
for any ppt adversaryA and any κ-round ppt ITM B, the following are computationally
indistinguishable:

•
{
outputB,AO

[
B(1n, x, y)↔ AO(1n, x, z)

]}
n∈N,x,y,z∈{0,1}n

23

•
{
outputB,SA

[
B(1n, x, y)↔ SA(1n, x, z)

]}
n∈N,x,y,z∈{0,1}n

⟨C,R⟩ is robust if it is κ-robust for any constant κ. ^

Intuitively, the κ-robustness guarantees that the security of any κ-round protocol
(say, the hiding property of a κ-round commitment scheme) holds even against the ad-
versary that interacts with O. In fact, it is easy to see that the following proposition
holds.

Proposition 2.1. Let ⟨C,R⟩ be a κ-robust commitment scheme for a constant κ ∈ N,
and B be any κ-round ppt ITM. Let {y1

n}n∈N and {y2
n}n∈N be any two sequences such that

for every ppt adversaryA′,

•
{
outputB,A′

[
B(1n, x, y1

n)↔ A′(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n
and

•
{
outputB,A′

[
B(1n, x, y2

n)↔ A′(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

are computationally indistinguishable. Then, for every ppt adversaryA,

•
{
outputB,AO

[
B(1n, x, y1

n)↔ AO(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n
and

•
{
outputB,AO

[
B(1n, x, y2

n)↔ AO(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

are computationally indistinguishable.

Proof . From the definition of κ-robustness, there exists ppt S such that for each b ∈
{1, 2}, the following are computationally indistinguishable.

•
{
outputB,AO

[
B(1n, x, yb

n)↔ AO(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

•
{
outputB,SA

[
B(1n, x, yb

n)↔ SA(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

Also, from the assumption of the proposition, the following are computationally indis-
tinguishable. (Notice that SA is ppt since bothA and S are ppt.)

•
{
outputB,S

[
B(1n, x, y1

n)↔ SA(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

•
{
outputB,S

[
B(1n, x, y2

n)↔ SA(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

The proposition follows from these two indistinguishabilities. □

2.4 Interactive Proofs
In this section, we recall security definitions of interactive proofs [GMR89]. In sub-
sequent chapters, we use interactive proofs with various advanced security notions as
building blocks of our protocols.

24

2.4.1 Basic Definitions
We first describe the basic security definitions of interactive proof systems. Roughly
speaking, an interactive proof system is a two-party protocol between a prover and a
verifier such that the prover can convince the verifier that an instance x belongs to an
language L. A formal definition is given below. (In this thesis, we focus on interactive
proofs forNP languages, where the prover is assumed to know a witness w for x ∈ L.)

Definition 2.9 (Interactive Proof System). For anNP language L with witness relation
RL, a pair of interactive Turing machines ⟨P,V⟩ is an interactive proof for L if it satisfies
the following properties.

• Completeness: For every x ∈ L and w ∈ RL(x),

Pr
[
outputV [P(x,w)↔ V(x)] = 1

]
= 1 .

• Soundness: For every computationally unbounded Turing machine P∗, there ex-
ists a negligible function negl(·) such that for every x < L and z ∈ {0, 1}∗,

Pr
[
outputV [P∗(x, z)↔ V(x)] = 1

]
= negl(|x|) .

If the soundness condition holds only against every ppt Turing machine, the pair ⟨P,V⟩
is an interactive argument. ^

2.4.2 Witness Indistinguishability
We next describe the definition of witness indistinguishability of interactive
proofs [FS90a]. Roughly speaking, witness indistinguishability guarantees that a proof
with a witness w1 is indistinguishable from a proof with another witness w2. A formal
definition is given below.

Definition 2.10 (Witness indistinguishability). An interactive proof (or argument) sys-
tem ⟨P,V⟩ for anNP language L with witness relation RL is said to be witness indistin-
guishable if for every ppt adversarial verifier V∗ and for every two sequences {w1

x}x∈L

and {w2
x}x∈L such that w1

x,w
2
x ∈ RL(x) for every x ∈ L, the following indistinguishability

holds. {
viewV∗

[
P(x,w1

x)↔ V∗(x)
]}

x∈L

c≈
{
viewV∗

[
P(x,w2

x)↔ V∗(x)
]}

x∈L
.

If the indistinguishability holds statistically, ⟨P,V⟩ is said to be statistically witness
indistinguishable. ^

Existing construction: Blum’s Hamiltonian-cycle protocol. In the following, we
describe (a parallel version of) Blum’s Hamiltonian-cycle protocol [Blu86], which is
a witness-indistinguishable proof system for the Hamiltonian-cycle problem. To prove
that a graph G has a Hamiltonian cycle w, the prover P does the following with the
verifier V for n times in parallel, where n def

= |G|.

25

1. P chooses a random permutation π over the vertices of G, and commits to the
adjacency matrix of π(G) in a bit-by-bit manner by using any statistically binding
commitment scheme.

2. V sends a random bit (or challenge) ch ∈ {0, 1} to P.

3. When ch = 0:

• P sends π to V , and also decommits all the commitments in the first round.
• V verifies whether the decommitted matrix is equal to the adjacency matrix

of π(G).

When ch = 1:

• Among the commitments in the first round, P decommits the ones that cor-
respond to the Hamiltonian cycle w in the adjacency matrix of π(G).

• V verifies whether the decommitted entries of the matrix constitutes a
Hamiltonian cycle.

Since statistically binding commitment schemes can be constructed from one-way func-
tions (cf. Section 2.3.1), Blum’s protocol can be constructed from one-way functions.
When the underlying commitment scheme has k rounds, Blum’s protocol has k + 2
rounds.

2.4.3 Zero Knowledge
We next describe the definition of zero-knowledgeness of interactive proofs [GMR89].
Roughly speaking, zero-knowledgeness guarantees that the verifier cannot learn any-
thing from a proof (except for the fact that x belongs to L), and is formalized by requir-
ing that the view of any (possibly malicious) verifier can be “simulated” by using only
the instance x. A formal definition is given below.

Definition 2.11 (Zero-Knowledgeness). An interactive proof (or argument) ⟨P,V⟩ for
an NP language L is zero-knowledge if for every ppt adversarial verifier V∗, there
exists a ppt algorithm (or simulator) S such that for any sequence {wx}x∈L such that
wx ∈ RL(x), the following indistinguishability holds.

{viewV∗ [P(x,wx)↔ V∗(x, z)]}x∈L,z∈{0,1}∗
c≈ {S(x, z)}x∈L,z∈{0,1}∗ .

^

2.4.4 Proof of Knowledge
We next describe the definition of interactive proofs of knowledge [BG93]. Roughly
speaking, an interactive proof of knowledge system is an interactive proof system such
that the prover can convince the verifier, not only that x belongs to L, but also that the
prover has a witness for x ∈ L. A formal definition is given below.

26

Definition 2.12 (Proof of Knowledge). An interactive proof system ⟨P,V⟩ for an NP
language L with witness relation RL is said to be proof of knowledge if there exists
an expected ppt oracle machine (or extractor) E such that the following holds: For
every computationally unbounded Turing machine P∗, there exists a negligible function
negl(·) such that for every x ∈ {0, 1}∗ and z ∈ {0, 1}∗,

Pr
[
∃w ∈ RL(x) s.t. EP∗(x,z)(x) = w

]
> Pr

[
outputV [P∗(x, z)↔ V(x)] = 1

] − negl(|x|) .

If the above condition holds only against every ppt Turing machine P∗, the interactive
proof system ⟨P,V⟩ is said to be argument of knowledge. ^

2.5 Universal Arguments
In this section, we recall the definition of universal argument systems [BG08], which
we use as building blocks of our protocols.

Universal language. For the purpose of this thesis, it suffices to give the definition
of universal arguments only w.r.t. the membership of a single “universal” language LU.
For triplet y = (M, x, t), we have y ∈ LU if non-deterministic machine M accepts x
within t steps. (Here, all components of y, including t, are encoded in binary.) Let RU
be the witness relation of LU, i.e., RU is a polynomial-time decidable relation such that
for any y = (M, x, t), we have y ∈ LU if and only if there exists w ∈ {0, 1}≤t such that
(y,w) ∈ RU.

Universal argument. Roughly speaking, universal arguments are “efficient” argu-
ments of knowledge for proving the membership in LU, where they are efficient in the
sense that the prover’s running time is bounded by the time that is needed for verifying
the validity of the witness that the prover has. A formal definition is given below. In
the following, for any y = (M, x, t) ∈ LU, we use TM(x,w) to denote the running time
of M on input x with witness w, and let RU(y) def

= {w : (y,w) ∈ RU}.

Definition 2.13 (Universal argument). A pair of interactive Turing machines ⟨P,V⟩ is
a universal argument system if it satisfies the following properties.

• Efficient verification: There exists a polynomial p such that for any y = (M, x, t),
the total time spent by (probabilistic) verifier strategy V on inputs y is at most
p(|y|).

• Completeness by a relatively efficient prover: For every y = (M, x, t) ∈ LU and
w ∈ RU(y),

Pr
[
outputV

[
P(y,w)↔ V(y)

]
= 1

]
= 1 .

Furthermore, there exists a polynomial q such that the total time spent by P, on
input (y,w), is at most q(|y| + TM(x,w)) ≤ q(|y| + t).

27

• Computational Soundness: For every ppt Turing machine P∗, there exists a neg-
ligible function negl(·) such that for every y = (M, x, t) < LU and z ∈ {0, 1}∗,

Pr
[
outputV

[
P∗(y, z)↔ V(y)

]
= 1

]
< negl(|y|) .

• Weak Proof of Knowledge: For every polynomial p(·) there exists a polynomial
p′(·) and a ppt oracle machine E such that the following holds: For every ppt
Turing machine P∗, every sufficiently long y = (M, x, t) ∈ {0, 1}∗, and every z ∈
{0, 1}∗, if Pr

[
outputV

[
P∗(y, z)↔ V(y)

]
= 1

]
> 1/p(|y|), then

Pr
r

[
∃w = w1 · · ·wt ∈ RU(y) s.t. ∀i ∈ [t], EP∗(y,z)

r (y, i) = wi

]
>

1
p′(|y|) ,

where EP∗(y,z)
r (·, ·) denotes the function defined by fixing the randomness of E to

r, and providing the resulting Er with oracle access to P∗(y, z). ^

The weak proof-of-knowledge property of universal arguments only guarantees that
each individual bit wi of a witness w can be extracted in probabilistic polynomial time.
However, for any y = (M, x, t) ∈ LU, since any witness w ∈ RU(y) is of length at most
t, there exists an extractor (called the global extractor) that extracts the whole witness
in time polynomial in poly(|y|) · t. We call this property the global proof-of-knowledge
property of a universal argument.

28

Chapter 3

Statistical Concurrent Non-malleable
Zero-knowledge from One-way
Functions

In this chapter, we show our first result: A statistical concurrent non-malleable zero-
knowledge argument based on one-way functions.

3.1 Background
As one can see in Definition 2.11, the zero-knowledge property of interactive
proofs/arguments is defined in the stand-alone setting, so the adversarial verifier is as-
sumed to interact with a single prover at a time.

Non-malleable zero-knowledge (NMZK) [DDN00] and concurrent zero-knowledge
(CZK) [DNS04] are two well-known notions of the ZK property in the concurrent set-
ting. In the setting of NMZK, the adversary concurrently interacts with an honest prover
in the left session and an honest verifier in the right session, and in the setting of CZK,
the adversary concurrently interacts with unbounded number of honest provers.

As a security notion that implies both NMZK and CZK, Barak et al. [BPS06] pro-
posed concurrent non-malleable zero-knowledge (CNMZK). CNMZK guarantees the
ZK property in the setting where the adversary concurrently interacts with multiple
provers in the left sessions and multiple verifiers in the right sessions. More precisely,
it guarantees that receiving proofs in the left session does not “help” the adversary to
give proofs in the right sessions—that is, if the adversary can prove some statements in
the right sessions while receiving proofs in the left sessions, the adversary could prove
the same statements even without receiving proofs in the left sessions. In the defini-
tion of CNMZK, this guarantee is formalized as the existence of a simulator-extractor
that can simulate the adversary’s view in the left and right sessions while extracting
witnesses from the adversary in the simulated right sessions.

The first CNMZK argument for NP was constructed by Barak et al. [BPS06].
Subsequently, a computationally efficient construction was shown by Ostrovsky et al.
[OPV10]. The first CNMZK proof was constructed by Lin et al. [LPTV10], and a vari-
ant of their protocol was shown to be secure with adaptively chosen inputs by Lin and

29

Pass [LP11a]. Additionally, a CNMZK argument that is secure with “fully” adaptively
chosen inputs was recently constructed by Venkitasubramaniam [Ven14].

Very recently, Orlandi et al. [OOR+14] constructed the first statistical CNMZK
argument, i.e., a CNMZK argument such that the simulator-extractor outputs view that
is statistically indistinguishable from the adversary’s real view. Statistical CNMZK
is clearly of great interest since it guarantees quite strong security in the concurrent
setting. However, statistical CNMZK is hard to achieve, and the existing techniques
of computational CNMZK protocols seem to be insufficient for constructing statistical
CNMZK protocols (see Section 3.2.1).

An important question on statistical CNMZK protocols is what hardness assump-
tion is needed for constructing them. The statistical CNMZK argument of Orlandi et
al. [OOR+14] was constructed under the DDH assumption (or the existence of dense
cryptosystems). Hence, we already know that statistical CNMZK protocols can be
constructed under standard assumptions. However, since the existence of one-way
functions is sufficient for constructing both statistical ZK protocols and computational
CNMZK protocols [HNO+09, BPS06], it is natural to ask the following question.

Can we construct statistical concurrent non-malleable zero-knowledge
protocols by assuming only the existence of one-way functions?

3.1.1 Our Result
In this chapter, we answer the above question affirmatively.

Theorem 3.1. Assume the existence of one-way functions. Then, there exists a statisti-
cal concurrent non-malleable zero-knowledge argument forNP with round complexity
poly(n). Furthermore, if there exists a family of collision-resistant hash functions, the
round complexity can be reduced to ω(log n).

The round complexity of our statistical CNMZK argument—poly(n) rounds when
only the existence of one-way functions is assumed and ω(log n) rounds when the ex-
istence of a family of collision-resistant hash functions is assumed—is the same as the
round complexity of the known statistical CZK arguments [GMOS07]. Thus, our result
closes the gap between statistical CNMZK arguments and statistical CZK arguments.
Furthermore, since the security of our statistical CNMZK protocol is proven via black-
box simulation, the logarithmic round complexity of our hash-function-based protocol
is essentially tight due to the lower bound on black-box CZK protocols [CKPR02].

3.1.2 Outline
In Section 3.2, we give an overview of our techniques. In Section 3.3, we give the
notations and definitions that are used specifically in this chapter. In Section 3.4, we
describe our statistical CNMZK argument and prove its security. In Section 3.5, we
give supplementary materials about this chapter.

30

3.2 Overview of Our Techniques
In this section, we give an overview of our techniques.

3.2.1 Previous Techniques
We start by describing the difficulty of constructing statistical CNMZK protocols using
the techniques of existing computational CNMZK protocols [BPS06, LPTV10].

First, let us recall the protocols of [BPS06, LPTV10]. The definition of CNMZK
requires the existence of a simulator-extractor that can simulate the adversary’s view
while extracting witnesses for the statements proven by the adversary. To satisfy this
definition, CNMZK protocols need to satisfy the following properties: (i) the proofs in
the left sessions can be simulated for the adversary, and (ii) even when the adversary
receives simulated proofs in the left sessions, witnesses can be extracted from the ad-
versary in the right sessions. In the protocol of [BPS06, LPTV10], the simulatability of
the left sessions is guaranteed by requiring the verifier to commit to a random trapdoor
by using the concurrently extractable commitment scheme CECom of Micciancio et al.
[MOSV06]. The committed values of CECom can be extracted by a rewinding extrac-
tor even in the concurrent setting, so the proofs in the left sessions can be simulated by
extracting the trapdoors from CECom. On the other hand, the witness-extractability
of the right sessions is guaranteed by requiring the prover to commit to the witness by
using a non-malleable (NM) commitment scheme [DDN00] so that the following hold.

1. When the adversary receives honest proofs in the left sessions, the committed
value of the NM commitments in each accepted right session is indeed a valid
witness.

2. When the proofs in the left sessions are switched to the simulated ones, the com-
mitted values of the NM commitments in the right sessions do not change due to
their non-malleability.

It follows from these two that even when the adversary receives simulated proofs in the
left sessions, the committed value of the NM commitment is a witness for the statement
in every accepted right session. Therefore, the witnesses can be extracted in the right
sessions by extracting the committed values of the NM commitments.

As mentioned in the introduction, the techniques of [BPS06, LPTV10] alone seem
to be insufficient for constructing statistical CNMZK protocols. The main obstacle is
that the techniques of [BPS06, LPTV10] require the prover to commit to the witness by
using a NM commitment scheme, which is only computationally hiding.10 Since the
committed values of the NM commitments in the left sessions need to be switched to
other values (e.g., 0n) in the simulation, the simulated view can be only computational
indistinguishable from the real view.

10 The NM commitment scheme used here need to be non-malleable w.r.t. commitment [DDN00],
which roughly says that the committed value of the commitment that the man-in-the-middle adversary
gives is independent of the committed value of the commitment that adversary receives. Since the defi-
nition of non-malleability w.r.t. commitment is meaningless when committed values cannot be uniquely
determined, the NM commitment scheme used here cannot be statistically hiding.

31

Recently, Orlandi et al. [OOR+14] constructed a statistical CNMZK protocol by
modifying the CNMZK protocol of [BPS06] with a mixed non-malleable commitment
scheme. A mixed NM commitment scheme is parametrized by a string and is either sta-
tistically hiding or non-malleable depending on the parameter string.11 Very roughly
speaking, Orlandi et al. circumvent the above problem by carefully switching the param-
eter string of the mixed NM commitment scheme in the security proof—when proving
the statistical indistinguishability of the simulation, the string is set so that the mixed
NM commitment scheme is statistically hiding, and when proving the non-malleability,
the string is set so that it is non-malleable. The use of a mixed NM commitment scheme,
however, requires assumptions that are seemingly stronger than the existence of one-
way functions (such as the DDH assumption or the existence of dense cryptosytems).
Thus, the technique of Orlandi et al. cannot be used to construct statistical CNMZK
protocols from one-way functions.

3.2.2 Our Techniques
Since the reason why the techniques of [BPS06, LPTV10] cannot be used for statis-
tical CNMZK protocols is that the committed values of the NM commitments need
to be switched during the simulation, one potential strategy for constructing statisti-
cal CNMZK is to construct a protocol such that the adversary’s view can be simulated
without switching the committed values of the NM commitments (and of any other
computationally hiding commitments). However, when the simulator commits to the
same values in the NM commitments as an honest prover, it is not clear how their non-
malleability can be used in the security proof. Roughly speaking, we show that the
CNMZK property can be shown even in this case if we use a stronger variant of NM
commitment schemes.

A key technical tool in our technique is CCA-secure commitment schemes [CLP10,
CLP16], which are a stronger variant of (concurrent) non-malleable commitment
schemes. Roughly speaking, CCA security guarantees that the scheme is hiding even
against adversaries that have access to the decommitment oracle, which takes concur-
rent commitments from the adversary and returns their decommitments (which are com-
puted by brute force by the oracle) to the adversary. Several CCA-secure commitment
schemes were constructed from one-way functions [CLP10, LP12, Kiy14, GLP+15];12

furthermore, although CCA security itself does not provide any extractability, all of
these schemes satisfy concurrent extractability as well.

Using CCA-secure commitment schemes, we consider the following protocol as a
starting point.

Stage 1. (V commits to trapdoor) The verifier V chooses random rV ∈ {0, 1}n and
commits to rV by using CCA-CECom, where CCA-CECom is a CCA-secure

11 Specifically, Orlandi et al. [OOR+14] used a scheme such that (i) when the string is sampled from
a uniform distribution, it is statistically hiding and (ii) when the string is taken from another (computa-
tionally indistinguishable) distribution, it is non-malleable.

12 Actually, some of these constructions (namely, those by [LP12, Kiy14]) satisfy only a sightly weaker
notion called CCA security w.r.t. the committed-value oracle.

32

commitment scheme that is also concurrent extractable. For simplicity, we as-
sume that the extractor of CCA-CECom extracts a decommitment rather than the
committed value.

Stage 2. (P proves x ∈ L or knowledge of trapdoor) The prover P proves that it
knows a witness for x ∈ L or a valid decommitment (rV , d) for the CCA-CECom
commitment that V gives in Stage 1. P proves this statement by using a statistical
witness-indistinguishable special-sound argument of knowledge sWIAOK, which
can be constructed from one-way functions by instantiating Blum’s Hamiltonian-
cycle protocol with the statistically hiding commitment scheme of [HNO+09].
For concreteness, we assume that we indeed obtain sWIAOK in this way.

In this protocol, the verifier’s view can be statistically simulated by a simulator that
extracts (rV , d) from CCA-CECom and uses it as a witness in sWIAOK. (Recall that
we assume for simplicity that the extractor of CCA-CECom extracts a decommitment
rather than the committed value.) During the extraction in Stage 1, the simulator in-
teracts with the verifier honestly; thus, if computationally hiding commitment schemes
are used as building blocks in CCA-CECom, the simulator commits to the same values
as an honest prover in these schemes as required.

Intuitively, this protocol is CNMZK from the following reasons.

• The CCA security of CCA-CECom guarantees that the CCA-CECom commit-
ments in the right sessions are hiding even when the adversary receives simulated
proofs in the left sessions. This is because the simulated proofs in the left sessions
can be generated efficiently given decommitments for the CCA-secure commit-
ments of the left sessions, and the CCA security of CCA-CECom guarantees that
the CCA-CECom commitments in the right sessions are hiding even when the
adversary receives decommitments for those CCA-CECom commitments.

• Thus, even when the adversary receives simulated proofs in the left sessions, the
adversary cannot “cheat” in the right sessions, so witnesses for the statements in
the right sessions must be extractable from their sWIAOK proofs.

Of course, to formally prove the statistical CNMZK property, we need to show a
simulator-extractor that statistically simulates the adversary’s view and also extracts
witnesses for the statements in the right sessions.

As the simulator-extractor, we consider the following SE.

1. First, SE simulates the view of the adversaryA by executing the following sim-
ulator S: Simulator S internally invokes A and interacts with it in the left and
right sessions honestly as provers and verifiers except that in each left session, S
extracts (rV , d) by using the concurrent extractor of CCA-CECom and uses it as
a witness in sWIAOK.

2. After simulating the view of A as above, SE extracts witnesses from the right
sessions by doing the following for each right session. First, SE rewinds S until

33

the point just before S sends the challenge message of sWIAOK to A.13 Then,
SE repeatedly executes S from this point with fresh randomness until it obtains
another accepted transcript of sWIAOK. After obtaining another accepted tran-
script, SE extracts a witness by using the special soundness of sWIAOK.

It is not hard to see that SE statistically simulates the real view ofA. Thus, it remains
to show that SE extracts witnesses for the statements in the right sessions.

To show the witness extractability of SE, a natural approach is to follow the above-
mentioned approach of [BPS06, LPTV10] and show the following.

1. WhenA receives honest proofs in the left sessions, a witness for the statement is
extracted from the sWIAOK proof in every accepted right session.

2. When the honest proofs in the left sessions are switched to the simulated ones, the
value extracted from sWIAOK does not change in every accepted right session.

Note that here we need to argue about the extracted values instead of the committed
values. At first sight, this does not seem to be a big difference, and it seems that the
above can be shown by using an argument similar to the one used in [BPS06, LPTV10].

However, this approach does not work. In particular, we do not know how to prove
the second part—that is, we cannot show that the extracted values remain to be the same
when the honest proofs in the left sessions are switched to the simulated ones. To see
this, observe the following. Since the witnesses used in sWIAOK are switched in the
simulated proofs, we need to use the witness indistinguishability of the sWIAOK proofs
of the left sessions to show the indistinguishability of the extracted values. However,
since A is rewound during the witness extraction of the sWIAOK proofs of the right
sessions, if the left and the right sessions are scheduled so that the sWIAOK proofs of the
left sessions are executed in parallel with the sWIAOK proofs of the right sessions, the
sWIAOK proofs of the left sessions are also rewound, and we cannot use their witness
indistinguishability.14

Thus, we instead use the following approach. Informally, the above approach does
not work because the honest proofs and the simulated proofs are “too different.” We thus
introduce a hybrid experiment in which A receives hybrid proofs in the left sessions,
where a hybrid proof is generated by extracting (rV , d) by brute force and using it as a
witness in sWIAOK. (Notice that the only difference between the hybrid proofs and the
simulated proofs is how the trapdoors are extracted.) We then show that (i) witnesses
for the statements in the right sessions are extracted whenA receives hybrid proofs in
the left sessions, and (ii) when hybrid proofs are switched to the simulated ones, the
extracted values do not change. More precisely, our analysis proceeds as follows.

13 Since S rewinds A during the concurrent extraction of CCA-CECom, S may send the challenge
message of sWIAOK of a right session to A multiple times. Here, SE rewinds S until the point just
before S sends it toA on the “main thread.”

14 If we use the robust extraction technique [GLP+15], for each left session there exists a rewinding
strategy that allows us to extract witnesses from the right sessions without rewinding sWIAOK of this
left session. However, since what we want to show is that the values extracted in the right sessions by
the rewinding strategy that SE uses are unchanged, the robust extraction technique cannot be used here
(unless there exists a rewinding strategy that allows us to extract witnesses from the right sessions without
rewinding the sWIAOK proof of every left session).

34

• First, we show the second part, i.e., we show that the values extracted in the right
sessions do not change when the proofs in the left sessions are switched from the
hybrid proofs to the simulated ones. Since the only difference between the hybrid
proofs and the simulated ones is how the committed values of the CCA-CECom
commitments are extracted (by brute-force or by the concurrent extractability),
we can show this by using the concurrent extractability of CCA-CECom. We
note however that there is a subtlety since CCA-CECom in the left sessions
can be rewound not only by the concurrent extractor of CCA-CECom but also
by the extractor of sWIAOK. Nonetheless, by carefully using a standard tech-
nique (the “good prefix” argument), we can show that the concurrent extractor of
CCA-CECom works even in this case.

• Next, we show the first part, i.e., we show that witnesses for the statements in
the right sessions are extracted in the hybrid experiment. Since the simulated
proofs can be efficiently generated given access to the decommitment oracle of
CCA-CECom, at first sight it seems that this follows directly from the CCA se-
curity of CCA-CECom and argument-of-knowledge property of sWIAOK—if a
witness for the statement is not extracted in a right session, a valid decommitment
for the CCA-CECom commitment must be extracted in that right session, so we
can break the CCA security of CCA-CECom. However, there are two problems.

1. Since CCA-CECom in the left sessions can be rewound during the witness
extraction of sWIAOK of the right sessions, the hybrid experiment cannot be
emulated even given access to the decommitment oracle of CCA-CECom.
Hence, the CCA-secure commitments in the right sessions may not be hid-
ing in the hybrid experiment.

2. Since the adversary obtains hybrid proofs, which are generated in super-
polynomial time, the argument-of-knowledge property of sWIAOK may not
hold in the hybrid experiment. We remark that although existing CCA-
secure commitment schemes provide robustness, which guarantees that ar-
bitrary “small”-round protocol remains secure even when adversaries have
access to the decommitment oracle, we cannot use robustness here since
CCA-CECom in the left sessions can be rewound during the witness extrac-
tion of sWIAOK of the right sessions and therefore the hybrid experiment
cannot be emulated even given access to the decommitment oracle.

Because of these problems, we cannot use the security of CCA-CECom in a
modular way in the analysis. Thus, we directly use the building blocks of ex-
isting CCA-secure commitment schemes in the actual construction of our pro-
tocol, and use their proof techniques in the analysis. The proof techniques of
existing CCA-secure commitment schemes are strong enough to solve the above
problems, so we can show that witnesses for the statements are extracted in the
hybrid experiment. (In a bit more detail, we use a specific CCA-secure commit-
ment scheme as CCA-CECom in the actual construction of our protocol, where
we obtain this CCA-secure commitment scheme by using one-one CCA-secure
commitment schemes [KMO14] and the robust concurrent extraction technique

35

[GLP+15]. In the analysis, we inline the proof of CCA security and robustness
of this CCA-secure commitment scheme and then observe that its CCA security
and robustness hold even in the presence of the witness extraction of sWIAOK of
the right sessions.)

From the above two, it follows that even when A receives simulated proofs in the left
session, valid witnesses are extracted in right sessions.

The formal description of our protocol can be found in Figure 3.4 in Section 3.2.
The second part of our analysis (i.e., the part where we show that the values extracted in
the right sessions do not change when the proofs in the left sessions are switched from
the hybrid proofs to the simulated ones) is described in Section 3.4.2.2. The first part of
our analysis (i.e., the part where we show that witnesses for the statements are extracted
from the right sessions in the hybrid experiment) is described in Section 3.4.2.3.

3.3 Preliminaries
3.3.1 Concurrently Extractable Commitment Schemes
In this section, we explain the concurrently extractable commitment scheme that we use
in this chapter. (Recall that the notion of concurrently extractable commitment scheme
is explained in Section 2.3.3.) We notice that concurrently extractable commitment
schemes are used in this chapter in a “non-black-box” way—that is, we directly use a
specific construction and extractor in our protocol and analysis rather than using them
in a modular way.)

The concurrently extractable commitment scheme that we use is the one by Mic-
ciancio et al. [MOSV06], which we denote by CECom and describe in Figure 2.2. As
explained in Section 2.3.3, CECom is constructed from one-way functions and has
round complexity ω(log n). Also, CECom is an abstraction of the preamble stage of
the concurrent zero-knowledge protocol of Prabhakaran et al. [PRS02], and its extractor
obtains committed values of concurrent CECom commitments by rewinding the com-
mitter according to the recursive rewinding strategy of Prabhakaran et al. When using
the rewinding strategy of Prabhakaran et al., the extractor honestly interacts with the
adversarial committer C∗ on the “main thread” as an honest receiver while rewinding
C∗ and generating many “look-ahead threads” on which it interacts with C∗ again as an
honest receiver by using fresh randomness (see Figure 3.1). It is guaranteed that when-
ever C∗ completes a session of the commit phase on the main thread or on a look-ahead
thread, the extractor can compute the committed value of that session by using the in-
formation collected so far on the look-ahead threads. More precisely, it is guaranteed
that if C∗ gives a valid commitment on a thread, the extractor can output its correct com-
mitted value at the end of the commitment except with negligible probability; when C∗

gives an invalid commitment, there is no guarantee about the value that the extractor
outputs at the end of the commitment, and the extractor can output an arbitrary value
as the committed value.

The extractor that we use for CECom is the one by Goyal et al. [GLP+15]. The ex-
tractor by Goyal et al. uses a rewinding strategy that is based of that of Prabhakaran et

36

al.; thus, it interacts with the adversarial committer on the main thread honestly while in-
teracting with C∗ again on the look-ahead threads with fresh randomness. A nice prop-
erty of the extractor by Goyal et al. [GLP+15] is robust concurrent extraction (which
is formalized as the robust concurrent extraction lemma in Section 2.3.3.1). Roughly
speaking, this property guarantees that even when the adversarial committer addition-
ally participates in an external “small”-round protocol, committed values can be ex-
tracted from concurrent commitments without rewinding the external protocol. More
precisely, consider any ppt adversarial committerA that commits to multiple values in
concurrent sessions of CECom—these sessions are denoted as the right sessions—and
simultaneously participates in an execution of an arbitrary protocolΠ := ⟨B, A⟩with an
honest B—this session is denoted as the left session (see Figure 3.2). The robust con-
current extraction property guarantees that for every suchA, there exists an extractor E
that extracts committed values fromA in all the valid right sessions (that is, whenever
A completes a right session on the main thread or on one of the look-ahead threads,
the extractor can compute the committed value of that session as long as that session
is valid), and E does not rewind the external party B during the extraction. The ex-
tractor E fails with probability that is exponentially small in ℓ − O(k log n), where ℓ is
the parameter of CECom and k is the round complexity of Π; hence, E fails only with
negligible probability if we set ℓ := ω(k log n). For a formal description of the extractor
by Goyal et al. (which is not necessary to understand this chapter), see [GLP+15].

main thread

look-ahead threads

Figure 3.1: Main thread and look-ahead threads.

CECom

CECom

CECom

Figure 3.2: Robust concurrent adversary.

37

3.3.2 One-one CCA-secure Commitment Schemes
In this section, we explain the construction of one-one CCA-secure commitment
scheme that that we use in this chapter. (Recall that the definition of one-one CCA-
secure commitment schemes is given in Section 2.3.5.) From a result shown in
[GLP+15], we can obtain a constant-round κ-robust one-one CCA-secure commitment
scheme from one-way functions for every constant κ ∈ N as follows. In [GLP+15],
Goyal et al. constructed a ω(log n)-round CCA-secure commitment scheme from one-
way functions. This scheme has ω(log n) rounds because CECom with parameter
ℓ = ω(log n) is used as a building block, where CECom is the concurrently extractable
commitment scheme of Micciancio et al. [MOSV06] (see Section 3.3.1). The rea-
son why ℓ is set to be ω(log n) is that in the security analysis, the committed values
of CECom need to be extracted when polynomially many CECom commitments are
concurrently executed. In the setting of one-one CCA security, however, the security
analysis works even if the committed values of CECom are extractable only when a
single CECom commitment is executed. Hence, by setting ℓ := O(1), we can obtain a
constant-round one-one CCA-secure commitment scheme. For completeness, we give
the protocol and the proof of one-one CCA security in Section 3.5.1.

3.3.3 Witness Indistinguishable Proofs and Arguments
In this section, we explain the witness-indistinguishable proof/argument of knowl-
edge systems that we use in this chapter. (Recall that the definitions of witness-
indistinguishable proofs/arguments of knowledge are given in Section 2.4.) A four-
round witness-indistinguishable proof of knowledge system can be obtained from one-
way functions by instantiating (a parallel version of) Blum’s Hamiltonian-cycle pro-
tocol with Naor’s commitment scheme (cf. Section 2.4.2). Also, a statistical witness-
indistinguishable argument of knowledge system can be obtained from any statistical
hiding commitment scheme by instantiating Blum’s Hamiltonian-cycle protocol with a
statistically hiding commitment scheme. This argument system satisfies special sound-
ness in the following sense: Let us say that two accepting transcripts ⟨−→α 1, β1, γ1⟩ and
⟨−→α 2, β2, γ2⟩ are admissible if −→α 1 =

−→α 2 and β1 , β2 (where −→α 1,
−→α 2 are the commit-

ments from the prover and β1, β2 are the challenges from the verifier); then, given a
pair of admissible transcripts that are generated in polynomial time, one can compute
a valid witness. In particular, given admissible transcripts ⟨−→α, β1, γ1⟩ and ⟨−→α, β2, γ2⟩,
either one can compute a valid witness or one can decommit a commitment given in −→α
to two different values.

3.3.4 Statistical Concurrent Non-malleable Zero-knowledge Argu-
ments

In this section, we recall the definition of (statistical) concurrent non-malleable zero-
knowledge from [BPS06, OOR+14], which is closely related to the definition of simu-
lation extractability of [PR05b, PR08]. Let ⟨P,V⟩ be an interactive argument system for
a language L ∈ NP with witness relation RL. For any man-in-the-middle adversaryA,

38

let us consider a probabilistic experiment in whichA participates in the following left
and right interactions (see Figure 3.3). In the left interaction,A interacts with an hon-
est prover P of ⟨P,V⟩ and verifies the validity of statements x1, . . . , xm using identities
id1, . . . , idm. In the right interaction,A interacts with an honest verifier V of ⟨P,V⟩ and
proves the validity of statements x̃1, . . . , x̃m using identities ĩd1, . . . , ĩdm. The statements
proven in the left interaction, x1, . . . , xm, are given to P andA prior to the experiment.
In contrast, the statements proven in the right interaction, x̃1, . . . , x̃m, and the identities
used in the left and the right interactions, id1, . . . , idm and ĩd1, . . . , ĩdm, are chosen by
A during the experiment. Let viewA(n, x1, . . . , xm, z) be a random variable represent-
ing the view ofA in the above experiment. Then, roughly speaking, ⟨P,V⟩ is statistical
concurrent non-malleable zero-knowledge (statistical CNMZK) if for any adversaryA,
there exists a ppt machine called the simulator-extractor that can statistically simulate
the view of A in the above experiment while extracting witnesses for the statements
proven byA in the accepted right interactions that use different identities from the left
interactions. The formal definition is given below.

Definition 3.1. An interactive proof ⟨P,V⟩ for language L with witness relation RL

is said to be statistical concurrent non-malleable zero-knowledge if for every poly-
nomial m(·) and every probabilistic polynomial-time man-in-the-middle adversary A
that participates in at most m = m(n) concurrent executions, there exists a probabilis-
tic polynomial-time machine SE (called a simulator-extractor) such that the following
hold.

1. Let sim-view(n, x1, . . . , xm, z) be a random variable representing the first output
of SE(n, x1, . . . , xm, z). Then, the following ensembles are statistically indistin-
guishable.

• {viewA(n, x1, . . . , xm, z)}n∈N,x1,...,xm∈L∩{0,1}n,z∈{0,1}∗

• {sim-view(n, x1, . . . , xm, z)}n∈N,x1,...,xm∈L∩{0,1}n,z∈{0,1}∗

2. For every n ∈ N, x1, . . . , xm ∈ L ∩ {0, 1}n, and z ∈ {0, 1}∗, the following holds.
Let (view, {w̃i}i∈[m]) denote the output of SE(n, x1, . . . , xm, z). Let x̃1, . . . , x̃m be the
statements of the right interaction in view, and let id1, . . . , idm and ĩd1, . . . , ĩdm be
the identities of the left and the right interactions in view, respectively. Then,
except with negligible probability, we have (x̃i, w̃i) ∈ RL for every i ∈ [m] such
that the i-th right interaction is accepting and ĩdi , id j holds for every j ∈ [m].
^

3.4 Our Statistical Concurrent Non-malleable ZK Ar-
gument

In this section, we show that a statistical concurrent non-malleable zero-knowledge
argument can be constructed from any statistically hiding commitment scheme.

39

left sessions right sessions

Figure 3.3: Left sessions and right sessions.

Theorem 3.2. Assume the existence of statistically hiding commitment schemes with
round complexity RSH(n). Then, there exists a ω(RSH(n) log n)-round statistical concur-
rent non-malleable zero-knowledge argument sCNMZK.

Since a poly(n)-round statistically hiding commitment scheme can be constructed from
one-way functions [HNO+09] and a constant-round one can be constructed from a fam-
ily of collision-resistant hash functions [NY89, DPP98], our main theorem (Theorem
3.1) follows from Theorem 3.2.

Proof of Theorem 3.2. In sCNMZK, we use the following building blocks.

• Two-round statistically binding commitment scheme ComSB.

• Constant-round 4-robust one-one CCA-secure commitment scheme CCACom1:1.

• Four-round witness-indistinguishable proof WIProof, which is a parallel version
of Blum’s Hamiltonian-cycle protocol.

• (RSH(n) + 2)-round statistical witness-indistinguishable argument of knowledge
sWIAOK, which is a parallel version of Blum’s Hamiltonian-cycle protocol that is
instantiated with a RSH(n)-round statistically hiding commitment scheme ComSH.

• ω(RSH(n) log n)-round concurrently extractable commitment scheme CECom,
which is the scheme by Micciancio et al. [MOSV06] with parameter ℓ =
ω(RSH(n) log n). By using the extractor by Goyal et al. [GLP+15], we can ex-
tract committed values from any adversarial committer even when it additionally
participates in any O(RSH(n))-round external protocol (see Section 3.3.1).

As explained in Sections 2.3.1 and 3.3, all of the above building blocks can be con-
structed from RSH(n)-round statistically hiding commitment schemes (or from one-way
functions, which can be obtained from statistically hiding commitment schemes).

Protocol sCNMZK is shown in Figure 3.4. We prove its soundness in Section 3.4.1
and prove its statistical CNMZK property in Section 3.4.2.

3.4.1 Proof of Soundness
Lemma 3.1. Protocol sCNMZK is sound.

40

Input. The common input is statement x ∈ L and identity id ∈ {0, 1}n. The prover’s
private input is witness w ∈ RL(x).

Stage I. (V commits to trapdoor)

1. V chooses random rV ∈ {0, 1}n and commits to rV by using ComSB. Let
(rV , d) be the decommitment of this commitment.

2. V commits to (rV , d) by using CECom.
3. P chooses random rP ∈ {0, 1}n and commits to rP by using CCACom1:1

with tag id.
4. V commits to 0n by using CECom.
5. P decommits the CCACom1:1 commitment in Stage I-3 to rP.
6. V proves the following by using WIProof:

• the committed value of the CECom commitment in Stage I-2 is a
valid decommitment of the ComSB commitment in Stage I-1, or

• the committed value of the CECom commitment in Stage I-4 is rP.

Comment: Essentially, what V does in this stage is to commit to rV by us-
ing a specific CCA-secure commitment scheme as explained in Section 3.2.2.
This CCA-secure commitment scheme has the commit-and-proof structure:
V commits to rV in Stages I-1 – I-2, and proves the correctness of this com-
mitment in Stages I-3 – I-6.

Stage II. (P proves x ∈ L or knowledge of trapdoor)

1. P proves the following by using sWIAOK:
• x ∈ L, or
• there exists (r′V , d

′) such that (r′V , d
′) is a valid decommitment of

the ComSB commitment in Stage I-1.

Figure 3.4: Statistical concurrent non-malleable zero-knowledge argument sCNMZK.

41

Proof . Assume for contradiction that there exists an adversarial prover P∗ that breaks
the soundness of sCNMZK. It follows from the argument-of-knowledge property of
sWIAOK and the binding property of ComSB that we can extract rV from P∗ in Stage
II with non-negligible probability, where rV is the value committed to by the verifier
in Stage I-1. In the following, we consider a sequence of hybrid experiments in which
the verifier is gradually modified so that P∗ receives no information about rV in the last
hybrid, and then we derive a contradiction by showing that rV is still extractable with
non-negligible probability in the last hybrid.

Hybrid H0 is an experiment in which an honest verifier interacts with P∗ and then a
witness is extracted from P∗ in Stage II by the knowledge extractor of sWIAOK.
The output of H0 is the witness extracted in Stage II. From the above observation,
the output of H0 is rV with non-negligible probability.

Hybrid H1 is the same as H0 except that (i) the committed value rP of the CCACom1:1

commitment in Stage I-3 is extracted by the one-session committed-value oracle
O of CCACom1:1 and (ii) the committed value of the CECom commitment in
Stage I-4 is switched from 0n to rP.
Note that, basically, the only difference between H0 and H1 is the value com-
mitted to by using CECom in Stage I-4. However, since the execution of H1 in-
volves a super-polynomial-time computation (i.e., the extraction of rP), we can-
not directly use the hiding property of CECom to argue that the output of H1

is indistinguishable from that of H0. Nevertheless, since H1 can be executed
in polynomial-time given access to the one-session committed-value oracle of
CCACom1:1, we can show the indistinguishability between the output of H1 and
that of H0 by combining the hiding property of CECom with the robustness of
CCACom1:1 (cf. Proposition 2.1 in Section 2.3.5).
Comment: Formally, since CCACom1:1 is robust only w.r.t. 4-round protocols,
we need to consider a sequence of intermediate hybrids in which the CECom
commitment is gradually modified by switching the committed values of the
ExtCom commitments one by one in CECom (cf. Figure 2.2 in Section 2.3.3).
Since ExtCom has only four rounds, the 4-robustness of CCACom1:1 guarantees
that the outputs of these intermediate hybrids are indistinguishable.

Hybrid H2 is the same as H1 except that the WIProof proof in Stage I-6 is computed by
using a witness for the fact that the committed value of the CECom commitment
in Stage I-4 is rP.
Similar to the above, the indistinguishability between the output of H2 and that of
H1 follows from the witness indistinguishability of WIProof and the robustness
of CCACom1:1.

Hybrid H3 is the same as H2 except that in Stage I-2, the committed value of the
CECom commitment is switched from (rV , d) to (0|rV |, 0|d|).
The indistinguishability between the output of H3 and H2 follows from the hiding
property of CECom (or, more precisely, the hiding property of ExtCom used in
CECom) and the robustness of CCACom1:1.

42

Hybrid H4 is the same as H3 except that in Stage I-1, the committed value of the
ComSB commitment is switched from rV to 0n.

The indistinguishability between the output of H4 and that of H3 follows from the
hiding property of ComSB and the robustness of CCACom1:1.

From the above, the probability that the output of H4 is rV is non-negligible. However,
since P∗ receives no information about rV in H4, this probability must be negligible.
Thus, we reach a contradiction. □

3.4.2 Proof of Statistical CNMZK Property
3.4.2.1 Simulator-extractor SE.

Recall that to prove the statistical CNMZK property, we need to show a simulator-
extractor that statistically simulates the view of the adversary A while extracting a
witness in every accepted right session. We construct our simulator-extractor step by
step. First, we construct a super-polynomial-time simulator Ŝ that simulates the view
of A but does not extract witnesses in the right sessions. Next, we construct a super-
polynomial-time simulator-extractor ŜE that simulates the view of A by executing Ŝ
and then extracts witnesses by rewinding Ŝ. Finally, we construct a polynomial-time
simulator-extractor SE that emulates the execution of ŜE in polynomial time.

Remark 3.1. In the following, we use the hat symbol in the names of simulators and
simulator-extractors if they run in super-polynomial time (e.g., Ŝ and ŜE).

Remark 3.2. In the following, we use the tilde symbol in the names of the messages of
sCNMZK if they are the messages of the right sessions (e.g., r̃V and r̃P). If necessary,
we use subscript to denote the index of the session.

Super-polynomial-time simulator Ŝ. First, the simulator Ŝ simulates the view ofA
in super-polynomial time as follows. Ŝ internally invokes A and interacts with A as
provers and verifiers in the following way.

• In each left session, Ŝ interacts with A in the same way as an honest prover
except for the following. In Stage I-2, Ŝ extracts the committed value (rV , d) of
the CECom commitment by brute force. (If the committed value is not uniquely
determined, (rV , d) is defined to be (⊥,⊥).) In Stage II, Ŝ checks whether (rV , d)
is a valid decommitment of the ComSB commitment in Stage I-1; if so, Ŝ gives a
sWIAOK proof by using (rV , d) as a witness; otherwise, Ŝ terminates with output
fail.

• In each right session, Ŝ interacts withA in the same way as an honest verifier.

Finally, Ŝ outputs the view of internalA. Notice that Ŝ does not rewindA.

43

Super-polynomial-time simulator-extractor ŜE. Next, the simulator-extractor ŜE
simulates the view ofA in super-polynomial time and extracts witnesses in the accepted
right sessions as follows. First, ŜE simulates the view of A by executing Ŝ. We call
this execution of Ŝ the wi-main thread. Next, for each i ∈ [m], if the i-th right session
is accepted on the wi-main thread and uses a different identity from every left session,
ŜE extracts a witness from this session as follows.

• ŜE rewinds the wi-main thread until the point just before the challenge message
of sWIAOK of the i-th right session is sent. Then, from this point, ŜE executes
Ŝ again with fresh randomness (i.e., interacts with A as Ŝ does with fresh ran-
domness). ŜE repeats this rewinding until it obtains another accepting transcript
of the i-th right session. We call each execution of Ŝ in this step a wi-auxiliary
thread.

• After obtaining two accepting transcripts of the i-th right session (one is on the
wi-main thread and the other is on an wi-auxiliary thread), ŜE extracts a witness
from sWIAOK by using the special soundness of sWIAOK. If ŜE fails to extract
a witness for x̃i ∈ L (the statement proven in the i-th right session), ŜE terminates
with output failWI. Otherwise, let w̃i be the extracted witness.

If the i-th right session is not accepted or uses the same identity as a left session, define
w̃i

def
= ⊥. The output of ŜE is (view, {w̃i}i∈[m]), where view is the view of A on the

wi-main thread.

Polynomial-time simulator-extractor SE. Finally, the simulator-extractor SE emu-
lates the execution of ŜE in polynomial time as follows. First,SE emulates the wi-main
thread in polynomial time as follows.

• SE internally invokes A and interacts with A as Ŝ does except that in each left
session, SE extracts (rV , d) by using the concurrent extractability of CECom in-
stead of by brute force. Recall that a concurrent extraction of CECom involves
the generation of a main thread and many look-ahead threads (see Section 3.3.1).
We call the main thread generated during the concurrent extraction of CECom the
cec-main thread, and call the look-ahead threads generated during the concurrent
extraction of CECom the cec-auxiliary threads.15 (See Figure 3.5.)

Next, for each i ∈ [m], if the i-th right session is accepted on the emulated wi-main
thread and uses a different identity from every left session, SE emulates wi-auxiliary
threads as follows.

• SE rewinds the emulation of the wi-main thread until the point just before the
challenge message of sWIAOK of the i-th right session is sent on the cec-main
thread. Then, from this point, ŜE emulates the wi-main thread again with fresh
randomness (i.e., generates the rest of cec-main thread and cec-auxiliary threads
with fresh randomness). SE repeats this rewinding until it obtains another ac-
cepted transcript of the i-th right session on an emulated wi-auxiliary thread.

Let (view, {w̃i}i∈[m]) be the output of the emulated ŜE. Then,SE outputs (view, {w̃i}i∈[m]).
15 Note that the wi-main thread is also a cec-main thread.

44

WI-main thread

WI-auxliary threads

CEC-main thread

(WI-main thread)

CEC-auxliary threads

Figure 3.5: wi-main thread, wi-auxiliary thread, cec-main thread, and cec-auxiliary
thread.

3.4.2.2 Analysis of poly-time simulator-extractor SE.

To prove the statistical CNMZK property, we show that SE statistically simulates the
view ofA and also extracts witnesses for the statements in the right sessions.

Lemma 3.2. The view ofA simulated by SE is statistically indistinguishable from the
view ofA in the real experiment. Furthermore, except with negligible probability, SE
outputs witnesses for the statements proven byA in the accepted right sessions that use
different identities from the left sessions.

Proof . In this proof, we use the following claim, which states that the super-
polynomial-time simulator-extractor ŜE statistically simulates the view of A and also
extracts the witnesses from the right sessions.

Claim 3.1. The view of A simulated by ŜE is statistically indistinguishable from the
view ofA in the real experiment. Furthermore, except with negligible probability, ŜE

45

outputs witnesses for the statements proven byA in the accepted right sessions that use
different identities from the left sessions.

Before proving this claim, we finish the proof of Lemma 3.2. Given Claim 3.1, we
can prove Lemma 3.2 by showing that the output of SE is statistically indistinguishable
from that of ŜE. Roughly speaking, this indistinguishability can be shown by observing
the following.

• In SE, the emulation of ŜE is perfect if in every left session that reaches Stage
II, the value extracted by the concurrent extractability of CECom is equal to the
value that would be extracted by brute force.

• In every such left session, the value extracted by the concurrent extractability of
CECom is indeed equal to the value that would be extracted by brute force except
with negligible probability. This is because the CECom commitment in Stage I-
2 is valid in every such left session except with negligible probability, which in
turn is because of the soundness of WIProof in Stage I-6 and the hiding property
of CCACom1:1 in Stage I-3.

We note that there is a subtlety since the concurrent extraction of CECom itself is
rewound in SE when the witnesses are extracted from the right sessions. A formal
argument is given below.

Let CEC-BAD be the event that during the execution of SE, in a left session that
reaches Stage II, the value extracted from the CECom commitment in Stage I-2 is dif-
ferent from the value that would be extracted by the brute-force extraction. Let ϵ be the
probability that CEC-BAD occurs during the emulation of the wi-main thread (i.e., during
the emulation of the execution of Ŝ). From the concurrent extractability of CECom,
if the CECom commitment in Stage I-2 is valid except with negligible probability,
CEC-BAD occurs only with negligible probability. Hence, we obtain ϵ = negl(n) from
the following claim.

Claim 3.2. In Ŝ, the following holds except with negligible probability: In every left
session that reaches Stage II, the CECom commitment in Stage I-2 of this session is
valid and its committed value is a valid decommitment of the ComSB commitment in
Stage I-1.

The proof of Claim 3.2 is given after this proof.
To show the indistinguishability between the output of ŜE and that of SE, we con-

sider the following hybrid simulator-extractor ŜE′ and SE′.

• ŜE′ (resp., SE′) is the same as ŜE (resp., SE) except that for each i ∈ [m], it
terminates with output time-out if it does not obtain another accepting transcript
of the i-th right session after rewinding the wi-main thread (resp., the emulation
of the wi-main thread) 1/ϵ1/4 times.

First, we show that the output of ŜE and that of ŜE′ are statistically indistinguish-
able. From the definition of ŜE′, this indistinguishability holds if ŜE′ outputs time-out
with at most negligible probability. Thus, to show this indistinguishability, it suffices to
show that the probability that ŜE rewinds wi-main thread more than 1/ϵ1/4 times during

46

the witness extraction of a right session is negligible. To show that this probability is
negligible, we do the following. For each i ∈ [m], let Ti be the random variable repre-
senting the number of rewinding during the witness extraction of the i-th right session
in ŜE. From a standard “p × 1/p” argument, we can show that we have E [Ti] = 1 for
every i ∈ [m].16 Thus, from Marcov’s inequality, we have

Pr
[
Ti > 1/ϵ1/4

]
≤ ϵ1/4 = negl(n)

for every i ∈ [m]. Thus, from union bound, we have

Pr
[
∃i ∈ [m] s.t. Ti > 1/ϵ1/4

]
≤ m · negl(n) = negl(n) .

As noted above, this implies that the output of ŜE and that of ŜE′ are statistically
indistinguishable.

Next, we show that the output of ŜE′ and that of SE′ are statistically indistinguish-
able. Since the only difference between ŜE′ and SE′ is how the committed values are
extracted from CECom, this indistinguishability holds if CEC-BAD occurs in SE′ with at
most negligible probability. For ℓ ∈ N, let S Tℓ be the random variable representing the
internal state ofSE′ at the time thatA has sent the ℓ-th messages on the cec-main thread
during the emulation of wi-main thread. Let CEC-BADmain be the event that CEC-BAD oc-
curs during the emulation of the wi-main thread. We say that an internal state st of SE′
is good w.r.t. ℓ if we have Pr [CEC-BADmain | S Tℓ = st] ≤ ϵ1/2. Let GOODℓ be the event
that S Tℓ = st holds for an internal state st that is good w.r.t. ℓ. Then, for any ℓ, we have

Pr [CEC-BADmain] ≥ Pr [CEC-BADmain | ¬GOODℓ] Pr [¬GOODℓ] ≥ ϵ1/2 · Pr [¬GOODℓ] .

Then, since we have Pr [CEC-BADmain] = ϵ from the definition of ϵ, we have

Pr [¬GOODℓ] ≤ ϵ1/2 = negl(n)

for every ℓ. Thus, from union bound, we have

Pr

∨
ℓ

¬GOODℓ

 ≤ negl(n) . (3.1)

Let GOOD be the event that GOODℓ occurs for every ℓ. Then, from Equation (3.1), we
have Pr [GOOD] ≥ 1 − negl(n). For i ∈ [m], let CEC-BADi be the event that CEC-BAD
occurs during the witness extraction of the i-th right session. Then, since the emulation
of each wi-auxiliary thread proceeds identically with that of the wi-main thread, and
since for each i ∈ [m] there are at most 1/ϵ1/4 wi-auxiliary threads during the witness
extraction of the i-th right session, we have

Pr [CEC-BADi | GOOD] ≤ 1
ϵ1/4 · ϵ

1/2 = ϵ1/4 .

16 For any prefix ρ of the transcript immediately before the challenge message of sWIAOK of the
i-th right session, let p be the probability that the i-th right session is accepted when the prefix of the
transcript is ρ. Then, we have E

[
Ti | prefixρ

]
= p · 1/p = 1, where prefixρ is the event that the prefix of

the transcript is ρ. Thus, we have E [Ti] =
∑
ρ E

[
Ti | prefixρ

]
Pr

[
prefixρ

]
= 1.

47

Thus, we have

Pr [CEC-BAD] = Pr [CEC-BADmain] +
m∑

i=1

Pr [CEC-BADi]

≤ Pr [CEC-BADmain] +
m∑

i=1

(Pr [¬GOOD] + Pr [CEC-BADi | GOOD])

≤ ϵ +
m∑

i=1

(negl(n) + ϵ1/4)

= negl(n) .

As noted above, this implies that the output of ŜE′ and that of SE′ are statistically
indistinguishable.

Finally, we show that the output ofSE′ and that ofSE are statistically indistinguish-
able. Since the output of ŜE′ and that ofSE′ are statistically indistinguishable and since
ŜE′ outputs time-out with at most negligible probability, SE′ outputs time-out with at
most negligible probability. Then, since SE′ is identical to SE unless SE′ outputs
time-out, the output of SE′ and that of SE are statistically indistinguishable. □

Proof of Claim 3.2. Recall that Claim 3.2 states that during the execution of Ŝ, in every
left session that reaches Stage II, the CECom commitment in Stage I-2 is valid and its
committed value is a valid decommitment of the ComSB commitment in Stage I-1.

Let us say that a left session is bad if it reaches Stage II and either the CECom
commitment in Stage I-2 is invalid or its committed value is not a valid decommitment
of the ComSB commitment in Stage I-1; a left session is good if it is not bad. What we
need to prove is that every left session is good except with negligible probability.

Roughly speaking, the proof proceeds as follows. From the soundness of WIProof,
if a left session is bad, then in Stage I-4 of this left session, the committed value of the
CECom commitment is rP, which is the committed value of the CCACom1:1 commit-
ment in Stage I-3; thus, before rP is decommitted to in Stage I-5, we can obtain rP by
extracting the committed value from CECom in Stage I-4. This itself does not contra-
dict the hiding property of CCACom1:1 since Ŝ runs in super-polynomial time in the
brute-force extraction of CECom. Thus, we consider a hybrid simulator in which the
brute-force extraction of CECom is replaced with the concurrent extraction of CECom.
Here, since we want to use the hiding property of CCACom1:1, we use the robust con-
current extraction of CECom so that the CCACom1:1 commitment in a left session is
not rewound. For details, see below.

Assume for contradiction that there exists i ∈ [m] such that the i-th left session is
bad with non-negligible probability. (Here, the indices of the left sessions are defined
by the order in which Stage I-5 begins; the reason why we define the indices in this
way will become clear later.) Then, there exists i∗ ∈ [m] such that the first (i∗ − 1) left
sessions are good except with negligible probability but the i∗-th left session is bad with
non-negligible probability. Note that from the soundness of WIProof, when the i∗-th
left session is bad, then the CECom commitment in Stage I-4 of the i∗-th left session is
valid and its committed value is rP except with negligible probability, where rP is the

48

value committed to in Stage I-3 of the i∗-th left session. In the following, we use BAD
to denote the event that the i∗-th left session is bad, and use CHEAT to denote the event
that the committed value of the CECom commitment in Stage I-4 is rP in the i∗-th left
session. Then, let us consider the following hybrids.

Hybrid Ŝ0 is the same as Ŝ. From our assumption, BAD occurs in Ŝ0 with non-
negligible probability. Thus, from the above argument, CHEAT occurs in Ŝ0 with
non-negligible probability.

Hybrid Ŝ1 is the same as Ŝ0 except that Ŝ1 terminates just before Stage I-5 of the
i∗-th left session begins. Clearly, CHEAT still occurs in Ŝ1 with non-negligible
probability.

Hybrid S1 emulates Ŝ1 in polynomial time as follows.

• At the beginning, a random left session s is chosen. (Here, we guess that
session s will be the i∗-th left session.)

• In every left session, in Stage I-2, the committed value (rV , d) is ex-
tracted by the robust concurrent extractor of CECom in such a way that
the CCACom1:1 commitment of session s is not rewound. In addition, in
the left session s, the committed value is also extracted from the CECom
commitment in Stage I-4.

Note that in every left session in which Stage II is executed, the CECom commit-
ment in Stage I-2 is valid except with negligible probability (since such a session
is one of the first (i∗ − 1) left sessions and therefore it is good except with neg-
ligible probability). Thus, the values extracted from the concurrent extractor are
equal to the values that would be extracted by the brute-force extraction except
with negligible probability; therefore, S1 statistically emulates Ŝ1, and CHEAT
occurs in S1 with non-negligible probability.

Note that session s is the i∗-th left session with non-negligible probability. Then,
since CHEAT occurs in S1 with non-negligible probability, the value extracted from
the CECom commitment in Stage I-4 of session s is rP with non-negligible proba-
bility, where rP is the value committed to in Stage I-3 of session s. Then, since the
CCACom1:1 commitment in Stage I-3 of session s is not rewound in S1, we can break
the hiding property of CCACom1:1. Thus, we reach a contradiction. □

3.4.2.3 Analysis of super-poly-time simulator-extractor ŜE.

It remains to prove Claim 3.1, which states that (i) super-polynomial-time simulator-
extractor ŜE statistically simulates the real view ofA and (ii) ŜE also extracts a valid
witness from every accepted right session in the simulated view.

Proof of Claim 3.1. First, we observe that the output of Ŝ is statistically indistinguish-
able from the real view of A. Since ŜE simulates the view of A by executing Ŝ, this
implies that ŜE statistically simulates the real view ofA. Recall that in Ŝ, each left ses-
sion is simulated by extracting (rV , d) from the CECom commitment in Stage I-2 and

49

giving a sWIAOK proof in Stage II with witness (rV , d). From Claim 3.2 (which states
that the CECom commitment in Stage I-2 is a valid commitment to a valid decommit-
ment of the ComSB commitment in Stage I-1 in every session that reaches Stage II),
the value (rV , d) that is extracted from the CECom commitment in Stage I-2 is a valid
decommitment of the ComSB commitment of Stage I-1 in each left session that reaches
Stage II. Thus, from the statistical witness indistinguishability of sWIAOK, the output
of Ŝ is statistically indistinguishable from the real view ofA.

Next, we show that ŜE outputs failWI with at most negligible probability. Since
ŜE outputs failWI when it fails to extract a witness in an accepted right session, this
implies that ŜE extracts a valid witness from every accepted right session except with
negligible probability. Assume for contradiction that there exists ĩ∗ ∈ [m] such that ŜE
outputs failWI during the witness extraction of the ĩ∗-th right session with non-negligible
probability. Then, let us consider the following hybrid simulator-extractor ŜEĩ∗ .

• ŜEĩ∗ is the same as ŜE except that ŜEĩ∗ tries to extract a witness only from the ĩ∗-
th right session (and therefore rewinds the wi-main thread only from the challenge
message of sWIAOK of the ĩ∗-th right session).

Clearly, ŜEĩ∗ outputs failWI with non-negligible probability. Then, we reach a contra-
diction roughly as follows.

Step 1. First, we show that in ŜEĩ∗ , the probability that r̃V is extracted as a witness
during the witness extraction of the ĩ∗-th right session is non-negligible, where
r̃V is the value chosen by the verifier in Stage I-1 of the ĩ∗-th right session.

Step 2. Next, we define a sequence of hybrid simulator-extractors, where the first hy-
brid is the same as ŜEĩ∗ , and we gradually modify the ĩ∗-th right session so that
it is independent of r̃V in the last hybrid.

Step 3. Finally, we show that even in the last hybrid, the probability that r̃V is extracted
during the witness extraction of the ĩ∗-th right session is non-negligible. Since the
ĩ∗-th right session is independent of r̃V in the last hybrid, we reach a contradiction.

Details are given below.

Step 1. Prove that ŜEĩ∗ extracts r̃V . We first prove the following claim.

Claim 3.3. Let r̃V be the value chosen by the verifier in Stage I-1 of the ĩ∗-th right
session. If ŜEĩ∗ outputs failWI with non-negligible probability, then in ŜEĩ∗ the prob-
ability that r̃V is extracted during the witness extraction of the ĩ∗-th right session is
non-negligible.

Proof . Assume for contradiction that r̃V is extracted during the witness extraction of
the ĩ∗-th right session with at most negligible probability. Then, since we assume that
ŜEĩ∗ outputs failWI with non-negligible probability, the following occurs in ŜEĩ∗ with
non-negligible probability:

50

• ŜEĩ∗ obtains two accepting transcript of the ĩ∗-th right session (and therefore that
of sWIAOK) such that the commit-messages of sWIAOK are the same,17 but

• from these two transcript, ŜEĩ∗ fails to extract any witness from sWIAOK (i.e., a
witness for x̃ĩ∗ ∈ L or a valid decommitment of the Stage I-1 commitment).

We first show that when the above occurs, the two accepting sWIAOK transcripts are
admissible except with negligible probability. (Recall that a pair of accepted transcripts
of sWIAOK are admissible if their commit-messages are the same but their challenge-
messages are different.) Toward this end, it suffices to show that ŜEĩ∗ chooses the same
challenge-message of sWIAOK on the wi-main thread and a wi-auxiliary thread with
at most negligible probability. This can be shown as follows.

• From a standard argument, we can show that the expected number of rewinding
of the wi-main thread is 1 in ŜEĩ∗ .18 Thus, the probability that ŜEĩ∗ rewinds
the wi-main thread more than 2n/2 times is at most 2−n/2. Furthermore, under the
condition that ŜEĩ∗ rewinds the wi-main thread at most 2n/2 times, the probability
that ŜEĩ∗ chooses the same challenge-message on the wi-main thread and a wi-
auxiliary thread is at most 2n/2 · 2−n = 2−n/2. Thus, the probability that ŜEĩ∗

chooses the same challenge-message on the wi-main thread and a wi-auxiliary
thread is at most 2−n/2 + 2−n/2 = negl(n).

Thus, with non-negligible probability ŜEĩ∗ obtains two admissible transcripts of
sWIAOK from which no witness can be computed.

We then reach a contradiction as follows. Since sWIAOK is a parallel version of
Blum’s Hamiltonian-cycle protocol, if no witness is extracted from two admissible tran-
scripts of sWIAOK, a ComSH commitment in the commit-messages of those transcripts
is decommitted to two different values. Thus, we derive a contradiction by breaking
the binding property of ComSH using ŜEĩ∗ . A problem is that since ŜEĩ∗ runs in super-
polynomial time, the computational biding property of ComSH may not hold in ŜEĩ∗ .
To overcome this problem, we consider hybrid simulator-extractor SEĩ∗ that emulates
the execution of ŜEĩ∗ in polynomial time. Specifically, SEĩ∗ emulates ŜEĩ∗ in the same
way as SE emulates ŜE (i.e., by using the concurrent extractability of CECom instead
of the brute-force extraction) except for the following.

• During the emulation of the wi-main thread, the value (rV , d) is extracted in Stage
I-2 of each left session by using the robust concurrent extractability of CECom
so that the commit-message of sWIAOK in the ĩ∗-th right session is not rewound.

As in the proof of Lemma 3.2, we can show thatSEĩ∗ statistically emulates the execution
of ŜEĩ∗ . Thus, with non-negligible probability, SEĩ∗ obtains two valid decommitments
of a ComSH commitment (in the commit-messages of sWIAOK of the ĩ∗-th right session)
such that decommitted values are different. Then, since SEĩ∗ runs in polynomial time
and since the commit-messages of sWIAOK (and therefore the ComSH commitment) of

17 Recall that WIProof consists of three stages: commit, challenge, and response.
18 See Footnote 16.

51

the ĩ∗-th right session is not rewound in SEĩ∗ ,19 we can break the binding property of
ComSH. Thus, we reach a contradiction. □

Step 2. Introduce hybrid simulator-extractor. Next, we introduce hybrid
simulator-extractors. To clarify the exposition, we first define a sequence of hybrid
simulators by gradually modifying Ŝ and then define the hybrid simulator-extractors
by using them. Below, when we refer to a particular stage of sCNMZK, we always
means the corresponding stage of sCNMZK in the ĩ∗-th right session.

Hybrid simulator h-Ŝ0 is identical with Ŝ.

Hybrid simulator h-Ŝ1 is the same as h-Ŝ0 except that r̃P is extracted by brute force
in Stage I-3 and the committed value of the CECom commitment in Stage I-4 is
switched from 0n to r̃P.

Hybrid simulator h-Ŝ2 is the same as h-Ŝ1 except that in Stage I-6, the WIProof
proof is computed by using a witness for the fact that the committed value of
the CECom commitment in Stage I-4 is r̃P.

Hybrid simulator h-Ŝ3 is the same as h-Ŝ2 except that in Stage I-2, the committed
value of the CECom commitment is switched from (̃rV , d̃) to (0|̃rV |, 0|d̃|).

Hybrid simulator h-Ŝ4 is the same as h-Ŝ3 except that in Stage I-1, the committed
value of the ComSB commitment is switched from r̃V to 0n.

Then, for each k ∈ {0, . . . , 4}, hybrid simulator-extractor h-ŜEk is defined as follows.

Hybrid simulator-extractor h-ŜEk is the same as ŜEĩ∗ except that the execution of Ŝ
is replaced with that of h-Ŝk. The output of h-ŜEk is the value extracted during
the witness extraction of the ĩ∗-th right session.

Note that the value r̃V is not used anywhere in h-ŜE4.

Step 3. Prove that r̃V is extracted in every hybrid. Finally, we show that r̃V is ex-
tracted with non-negligible probability in each hybrid. First, we consider h-ŜE1.

Claim 3.4. Let r̃V be the value chosen by the verifier in Stage I-1 of the ĩ∗-th right
session. If ŜEĩ∗ outputs failWI with non-negligible probability, then in h-ŜE1 the prob-
ability that r̃V is extracted during the witness extraction of the ĩ∗-th right session is
non-negligible.

Proof . In this proof, we use intermediate hybrid simulator-extractors in which the
CECom commitment in Stage I-4 of the ĩ∗-th right session is gradually modified. Again,
we first introduce hybrid simulators. Recall that a CECom commitment consists of
ℓ = ω(RSH(n) log n) ExtCom commitments (cf. Figure 2.2 in Section 2.3.3). Then, the
intermediate hybrid simulators h-Ŝ0:0, . . . , h-Ŝ0:ℓ are defined as follows.

19 Note that the commit-messages of sWIAOK of the ĩ∗-th right session appear only on the wi-main
thread.

52

Hybrid simulator h-Ŝ0:0 is the same as h-Ŝ0 except that r̃P is extracted by brute force
in Stage I-3 of the ĩ∗-th right session.

Hybrid simulator h-Ŝ0:k (k ∈ [ℓ]) is the same as h-Ŝ0:k−1 except that the committed
value of the k-th ExtCom commitment in the CECom commitment of Stage I-4
is switched from 0n to r̃P in the ĩ∗-th right session.

Then, for each k ∈ {0, . . . , ℓ}, hybrid simulator-extractor h-ŜE0:k is defined as follows.

Hybrid simulator-extractor h-ŜE0:k is the same as h-ŜE0 except that the execution
of h-Ŝ0 is replaced with that of h-Ŝ0:k.

Note that h-ŜE0:ℓ is identical with h-ŜE1.
Below, we show that for every k ∈ [ℓ], the output of h-ŜE0:k−1 and that of h-ŜE0:k

are indistinguishable. (Recall that the outputs of h-ŜE0:k−1 and h-ŜE0:k are the value
extracted in the ĩ∗-th right session.) Since the probability that r̃V is extracted in h-ŜE0:0

is non-negligible from Claim 3.3, this suffices to prove Claim 3.4.
Roughly speaking, we show this indistinguishability as follows. Since h-ŜE0:k−1 and

h-ŜE0:k differ only in the committed values of a ExtCom commitment, we use the hiding
property of the ExtCom commitment to show the indistinguishability. A problem is that
we cannot use it directly since h-ŜE0:k−1 and h-ŜE0:k run in super-polynomial time. To
overcome this problem, we observe that the only super-polynomial computations in
h-ŜE0:k−1 and h-ŜE0:k are the brute-force extraction of CCACom1:1 (in the ĩ∗-th right
session) and those of CECom (in the left sessions). Based on this observation, we first
show that the execution of h-ŜE0:k−1 and h-ŜE0:k can be emulated in polynomial-time
by using the one-session committed-value oracle O of CCACom1:1 and the concurrent
extractability of CECom. We then combine the 4-robustness of CCACom1:1 with the
hiding property of ExtCom (which has only four rounds) to argue that the output of
h-ŜE0:k−1 and that of h-ŜE0:k are indistinguishable. To formally implement this idea,
we need to make sure that the ExtCom commitment and the CCACom1:1 commitment
are not rewound during the concurrent extraction of CECom. Details are given below.

First, we introduce hybrid simulator-extractors h-SEO0:k−1 and h-SEO0:k, whereO is the
one-session committed-value oracle of CCACom1:1. Hybrid h-SEO0:k (resp., h-SEO0:k−1)
emulates h-ŜE0:k (resp., h-ŜE0:k−1) in the same way as SE emulates ŜE except for the
following.

• During the emulation of the wi-main thread, the value (rV , d) is extracted in Stage
I-2 of each left session by using the robust concurrent extractability so that the
CCACom1:1 commitment in Stage I-3 and the k-th ExtCom commitment in the
CECom commitment of Stage I-4 are not rewound in the ĩ∗-th right session. In ad-
dition, in the ĩ∗-th right session, the committed value of CCACom1:1 is extracted
by forwarding the commitment to O. Note that the CCACom1:1 commitment in
the ĩ∗-th right session is not rewound and therefore it can be forwarded to O.

Next, we show that for each h ∈ {k − 1, k}, the output of h-ŜE0:h and that of h-SEO0:h
are indistinguishable. This can be proven in a similar way to Lemma 3.2. In particular,
we can use the same argument if we use the following claim instead of Claim 3.2.

53

Claim 3.5. In h-Ŝ0:h for each h ∈ {k − 1, k}, the following holds except with negligible
probability: In every left session that reaches Stage II, the CECom commitment in
Stage I-2 of this session is valid and its committed value is a valid decommitment of the
ComSB commitment in Stage I-1.

Claim 3.5 can be proven in a similar way to Claim 3.2. For completeness, we give the
proof below. (Many texts are taken verbatim from the proof of Claim 3.2)

Proof of Claim 3.5. Let us say that a left session is bad if it reaches Stage II and either
the CECom commitment in Stage I-2 is invalid or its committed value is not a valid
decommitment of the ComSB commitment in Stage I-1; a left session is good if it is not
bad. What we want to prove is that every left session is good except with negligible
probability.

Roughly speaking, the proof proceeds as follows. From the soundness of WIProof,
if a left session is bad, then in Stage I-4 of this left session, the committed value of
the CECom commitment is rP, which is the committed value of the CCACom1:1 com-
mitment in Stage I-3; thus, before rP is decommitted to in Stage I-5, we can obtain
rP by extracting the committed value from CECom in Stage I-4. This itself does not
contradict the hiding property of CCACom1:1 since h-Ŝ0:h runs in super-polynomial
time in the brute-force extraction of CECom and CCACom1:1. Thus, we again replace
the brute-force extraction with the concurrent extraction of CECom and an oracle ac-
cess to the one-session committed-value oracle O of CCACom1:1, and use the one-one
CCA-security of CCACom1:1 instead of its hiding property. Here, since we want to
use the one-one CCA-security of CCACom1:1, we perform the concurrent extraction of
CECom so that the CCACom1:1 commitment in a left session and the CCACom1:1 in
the ĩ∗-th right session are not rewound. Details are given below.

Assume for contradiction that there exists h ∈ {k − 1, k} such that in h-Ŝ0:h, a left
session is bad with non-negligible probability. (Here, the indices of the left sessions
are determined by the order in which Stage I-5 begins; the reason why we define the
indices in this way will become clear later.) Then, there exists i∗ ∈ [m] such that in
h-Ŝ0:h, the first (i∗ − 1) left sessions are good except with negligible probability but the
i∗-th left session is bad with non-negligible probability. Note that from the soundness
of WIProof, when the i∗-th left session is bad, the committed value of the CECom
commitment in Stage I-4 is rP in the i∗-th left session except with negligible probability,
where rP is the value committed to in Stage I-3 of the i∗-th left session. In the following,
we use BAD to denote the event that the i∗-th left session is bad, and use CHEAT to denote
the event that the committed value of the CECom commitment in Stage I-4 is rP in the
i∗-th left session. Then, let us consider the following hybrids.

Hybrid simulator h-Ŝ0:h:0 is the same as h-Ŝ0:h. From our assumption, BAD occurs in
h-Ŝ0:h:0 with non-negligible probability. Thus, from the above argument, CHEAT
occurs in h-Ŝ0:h:0 with non-negligible probability.

Hybrid simulator h-Ŝ0:h:1 is the same as h-Ŝ0:h:0 except that h-Ŝ0:h:1 terminates just
before Stage I-5 of the i∗-th left session begins. Clearly, CHEAT still occurs in
h-Ŝ0:h:1 with non-negligible probability.

Hybrid simulator h-SO0:h:1 emulates h-Ŝ0:h:1 in polynomial time as follows.

54

• At the beginning, a random left session s is chosen. (Here, we guess that
session s will be the i∗-th left session.)

• In every left session, in Stage I-2, the committed value (rV , d) is ex-
tracted by the robust concurrent extractor of CECom in such a way that
the CCACom1:1 commitment of left session s and the CCACom1:1 commit-
ment of the ĩ∗-th right session are not rewound. In addition, in the ĩ∗-th right
session, the committed value of CCACom1:1 is extracted by forwarding the
commitment to O.

• In left session s, the committed value is also extracted in Stage I-4 by the
robust concurrent extractor of CECom without rewinding the CCACom1:1

commitment of the ĩ∗-th right session.

Note that when Stage II of a left session is executed, the CECom commitment
in Stage I-2 of that session is valid except with negligible probability (since that
session is one of the first (i∗ − 1) left sessions and therefore it is good except with
negligible probability). Thus, the values extracted from the concurrent extractor
are equal to the values that would be extracted by brute force except with neg-
ligible probability; therefore, h-SO0:h:1 statistically emulates h-Ŝ0:h:1, and CHEAT
occurs in h-SO0:h:1 with non-negligible probability.

Note that session s is the i∗-th left session with non-negligible probability. Then,
since CHEAT occurs in h-SO0:h:1 with non-negligible probability, rP is extracted from the
CECom commitment in Stage I-4 of session s with non-negligible probability, where
rP is the value committed to in Stage I-3 of session s. Then, since the CCACom1:1 com-
mitment of session s is not rewound in h-SO0:h:1, we can break the one-one CCA security
of CCACom1:1. Thus, we reach a contradiction. □

As argued above, Claim 3.5 implies that for each h ∈ {k − 1, k}, the outputs of h-ŜE0:h

and h-SEO0:h are indistinguishable.
To show that the outputs of h-ŜE0:k−1 and h-ŜE0:k are indistinguishable, it remains to

prove that the outputs of h-SEO0:k−1 and h-SEO0:k are indistinguishable. This can be shown
as follows. Observe that h-SEO0:k−1 and h-SEO0:k differ only in the k-th ExtCom commit-
ment of the CECom commitment of the ĩ∗-th right session, and this ExtCom commit-
ment is not rewound in h-SEO0:k−1 and h-SEO0:k. In addition, h-SEO0:k−1 and h-SEO0:k run
in polynomial time given oracle access to the one-session committed-value oracle O
of CCACom1:1. Thus, from the hiding property of ExtCom and the 4-robustness of
CCACom1:1, the output of SEO0:k−1 and that of h-SEO0:k are indistinguishable.

Thus, we conclude that the probability that r̃V is extracted in h-ŜE1 is non-
negligible. This concludes the proof of Claim 3.4. □

By using essentially the same argument as in the proof of Claim 3.4, we can show
that r̃V is extracted with non-negligible probability also in h-ŜE2, h-ŜE3, and h-ŜE4.
For example, let us consider h-ŜE2. Recall that h-ŜE2 differs from h-ŜE1 only in that
the different witness is used in WIProof of the ĩ∗-th right session. Then, in the same
way as in the proof of Claim 3.4, we can define hybrid simulator-extractors h-SEO1 and
h-SEO2 such that the following hold.

55

• Given oracle access to the one-session committed-value oracle O of CCACom1:1,
both h-SEO1 and h-SEO2 run in polynomial-time.

• For each k ∈ {1, 2}, the probability that r̃V is extracted in h-SEOk is statistically
close to the probability in h-ŜEk.

• h-SEO1 and h-SEO2 differ only in the witness used in WIProof of the ĩ∗-th right
session, and this WIProof is not rewound in both h-SEO1 and h-SEO2 .

Assume for contradiction that r̃V is extracted in h-ŜE2 only with negligible probabil-
ity. Then, since r̃V is extracted in h-ŜE1 with non-negligible probability, we can break
witness indistinguishability of WIProof and the 4-robustness of CCACom1:1 by using
h-SEO1 and h-SEO2 . Thus, r̃V is extracted in h-ŜE2 with non-negligible probability. In
this way, we can show that r̃V is extracted also in h-ŜE3 and h-ŜE4 with non-negligible
probability.

Concluding the proof of Claim 3.1. In h-ŜE4, the ĩ∗-th right session is independent
of r̃V , and therefore the probability that r̃V is extracted is negligible. However, we show
above that this probability is non-negligible. Thus, we reach a contradiction. □

This concludes the proof of Theorem 3.2. □

3.5 Appendices to Chapter 3
3.5.1 Constant-round One-one CCA-secure Commitment Scheme

from OWF
In this section, we observe that from a result by Goyal et al. [GLP+15], it follows almost
immediately that we can obtain a constant-round one-one CCA-secure commitment
scheme from one-way functions.

Theorem 3.3. Assume the existence of one-way functions. Then, for any constant
κ ∈ N, there exists a constant-round κ-robust one-one CCA-secure commitment scheme
CCACom1:1.

We use the following building blocks, all of which can be constructed from one-way
functions.

• Constant-round commitment scheme NMCom that is non-malleable w.r.t. itself
and any 4-round protocol. Specifically, we use the scheme by Lin and Pass
[LP11b, LP15]. We remark that, like many other non-malleable commitment
schemes, the scheme by [LP11b, LP15] also satisfies extractability.20

20In the scheme of [LP11b, LP15], the committer proves by a witness-indistinguishable proof of
knowledge system that it knows either the committed value or trapdoor information. Since the scheme
is designed so that the trapdoor is hidden from the committer, the committed value can be extracted by
extracting the witness from the witness-indistinguishable proof.

56

• Four-round witness-indistinguishable proof WIProof (see Section 3.3.3).

• Constant-round zero-knowledge argument ZKArg [GK96a].

• Concurrently extractable commitment scheme CECom of Micciancio et al.
[MOSV06] with parameter ℓ = max(κ, rnm, 4) + 1, where rnm is the round com-
plexity of NMCom. (see Section 3.3.1).

When ℓ = max(κ, rnm, 4) + 1 = O(1), CECom does not guarantee concurrent
extractability. It is easy to see, however, that it guarantees the following “ro-
bust extractability” property: For any adversarial committer C∗ that commits to
a value in a single session of CECom and simultaneously participates an arbi-
trary max(κ, rnm, 4)-round protocol Π, the extractor can extract the value that is
committed by C∗ without rewinding Π. For details, see Section 3.5.2.

CCACom1:1 is shown in Figure 3.6. We remark that CCACom1:1 is almost identical to
the CCA-secure commitment scheme of Goyal et al. [GLP+15]; essentially, the only
difference is the parameter ℓ of CECom. We prove its one-one CCA security in Sec-
tion 3.5.1.1 and prove its robustness in Section 3.5.1.2.

Below, CECom is the scheme of Micciancio et al. [MOSV06] with parameter ℓ =
max(κ, rnm, 4) + 1, where rnm is the round complexity of NMCom.

Commit Phase

To commit to v ∈ {0, 1}n, the committer C does the following with the receiver R.

Stage 1. R chooses random r ∈ {0, 1}n and commits to r by using CECom. R then
proves the validity of this CECom commitment by using ZKArg.

Stage 2. C commits to v by using CECom.

Stage 3. C commits to 0n by using NMCom.

Stage 4. R decommits the CECom commitment in Stage 1 to r.

Stage 5. C proves the following by using WIProof:

• the CECom commitment in Stage 2 is valid, or
• the committed value of the NMCom commitment in Stage 3 is r.

Decommit Phase

C decommits the CECom commitment in Stage 2 to v.

Figure 3.6: Constant-round one-one CCA-secure commitment scheme CCACom1:1.

57

3.5.1.1 Proof of One-one CCA Security

For any adversary A that interacts with the committed-value oracle only in a single
session, we show that the following indistinguishability holds.

{IND0(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗
c≈ {IND1(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗ .

Toward this end, we consider a sequence of hybrid experiments in which the left
session of INDb(⟨C,R⟩,A, n, z) is gradually modified so thatA receives no information
about vb in the last hybrid.

Hybrid Hb
0(n, z) is the same as INDb(⟨C,R⟩,A, n, z).

Hybrid Hb
1(n, z) is the same as Hb

0(n, z) except for the following.

• In Stage 1 of the left session, the committed value r of the CECom com-
mitment is extracted by brute force. If the CECom commitment is invalid
or has more then one committed value, r is defined to be a random value.

• In Stage 3 of the left session, the committed value of NMCom is switched
from 0n to r.

Hybrid Hb
2(n, z) is the same as Hb

1(n, z) except that in Stage 5 of the left session, the
WIProof proof is computed by using the witness for the fact that the committed
value of the NMCom commitment in Stage 3 is r. (Notice that from the statisti-
cal binding property of CECom, the probability thatA correctly decommits the
CECom commitment in Stage 1 to a value other than r is negligible.)

Hybrid Hb
3(n, z) is the same as Hb

2(n, z) except that in Stage 2 of the left session, the
committed value of CECom is switched from vb to 0n.

For each i ∈ {0, 1, 2, 3} and b ∈ {0, 1}, let HYBb
i (n, z) be the random variable represent-

ing the output of Hb
i (n, z). From the construction, A receives no information about vb

in H0
3(n, z) and H1

3(n, z) and hence HYB0
3(n, z) and HYB1

3(n, z) are identically distributed.
Therefore, to show the indistinguishability between the above two ensembles, it suffices
to prove that the outputs of each neighboring hybrids are computationally indistinguish-
able.

Our strategy for proving the indistinguishability of each neighboring hybrids is to
reduce their indistinguishability to the security of NMCom, WIProof, and CECom.
The problem of this strategy is the existence of the committed-value oracle: Since the
oracle runs in super-polynomial time, the security of NMCom, WIProof, and CECom
might not hold against the adversaries that interact with the oracle. We overcome this
problem by showing that the oracle can be emulated efficiently without “disturbing” the
security of NMCom, WIProof, and CECom. Specifically, we show that the oracle can
be emulated by extracting the committed value of the CECom commitment in Stage 2 of
the right session using the extractability of CECom; since CECom provides a robust
extractability property, the extraction from CECom does not disturb the security of
NMCom, WIProof, and CECom. We remark that in the formal argument given below,
we first show thatA “cheats” in the hybrids only with negligible probability, meaning

58

that in the right session, the committed value of the NMCom commitment in Stage
3 is equal to the committed value of the CECom commitment in Stage 1 only with
negligible probability. Showing thatA cheats only with negligible probability is crucial
to showing that the oracle can be efficiently emulated. In particular, once we show that
A cheats only with negligible probability, we can use the soundness of WIProof to
argue that the CECom commitment in Stage 2 is valid in the accepted right session
except with negligible probability, and thus we can conclude that the extracted value is
equal to the committed value when the right session is accepted. The formal argument
is given below.

Let us say that A cheats if the committed value of NMCom in Stage 3 is equal to
the committed value r̃ of CECom in Stage 1 in the accepted right session. First, we
show thatA cheats in Hb

0(n, z) only with negligible probability.

Claim 3.6. The probability thatA cheats in Hb
0(n, z) is negligible for each b ∈ {0, 1}.

Proof . Roughly speaking, this claim follows from the hiding property of CECom—
when the adversary cheats, we can obtain r̃ by extracting the committed value from
NMCom, and thus we can obtain the committed value of a CECom commitment be-
fore it is decommitted to. To formally implement this idea, it is important that no super-
polynomial-time computation is performed during the execution of CECom in Stage 1
of the right session. Fortunately, in Hb

0(n, z) no super-polynomial-time computation is
indeed performed during CECom of the right session, as super-polynomial-time com-
putation is performed only at the end of the right session. (Recall the in the setting of
one-one CCA security,A interacts with the oracle only in a single session.) The formal
argument is given below.

Assume for contradiction that there exists b ∈ {0, 1} such that A cheats in Hb
0(n, z)

with non-negligible probability. Fix any such b. To derive a contradiction, we consider
the following hybrid experiments.

Hybrid Hb
0:1(n, z) is the same as Hb

0(n, z) except that in Stage 3 of the right session,
the committed value of the NMCom commitment is extracted by using the ex-
tractability of NMCom.
Clearly, the probability thatA cheats is still non-negligible in Hb

0:1(n, z). Hence,
from the extractability of NMCom, the extracted value is equal to r̃ with non-
negligible probability.

Hybrid Hb
0:2(n, z) is the same as Hb

0:1(n, z) except that in Stage 1 of the right session,
the ZKArg proof is generated by using the simulator of ZKArg.
From the zero-knowledge property of ZKArg, the probability that r̃ is extracted
from NMCom is still non-negligible in Hb

0:2(n, z).

We derive a contradiction by constructing an adversary B that breaks the hiding prop-
erty of CECom. Externally, B interacts with a committer of CECom: It sends random
r̃0, r̃1 ∈ {0, 1}n to the committer and receives a CECom commitment in which either
r̃0 or r̃1 is committed. Internally, B invokes A and emulates Hb

0:2(n, z) for A honestly
except that in Stage 1 of the right session, B forwards the CECom commitment from
the external committer to internal A. Finally, if the value extracted from NMCom is

59

r̃1 in internally emulated Hb
0:2(n, z), B outputs 1, and otherwise, it outputs 0. If B re-

ceives a commitment to r̃1, it outputs 1 with non-negligible probability from the above
argument. On the other hand, if B receives a commitment to r̃0, it outputs 1 only with
negligible probability since internal A receives no information about r̃1. Hence, B
breaks the hiding property of CECom. □

Next, we show that A cheats only with negligible probability in Hb
1(n, z), and we

use it to prove that HYBb
0(n, z) and HYBb

1(n, z) are indistinguishable.

Claim 3.7. For each b ∈ {0, 1}, the following hold.

• The probability thatA cheats in Hb
1(n, z) is negligible.

• {HYBb
0(n, z)}n∈N,z∈{0,1}∗ and {HYBb

1(n, z)}n∈N,z∈{0,1}∗ are computationally indistinguish-
able.

Proof . First, we show that A cheats in Hb
1(n, z) with negligible probability for each

b ∈ {0, 1}. Roughly speaking, this follows from the non-malleability of NMCom: Since
Hb

1(n, z) differs from Hb
0(n, z) only in the value committed to in NMCom in the left ses-

sion, the value that A commits to by using NMCom in the right session of Hb
1(n, z)

is indistinguishable from the value that A commits to by using NMCom in the right
session of Hb

0(n, z); hence, from Claim 3.6, the probability that A cheats in Hb
1(n, z) is

negligible. We remark that since the left session in Hb
1(n, z) involves the brute-force ex-

traction of CECom in Stage 1, in the formal argument given below we consider a hybrid
experiment in which brute-force extraction is replaced with the rewinding extraction.
Since we want to use the non-malleability of NMCom, this extraction is performed in
such a way that NMCom in the right session is not rewound. The formal argument is
given below.

Assume for contradiction that there exists b ∈ {0, 1} such that A cheats in Hb
1(n, z)

with non-negligible probability. Fix any such b. To derive a contradiction, we consider
the following hybrid experiment for i ∈ {0, 1}.

Hybrid Gb
i (n, z) is the same as Hb

i (n, z) except for the following.

• In Stage 1 of the left session, the committed value r of the CECom com-
mitment is extracted by using the extractability of CECom instead of by
brute force. Furthermore, this extraction is performed in such a way that the
NMCom commitment in the right session is not rewound (see Section 3.5.2).

• Gb
i (n, z) terminates immediately after NMCom ends in Stage 3 of the right

session.

From the soundness of ZKArg, the CECom commitment in Stage 1 of the left
session is valid when the ZKArg proof in Stage 1 of the left session is accepted.
Hence, when Stage 3 is executed in the left session, the value extracted from the
CECom commitment in Stage 1 is equal to its (unique) committed value. Since
the only difference from Gb

i (n, z) and Hb
i (n, z) is how r is extracted, the view ofA

in Gb
i (n, z) is statistically close to that in Hb

i (n, z). Therefore,A cheats in Gb
0(n, z)

with negligible probability from Claim 3.6, and A cheats in Gb
1(n, z) with non-

negligible probability from our hypothesis.

60

We then derive a contradiction by constructing an adversary M that breaks the non-
malleability of NMCom. Externally, M interacts with a committer and a receiver of
NMCom: It sends 0n and r ∈ {0, 1}n to the committer and receives a NMCom com-
mitment in which either 0n or r is committed to; at the same time, it sends a NMCom
commitment to the receiver. Internally, M invokes A and emulates Gb

0(n, z) for A
honestly except for the following.

• After r is extracted in Stage 1 of the left session,M sends 0n and r to the external
committer.

• In Stage 3 of the left session, M forwards the NMCom commitment from the
external committer to internalA.

• In Stage 3 of the right session,M forwards the NMCom commitment from the
internalA to the external receiver.

From the construction,M perfectly emulates Gb
0(n, z) when it receives a NMCom com-

mitment to 0n, and it perfectly emulates Gb
1(n, z) when it receives a NMCom commit-

ment to r. Hence, whenM receives a NMCom commitment to 0n, internal A cheats
with negligible probability, and whenM receives a NMCom commitment to r, internal
A cheats with non-negligible probability. Then, since the cheating of A is efficiently
recognizable given the view ofM and the committed value of the NMCom commitment
in the right session,M breaks the non-malleability of NMCom.

Next, we show that {HYBb
0(n, z)}n∈N,z∈{0,1}∗ and {HYBb

1(n, z)}n∈N,z∈{0,1}∗ are computation-
ally indistinguishable. Roughly speaking, this indistinguishability follows from the
hiding of NMCom: Since A cheats only with negligible probability both in Hb

0(n, z)
and in Hb

1(n, z), the CECom commitment in Stage 2 is valid in the accepted right ses-
sion in both hybrids; hence the committed-value oracle can be efficiently emulated by
extracting the committed value of the CECom commitment in Stage 2, and thus the in-
distinguishability follows from the hiding property of NMCom. Here, since we want to
use the hiding property of NMCom, the extraction from CECom is performed in such
a way that NMCom in the left session is not rewound. The formal argument is given
below.

Assume for contradiction that there exists b such that {HYBb
0(n, z)}n∈N,z∈{0,1}∗ and

{HYBb
1(n, z)}n∈N,z∈{0,1}∗ are distinguishable. Fix any such b. From Claim 3.6 and what is

shown above,A cheats only with negligible probability both in Hb
0(n, z) and in Hb

1(n, z).
Hence, from the soundness of WIProof, the CECom commitment in Stage 2 is invalid
in the accepted right session only with negligible probability. Therefore, there exists
a polynomial p(·) such that for infinitely many n, there exists z ∈ {0, 1}∗ such that (i)
HYBb

0(n, z) and HYBb
1(n, z) are distinguishable with advantage 1/p(n) and (ii) the CECom

commitment in Stage 2 of the right session is invalid in the accepted right session with
probability at most 1/3p(n) in both Hb

0(n, z) and Hb
1(n, z). Fix any such n and z. From

an average argument, there exists a partial transcript ρ of Hb
0(n, z) up until the end of

Stage 1 of the left session such that under the condition that a prefix of the transcript is
ρ, both of the above (i) and (ii) hold. Let r be the value that is committed to in Stage
1 of the left session in ρ. (If the committed value is not uniquely determined, r is a
random value.) We consider the following two cases.

61

Case 1. Stage 2 of the right session has already started in ρ. Since the committed
value of a CECom commitment is determined by the first message, ρ uniquely deter-
mined the committed value ṽ of the CECom commitment in Stage 2 of the right session.
Notice that given ρ, r, and ṽ as auxiliary input, Hb

0(n, z) and Hb
1(n, z) can be executed

from ρ in polynomial time. Hence, we can derive a contradiction by considering an
adversary that breaks the hiding property of NMCom by internally emulating Hb

0(n, z)
from ρ and forwarding a NMCom commitment from the external committer (who com-
mits to either 0n or r) to internally emulatedA.

Case 2. Stage 2 of the right session starts after ρ. We consider the following hybrid
experiment.

In Hybrid Fb
i (n, z), Hb

i (n, z) is executed from ρ honestly except for the following.

• In the left session, brute-force extraction of r is not performed, and hard-
wired r is used.

• In Stage 2 of the right session, the committed value ṽ of the CECom com-
mitment is extracted by using the extractability of CECom in such a way
that NMCom in Stage 3 is not rewound in the left session.

• At the end of the right session, the extracted value ṽ is returned toA as the
committed value of the right session.

From the definition of ρ, the CECom commitment in Stage 2 of the right session is
invalid in the accepted right session with probability at most 1/3p(n). Since the output
of Fb

i (n, z) differs from that of Hb
i (n, z) only when the correct committed value is not

extracted in the accepted right session (which occurs with probability at most 1/3p(n)
from the above), from our hypothesis, the outputs of Fb

0(n, z) and Fb
1(n, z) are distin-

guishable with advantage 1/3p(n). Then, since Fb
0(n, z) and Fb

1(n, z) differ only in the
value committed to in NMCom and since both experiments run in polynomial time, we
can derive a contradiction by considering an adversary that internally emulates Fb

0(n, z)
and forwards a NMCom commitment from the external committer to internally emu-
latedA. □

In the same way above, we can prove that the outputs of the other neighboring
hybrids are also indistinguishable.

Claim 3.8. For each b ∈ {0, 1}, the following hold.

• The probability thatA cheats in Hb
2(n, z) is negligible.

• {HYBb
1(n, z)}n∈N,z∈{0,1}∗ and {HYBb

2(n, z)}n∈N,z∈{0,1}∗ are computationally indistinguish-
able.

Proof . This claim can be proven in essentially the same way as Claim 3.7. First, we
can show that A cheats in Hb

2(n, z) only with negligible probability by using the same
argument except that we use the non-malleability w.r.t. 4-round protocols of NMCom
instead of the non-malleability w.r.t. itself. (Recall that Hb

2(n, z) differs from Hb
1(n, z)

62

only in the witness used in WIProof, which has four rounds.) Next, we can show the in-
distinguishability between {HYBb

1(n, z)}n∈N,z∈{0,1}∗ and {HYBb
2(n, z)}n∈N,z∈{0,1}∗ by using the

same argument except that we use the witness indistinguishability of WIProof instead
of the hiding property of NMCom. We omit the formal proof. □

Claim 3.9. For each b ∈ {0, 1}, the following hold.
• The probability thatA cheats in Hb

3(n, z) is negligible.

• {HYBb
2(n, z)}n∈N,z∈{0,1}∗ and {HYBb

3(n, z)}n∈N,z∈{0,1}∗ are computationally indistinguish-
able.

Proof . Like Claim 3.8, this claim can be proven in essentially the same way as
Claim 3.7. We remark however that since the round complexity of CECom is much
more than four, we need to consider a sequence of intermediate hybrid experiments in
which the committed value of ExtCom in CECom are switched one by one. We omit
the formal proof. □

This concludes the proof of one-one CCA security.

3.5.1.2 Proof of κ-robustness

We show that there exists a simulator S such that for any adversary A that interacts
with the committed-value oracle only in a single session, and for any κ-round ppt ITM
B, the following are computationally indistinguishable:

•
{
outputB,AO

[
B(1n, x, y)↔ AO(1n, x, z)

]}
n∈N,x,y,z∈{0,1}n

•
{
outputB,SA

[
B(1n, x, y)↔ SA(1n, x, z)

]}
n∈N,x,y,z∈{0,1}n

This can be shown easily by using the argument we used in the proof of one-one CCA
security. Roughly, we consider a simulator that emulates O for A efficiently by ex-
tracting the committed value of the CECom commitment in Stage 2 using the robust
extractability of CECom in such a way that the interaction with B is not rewound. (Since
we set ℓ = max(κ, rnm, 4) + 1, such extraction is possible.) To show that this simulator
indeed emulates the oracle for A, we need to show that the CECom commitment in
Stage 2 is invalid in the accepted right session only with negligible probability. This
can be shown by using the argument in the proof of Claim 3.6. Hence, by using this
simulator, we can prove the κ-robustness. The formal proof is omitted.

3.5.2 On the Robust Extractability of CECom

In this section, we observe that for any constant κ ∈ N, CECom with parameter ℓ = κ+1
satisfies the following robust extractability property: For any adversarial committer C∗

that commits to a value in a single session of CECom and simultaneously participates
an arbitrary κ-round protocol Π, the extractor can extract the committed value from C∗

without rewinding Π. This property is used to obtain constant-round one-one CCA-
secure commitment scheme in Section 3.5.1.

Recall that in CECom, the extractable commitment scheme ExtCom of [PW09] is
executed ℓ times in the following schedule (cf. Figure 2.2 in Section 2.3.3).

63

1. First, the commit-stage messages of all the sessions (of ExtCom) are exchanged
in parallel.

2. Subsequently, the challenge-stage message and the reply-stage message of the
i-th session are exchanged for each i ∈ [ℓ] in sequence.

Let us call the pair of the challenge-stage message and the reply-stage message of
a ExtCom commitment a slot. Since the committed value of a ExtCom commitment
can be extracted by rewinding the slot and obtaining a new pair of the challenge-stage
message and the reply-stage message (cf. Figure 2.1 in Section 2.3.2), the committed
value of a CECom commitment can be extracted by rewinding any of the ℓ slots.

Consider the following extractor E against any adversarial committer C∗. Exter-
nally, E participates in a κ-round protocol Π. Internally, E invokes C∗ and forwards
all messages of Π from the external party to internal C∗ and vice verse; additionally, E
interacts with C∗ in a session of CECom as an honest receiver. (Without loss of gen-
erality, we assume that after C∗ sends a message of Π [resp., a message of CECom],
C∗ immediately receives the next message of Π [resp., the next message of CECom].)
When the session of CECom ends, E extracts the committed value of the session by
rewinding C∗ in a slot that does not “interleave” with any message of Π (i.e, a slot such
that C∗ does not exchange any message of Π after receiving the challenge message of
the slot until it sends the reply-message of the slot; notice that such a slot always exists
because there are ℓ = κ + 1 sequential slots). Specifically, E continues to rewind such
a slot until it obtains a new pair of the challenge-stage message and the reply-stage
message. If C∗ requires a message ofΠ after being rewound, E cuts off the execution of
C∗ immediately and rewinds C∗ again. After obtaining a new pair of the challenge-
stage message and the reply-stage message, it extracts the committed value by using
them.

From the construction, E perfectly emulates the view of C∗ and does not rewind
the external protocol Π. Also, from the extractability of ExtCom, the extraction fails
only with negligible probability. Hence, it remains to show that E runs in (expected)
polynomial time. This can be shown easily by using the standard “p × 1/p” argument
as follows. For any i ∈ [ℓ] and any partial view ρi of C∗ from which the i-th slot starts,
let prefixρi

be the event that in the execution of E, the view of internal C∗ up until the
beginning of the i-th slot is ρi. Let Ti be the random variable representing the number
of rewinding in the i-th slot in E, and let pρi be the probability that under the condition
that prefixρi

occurs, the i-th slot is accepting and it does not interleave with any message
of Π. We then have

E
[
Ti | prefixρi

]
≤ pρi · 1/pρi = 1

for any ρi. Thus, we have

E [Ti] =
∑
ρi

E
[
Ti | prefixρi

]
Pr

[
prefixρi

]
≤

∑
ρi

Pr
[
prefixρi

]
≤ 1 .

Hence, from the linearity of expectation, the expected number of rewinding of C∗ in the
execution of E is at most ℓ, and thus the expected running time of E can be bounded by
a polynomial.

64

Chapter 4

Constant-round Leakage-resilient
Zero-knowledge from Collision
Resistance

In this chapter, we show our second result: A constant-round leakage-resilient zero-
knowledge argument based on collision-resistant hash functions.

4.1 Background
As one can see in Definition 2.11, the zero-knowledgeness of interactive
proofs/arguments is defined in the setting where an adversarial verifier obtain infor-
mation about honest parties’ internal states only though the proofs that they receive
from the provers.

Recently, Garg et al. [GJS11] introduced a new notion of zero-knowledgeness called
leakage-resilient zero-knowledge (LRZK), which is, roughly speaking, a notion of zero-
knowledgeness in the setting where adversarial verifiers can obtain arbitrary leakage on
the entire state of the honest prover (including the witness and the randomness) during
the entire protocol execution. LRZK is motivated by the studies of side-channel attacks
(e.g., [Koc96, AK96, QS01]), which demonstrated that adversaries might be able to
obtain leakage of honest parties’ secret states by attacking physical implementations of
cryptographic algorithms.

Informally speaking, LRZK requires that the protocol does not reveal anything be-
yond the validity of the statement and the leakage that the adversary obtained. More
formally, LRZK is defined as follows. In the definition of LRZK, the cheating verifier is
allowed to make arbitrary number of leakage queries during the interaction with an hon-
est prover, where each leakage query f is answered by f (w, tape) for the witness w and
the randomness tape that the honest prover generated thus far. On the other hand, the
simulator is allowed to make queries to the leakage oracle Lw, which is parametrized
by the witness w of the honest prover and outputs f (w) on input any function f . LRZK
is then defined by requiring that for any cheating verifier V∗ there exists a simulator
S such that for any ℓ ∈ N, when V∗ obtains ℓ bits of leakage of the prover’s state via
leakage queries, S can simulate the view of V∗ by obtaining ℓ bits of leakage of the

65

witness via queries to the leakage oracle Lw.21

In [GJS11], Garg et al. showed a proof system that satisfies a weaker notion of
LRZK called (1+ ϵ)-LRZK. Specifically, they showed that for any ϵ > 0, there exists a
proof system such that when V∗ obtains ℓ bits of leakage from the prover, a simulator
can simulate the verifier’s view by obtaining at most (1+ ϵ) · ℓ bits of leakage from Lw.
The round complexity of this protocol is at least ω(log n)/ϵ, and its security is proven
under a standard general assumption (the existence of statistically hiding commitment
schemes that are public-coin w.r.t. the receivers). Garg et al. also showed that their
protocol can be used to relax the assumption on the “tamper-proofness” of hardware
tokens that are used in the design of various cryptographic protocols.

A natural question left open by [GJS11] is whether we can construct a LRZK pro-
tocol without weakening the security requirement. That is, the question is whether we
can reduce ϵ to 0 in the protocol of [GJS11]. This question is important because, al-
though (1+ϵ)-LRZK is useful in several applications, (1+ϵ)-LRZK does not guarantee
sufficient level of security in many applications. (In fact, since (1+ϵ)-LRZK allows the
simulator to obtain strictly more leakage than the adversary, (1 + ϵ)-LRZK protocols
can potentially reveal secret information in addition to the leakage.) The question of
reducing ϵ to 0 is also of theoretical interest because reducing ϵ to 0 is optimal in the
sense that λ-LRZK for λ < 0 is impossible to achieve in the plain model [GJS11].

Recently, this open question was solved affirmatively by Pandey [Pan14], who con-
structed the first LRZK argument system by using the DDH assumption and collision-
resistant hash functions. Pandey’s protocol has a desirable property that it has only
constant number of rounds; hence, his result implies that asymptotically optimal round
complexity is achievable even in the presence of leakage.

A question that is explicitly left open by Pandey [Pan14, Section 1] is whether we
can construct LRZK protocols under a standard general assumption. In fact, although
the protocol of [Pan14] is superior to the protocol of [GJS11] in terms of both leakage
resilience (LRZK v.s. (1 + ϵ)-LRZK) and round complexity (constant v.s. ω(log n)/ϵ),
the assumption of the former is seemingly much stronger than that of the latter (the
DDH assumption v.s. the existence of statistically hiding commitment schemes that
are public-coin w.r.t. the receivers, which is implied by, say, the existence of collision-
resistant hash function family or even the existence of one-way functions22).

Question. Can we construct a (constant-round) leakage-resilient zero-
knowledge protocol under standard general assumptions?

4.1.1 Our Results
In this chapter, we answer the above question affirmatively by constructing a LRZK
protocol from collision-resistant hash functions (CRHFs). Like the protocol of [Pan14],

21 In [OPV15], it is pointed out that nowadays leakage tolerance is the commonly accepted term for
this security notion. Nevertheless, in this thesis we use the term “leakage resilience” for this security
notion for consistency with previous works [GJS11, Pan14].

22A constant-round one can be constructed from collision-resistant hash functions [NY89, DPP98]
and a polynomial-round one can be constructed from one-way functions [HNO+09].

66

our protocol has only constant number of rounds. Also, our protocol has an additional
property that it is public coin (w.r.t. the verifier).

Main Theorem. Assume the existence of collision-resistant hash function family. Then,
there exists a constant-round public-coin leakage-resilient zero-knowledge argument
for NP.

We notice that the existence of LRZK protocols under CRHFs is somewhat surprising
because the only known LRZK protocol [Pan14] crucially relies on the secure two-party
computation protocol of Yao [Yao86], which requires an assumption that is seemingly
stronger than the existence of CRHFs (namely the existence of oblivious transfer pro-
tocols). One of our technical novelties is the construction of LRZK without Yao’s
protocol.

Simultaneously leakage-resilient zero-knowledge. Our protocol has an additional
property that it is simultaneously leakage-resilient zero-knowledge [GJS11], meaning
that not only zero-knowledgeness but also soundness holds in the presence of leakage.
The leakage-resilient (LR) soundness (i.e., soundness in the presence of leakage) of
our protocol follows immediately from its public-coin property. In fact, any public-
coin interactive proof/argument system is LR sound for arbitrary amount of leakage of
the verifier because the verifier has no secret state in public-coin protocols.

To the best of our knowledge, our protocol is the first simultaneously LRZK proto-
col. The (1+ ϵ)-LRZK protocol of Garg et al. [GJS11] is LR sound in a weak sense—it
is LR sound when there is an a-priori upper bound on the amount of leakage—but is
not LR sound when the amount of leakage is unbounded,23 and similarly, the LRZK
protocol of Pandey [Pan14] is also not LR sound with unbounded amount of leakage.
In contrast, our protocol is sound even when cheating verifiers obtain arbitrary amount
of leakage on the secret state of the verifier.

A summary of the previous results and ours is given in Table 4.1. In the table,
“bounded-LR sound” means that the soundness holds when there is an a-priori upper
bound on the amount of leakage from the verifier.

4.1.2 Open Questions
Reducing assumption to one-way functions. An important open question is whether

we can construct constant-round LRZK argument systems under the existence of
one-way functions.

We notice that solving this question affirmatively seems to require an advance-
ment on “straight-line” simulation techniques (i.e., techniques that do not use
rewinding). This is because, as will become clear in Section 4.2, constant-round
LRZK seems to require straight-line simulation, and currently the only known

23This is because in the protocol of [GJS11], the verifier commits to the challenge bits of Blum’s
Hamiltonicity protocol in advance and hence an cheating prover can easily break the soundness by ob-
taining the challenge bits via leakage.

67

ZKness Soundness #(round) Assumptions

[GJS11] (1 + ϵ)-LR bounded-LR poly(n) + ω(log n)/ϵ OWFs
ω(log n)/ϵ CRHFs

[Pan14] LR - O(1) DDH + CRHFs
This work LR LR O(1) CRHFs

Table 4.1: Summary of the results on LRZK protocols. In the table, “LR” stands for
“leakage-resilient.” The round complexity of the protocol of [GJS11] depends on the
assumption that is used to instantiate the underlying statistically-hiding commitment
scheme; in particular, when only one-way functions (OWFs) are used, there is a poly-
nomial additive overhead because statistically hiding commitment schemes currently
require polynomial number of rounds in this case [HNO+09].

straight-line simulation technique, the one by Barak [Bar01], requires collision-
resistant hash functions.24

Constructing LRZK proof system. Another open question is whether we can con-
struct LRZK proof systems (instead of argument systems).
We notice that solving this question affirmatively also seems to require an ad-
vancement on straight-line simulation techniques. This is because the straight-
line simulation technique by Barak [Bar01] is currently inherently only compu-
tationally sound.

4.1.3 Related Works
The works relevant to ours are the works that study interactive protocols in the presence
of arbitrary leakage in the models other than the plain model. These works include
the works about leakage-tolerant UC-secure protocols in the CRS model [BCH12],
non-transferable interactive proof systems in the CRS model with leak-free input en-
coding/updating phase [AGP14], and secure computation protocols in the CRS model
with leak-free preprocessing/input-encoding phase and constant fraction of honest par-
ties [BGJK12, BGJ+13, BDL14]. We remind the readers that, like [GJS11, Pan14], this
work considers LRZK protocols in the plain model without any leak-free phase.

In [OPV15], Ostrovsky et al. showed an impossibility result about black-box LRZK
(and leakage-resilient MPC for several functionalities) in the model with only leak-free
input-encoding phase (i.e., without CRS and preprocessing). We notice that this impos-
sibility result does not contradict our result since the definition of LRZK in [OPV15]
is different from the one we use (i.e., the definition given by [GJS11]). Specifically, in
the definition of [OPV15], the simulator is not allowed to obtain any leakage, whereas
in the definition that we use, the simulator can obtain the same amount of leakage as
the cheating verifier. (In other words, Ostrovsky et al. [OPV15] considers leakage re-
silience whereas we consider leakage tolerance; see Footnote 21.)

24In [CPS13], Chung et al. showed that the simulation technique of Barak can be modified so that it
requires only one-way functions. However, the simulation technique of Chung et al. involves rewinding
of the adversary and therefore is no longer straight-line simulation.

68

4.1.4 Outline
In Section 4.2, we give an overview of our techniques. In Section 4.3, we give the
notations and definitions that are used specifically in this chapter. In Section 4.4, we
show two new building blocks that we use in our LRZK protocol. In Section 4.5, we
describe our LRZK protocol and prove its security.

4.2 Overview of Our Techniques
4.2.1 Previous Techniques
Since our techniques rely on the techniques that are used in the previous LRZK proto-
cols of [GJS11, Pan14], we start by recalling these protocols.

Protocol of [GJS11].

In [GJS11], Garg et al. constructed a (1 + ϵ)-leakage-resilient zero-knowledge proof
system from a statistically hiding commitment scheme that is public-coin w.r.t. the re-
ceiver. That is, they constructed a proof system such that, when V∗ obtains ℓ bits of
leakage from the prover, its view can be simulated by obtaining at most (1 + ϵ) · ℓ bits
of leakage from Lw.

A key idea behind the protocol of [GJS11] is to give the simulator two indepen-
dent ways of cheating—one for simulating prover’s messages and the other for simu-
lating leakages. Concretely, Garg et al. constructed their protocol by combining two
well-known techniques of constant-round zero-knowledge protocols—the technique of
[GK96a] that requires the verifier to commit to its challenges in advance and the tech-
nique of [FS90b] that uses equivocal commitment schemes. They then proved the se-
curity by considering a simulator that simulates the prover’s messages by extracting
the challenges and simulates the leakages by using the equivocality of the underlying
commitment scheme.

In more details, the protocol of [GJS11] consists of the following two phases. In
the first phase, the verifier uses an extractable commitment scheme to commit to a
challenge string ch of Blum’s Hamiltonicity protocol as well as trapdoor information
td of an equivocal commitment scheme.25 In the second phase, the prover and the
verifier execute Blum’s Hamiltonicity protocol that is instantiated with the equivocal
commitment scheme. In simulation, the simulator extracts ch and td in the first phase
and then simulates the prover’s messages and the leakages in the second phase by using
the knowledge of ch and td in the following way. (For simplicity, we assume that Blum’s
protocol is executed only once instead of many times in parallel.)

• When the extracted challenge ch is 0, the simulator commits to a randomly per-
muted graph of statement G, and after V∗ decommits the challenge ch (which
must be 0), the simulator decommits the commitment to the permuted graph of
G.

25Actually, there is a coin-tossing protocol that determines the parameter of the equivocal commitment,
and td is the trapdoor for biasing the outcome of the coin-tossing.

69

Notice that the simulator does exactly the same things as an honest prover. Hence,
the simulator can simulate prover’s randomness tape easily and therefore can
answer any leakage query f from V∗ by querying f (·, tape) to Lw.

• When the extracted challenge ch is 1, the simulator commits to a randomly chosen
cycle graph H at the beginning and then partially decommits it in the last step so
that only the edges on the cycle are revealed.
When V∗ makes a leakage query, the simulator answers it by using the fact that,
given w and td, it is possible to compute randomness that “explains” the commit-
ment to H as a commitment to a permuted graph of G. Specifically, the simulator
answers a leakage query f from V∗ by querying Lw the following function f̃ (·).

1. On input w, function f̃ first computes a permutation π that maps the Hamil-
tonian cycle w in G to the cycle in H (i.e., computes π such that π(G) has
the same cycle as H).

2. Then, by using equivocality26 with trapdoor td, it computes randomness
tape that explains the commitment to H as a commitment to π(G) (i.e., it
computes tape such that committing to π(G) with randomness tape will
generate the same commitment as the one that the simulator has sent to V∗

by committing to H).
3. Finally, it outputs f (w, tape).

Notice that since π(G) has the same cycle as H, the simulated leakages (from
which V∗ may be able to compute π(G)) are consistent with the decommitted
cycle of H in the last step.

We remark that the reason why the protocol of [GJS11] satisfies only (1+ ϵ)-LRZK
(rather than standard LRZK) is that the extraction of ch and td involves the rewinding
of V∗. Indeed, if V∗ makes new leakage queries after being rewound, the simulator need
to obtain new leakages from Lw, so the simulator need to obtain more bits of leakage
than V∗. From this observation, it seems that to achieve LRZK, we need to avoid the
use of rewinding simulation techniques.

Protocol of [Pan14].

In [Pan14], Pandey constructed a constant-round LRZK argument system under the
DDH assumption. Roughly speaking, Pandey’s idea is to replace the rewinding sim-
ulation technique in the protocol of [GJS11] with the “straight-line” simulation tech-
nique of Barak [Bar01]. In particular, Pandey replaced the first phase of the protocol
of [GJS11] with the following one.

1. First, the prover and the verifier execute an encrypted version of so called Barak’s
preamble [Bar01, PR05b, PR05a], which determines a “fake statement” that is
false except with negligible probability.

26What is actually used here is adaptive security, which guarantees that for each underlying commit-
ment, it is possible to compute randomness tape0 and tape1 such that tapeb explains the commitment as
a commitment to b for each b ∈ {0, 1}.

70

2. Next, the prover and the verifier execute Yao’s garbled circuit protocol [Yao86]
in which the prover can obtain ch and td only when it has a valid witness for the
fake statement.

From the security of the encrypted Barak’s preamble, no cheating prover can make the
fake statement true; hence, ch and td are hidden from the cheating prover. In contrast,
a non-black-box simulator can make the fake statement true by using the knowledge of
the code of the verifier; hence, the simulator can obtain ch and td without rewinding
V∗. An issue is that, to guarantee leakage resilience, it is required that Yao’s protocol
is executed in a way that all messages from the prover are pseudorandom (since other-
wise it is hard to simulate randomness that explains the simulated prover’s messages as
honest prover’s messages during the simulation of the leakages). Since Yao’s protocol
involves executions of an oblivious transfer protocol (in which the prover behaves as a
receiver), this property is not easy to satisfy. Pandey solved this problem by using the
DDH assumption, under which there exists an oblivious transfer protocol such that all
messages from the receiver are indistinguishable from random group elements.

4.2.2 Our Techniques
The reason why the protocols of [GJS11, Pan14] either guarantee only weaker secu-
rity or rely on a stronger assumption is that the simulation involves extraction from V∗.
Indeed, in [GJS11] the simulator need to obtain more amount of leakage than V∗ be-
cause it rewinds V∗ during extraction, and in [Pan14] the DDH assumption is required
because Yao’s protocol is used for extraction.

Based on this observation, our strategy is to modify the protocols of [GJS11, Pan14]
so that no extraction is required in simulation. We first remove the extraction of trapdoor
td and next remove the extraction of challenge ch. We remark that the latter is much
harder than the former.

Removing Extraction of Trapdoor td.

We first modify the protocols of [GJS11, Pan14] so that leakages can be simulated
without extracting the trapdoor td of an equivocal commitment scheme.

Our main tool is Hamiltonicity commitment scheme H-Com [FS90b, CLOS02],
which is a well-known instance-dependent equivocal commitment scheme based on
Blum’s Hamiltonicity protocol. H-Com is parametrized by a graph G with q = poly(n)
vertices. To commit to 0, the committer chooses a random permutation π and commits
to the adjacency matrix of π(G) using any commitment scheme Com; in the decommit
phase, the committer reveals π and decommits all the entries of the matrix. To commit
to 1, the committer commits to the adjacency matrix of a random q-cycle graph; in
the decommit phase, the committer decommits only the entries that corresponds to the
edges on the cycle. H-Com satisfies equivocality when G has a Hamiltonian cycle; this
is because after committing to 0, the committer can decommit it to both 0 and 1 given
a Hamiltonian cycle w in G.

Given H-Com, we remove the extraction of td by combining H-Com with an en-
crypted variant of Barak’s preamble. Specifically, we replace the equivocal commit-

71

ment scheme in the protocols of [GJS11, Pan14] with H-Com that depends on the fake
statement G′ that is obtained by the encrypted Barak’s preamble. From the security of
Barak’s preamble, any cheating prover cannot make G′ true and hence cannot use the
equivocality of H-Com, whereas the simulator can make G′ true and hence can use the
equivocality of H-Com as desired.

Remark 4.1. As observed in [Pan14], it is not straightforward to use the encrypted
Barak’s preamble in the presence of leakage. Roughly speaking, in the encrypted
Barak’s preamble, the prover commits to its messages instead of sending them in clear,
and in the proof of soundness, it is required that the prover’s messages are extractable
from the commitments. The problem is that it is not easy to guarantee this extractability
in the presence of leakage (this is because the prover’s messages are typically not pseu-
dorandom in the techniques of extractability). Pandey [Pan14] solved this problem by
having the prover use a specific extractable commitment scheme based on the DDH as-
sumption. In this thesis, we solve this problem by having the prover use a commitment
scheme that satisfies only very weak extractability but the prover’s messages of which
are pseudorandom and the security of which is based on the existence of one-way func-
tions (which is implied by the existence of CRHFs).27 For details, see Section 4.4.1.

Removing Extraction of Challenge ch.

Next, we modify the protocols of [GJS11, Pan14] so that prover’s messages can be
simulated without extracting the challenge ch of Hamiltonicity protocol. Surprisingly,
we can do this without using any heavy machinery; all that is required is a clever use
of the Hamiltonicity protocol.

We first notice that, although the simulator can use equivocality without extrac-
tion as shown above, it is not easy for the simulator to use equivocality for simulating
prover’s messages. This is because if the leakages to V∗ includes the randomness that is
used for some commitments, V∗ may be able to determine their committed values from
the leakages and therefore may be able to detect equivocation on them.

As our main technical tool, then, we introduce a specific instance-dependent equivo-
cal commitment scheme GJS-Com that we obtain by viewing the technique of [GJS11]
on Hamiltonicity protocol in the context of H-Com. Recall that in [GJS11], Garg et al.
use Blum’s Hamiltonicity protocol that is instantiated with an equivocal commitment
scheme. Here, we use Hamiltonicity commitment scheme H-Com that is instantiated
with an equivocal commitment scheme (i.e., we use H-Com in which the adjacency ma-
trix is committed to by an equivocal commitment scheme). The equivocal commitment
scheme that we use here is, as above, H-Com that depends on the fake statement gener-
ated by the encrypted Barak’s preamble.28 Hence, the commitment scheme GJS-Com
is a version of H-Com that is instantiated by using H-Com itself as the underling com-
mitment scheme.29 GJS-Com depends on two statements of the Hamiltonicity prob-
lem: The “outer” H-Com (the H-Com that is implemented with H-Com) depends on

27This extractability is used only in the proof of soundness. Hence, the proof of zero-knowledgeness
works even in the presence of this extractable commitment scheme.

28Actually, we use an adaptively secure H-Com [CLOS02, LZ11]. See Footnote 26.
29In the “inner” H-Com, the underlying commitment scheme is Com as before.

72

the real statement G, and the “inner” H-Com (the H-Com that is used to implement
H-Com) depends on the fake statement G′. GJS-Com inherits equivocality from the
outer H-Com, i.e., given a witness for the real statement G, a GJS-Com commitment
to 0 can be decommitted to both 0 and 1.

Since GJS-Com is obtained by viewing the technique of [GJS11] in the context of
H-Com, we can see that GJS-Com satisfies a property that is useful for proving LRZK
property. We first observe that given GJS-Com, the second phase of the LRZK protocol
of [GJS11] (i.e., Blum’s Hamiltonicity protocol phase) can be viewed as follows.

1. The prover commits to 0 by using GJS-Com.

2. The verifier reveals the challenge ch ∈ {0, 1} that is committed to in the first phase.

3. When ch = 0, the prover decommits the GJS-Com commitment to 0 honestly,
and when ch = 1, the prover decommits it to 1 by using the equivocality with the
knowledge of Hamiltonian cycle w in G.

Also, the simulation of the prover’s messages in [GJS11] can be viewed as follows: first,
ch is extracted in the first phase; then, when ch = 0, the simulator performs honestly
in the second phase (i.e., commits to 0 by using GJS-Com and then decommits to 0)
while when ch = 1, the simulator commits to 1 by using GJS-Com and then decommits
to 1. Now, when the second phase of the protocol of [GJS11] and the simulation of the
prover’s messages are viewed in this way, the key property that is used in the simulation
of the leakages in [GJS11] is the following.

• Given a Hamiltonian cycle in G and that in G′, a GJS-Com commitment to 1 (in
which a random cycle graph is committed) can be “explained” as a commitment
to 0 (in which a permutation of G is committed) by using the equivocality of the
inner H-Com. Furthermore, even after being explained as a commitment to 0, the
commitment can later be decommitted to 1 in a consistent way with the explained
randomness (cf. function f̃ in Section 4.2.1).

Because of this property, even when the simulator commits to 1 instead of 0 using
GJS-Com to simulate the messages, the simulator can still answer any leakage query
from V∗ consistently with the simulated messages—to answer to a leakage query f from
V∗, the simulator queries the following function f̃ to the leakage oracle Lw: On input
w, f̃ computes randomness tape that explains the commitment to 1 as a commitment
to 0, and then it outputs f (w, tape).

A problem of this property is that it can be used only in a very limited situation.
Specifically, this property can be used only when the simulator knows which GJS-Com
commitment will be decommitted to 1 (this is because this property can be used only
when the simulator gives GJS-Com commitments to 1, and the simulator cannot de-
commit them to 0 because it does not know the witness for the real statement G), and
this is the reason why the extraction of ch is required in the simulation strategy of
[GJS11, Pan14]. Hence, to remove the extraction of ch, we need to use GJS-Com in a
way that, given a witness for the fake statement, the simulator can predict which value
each GJS-Com commitment will be decommitted to.

73

Then, our key observation is that we can use this property if we use GJS-Com to im-
plement the Hamiltonicity protocol in which the fake statement is proven.30 Concretely,
we consider the following protocol.

1. The prover and the verifier execute an encrypted variant of Barak’s preamble. Let
G′ be the fake statement and q′ be the number of the nodes in G′.

2. (a) The prover commits to a q′ × q′ zero matrix by using GJS-Com.

(b) The verifier sends a challenge ch ∈ {0, 1}.

(c) When ch = 0, the prover sends a random permutation π over G′ to the
verifier and then decommit the GJS-Com commitments to the adjacency
matrix of π(G′) by using the equivocality of GJS-Com with the knowledge
of a witness for the real statement.
When ch = 1, the prover chooses a random q′-cycle graph H and decom-
mits some of the GJS-Com commitments to 1 by using the equivocality of
GJS-Com so that the decommitted entries of the matrix correspond to the
cycle in H.

(d) When ch = 0, the verifier verifies whether the decommitted graph is π(G′).
When ch = 1, the verifier verifies whether the decommitted entries corre-
sponds to a q′-cycle in a graph.

Since any charting prover cannot make the fake statement G′ true, GJS-Com is statisti-
cally binding when the real statement G is false, so soundness can be proven as for the
original version of Blum’s Hamiltonicity protocol. In contrast, the simulator can cheat
in Barak’s preamble and learn a Hamiltonian cycle w′ in the fake statement G′, so it
can simulate the prover’s messages by “honestly” proving the fake statement, i.e., by
committing to π(G′) in step 2(a) for a randomly chosen π and then revealing the entire
graph π(G′) or only the cycle π(w′) depending on the value of ch. Furthermore, since
in step 2(a) the simulator do know which value each GJS-Com commitment will be
decommitted to (the commitments to the edges on π(w′) will be always decommitted
to 1 and others will be decommitted honestly or will not be decommitted), the simu-
lator can simulate the leakage in the same way as in the protocol of [GJS11] by using
the property of GJS-Com described above—that is, by querying Lw a function that
simulates leakage by “explaining” each commitment to 1 as a commitment to 0.

Since Barak’s preamble is based on the existence of CRHFs and has constant
rounds, our protocols is based on the existence of CRHFs and has constant rounds.
This completes the overview of our techniques.

30Hence, we use Hamiltonicity protocol recursively three times: We instantiate Hamiltonicity com-
mitment with Hamiltonicity commitment to obtain GJS-Com, and then instantiate Blum’s Hamiltonicity
protocol with GJS-Com.

74

4.3 Preliminaries
4.3.1 Notations
We use LHC to denote the languages of the Hamiltonian graphs. For any G ∈ LHC,
we use RHC(G) to denote the set of the Hamiltonian cycles in G. Generally, for any
language L and any instance x ∈ L, we use RL(x) to denote the set of the witnesses for
x ∈ L.

We use Com to denote Naor’s 2-round statistically binding commitment scheme,
and use Comr(·) to denote an algorithm that, on input m ∈ {0, 1}∗, computes a commit-
ment to m ∈ {0, 1}∗ by using Naor’s commitment scheme with the first-round message
being r (cf. Section 2.3.1). We remark that Comr(·) has pseudorandom range; hence, by
using a public-coin algorithm Compub that outputs a random 3nℓ-bit string on input 1ℓ,
we can obtain a “fake commitment” that is indistinguishable from a real commitment
to an ℓ-bit string.

In this chapter, we use Value(·) to denote a function that, on input a commitment
(i.e., a transcript in the commit phase), outputs its committed value if it is uniquely
determined and outputs ⊥ otherwise.

4.3.2 Leakage-resilient Zero-knowledge
In this section, we recall the definition of leakage-resilient zero-knowledgeness
[GJS11]. For convenience, we use a slightly different formulation of the definition.

For any interactive proof system ⟨P,V⟩, any ppt cheating receiver V∗, any statement
x ∈ L, any witness w ∈ RL(x), and any oracle machine S called a simulator, consider
the following two experiments.

REALV∗(x,w, z)

1. Execute V∗(x, z) with an honest prover P(x,w) of ⟨P,V⟩.
During the interaction, V∗ can make arbitrary number of adaptive leakage
queries on the state of P. A leakage query consists of an efficiently compat-
ible function fi (described as a circuit) and it is answered with fi(w, tape),
where tape is the randomness used by P so far.

2. Output the view of V∗.

IDEALS(x,w, z)

1. Execute S(x, z) with access to a leakage oracle Lw. A query to Lw consists
of an efficiently computable function f and answered with f (w). Let τ be
the output of S.

2. If τ is not valid view of V∗, the output of the experiment is ⊥. Otherwise,
let ℓ be the total length of the leakage that V∗ obtains in τ. If the total length
of the answers that S obtained from Lw is larger than ℓ, the output of the
experiment is ⊥. Otherwise, the output is τ.

75

Let REALV∗(x,w, z) be the random variable representing the output of REALV∗(x,w, z)
and IDEALS(x,w, z) be the random variable representing the output of IDEALS(x,w, z).
Then, leakage resilient zero-knowledgeness is defined as follows.

Definition 4.1. An interactive argument system ⟨P,V⟩ for a language L with witness
relation R is leakage-resilient zero knowledge if for every ppt machine V∗ and every
sequence {wx}x∈L such that (x,wx) ∈ RL, there exists a ppt oracle machine S such that
the following hold.

Indistinguishability condition.

{REALV∗(x,wx, z)}x∈L,z∈{0,1}∗
c≈ {IDEALS(x,wx, z)}x∈L,z∈{0,1}∗ .

Leakage-length condition. For every x ∈ L and z ∈ {0, 1}∗,

Pr [IDEALS(x,wx, z) = ⊥] = 0 .

4.3.3 Hamiltonicity Commitment Scheme
In this section, we recall a well-known instance-dependent commitment scheme H-Com
[FS90b, CLOS02] that is based on Blum’s zero-knowledge proof for Hamiltonicity.

Commit phase. H-Com is parametrized by a graph G. Let q be the number of its ver-
tices. To commit to 0, the committer chooses a random permutation π over the vertices
of G and then commits to the adjacency matrix of π(G) by using Naor’s commitment
scheme Com. To commit to 1, the committer chooses a random q-cycle graph and then
commits to its adjacency matrix by using Com.

We use H-ComG,r(·) to denote an algorithm that, on input b ∈ {0, 1}, computes a
commitment to b as above by using r as the first-round message of all the Com com-
mitments.

Decommit phase. When the committer committed to 0, it reveals π, and also reveals
all the entries of the adjacency matrix by decommitting all the Com commitments.
When the committer committed to 1, it reveals only the entries corresponding to the
edges on the q-cycle by decommitting the Com commitments in which these entries
are committed.

Security. H-Com is computationally hiding, and it is statistically binding when G <
LHC.

Equivocality. When G ∈ LHC, a commitment to 0 can be decommitted to 1 given a
Hamiltonian cycle w ∈ RHC(G) in G. Specifically, a commitment to 0 can be decom-
mitted to 1 by decommitting the entries that corresponds to the edges on π(w) (i.e., the
cycle that is obtained by applying π on w).

76

4.3.4 Adaptive Hamiltonicity Commitment Scheme
In this section, we recall the adaptively secure Hamiltonicity commitment scheme
AH-Com, which was used in, e.g., [CLOS02, LZ11].

Commit phase. AH-Com is parametrized by a graph G. Let q be the number of
its vertices. To commit to 0, the committer does the same things as in H-Com; i.e.,
it chooses a random permutation π over the vertices of G and then commits to the
adjacency matrix of π(G) by using Naor’s commitment scheme Com. To commit to 1,
the committer chooses a random q-cycle graph and then commits to its adjacency matrix
in the following way: For all the entries corresponding to the edges on the q-cycle, it
commits to 1 by using Com, and for all the other entries, it simply sends random 3n-
bit strings instead of committing to 0. (Since Com has pseudorandom range, random
3n-bit strings are indistinguishable from Com commitments; see Section 2.3.1.)

We use AH-ComG,r(·) to denote an algorithm that, on input b ∈ {0, 1}, computes a
commitment to b as above by using r as the first-round message of all the Com com-
mitments.

Decommit phase. To decommit, the committer reveals all the randomness used in
the commit phase. We use AH-Decr(·, ·, ·) to denote an algorithm that, on input c, b, ρ
such that AH-Comr(b; ρ) = c, outputs a decommitment d as above.

Security. Like H-Com, AH-Com is computationally hiding both when G ∈ LHC and
when G < LHC, and it is statistically binding when G < LHC.

Adaptive security. When G ∈ LHC, a commitment to 0 can be “explained” as a valid
commitment to 1 given a witness w ∈ RHC(G). Specifically, for a commitment c to 0,
we can compute ρ such that AH-Com(1; ρ) = c. This is because commitments to the
entries that do not correspond to the edges on π(w) are indistinguishable from random
strings.

Formally, there exists an algorithm AH-ExplainAsOne such that for security param-
eter n ∈ N, graphs G ∈ LHC, witness w ∈ RHC(G), and string r ∈ {0, 1}3n, the following
hold.

Correctness. Given witness w ∈ RHC(G) and c, ρ such that AH-ComG,r(0; ρ) = c,
AH-ExplainAsOneG,r outputs ρ′ such that AH-ComG,r(1; ρ′) = c.

Indistinguishability. Consider the following two probabilistic experiments.

ExpAH
0 (n,G,w, r)

/* commit to 1 and reveal randomness */

1. Computes c← AH-ComG,r(1).
Let ρ1 be the randomness used in AH-Com.

2. Output (c, ρ1).

77

ExpAH
1 (n,G,w, r)

/* commit to 0 and explain it as commitment to 1 */
1. Computes c← AH-ComG,r(0).

Let ρ0 be the randomness used in AH-Com.
Compute ρ1 := AH-ExplainAsOneG,r(w, c, ρ0).

2. Output (c, ρ1).

For each b ∈ {0, 1}, let ExpAH
b (n,G,w, r) be the random variable representing the

output of ExpAH
b (n,G,w, r). Then, the following two ensembles are computation-

ally indistinguishable.

•
{
ExpAH

0 (n,G,w, r)
}

n∈N,G∈LHC,w∈RHC(G),r∈{0,1}3n

•
{
ExpAH

1 (n,G,w, r)
}

n∈N,G∈LHC,w∈RHC(G),r∈{0,1}3n

4.3.5 Barak’s Non-black-box Zero-knowledge Protocols
In this section, we recall Barak’s non-black-box zero-knowledge protocol [Bar01]. As
explained in Section 4.2, in our LRZK protocol we use a variant of so called “encrypted”
Barak’s preamble [PR05b, PR05a], which is based on the preamble stage of Barak’s
non-black-box zero-knowledge protocol.

Barak’s non-black-box zero-knowledge protocol is constructed from any collision-
resilient hash function familyH . Informally speaking, Barak’s protocol BarakZK pro-
ceeds as follows.

Protocol BarakZK

1. The verifier V sends a random hash function h ∈ H and the first-round message
r1 ∈ {0, 1}3n of Naor’s commitment scheme Com to the prover P.

2. P sends c← Comr1(0
n) to V . Then, V sends random string r2 to P.

3. P proves the following statement by a witness-indistinguishable argument.

• x ∈ L, or
• (h, c, r2) ∈ Λ, where (h, c, r2) ∈ Λ holds if and only if there exists a machine
Π such that c is a commitment to h(Π) and Π outputs r2 in nlog log n steps.

Note that the statement proven in the last step is not in NP. Thus, P proves this state-
ment by a witness-indistinguishable universal argument (WIUA), with which P can
prove any statement in NEXP (cf. Section 2.5). Intuitively, BarakZK is sound since
Π(c) , r holds with overwhelming probability even when a cheating prover P∗ commits
to h(Π) for a machineΠ. On the other hand, the zero-knowledge property can be proven
by using a simulator that commits to h(Π) such that Π is a machine that emulates the
cheating verifier V∗; since Π(c) = V∗(c) = r holds from the definition, the simulator
can give a valid proof in the last step.

For our purpose, it is convenient to consider a variant of BarakZK that we denote by
⟨PB,VB⟩. ⟨PB,VB⟩ is the same as BarakZK except that in the last step, instead of proving

78

x ∈ L ∨ (h, c, r2) ∈ Λ by using WIUA, P proves (h, c, r2) ∈ Λ by using a four-round
public-coin universal argument system UA [BG08]. (Hence, ⟨PB,VB⟩ is no longer zero-
knowledge protocol.) The formal description of ⟨PB,VB⟩ is shown in Figure 4.1. We
remark that in ⟨PB,VB⟩, the language proven in the last step is replaced with a slightly
more complex language as in, e.g., [Bar01, PR05b, PR05a, Pan14]. This replacement is
important for using ⟨PB,VB⟩ in the setting of leakage-resilient zero-knowledge, because
the cheating verifier can obtain arbitrary information (i.e., leakage) before sending r2.

Stage 1:
The verifier VB sends a random hash function h ∈ H to the prover PB, where
the domain of h is {0, 1}∗ and the range of h is {0, 1}n. VB also sends r1 ∈
{0, 1}3n (the first-round message of Com) to PB.

Stage 2:

1. PB computes c← Comr1(0
n) and send c to VB.

2. VB sends random r2 ∈ {0, 1}n+n2 to PB.

Stage 3: PB proves statement (h, r1, c, r2) ∈ Λ by using UA.

1. VB sends the first-round message α.
2. PB sends the second-round message β.
3. VB sends the third-round message γ.
4. PB sends the fourth-round message δ.

. .

Language Λ:
(h, r1, c, r2) ∈ Λ if and only if there exist

• a machine Π
• randomness rand for Com

• a string y such that |y| ≤ n2

such that

• c = Comr1(h(Π); rand), and
• Π(c, y) outputs r2 within nlog log n steps.

Figure 4.1: Encrypted Barak’s preamble ⟨PB,VB⟩.

In essentially the same way as the soundness of BarakZK, we can prove the follow-
ing lemma on ⟨PB,VB⟩, which roughly states that there exists a “hard” language LB on
the transcript of ⟨PB,VB⟩ such that no cheating prover can generate a transcript that is
included in LB.

79

Lemma 4.1 (Soundness). Let LB be the language defined in Figure 4.2. Then, for any
cheating prover P∗ against ⟨PB,VB⟩, any n ∈ N, and any z ∈ {0, 1}∗,

Pr
[
τ ∈ LB

∣∣∣ τ← trans [P∗(1n, z)↔ VB(1n)]
]
≤ negl(n) .

Language LB:
τ = (h, r1, c, r2, α, β, γ, δ) ∈ LB if and only if (α, β, γ, δ) is an accepting tran-
script of UA for statement (h, r1, c, r2) ∈ Λ.

Figure 4.2: A “hard” language LB.

Proof sketch of Lemma 4.1. We first remark that the language Λ depicted in Figure 4.1
is overly simplified and therefore we can prove this lemma only when the underlying
hash function family H is secure against poly(nlog log n)-time adversaries. By using the
language given in [BG08], we can prove this lemma even whenH is secure only against
polynomial-time adversaries.

Assume for contradiction that there exists P∗ such that for infinitely many n’s, there
exists z ∈ {0, 1}∗ such that the following holds for a polynomial p(·).

Pr
[
τ ∈ LB

∣∣∣ τ← trans [P∗(1n, z)↔ VB(1n)]
]
≥ 1

p(n)
.

Fix any such P∗, n, and z. Then, consider interacting with P∗ in the following way.

1. Interacts with P∗ as an honest VB until the end of ⟨PB,VB⟩. Let (h, r1, c, r2) be the
transcript of the first two stages. If the UA proof in the last stage in not accepting,
abort. Otherwise, extracts witness w = (Π,R, y) for (h, r1, c, r2) ∈ Λ using the
global extractability of UA. (From the definition of the global extractability of
UA, this extraction takes at most poly(nlog log n) steps.)

2. Rewind P∗ to the point just before sending r2 to P∗, and interacts with P∗ again
as an honest VB with fresh randomness until the end of ⟨PB,VB⟩. Let (h, r1, c, r′2)
be the transcript of the first two stages. If the UA proof in not accepting, abort.
Otherwise, extracts witness w′ = (Π′,R′, y′) for (h, r1, c, r′2) ∈ Λ using the ex-
tractability of UA.

From an average argument and the extractability of UA, we can obtain w and w′ with
probability 1/p′(n) for a polynomial p′(·). We then show that when we obtain w and
w′, we can obtain a collision of h. First, observe that since Π is deterministic, we have∣∣∣∣{r : ∃y ∈ {0, 1}∗ s.t. |y| ≤ n2 ∧ Π(c, y) = r

}∣∣∣∣ ≤ 2n2+1 .

Since r′2 is chosen uniformly at random from {0, 1}n+n2 , the probability that there exists
y ∈ {0, 1}n2 such that Π(c, y) = r′2 is at most 2n2+1/2n+n2

= 1/2n−1. Then, since we
have Π′(c, y′2) = r′2 because w′ is a valid witness, we have Π , Π′ except with prob-
ability 1/2n−1. Furthermore, since both h(Π) and h(Π′) are the committed value of c,
from the statistical binding property of Com, h(Π) = h(Π′) holds except with negligi-
ble probability. Hence, the pair of Π and Π′ is a collision of h except with negligible
probability. □

80

4.3.6 Somewhat Extractable Commitment Schemes
In this section, we introduce a commitment scheme that satisfies only very weak ex-
tractability that we call somewhat extractability. This scheme will be used in our vari-
ant of encrypted Barak’s preamble in Section 4.4.1. As mentioned in Remark 4.1 in
Section 4.2.2, an important point on this scheme is that the committer sends only pseu-
dorandom messages while it can be constructed from one-way functions.

Concretely, we consider the commitment scheme SWExtCom in Figure 4.3.
SWExtCom is the same as the extractable commitment scheme of [PW09] except that
in the last step, the committer simply reveals the values that it committed to in the
first step (instead of decommitting the commitments). Because of this simplification,
SWExtCom does not satisfy extractability in the standard sense. Still, it is not hard to
see that SWExtCom satisfies extractability in the sense that, given two valid commit-
ments c and c′ such that the transcripts of the commit stage are identical but those of the
challenge stage are different, then the committed value of c can be extracted. Formally,
SWExtCom satisfies the following extractability.

Lemma 4.2 (Somewhat extractability). Let us say that two commitments

c = ({ci,b}i∈[n],b∈{0,1}, {ei}i∈[n], {ai,ei}i∈[n]) and c′ = ({c′i,b}i∈[n],b∈{0,1}, {e′i}i∈[n], {a′i,ei
}i∈[n])

are admissible if

• ci,b = c′i,b for every i ∈ [n] and b ∈ {0, 1},

• there exists i∗ ∈ [n] such that ei∗ , e′i∗ , and

• the committed value of ci,b is uniquely determined for every i ∈ [n] and b ∈ {0, 1}.

Let Extract(·, ·) be the algorithm shown in Figure 4.3. Then, for any two admissible
commitments c and c′, if both c and c′ are valid, ṽ def

= Extract(c, c′) is equal to Value(c)
(i.e., ṽ is the committed value of c).

Proof . First, when c and c′ are valid, ai∗,ei∗ and a′i∗,e′i∗
are the committed values of ci∗,ei∗

and ci∗,e′i∗
(since otherwise, any decommitments of c and c′ would be rejected because

the decommitted values of ci∗,ei∗ and ci∗,e′i∗
are not consistent with ai∗,ei∗ and a′i∗,e′i∗

). Sec-
ond, when c and c′ are valid, the committed value of c can be computed by XORing the
committed values of ci∗,ei∗ and ci∗,e′i∗

(since otherwise, any decommitments of c and c′

would be rejected). From these, the lemma follows. □

A nice property of SWExtCom is that all the messages that the committer sends in
the commit phase are pseudorandom. Formally, we have the following lemma.

Lemma 4.3 (Existence of public-coin fake committing algorithm). Let C be an honest
committer algorithm of SWExtCom. There exists a ppt public-coin algorithm Cpub

such that for any ppt cheating receiver R∗ that interacts with C in the commit phase of
SWExtCom, the following ensembles are computationally indistinguishable.

•
{
outputR∗ [C(v)↔ R∗(1n, z)]

}
n∈N,v∈{0,1}n,z∈{0,1}∗

81

Commit phase. The committer C and the receiver R receive common input 1n. To
commit to v ∈ {0, 1}n, the committer C does the following with the receiver
R.

Commit stage.
For each i ∈ [n], the committer C chooses a pair of random n-bit strings
(ai,0, ai,1) such that ai,0 ⊕ ai,1 = v. Then, for each i ∈ [n] in parallel, C
commits to ai,0 and ai,1 by using Naor’s commitment scheme Com. For
each i ∈ [n] and b ∈ {0, 1}, let ci,b be the commitment to ai,b.

Challenge stage.
R sends random n-bit string e = (e1, . . . , en) to C.

Reply stage.
For each i ∈ [n], C sends ai,ei to R.
Comment: C just sends ai,ei and does not decommit ci,ei .

Decommit phase. C sends v to R and decommits ci,b to ai,b for all i ∈ [n] and
b ∈ {0, 1}. R checks whether a1,0 ⊕ a1,1 = · · · = an,0 ⊕ an,1 = v holds
and whether a1,e1 , . . . , an,en are equal to the values that were revealed in the
commit phase.

. .

Extracting algorithm Extract.
On input two commitments c = ({ci,b}i∈[n],b∈{0,1}, {ei}i∈[n], {ai,ei}i∈[n]) and c′ =
({c′i,b}i∈[n],b∈{0,1}, {e′i}i∈[n], {a′i,ei

}i∈[n]) such that ci,b = c′i,b for every i ∈ [n] and
b ∈ {0, 1}, do the following.

1. Find any i ∈ [n] such that ei , e′i . If no such i exist, output fail.

2. Output ṽ def
= ai,ei ⊕ a′i,e′i .

Figure 4.3: A somewhat extractable commitment scheme SWExtCom

•
{
outputR∗

[
Cpub(1n)↔ R∗(1n, z)

]}
n∈N,v∈{0,1}n,z∈{0,1}∗

Proof sketch. Cpub is an algorithm that is the same as C except that, instead of send-
ing commitments of Com, it sends fake commitments of Com using Compub (i.e., sends
random strings with the same length as the Com commitments; cf. Section 4.3.1). Since
Com has pseudorandom range, the indistinguishability can be proven by using a stan-
dard hybrid argument (in which the commitments of Com are replaced with random
strings one by one). The formal proof is omitted. □

4.4 Building Blocks
In this section, we introduce two building blocks that we use in our LRZK protocol.

82

4.4.1 Special-purpose Encrypted Barak’s Preamble
In our LRZK protocol, we use a variant of so called “encrypted” Barak’s preamble
[PR05b, PR05a]. The encrypted Barak’s preamble is the same as (a variant of) Barak’s
non-black-box zero-knowledge protocol ⟨PB,VB⟩ in Section 4.3.5 except that PB com-
mits to its UA messages β and δ instead of sending them in clear. In our variant of
the encrypted Barak’s preamble, instead of giving valid commitments, PB gives fake
commitments of Com and SWExtCom by using Compub and Cpub (cf. Sections 4.3.1
and 4.3.6). A nice property of our variant is that the prover sends only random strings;
as will become clear later, this property is useful for constructing leakage-resilient pro-
tocols. The formal description of our variant, which we denote by ⟨PB,VB⟩, is shown
in Figure 4.4.

We first show that, as in the case of ⟨PB,VB⟩, there exists a “hard” language on the
transcript of ⟨PB,VB⟩.

Lemma 4.4 (Soundness). Let LB be the language defined in Figure 4.5. Then, for any
cheating prover P∗ against ⟨PB,VB⟩, any n ∈ N, and any z ∈ {0, 1}∗,

Pr
[
τ ∈ LB

∣∣∣ τ← trans [P∗(1n, z)↔ VB(1n)]
]
≤ negl(n) .

Proof . Assume for contradiction that there exists P∗ such that for infinitely many n’s,
there exists z ∈ {0, 1}∗ such that

Pr
[
τ ∈ LB

∣∣∣ τ← trans [P∗(1n, z)↔ VB(1n)]
]
≥ 1

p(n)

for a polynomial p(·). We use P∗ to construct a cheating prover P∗ against ⟨PB,VB⟩ and
show that it contradicts the soundness of ⟨PB,VB⟩ (i.e., Lemma 4.1).

Consider the following cheating prover P∗ against ⟨PB,VB⟩. First, P∗ internally in-
vokes P∗. Then, while externally interacting with an honest VB of ⟨PB,VB⟩, P∗ interacts
with internal P∗ as a verifier of ⟨PB,VB⟩ in the following way.

• In Stage 1 and 2 (of ⟨PB,VB⟩), P∗ forwards all messages from external VB to
internal P∗ and forwards all messages from internal P∗ to external VB. (Notice
that the verifier of ⟨PB,VB⟩ and that of ⟨PB,VB⟩ are identical.) Let (h, r1, c, r2) be
the transcript of these stages.

• In Stage 3-1, P∗ forwards α from external VB to internal P∗.

• In Stage 3-2, P∗ interacts with internal P∗ as an honest receiver of SWExtCom and
obtains β̂1. Let st be the current state of P∗. Then, P∗ rewinds P∗ to the point just
before the challenge stage of SWExtCom, interacts with P∗ again, and obtains β̂2.
Then, P∗ computes a potential committed value β̃ def

= Extract(̂β1, β̂2) of β̂1 (recall
that Extract is the extracting algorithm of SWExtCom shown in Figure 4.3) and
sends β̃ to external VB.

• In Stage 3-3, P∗ receives γ from VB and sends it to internal P∗ (which is restarted
from state st).

83

Stage 1:
The verifierVB sends a random hash function h ∈ H to the proverPB. VB also
sends r1 ∈ {0, 1}3n (the first-round message of Naor’s commitment scheme
Com) to PB.

Stage 2:

1. PB gives a fake commitment c of Com to VB by running c ←
Compub(1n).

2. VB sends random r2 ∈ {0, 1}n+n2 to PB.

Stage 3 (Encrypted UA):

1. VB sends the first-round messageα of UA for statement (h, r1, c, r2) ∈ Λ.
2. PB gives a fake commitment of SWExtCom to VB by running Cpub(1n).

Let β̂ be the fake commitment (i.e., the transcript of this step).
3. VB sends the third-round message γ of UA for statement (h, r1, c, r2) ∈
Λ.

4. PB gives a fake commitment of SWExtCom to VB by running Cpub(1n).
Let δ̂ be the fake commitment.

. .

Language Λ (same as the one in Figure 4.1):
(h, r1, c, r2) ∈ Λ if and only if there exist

• a machine Π
• randomness rand for Com

• a string y such that |y| ≤ n2

such that

• c = Comr1(h(Π); rand), and
• Π(c, y) outputs r2 within nlog log n steps.

Figure 4.4: Special-purpose encrypted Barak’s preamble ⟨PB,VB⟩.

84

Language LB:
(h, r1, c, r2, α, β̂, γ, δ̂) ∈ LB if and only if there exist

• decommitments d1, d2 ∈ {0, 1}poly(n) for SWExtCom

• the second-round and the fourth-round messages β, δ ∈ {0, 1}n of UA

such that

• d1 is a valid decommitment of β̂ to β, and
• d2 is a valid decommitment of δ̂ to δ, and
• (α, β, γ, δ) is an accepting transcript of UA for statement (h, r1, c, r2) ∈
Λ.

Figure 4.5: Language LB.

• In Stage 3-4, P∗ interacts with internal P∗ as an honest receiver of SWExtCom
and obtains δ̂1. Then, P∗ rewinds P∗ to the point just before the challenge stage
of SWExtCom, interacts with P∗ again, and obtains δ̂2. Then, P∗ computes δ̃ :=
Extract(̂δ1, δ̂2) and sends δ̃ to external VB.

Whenever internal P∗ aborts, P∗ also aborts.
Before analyzing the success probability of P∗, we first introduce some termi-

nologies regarding the internally emulated interaction between P∗ and VB. Let τ =
(h, r1, c, r2, α, β̂1, γ, δ̂1) be its transcript. Notice that since P∗ emulates VB for internal
P∗ perfectly, we have τ ∈ LB with probability at least 1/p(n).

• We say that a transcript τ1 up until the commit stage of SWExtCom in Stage 3-2
is good if under the condition that τ1 is a prefix of τ, the probability that τ ∈ LB

holds is at least 1/2p(n).

• We say that a transcript τ2 up until the commit stage of SWExtCom in Stage 3-4
is good if (1) a prefix of τ2 up until the commit stage of SWExtCom in Stage 3-2
is good and (2) under the condition that τ2 is a prefix of τ, the probability that
τ ∈ LB holds is at least 1/4p(n).

We then analyze the success probability of P∗ as follows. Let GOOD1 be the event
that a prefix of τ up until the commit stage of SWExtCom in Stage 3-2 is good, and let
GOOD2 be the event that a prefix of τ up until the commit stage of SWExtCom in Stage
3-4 is good. From an average argument, we have

Pr [GOOD1] ≥ 1
2p(n)

and Pr [GOOD2 | GOOD1] ≥ 1
4p(n)

.

Hence, we have

Pr [GOOD2] = Pr [GOOD1 ∧ GOOD2] ≥ 1
8 (p(n))2 . (4.1)

85

(The first equation holds since GOOD1 occurs whenever GOOD2 occurs.) Also, from the
definition of GOOD2, we have

Pr [τ ∈ LB | GOOD2] ≥ 1
4p(n)

. (4.2)

Hence, from Equation (4.1) and (4.2), we have

Pr [GOOD1 ∧ GOOD2 ∧ τ ∈ LB] = Pr [GOOD2 ∧ τ ∈ LB] ≥ 1
32 (p(n))3 . (4.3)

Next, we observe that when the transcript up until the commit stage of SWExtCom
in Stage 3-2 is good, P∗ gives a valid commitment of SWExtCom in Stage 3-2 with
probability at least 1/2p(n), and similarly, when the transcript up until the commit stage
of SWExtCom in Stage 3-4 is good, P∗ gives a valid commitment of SWExtCom in
Stage 3-4 with probability at least 1/4p(n). (This is because when the transcript is
in LB, the SWExtCom commitments in Stage 3-2 and 3-4 are valid.) Hence, under the
condition that GOOD1∧GOOD2∧τ ∈ LB, the probability that both of β̂2 and δ̂2 are valid is
at least 1/8(p(n))2. Also, from the definition of LB, both of β̂1 and δ̂1 are valid when τ ∈
LB, and furthermore, β̂1 and β̂2 (resp, δ̂1 and δ̂2) are admissible except with negligible
probability. Hence, from Lemma 4.2, for β̃ = Extract(̂β1, β̂2) and δ̃ = Extract(̂δ1, δ̂2)
we have

Pr
[
β̃ = Value(̂β1) ∧ δ̃ = Value(̂δ1) | GOOD1 ∧ GOOD2 ∧ τ ∈ LB

]
≥ 1

8(p(n))2 − negl(n) . (4.4)

Hence, from Equation (4.3) and (4.4), we have

Pr
[
GOOD1 ∧ GOOD2 ∧ τ ∈ LB ∧ β̃ = Value(̂β1) ∧ δ̃ = Value(̂δ1)

]
≥ 1

256(p(n))5 − negl(n) .

Notice that from the definition of LB, when τ ∈ LB ∧ β̃ = Value(̂β1) ∧ δ̃ = Value(̂δ1), it
holds that (α, β̃, γ, δ̃) is an accepting UA proof for (h, r1, c, r2) ∈ Λ. Hence, we have

Pr
[
(h, r1, c, r2, α, β̃, γ, δ̃) ∈ LB

]
≥ 1

256(p(n))5 − negl(n) ,

which contradicts Lemma 4.1. □

We next note that a non-black-box simulator can simulate the transcript τ in such a
way that τ ∈ LB holds, and the simulator can additionally output a witness for τ ∈ LB.

Lemma 4.5 (Simulatability). Let LB be the language defined in Figure 4.5. Then, for
any ppt cheating verifier V∗ against ⟨PB,VB⟩, there exists a ppt simulator S such that
the following hold.

86

• Let S1(x, z) be the random variable representing the first output of S(x, z). Then,
the following indistinguishability holds.

{viewV∗ [PB(1n)↔ V∗(1n, z)]}n∈N,z∈{0,1}∗
c≈ {S1(1n, z)}n∈N,z∈{0,1}∗

• For any n ∈ N and z ∈ {0, 1}∗, the following holds.

Pr
[
w ∈ RLB(τ)

∣∣∣∣∣ (v,w)← S(1n, z);
reconstruct transcript τ from view v of V∗

]
≥ 1 − negl(n)

This lemma can be proven in essentially the same way as the zero-knowledge prop-
erty of Barak’s non-black-box zero-knowledge protocol. For completeness, we give a
proof sketch below.

Proof sketch of Lemma 4.5. To simulate the view of V∗, the simulator S internally in-
vokes V∗ and interacts with it as follows.

• After receiving h and r1 in Stage 1, S sends c ← Comr1(h(V∗)) to V∗ in Stage
2-1. Let rand be the randomness that was used in this step.

• After receiving r2 in Stage 2-2 and α in Stage 3-1, S computes the second-round
UA message β by using witness (V∗, rand, ε) for (h, r1, c, r2) ∈ Λ (where ε is an
empty string) and then honestly commits to β by using SWExtCom. Let β̂ be the
commitment and d1 be the decommitment.

• After receiving γ in Stage 3-3, S computes the fourth-round UA message δ and
then honestly commits to δ by using SWExtCom. Let δ̂ be the commitment and
d2 be the decommitment.

S then outputs (v,w), where v is the view of internal V∗ and w def
= (d1, d2, β, δ). Let

τ := (h, r1, c, r2, α, β̂, γ, δ̂).
We analyze S as follows. First, from the hiding property of Com and the indistin-

guishability of Cpub (Lemma 4.3), v is indistinguishable from the real view ofV∗. Next,
from the definitions of Λ and LB, we have τ ∈ LB and w is its witness. Hence, the
lemma follows. □

4.4.2 Special-purpose Instance-dependent Commitment
In our LRZK protocol, we use a special-purpose instance-dependent commitment
scheme GJS-Com, which is shown in Figure 4.6. GJS-Com is parametrized by two
graphs, G and G′, and obtained by modifying Hamiltonicity commitment scheme
H-ComG,r (Section 4.3.3) in such a way that the adjacency matrix is committed to by
using AH-ComG′,r. GJS-Com inherits many properties from H-Com—hiding, bind-
ing, and equivocality—and additionally, thanks to the adaptive security of AH-Com,
it provides adaptive security in the following sense: When G ∈ LHC and G′ ∈ LHC, a
commitment to 1 can be explained as a valid commitment to 0, and furthermore, even
after being explained as a commitment to 0, it can be decommitted to 1 in a consistent
way. Details follow.

87

Parameters:

• Security parameter n.
• Two graphs G and G′, where the number of vertices in G is q = poly(n)

and that in G′ is q′ = poly′(n).

Inputs:

• C has secret input b ∈ {0, 1}, which is the value to be committed to.

Commit phase:

1. R sends the first-round message r ∈ {0, 1}3n of Com.
2. To commit to 0, C chooses a random permutation π over the vertices

of G, computes H0 := π(G), and commits to its adjacency ma-
trix A0 = {a0,i, j}i, j∈[q] by using AH-ComG′,r, i.e., sends ci, j ←
AH-ComG′,r(a0,i, j) for every i, j ∈ [q].

To commit to 1, C chooses a random q-cycle graph H1 and commits
to its adjacency matrix A1 = {a1,i, j}i, j∈[q] by using AH-ComG′,r, i.e.,
sends ci, j ← AH-ComG′,r(a1,i, j) for every i, j ∈ [q].

Let GJS-ComG,G′,r(·) be a function that, on input b ∈ {0, 1}, computes a
commitment to b as above by considering r as the first-round message from
the receiver.

Decommit phase:

• When C committed to 0, it reveals π and decommits ci, j to a0,i, j for
every i, j ∈ [q]. R verifies whether the decommitted matrix is the adja-
cency matrix of π(G).

• When C committed to 1, it decommits ci, j to 1 for every i, j such that
edge (i. j) is on the q-cycle in H1 (i.e., every i, j such that a1,i, j = 1). R
verifies whether the decommitted entries correspond to the edges on a
Hamiltonian cycle.

Let GJS-Decr(·) be a function that, on input (c, b, ρ) such that
GJS-ComG,G′,r(b; ρ) = c, outputs a decommitment to b as above.

Figure 4.6: Special-purpose instance-dependent commitment GJS-Com.

Lemma 4.6 (Hiding and binding). GJS-Com is computationally hiding. Furthermore,
it is statistically binding when G < LHC and G′ < LHC.

Proof . The hiding property follows directly from the hiding property of AH-ComG′ . To
see the binding property, observe the following: When G′ < LHC, AH-ComG′ is statisti-
cally binding and therefore the matrix committed to in the commit phase of GJS-Com
is uniquely determined except with negligible probability; furthermore, when the com-

88

mitted matrix is uniquely determined and G < LHC, decommitting to both 0 and 1 is
clearly impossible; hence, when G < LHC and G′ < LHC, a commitment of GJS-Com
can be decommitted to both 0 and 1 only with negligible probability. □

Lemma 4.7 (Equivocality). There exists an algorithm GJS-EquivToOne that is
parametrized by graphs G,G′ and a string r ∈ {0, 1}3n and satisfies the following: When
G ∈ LHC, on input any w ∈ RHC(G) and any c and ρ such that GJS-ComG,G′,r(0; ρ) = c,
GJS-EquivToOneG,G′,r outputs a valid decommitment of c to 1.

Proof . We need to show that, on inputs a commitment c to 0, a witness w ∈ RHC(G),
and randomness ρ that is used to compute c, an algorithm GJS-EquivToOne can de-
commit c to 1.

GJS-EquivToOne decommits c to 1 as follows. From the construction of
GJS-Com, commitment c consists of {ci, j}i, j∈[q], which are AH-Com commitments to
the adjacency matrix of H0 = π(G). To decommit c to 1, GJS-EquivToOne need to de-
commit some of {ci, j}i, j∈[q] to 1 so that the decommitted entries of the matrix correspond
to the edges on a Hamiltonian cycle in a q-vertex graph. To do such decommitments,
GJS-EquivToOne first computes a Hamiltonian cycle π(w) in H0 by using Hamiltonian
cycle w in G and permutation π (which is included in ρ). Then, GJS-EquivToOne de-
commits ci, j to ai, j honestly for every i, j such that (i, j) is an edge on π(w). Clearly, this
is a valid decommitment to 1. □

Lemma 4.8 (Adaptive security). There exists an algorithm GJS-ExplainAsZero that
is parametrized by graphs G,G′ and a string r ∈ {0, 1}3n and satisfies the following.

Correctness. When G,G′ ∈ LHC, on input any w ∈ RHC(G) and w′ ∈ RHC(G′) and any
c and ρ1 such that GJS-ComG,G′,r(1; ρ1) = c, GJS-ExplainAsZeroG,G′,r outputs
ρ0 such that GJS-ComG,G′,r(0; ρ0) = c.

Indistinguishability. For security parameter n ∈ N, graphs G,G′ ∈ LHC, witnesses
w ∈ RHC(G) and w′ ∈ RHC(G′), and string r ∈ {0, 1}3n, consider the following two
probabilistic experiments.

ExpGJS
0 (n,G,G′,w,w′, r)

/* commit to 0 and decommit it to 1 using equivocality */
1. Compute c← GJS-ComG,G′,r(0).

Let ρ0 be the randomness used in GJS-Com.
2. Compute d1 := GJS-EquivToOneG,G′,r(c,w, ρ0).
3. Output (c, ρ0, d1).

ExpGJS
1 (n,G,G′,w,w′, r)

/* commit & decommit to 1 and explain it as commitment to
0 */

1. Compute c← GJS-ComG,G′,r(1).
Let ρ1 be the randomness used in GJS-Com.
Compute d1 := GJS-DecG,G′,r(c, 1, ρ).

2. Compute ρ0 := GJS-ExplainAsZeroG,G′,r(c,w,w′, ρ1).

89

3. Output (c, ρ0, d1).

Let ExpGJS
b (n,G,G′,w,w′, r) be the random variable representing the output of

ExpGJS
b (n,G,G′,w,w′, r) for each b ∈ {0, 1}. Then, the following two ensembles

are computationally indistinguishable.

•
{
ExpGJS

0 (n,G,G′,w,w′, r)
}

n∈N,G,G′∈LHC,w∈RHC(G),w′∈RHC(G′),r∈{0,1}3n

•
{
ExpGJS

1 (n,G,G′,w,w′, r)
}

n∈N,G,G′∈LHC,w∈RHC(G),w′∈RHC(G′),r∈{0,1}3n

Proof . GJS-ExplainAsZero is shown in Figure 4.7. A key idea behind this construc-
tion is that given the ability to explain AH-Com commitments to 0 as AH-Com commit-
ments to 1, we can explain a commitment to 1 (which is AH-Com commitments to the
adjacency matrix of a cycle graph) as a commitment to 0 (which is AH-Com commit-
ments to the adjacency matrix of a Hamiltonian graph G). Intuitively, this is because
a cycle graph can be transformed to any Hamiltonian graph by appropriately adding
edges (which corresponds to changing some entries of the adjacency matrix from 0 to
1).

Parameter:

• Graphs G,G′ ∈ LHC

• String r ∈ {0, 1}3n

Input:

• Witnesses w ∈ RHC(G) and w′ ∈ RHC(G′)

• Commitment c and randomness ρ1 s.t. GJS-ComG,G′,r(1; ρ1) = c

Output:

1. Parse c as {ci, j}i, j∈[q], where each ci, j is a AH-Com commitment. Also,
from ρ1, reconstruct A1 = {a1,i, j}i, j∈[q] and {σ1,i, j}i, j∈[q] such that A1 is the
adjacency matrix of a q-cycle graph H1 and AH-ComG′,r(a1,i, j;σ1,i, j) =
ci, j for every i, j ∈ [q].

2. Choose a random permutation π under the condition that a q-cycle in
H0

def
= π(G) coincides with the q-cycle in H1 (i.e., H0 has the same cycle

as H1).a Let A0 = {a0,i, j}i, j∈[q] be the adjacency matrix of H0.

3. For every i, j ∈ [q], define σ0,i, j by σ0,i, j
def
= σ1,i, j when a0,i, j = a1,i, j and

by σ0,i, j
def
= AH-ExplainAsOneG′,r(w′, ci, j, σ1,i, j) when a0,i, j , a1,i, j.b

4. Outputs ρ0
def
= (π, {σ0,i, j}i, j∈[q]).

a Given w, this can be done efficiently.
b When a0,i, j , ai, j, it holds that a0,i, j = 1 and a1,i, j = 0; see the proof.

Figure 4.7: GJS-ExplainAsZero.

90

We first prove the correctness. A key observation is that since H0 is defined in such
a way that H0 has the same q-cycle as H1, for every i, j ∈ [q] we have only the following
three cases regarding the values of a0,i, j and a1,i, j.

Case 1. a0,i, j = 0, a1,i, j = 0

Case 2. a0,i, j = 1, a1,i, j = 1

Case 3. a0,i, j = 1, a1,i, j = 0

In particular, we do not have the case that a0,i, j = 0 and a1,i, j = 1 because when a1,i, j = 1,
edge (i, j) is on the q-cycle in H1, and therefore edge (i, j) is also on a q-cycle in H0

and thus a0,i, j = 1. Then, since we have only these three cases, from the property
of AH-ExplainAsOne we have AH-ComG′,r(a0,i, j;σ0,i, j) = ci, j for every i, j such that
a0,i, j , a1,i, j. Therefore, the output ρ0 satisfies GJS-ComG,G′,r(1; ρ) = c.

We next prove the indistinguishability. Toward this end, we consider the following
hybrid experiments.

Hybrid HYB0 is the same as ExpGJS
0 (n,G,G′,w,w′, r). Recall that in ExpGJS

0 , output
(c, ρ0, d1) is computed as follows:

• Choose ρ0 = (π, {σ0,i, j}i, j∈[q]), where π is a randomly chosen permutation
and each σ0,i, j is randomly chosen randomness for AH-Com.

• Compute c = {ci, j}i, j∈[q] by ci, j := AH-ComG′,r(a0,i, j;σ0,i, j) for each i, j ∈ [q],
where A0 = {a0,i, j}i, j∈[q] is the adjacency matrix of H0 = π(G).

• Define d1
def
= {σ0,i, j}(i, j)∈π(w), where π(w) is the set of the edges on the Hamil-

tonian cycle in H0 that is obtained by applying π on Hamiltonian cycle w in
G.

Hybrid HYB1 is the same as HYB0 except that π is chosen as follows:

1. Choose a random q-cycle graph H1. Let A1 = {a1,i, j}i, j∈[q] be the adjacency
matrix of H1.

2. Choose a random permutation π under the condition that a q-cycle in H0 =

π(G) coincides with the q-cycle in H1.

Hybrid HYB2 is the same as HYB1 except for the following.

• ci, j is computed by ci, j := AH-ComG′,r(a1,i, j;σ1,i, j) for every i, j ∈ [q], where
σ1,i, j is randomly chosen randomness.

• σ0,i, j is defined by σ0,i, j
def
= σ1,i, j when a0,i, j = a1,i, j and by σ0,i, j

def
=

AH-ExplainAsOneG′,r(w′, ci, j, σ1,i, j) when a0,i, j , a1,i, j.

Hybrid HYB3 is the same as ExpGJS
1 (n,G,G′,w,w′, r).

From a hybrid argument, we can show the indistinguishability of ExpGJS
0 and ExpGJS

1 by
showing the indistinguishability of each neighboring hybrids.

91

Claim 4.1. The outputs of HYB0 and HYB1 are identically distributed.

Proof . HYB0 and HYB1 differ only in the way π is chosen. However, the distribution of
π is uniformly random in both hybrids. (In particular, the distribution of π is uniformly
random in HYB1 since H1 is chosen randomly.) Hence, the claim follows. □

Claim 4.2. The outputs of HYB1 and HYB2 are computationally indistinguishable.

Proof . We first remark that, as noted above, we have a0,i, j = 1 and a1,i, j = 0 when
a0,i, j , a1,i, j. Because of this, HYB1 and HYB2 differ only in that for every i, j such that
a0,i, j , a1,i, j,

• in the case of HYB1, ci, j is a commitment to 1 and σ0,i, j is randomly chosen ran-
domness that is used to generate ci, j, whereas

• in the case of HYB2, ci, j is a commitment to 0 and σ0,i, j is the randomness that is
computed by AH-ExplainAsOne.

Hence, the indistinguishability follows from the adaptive security of AH-Com. In par-
ticular, we can prove the indistinguishability by considering a sequence of intermediate
hybrids HYB1,0, . . . ,HYB1,q2 such that

• HYB1,0 is the same as HYB1, and

• for every u, v ∈ [q], HYB1,(u−1)q+v is the same as HYB1,(u−1)q+v−1 except that cu,v and
σ0,u.v are computed in the same way as in HYB2,

and then proving the indistinguishability of each neighboring intermediate hybrids by
designing an adversary against the adaptive security of AH-Com in a straight-forward
manner so that, depending on the value of (c, ρ1) that it receives externally, it internally
emulates either HYB1,(u−1)q+v or HYB1,(u−1)q+v−1 (i.e., when c is a commitment to 1 and
ρ is its randomness, the adversary internally emulates HYB1,(u−1)q+v−1, and when c is a
commitment to 0 and ρ is the randomness that is generated by AH-ExplainAsOne, the
adversary internally emulates HYB1,(u−1)q+v). □

Claim 4.3. The outputs of HYB2 and HYB3 are identically distributed.

Proof . It can be seen by inspection that in HYB2, the output (c, ρ0, d1) is computed in
exactly the same way as in ExpGJS

1 . Hence, the claim follows. □

From these claims, we obtain the indistinguishability of ExpGJS
0 and ExpGJS

1 . This
concludes the proof of Lemma 4.8. □

92

4.5 Our Leakage-resilient Zero-knowledge Argument
In this section, by using the two building blocks ⟨PB,VB⟩ and GJS-Com in Section 4.4,
we construct a constant-round LRZK argument system.

Theorem 4.1 (restatement of Main Theorem). Assume the existence of collision-
resistant hash function family. Then, there exists a constant-round public-coin leakage-
resilient zero-knowledge argument system LR-ZK.

Proof . LR-ZK is shown in Figure 4.8. Since ⟨PB,VB⟩ can be constructed from any
collision-resistant hash function family, and SWExtCom can be constructed from any
one-way function (which can be obtained from any collision-resistant hash function
family), LR-ZK can be constructed from any collision-resistant hash function family.
Also, by inspection, it can be seen that LR-ZK is public-coin and has constant rounds.

In the following, we prove soundness in Section 4.5.1 and leakage-resilient zero-
knowledgeness in Section 4.5.2.

4.5.1 Soundness
Lemma 4.9. LR-ZK is sound against ppt adversaries.

Proof . For any cheating ppt prover P∗, we show that P∗ cannot give an accepting proof
for a false statement G < LHC except with negligible probability. Notice that from the
soundness of ⟨PB,VB⟩, the statement τ generated in Stage 1 satisfies τ < LB except
with negligible probability. Hence, it suffices to show that under the condition that
τ < LB (and hence G′ < LHC), P∗ cannot give an accepting proof except with negligible
probability.

A key observation is that when G < LHC and G′ < LHC, special-purpose instance-
dependent commitment scheme GJS-ComG,G′ is statistically binding, and therefore the
matrix that is committed to in Stage 2-1 is uniquely determined in each of the n itera-
tions except with negligibly probability. Based on this observation, we can prove the
soundness in essentially the same way as the soundness of Blum’s Hamiltonicity pro-
tocol. Specifically, when the committed matrix is uniquely determined in each of the n
iterations, P∗ can give a valid response in Stage 2-3 with probability at most 1/2 in each
of n iterations. (This is because, when G′ < LHC, no Hamiltonian graph is isomorphic
to G′.) Hence, under the condition that τ < LB, P∗ can give an accepting proof with
only negligible probability. This completes the proof of soundness. □

4.5.2 Leakage-resilient Zero-knowledgeness
Lemma 4.10. LR-ZK is leakage-resilient zero-knowledge.

In the following, we prove this lemma only w.r.t. a simplified version of LR-ZK in
which Stage 2-1, 2-2, and 2-3 are executed only once (instead of executed n times in
parallel). The proof w.r.t. the original version of LR-ZK can be obtained by modifying
the following proof in a straightforward way.

93

Input. Common input to P and V is graph G ∈ LHC. Let n def
= |G|, and q be the

number of vertices in G. Private input to P is witness w ∈ RHC(G).

Stage 1.

• P and V execute special-purpose encrypted Barak’s preamble ⟨PB,VB⟩. Let
τ be the transcript.

• P and V reduce statement “τ ∈ LB” to Hamiltonicity problem via general
NP reduction. Let G′ be the graph that P and V obtained. Let q′ be the
number of vertices in G′.

Stage 2.

• V sends the first-round message r ∈ {0, 1}3n of Naor’s commitment scheme
Com to P.

• P and V do the following for n times in parallel.

1. P commits to a q′ × q′ zero matrix in a bit-by-bit manner by using
GJS-ComG,G′,r. That is, P sends ci, j ← GJS-ComG,G′,r(0) to V for
every i, j ∈ [q′]. Let ρi, j be the randomness that was used to compute
ci, j.

2. V sends a random bit ch ∈ {0, 1} to P.
3. When ch = 0:

– P chooses a random permutation π and computes H0 := π(G′). Let
A0 = {a0,i, j}i, j∈[q′] be the adjacency matrix of H0.

– P sends π to V and decommits the GJS-Com commitments in
Stage 2-1 to A0 by using the equivocality of GJS-Com. That
is, for every i, j ∈ [q], P sends an honest decommitment di, j :=
GJS-DecG,G′,r(ci, j, 0, ρi, j) to V when a0,i, j = 0 and sends a fake de-
commitment di, j := GJS-EquivToOneG,G′,r(ci, j,w0, ρi, j) to V when
a0,i, j = 1.

– V computes H0 = π(G′) and verifies whether the decommitted
matrix is equal to the adjacency matrix of H0.

When ch = 1:
– P chooses a random q′-cycle graph H1. Let A1 = {a1,i, j}i, j∈[q′] be

the adjacency matrix of H1.
– P decommits ci, j to a1,i, j for every i, j such that a1,i, j = 1 (i.e.,

for every i, j such that edge (i, j) is on the q′-cycle of H1). That
is, for every such i and j, P sends a fake decommitment di, j :=
GJS-EquivToOneG,G′,r(ci, j,w0, ρi, j) to V .

– V checks whether the decommitted entries of the matrix corre-
spond to the edges on a q′-cycle.

Figure 4.8: Constant-round leakage-resilient zero-knowledge argument LR-ZK.
94

Proof . Without loss of generality, we assume that after receiving each message from
the prover, the cheating verifier makes exactly a single leakage query. To see that we
indeed do not lose generality, observe that instead of making two queries f1 and f2, the
cheating verifier can always query a single query f such that, on input witness w and
prover’s randomness tape, it computes the first leakage L1 := f1(w, tape), chooses the
second query f2 adaptively, computes the second leakage L2 := f2(w, tape), and outputs
(L1, L2).

In the following, we describe our simulator, observe that our simulator obtains the
same amount of leakage as the adversary, and prove the indistinguishability of views.

4.5.2.1 Description of the simulator.

Given access to leakage oracle Lw and input (G, z), our simulator S simulates the view
of cheating verifier V∗ by internally invoking V∗(G, z) and interacting with it as follows.

Simulating messages and leakages in Stage 1. Roughly speaking, S simulates the
messages in Stage 1 by interacting with V∗ in the same way as the simulator of ⟨PB,VB⟩
(cf. Lemma 4.5). To simulate the leakages in Stage 1, S uses the fact that Stage 1 of
LR-ZK is public coin w.r.t. the prover and therefore all the randomness that an honest
prover generates during Stage 1 is the messages themselves. Specifically, S simulates
the leakages by considering the messages msgs that it has sent to V∗ thus far as the
randomness of the prover. An issue is that due to the existence of leakage queries, S
cannot use the simulator of ⟨PB,VB⟩ in a modular way. Nonetheless, S can still use
the technique used in the simulator of ⟨PB,VB⟩ as long as the length of the leakages is
bounded by n2. (Notice that when the length of leakage exceeds n2, S can simply obtain
a Hamiltonian cycle w of G from Lw.)

Formally, S interacts with V∗ as follows.

1. After receiving h and r1 from V∗, S sends c← Comr1(h(V∗)) to V∗. Let rand be
the randomness that was used in this step.
Leakage query: When V∗ makes a leakage query f , S does the following.

• Let tape := c.
• If the output length of f is more than n2, S obtains w from Lw and returns

f (w∥ tape) to V∗.
• Otherwise, S queries f (·, tape) to Lw, obtains reply L from Lw, and for-

wards L to V∗.

If S obtained w, from now on S interacts with V∗ in exactly the same way as an
honest prover. Otherwise, do the following.

2. After receiving r2 and α from V∗, S computes the second-round UA message β by
using witness (V∗, rand, L) and then honestly commits to β by using SWExtCom.
Let β̂ be the commitment and d1 be the decommitment.
Leakage query: When V∗ makes a leakage query f , S sets tape := msgs,
queries f (·, tape) to Lw, and forwards the reply from Lw to V∗, where msgs
are the messages that S has sent to V∗ thus far.

95

3. After receiving γ from V∗, S computes the fourth-round UA message δ and then
honestly commits to δ by using SWExtCom. Let δ̂ be the commitment and d2 be
the decommitment.
Leakage query: When V∗ makes a leakage query f , S answers it in exactly the
same way as above.

Let τ def
= (h, r1, c, r2, α, β̂, γ, δ̂) and w̄ def

= (d1, d2, β, δ). Since (V∗, rand, L) is a valid
witness for (h, r1, c, r2) ∈ Λ, we have τ ∈ LB and w̄ ∈ RLB(τ). Let G′ and w′ be the
graph and its Hamiltonian cycle that are obtained by reducing statement “τ ∈ LB” to
Hamiltonicity problem through the NP reduction.

Simulating messages Stage 2. If S obtained w during Stage 1, it interacts with V∗

in the same way as an honest prover. Otherwise, S interacts with V∗ as follows. The
idea is that, since S know a witness w′ for G′ ∈ LHC, S can correctly respond to the
challenge for both ch = 0 and ch = 1 by committing to a random permutation of G′ in
the first step.

1. S chooses a random permutation π and computes H := π(G′). Then, S commits
to the adjacency matrix A = {ai, j}i, j∈[q′] of H by using GJS-ComG,G′,r. That is, S
sends ci, j ← GJS-ComG,G′,r(ai, j) to V∗ for every i, j ∈ [q′].
Let {ρi, j}i, j∈[q′] be the randomness used in the GJS-Com commitments and π(w′)
be the Hamiltonian cycle in H that is obtained by applying π on Hamiltonian
cycle w′ in G′.

2. S receives a random bit ch ∈ {0, 1} from V∗.

3. When ch = 0, S sends π to V and decommits ci, j to ai, j honestly for every i, j ∈
[q′]. That is, S sends di, j := GJS-DecG,G′,r(ci, j, ai, j, ρi, j) to V for every i, j ∈
[q′].

When ch = 1, S decommits ci, j to 1 honestly for every i, j such that edge (i, j)
is on the Hamiltonian cycle π(w′) in H. That is, for every such i and j, S
sends di, j := GJS-DecG,G′,r(ci, j, ai, j, ρi, j) to V∗.

Simulating leakage queries in Stage 2. When V∗ makes a leakage query f , S sim-
ulates the leakage as follows. Recall that in Stage 2-1, an honest prover commits to a
q′ × q′ zero matrix whereas S commits to the adjacency matrix of H. Hence, S simu-
lates the leakage by “explaining” the commitments to {ai, j}i, j∈[q′] as commitments to {0}
by using the adaptive security of GJS-Com and the knowledge of w′. Concretely, S
does the following.

• First, for each i, j ∈ [q′], S constructs a function Fi, j(·) such that on input
w, it outputs ρ̃i, j such that GJS-ComG,G′,r(0; ρ̃i, j) = ci, j. Concretely, when
ai, j = 0, Fi, j(·) is a function that always outputs ρi, j, and when ai, j = 1,
Fi, j(·)

def
= GJS-ExplainAsZeroG,G′,r(ci, j, ·,w′, ρi, j).

• Next, S constructs a function f̃ such that on input w, it computes tape := msgs∥
{Fi, j(w)}i, j∈[q′] and outputs f (w, tape).

96

• Finally, S queries f̃ to Lw and forwards the reply from Lw to V∗.

4.5.2.2 Amount of total leakage.

From the construction of S, it always obtains at most the same amount of leakages as
V∗. Hence, we have

Pr [IDEALS(x,wx, z) = ⊥] = 0 .

4.5.2.3 Indistinguishability of views.

We show that for any cheating verifier V∗ and any sequence {wG}G∈LHC such that wG ∈
RHC(G), the following indistinguishability holds.

{REALV∗(G,wG, z)}G∈LHC,z∈{0,1}∗
c≈ {IDEALS(G,wG, z)}G∈LHC,z∈{0,1}∗ . (4.5)

Toward this end, we consider the following hybrid experiments.

Hybrid HYB0(G, z) is identical with experiment REALV∗(G,w, z). That is, V∗ interacts
with honest P(G,w) and obtains leakage that is computed honestly based on wit-
ness w and the prover’s randomness. The outputs of this hybrid is the view of
V∗.

Hybrid HYB1(G, z) is the same as HYB0 except for the following.

• In Stage 1, an honest prover is replaced with the simulator. That is, c is
computed by committing to h(V∗), β̂ is computed by committing to β, and
δ̂ is computed by committing to δ.
Let τ and w̄ be the statement and the witness generated in it. Let G′ and
w′ be the graph and its Hamiltonian cycle that are obtained by reducing
statement “τ ∈ LB” to Hamiltonicity problem through the NP reduction.

• The leakage queries are answered by considering that the randomness gen-
erated by the prover during Stage 1 is equal to the messages sent to V∗ during
Stage 1.

Hybrid HYB2(G, z) is the same as HYB1 except for the following.

• As in S, a random permutation π is chosen randomly at the beginning of
Stage 2-1. Let H def

= π(G′), and A = {ai, j}i, j∈[q′] be the adjacency matrix of
H. Let π(w′) be the Hamiltonian cycle in H that is obtained by applying π
on Hamiltonian cycle w′ in G′.
We remark that in this hybrid, the prover still commits to a q′×q′ zero matrix
as in HYB1. Also, the leakage query immediately after Stage 2-1 is answered
in exactly the same way as in HYB1. In particular, when the leakage query
is answered, π is not included in the randomness generated by the prover in
Stage 2-1.

• In Stage 2-3, graph H0 or H1 is chosen as follows.

97

When ch = 0, H0 := H.
When ch = 1, H1 is the graph that is obtained by removing every edge in

H except for the ones on Hamiltonian cycle π(w′).

The leakage query immediately after Stage 2-3 is answered in the same way
as in HYB1 by considering that H0 or H1 was chosen during Stage 2-3 as in
HYB1.

Hybrid HYB3(G, z) is the same as HYB2 except for the following.

• In Stage 2-1, for every i, j ∈ [q′], commitment ci, j is computed by commit-
ting to ai, j (instead of 0), i.e., ci, j ← GJS-ComG,G′,r(ai, j).

• In Stage 2-3, for every i, j ∈ [q′], if commitment ci, j need to be decommitted,
it is decommitted to ai, j honestly.

• When the leakage queries are answered during Stage 2, the randomness ρi, j

used for computing ci, j is simulated by ρ̃i, j that is computed by function Fi, j

as in S for every i, j ∈ [q′].

Hybrid HYB4(G, z) is identical with IDEALS(x,w, z). That is, S(G, z) is executed
given access to Lw. The outputs of this hybrid is that of S.

From a hybrid argument, we can obtain Equation (4.5) by showing that the outputs of
each neighboring hybrids are indistinguishable. Let HYBi(x, z) be the random variable
representing the output of HYBi(x, z) for each i ∈ {0, . . . , 4}.

Claim 4.4. We have the following indistinguishability.

{HYB0(G, z)}G∈LHC,z∈{0,1}∗
c≈ {HYB1(G, z)}G∈LHC,z∈{0,1}∗ .

Proof . HYB1 differs from HYB0 only in that fake commitments of Com and SWExtCom
are replaced with real commitments. Hence, the indistinguishability follows from the
security of Compub and Cpub (see Sections 4.3.1 and 4.3.6). □

Claim 4.5. We have the following indistinguishability.

{HYB1(G, z)}G∈LHC,z∈{0,1}∗ ≡ {HYB2(G, z)}G∈LHC,z∈{0,1}∗ .

Proof . This claim can be proven by inspection. Observe that HYB2 differs from HYB1

only in the way graph H0 or H1 is chosen in Stage 2. When ch = 0, the distribution of
H0 in HYB2 is the same as that in HYB1 since H0 is obtained both in HYB2 and HYB1 by
applying a random permutation on G′. When ch = 1, the distribution of H1 in HYB2 is
the same as that in HYB1 since the Hamiltonian cycle w′ in G′ is mapped to a random
q-cycle by π. Hence, the output of HYB2 is identically distributed with that of HYB1. □

Claim 4.6. We have the following indistinguishability.

{HYB2(G, z)}G∈LHC,z∈{0,1}∗
c≈ {HYB3(G, z)}G∈LHC,z∈{0,1}∗ .

98

Proof . Assume for contradiction that for infinitely many G ∈ LHC, there exists z ∈
{0, 1}∗ such that a distinguisher D distinguishes HYB2(G, z) and HYB3(G, z) with ad-
vantage 1/p(n) for a polynomial p(·). Fix any such G and z. To derive a contradiction,
we consider the following intermediate hybrids.

Hybrid HYB2:0(G, z) is identical with HYB2(G, z).

Hybrid HYB2:k(G, z) , where k ∈ [q′2], is the same as HYB2:k−1 except for the following.
Let u, v ∈ [q′] be such that (u − 1)q′ + v = k.

• In Stage 2-1, commitment cu,v is computed by committing to au,v (instead of
0), i.e., cu,v ← GJS-ComG,G′,r(au,v).

• In Stage 2-3, if commitment cu,v need to be decommitted, it is decommitted
to au,v honestly.

• When the leakage queries are answered during Stage 2, the randomness ρu,v

used for computing cu,v is simulated by ρ̃u,v that is computed by function
Fu,v as in S.

Clearly, HYB2:q′2 is identical with HYB3. Hence, there exists k∗ ∈ [q′2] such that the
output of HYB2:k∗−1 and that of HYB2:k∗ can be distinguished with advantage 1/q′2 p(n).
Furthermore, from an average argument, there exists a prefix σ of the execution of
HYBk∗−1 up until permutation π is chosen in Stage 2-1 (i.e., just before {ci, j}i, j∈[q′] is sent
to V∗) such that under the condition that a prefix of the execution is σ, the output of
HYB2:k∗−1 and that of HYB2:k∗ can be distinguished with advantage 1/q′2 p(n). Notice that
σ determines G′, w′, r, {ai, j}i, j∈[q′].

We derive a contradiction by showing that we can break the adaptive security
of GJS-Com (Lemma 4.8). Specifically, we show that ExpGJS

0 (n,G,G′,w,w′, r) and
ExpGJS

1 (n,G,G′,w,w′, r) can be distinguished with advantage 1/q′2 p(n). Toward this
end, consider the following distinguisherD′.

• Externally,D′ takes (c, ρ0, d1) as well as (n,G,G′,w,w′, r) as input. D′ also takes
(σ, z) as non-uniform input.

• Internally, D′ invokes V∗ and simulates HYB2:k∗−1(G, z) for V∗ from σ honestly
except for the following. Let u∗, v∗ ∈ [q′] be such that (u∗−1)q′+ v∗ = k∗. Notice
that it must hold that au∗,v∗ = 1 since HYB2:k∗ is identical with HYB2:k∗−1 when
au∗,v∗ = 0.

– In Stage 2-1, commitment cu∗,v∗ is defined by setting cu∗,v∗ := c.

– In Stage 2-3, when commitment cu∗,v∗ is decommitted, it is decommitted to
au∗,v∗ = 1 by sending d1.

– When the leakage queries are answered during Stage 2, the randomness
ρu∗,v∗ used for computing cu∗,v∗ is simulated by setting ρ̃u∗,v∗ := ρ0.

Let view be the view of V∗. Then,D′ outputsD(view).

99

When (c, ρ0, d1) ← ExpGJS
0 (n,G,G′,w,w′, r) (i.e., when c is a commitment to 0, ρ0 is

the randomness that is used to generate c, and d1 is a decommitment to 1 that is com-
puted by GJS-EquivToOne),D′ emulates HYB2:k∗−1 for V∗ perfectly. On the other hand,
when (c, ρ0, d1) ← ExpGJS

1 (n,G,G′,w,w′, r) (i.e., when c is a commitment to 1, ρ0 is
randomness that is computed by GJS-ExplainAsZero, and d1 is a decommitment to 1
that is computed honestly), D′ emulates HYB2:k∗ for V∗ perfectly. Hence, from our as-
sumption,D′ distinguishes ExpGJS

0 (n,G,G′,w,w′, r) and ExpGJS
1 (n,G,G′,w,w′, r) with

advantage 1/q′2 p(n), and therefore we reach a contradiction. □

Claim 4.7. We have the following indistinguishability.

{HYB3(G, z)}G∈LHC,z∈{0,1}∗ ≡ {HYB4(G, z)}G∈LHC,z∈{0,1}∗ .

Proof . In HYB3, the prover interacts with V∗ in exactly the same way as S. Hence, the
claim follows. □

From Claim 4.4, 4.5, 4.6, and 4.7, we obtain Equation (4.5). This concludes the
proof of Lemma 4.10.

□

This concludes the proof of Theorem 4.1. □

100

Chapter 5

Non-black-box Zero-knowledge
in the Fully Concurrent Setting

In this chapter, we show our third result: A new construction of non-black-box concur-
rent zero-knowledge arguments.

5.1 Background
As one can see in Definition 2.11, the zero-knowledgeness of interactive
proofs/arguments is defined by using the simulation paradigm: An interactive
proof/argument is defined to be zero-knowledge if for any adversarial verifier there ex-
ists a simulator that can output a simulated view of the adversary.

Traditionally, the security of ZK protocols was proven via black-box simulation.
That is, the zero-knowledge property was proven by showing a simulator that uses the
adversary only as an oracle. Since black-box simulators use the adversaries only as
oracles, their advantage is very limited—essentially, their only advantage is the ability
to rewind the adversaries. Nonetheless, black-box simulation is actually quite powerful,
and it has been used to obtain ZK protocols with a variety of additional properties,
security, and efficiency.

However, black-box simulation has inherent limitations. For example, let us con-
sider public-coin ZK protocols and concurrent ZK protocols, where the former is the
ZK protocols such that the verifier sends only the outcome of its coin-tossing during
the protocols, and the latter is the ZK protocols such that their zero-knowledge prop-
erty holds even when they are concurrently executed many times. It is known that
both of them can be constructed by using black-box simulation techniques [GMW91,
RK99, KP01, PRS02]. However, it is also known that neither of them can be con-
structed by black-box simulation techniques if we additionally require round effi-
ciency. Specifically, it was shown that constant-round public-coin ZK protocols and
o(log n/ log log n)-round concurrent ZK protocols cannot be proven secure via black-
box simulation [GK96b, CKPR02]. Furthermore, it was also shown that no public-coin
concurrent ZK protocol can be proven secure via black-box simulation irrespective to
its round complexity [PTW09].

101

Natural questions to ask are whether the ZK property can be proven by using non-
black-box simulation techniques, and whether the limitations of black-box simulation
can be overcome by using non-black-box simulation. Non-black-box simulation tech-
niques are, however, significantly hard to develop. Specifically, non-black-box simu-
lation seems to inherently involve “reverse engineering” of the adversaries, and such
reverse engineering seems very difficult.

Barak [Bar01] made a breakthrough about non-black-box stimulation by proposing
the first non-black-box simulation technique under a standard assumption, and showing
that a black-box impossibility result can be overcome by using it. Specifically, Barak
used his non-black-box simulation technique to obtain a constant-round public-coin ZK
protocol under the assumption that a family of collision-resistant hash functions exists.
(Recall that, as noted above, constant-round public-coin ZK protocols cannot be proven
secure via black-box simulation.) The simulation technique of Barak is completely
different from previous ones. Specifically, in his simulation technique, the simulator
runs in a “straight-line” manner (that is, it does not rewind the adversary) and simulates
the adversary’s view by using the code of the adversary.31

Non-black-box simulation in the concurrent setting. Since Barak’s non-black-box
simulation technique allows us to overcome a black-box impossibility result, it is nat-
ural to ask whether we can overcome other black-box impossibility results as well by
using Barak’s technique. In particular, since Barak’s simulation technique works in a
straight-line manner and therefore completely removes the issue of recursive rewind-
ing [DNS04] that arises in the setting of concurrent ZK, it is natural to expect that
Barak’s simulation technique can be used to overcome the black-box impossibility re-
sults of o(log n/ log log n)-round concurrent ZK protocols and public-coin concurrent
ZK protocols.

However, it turned out that Barak’s non-black-box simulation technique is hard to
use in the concurrent setting. In fact, although Barak’s technique can be extended so
that it can handle bounded-concurrent execution [Bar01] (i.e., concurrent execution
where the protocol is concurrently executed a bounded number of times) and paral-
lel execution [PRT13], it had been open for years to extend it so that it can handle
fully concurrent execution. An important step towards obtaining non-black-box simu-
lation in the fully concurrent setting was made by Deng, Goyal, and Sahai [DGS09],
who used Barak’s technique in the fully concurrent setting by combining it with a
black-box simulation technique (specifically, with the recursive rewinding technique
of Richardson and Kilian [RK99]). Another important step was made by Bitansky
and Paneth [BP12, BP13, BP15], who developed a new non-black-box simulation tech-
nique (which is not based on that of Barak) that can handle fully concurrent execu-
tion when being combined with a black-box simulation technique (again, the recursive
rewinding technique of [RK99]). The simulation techniques of these works are power-
ful enough to allow us to overcome another black-box impossibility result (namely the
impossibility of simultaneously resettable ZK protocols [CGGM00, BGGL01]). How-
ever, they are not strict improvement over Barak’s non-black-box simulation technique

31The notion of “straight-line simulation” is, unfortunately, hard to formalize. I this thesis, we use it
only informally.

102

since they do not have some of the useful properties that Barak’s technique do have,
such as the public-coin property and the straight-line simulation property. As a result,
they do not immediately allow us to overcome the black-box impossibility results of
o(log n/ log log n)-round concurrent ZK protocols and public-coin concurrent ZK pro-
tocols.

Recently, several works showed that with a trusted setup or non-standard assump-
tions, Barak’s simulation technique can be extended so that it can handle fully con-
current execution (without losing its public-coin property and straight-line simulation
property). Furthermore, they showed that with their versions of Barak’s technique,
it is possible to overcome the black-box impossibility results of o(log n/ log log n)-
round concurrent ZK protocols and public-coin concurrent ZK protocols. For example,
Canetti et al. [CLP13a] constructed a public-coin concurrent ZK protocol in the global
hash function (GHF) model, where a single hash function is used in all concurrent
sessions. Also, Chung et al. [CLP13b] constructed a constant-round concurrent ZK
protocol by assuming the existence of P-certificates (i.e., “succinct” non-interactive
proofs/arguments for P), Pandey et al. [PPS15] constructed a constant-round con-
current ZK protocols by assuming the existence of differing-input indistinguishability
obfuscators, and Chung et al. [CLP15] constructed a constant-round concurrent ZK
protocols by assuming the existence of indistinguishability obfuscators.

Very recently, Goyal [Goy13] showed that Barak’s non-black-box simulation tech-
nique can be extended so that it can handle fully concurrent execution even in the plain
model under standard assumptions. Goyal then used his version of Barak’s technique to
obtain the first public-coin concurrent ZK protocol in the plain model under a standard
assumption (the existence of a family of collision-resistant hash functions), where its
round complexity is O(nϵ) for an arbitrary constant ϵ > 0. Like the original simulation
technique of Barak (and many of its variants), the simulation technique of Goyal has
a straight-line simulator; hence, Goyal’s simulator performs straight-line concurrent
simulation. Because of this straight-line concurrent simulation property, the simula-
tion technique of Goyal has huge potential. In fact, it was shown subsequently that
Goyal’s technique can be used to obtain new results on concurrently secure multi-party
computation and concurrent blind signatures [GGS15].

In summary, we currently have several positive results on non-black-box simula-
tion in the concurrent setting, and in particular we have a one that has a straight-line
concurrent simulator in the plain model under a standard assumption [Goy13]. How-
ever, the state-of-the-art is still not satisfactory and there are still many open problems
to be addressed. For example, the simulation technique of Goyal [Goy13] requires the
protocol to have O(nϵ) rounds, so the problem of constructing o(log n/ log log n)-round
concurrent ZK protocols in the plain model under standard assumptions is still open.
Thus, studying more on non-black-box simulation and developing new non-black-box
simulation techniques in the concurrent setting is still an important research direction.

5.1.1 Our Result
In this chapter, we propose a new variant of Barak’s non-black-box simulation technique
and use it to give a new proof of the following theorem, which was originally proven

103

by Goyal [Goy13].

Main Theorem. Assume the existence of a family of collision resistant hash functions.
Then, for any constant ϵ > 0, there exists an O(nϵ)-round public-coin concurrent zero-
knowledge argument of knowledge.

Like the simulation technique of Goyal, our simulation technique can handle fully con-
current execution in the plain model under a standard assumption, and it has a simulator
that runs in a straight-line manner in the fully concurrent setting. We emphasize that
our simulation technique requires the same hardness assumption and the same round
complexity as that of Goyal; hence, it does not immediately lead to improvement over
the result of Goyal. Nevertheless, we believe that our simulation technique is interest-
ing because it is different from that of Goyal and its analysis is (in our opinion) simpler
than the analysis of Goyal’s technique. (A comparison between our simulation tech-
nique and that of Goyal is given in Section 5.2.3.) We hope that our technique leads to
further study on non-black-box simulation in the concurrent setting.

Brief overview of our technique. Our public-coin concurrent ZK protocol is based
on the public-coin concurrent ZK protocol of Canetti, Lin, and Paneth (CLP) [CLP13a],
which is secure in the global hash function model. Below, we give a brief overview of
our technique under the assumptions that the readers are familiar with Barak’s non-
black-box simulation technique and CLP’s techniques. In Section 5.2, we give a more
detailed overview of our technique, including the explanation of the techniques of Barak
and CLP.

The protocol of CLP is similar to the ZK protocol of Barak except that it has mul-
tiple “slots” (i.e., pairs of a prover’s commitment and a receiver’s random-string mes-
sage). A key observation by CLP is that given multiple slots, one can avoid the blow-up
of the simulator’s running time, which is the main obstacle to use Barak’s simulation
technique in the concurrent setting. More precisely, CLP’s observation is that given
multiple slots, the simulator can use any of these slots when generating the PCP proof
in the universal argument (UA) of Barak’s protocol, and therefore it can avoid the blow-
up of its running time by using a good “proving strategy” that determines which slots
to use in the generation of the PCP proofs in concurrent sessions. The proving strat-
egy that CLP use is similar in spirit to the oblivious rewinding strategy [KP01, PRS02]
of black-box concurrent ZK protocols. In particular, in the proving strategy of CLP,
the simulator recursively divides the simulated transcript between honest provers and
the cheating verifier into “blocks,” and generates the PCP proofs only at the end of the
blocks.

A problem that CLP encountered is that the simulator has only one opportunity to
give the UA proof in each session, and thus it need to remember all previously gener-
ated PCP proofs if the adversary delays the execution of the UA proofs in all sessions.
Because of this problem, the length of the PCP proofs can be rapidly blowing up in the
concurrent setting, and the size of the simulator cannot be bounded by a polynomial.
In [CLP13a], CLP solved this problem in the global hash function model by cleverly
using the global hash function in UA.

104

To solve this problem in the plain model, we modify the protocol of CLP so that
the simulator has multiple opportunities to give the UA proof in each session. We then
show that by using a good proving strategy that also determines which opportunity the
simulator takes to give the UA proof in each session, the simulator can avoid the blow-
up of its size as well as that of its running time. Our proving strategy guarantees that a
PCP proof generated at the end of a block is used only in its “parent block”; because of
this guarantee, the simulator need to remember each PCP proof only for a limited time
and therefore the length of the PCP proofs does not blow up. This proving strategy is
the core of our simulation technique and the main deference between the simulation
technique of ours and that of Goyal [Goy13]. (The simulator of Goyal also has multiple
opportunities to give the UA proof in each session, but it determines which opportu-
nity to take by using a proving strategy that is different from ours.) Interestingly, the
strategy that we use is deterministic (whereas the strategy that Goyal uses is probabilis-
tic). Because of the use of this deterministic strategy, we can analyze our simulator
in a relatively simple way. In particular, when showing that every session is always
successfully simulated, we need to use only a simple counting argument.

5.1.2 Outline
In Section 5.2, we give an overview of our techniques. In Section 5.3, we give the
notations and definitions that are used specifically in this chapter. In Section 5.4, we
describe our non-black-box concurrent ZK argument and prove its security.

5.2 Overview of Our Techniques
As mentioned in Section 5.1.1, our protocol is based on the protocol of Canetti et
al. [CLP13a], which in turn is based on Barak’s non-black-box zero-knowledge pro-
tocol [Bar01]. Below, we first recall the protocols of [Bar01, CLP13a] and then give
an overview of our protocol.

5.2.1 Known Techniques
Barak’s protocol. Roughly speaking, Barak’s non-black-box zero-knowledge argu-
ment BarakZK proceeds as follows.

Protocol BarakZK

1. The verifier V chooses a hash function h ∈ Hn and sends it to the prover P.

2. P sends c ← Com(0n) to V , where Com is a statistically binding commitment
scheme. (For simplicity, in this overview we assume that Com is non-interactive.)
Then, V sends a random string r ∈ {0, 1}n to P. In the following, the pair (c, r) is
called a slot.

3. P proves the following statement by using a witness-indistinguishable argument.

• x ∈ L, or

105

• (h, c, r) ∈ Λ, where Λ is a language such that (h, c, r) ∈ Λ holds if and only
if there exists a machine Π such that (i) c is a commitment to h(Π) and (ii)
Π outputs r within nlog log n steps.32

Since polynomial-time algorithms cannot check whether or not Π outputs r within
nlog log n steps, the statement proven in Step 3 is not inNP. Thus, P proves this statement
by using a witness-indistinguishable universal argument (WIUA), which is, roughly
speaking, a witness-indistinguishable argument for NEXP such that the prover’s run-
ning time is bounded by poly(Time(w)) when the prover uses a witness w during the
proof, where Time(w) is the time that is needed for verifying the validity of w.

Roughly speaking, the security of BarakZK is proven as follows. The soundness
is proven by observing that even when a cheating prover P∗ commits to h(Π) for a
machine Π, we have Π(c) , r with overwhelming probability because r is chosen after
P∗ commits to h(Π). The zero-knowledge property is proven by using a simulator that
commits to a machine Π that emulates the cheating verifier V∗; since Π(c) = V∗(c) = r
from the definition, the simulator can give a valid proof in WIUA. Such a simulator runs
in polynomial time since, from the property of WIUA, the running time of the simulator
during WIUA is bounded by poly(t), where t is the running time of Π(c).

Barak’s protocol in the concurrent setting. A limitation of BarakZK is that we do
not know how to prove its zero-knowledge property in the concurrent setting. Recall
that in the concurrent setting, a protocol is executed many times concurrently; hence,
to prove the zero-knowledge property of a protocol in the concurrent setting, we need
to design a simulator against cheating verifiers that participate in many sessions of the
protocol with honest provers. The above simulator for BarakZK, however, does not
work against such verifiers since V∗(c) = r does not hold when a verifier V∗ participates
in other sessions during a slot of a session (i.e., V∗(c) , r holds when V∗ first receives
c in a session, next receives messages in other sessions, and then sends r in the first
session).

A potential approach to proving the concurrent zero-knowledge property of
BarakZK is to use a simulator S that commits to a machine that emulates S itself.
The key observation behind this approach is the following: When V∗ participates in
other sessions during a slot of a session, all the messages that V∗ receives in the other
sessions are actually generated by S; hence, if the committed machine Π can emulate
S, it can emulate all the messages between c and r for V∗, so Π(c) can output r even
when V∗ receives many messages during a slot.33

This approach however causes a problem in the simulator’s running time. For ex-
ample, let us consider the following “nested concurrent sessions” schedule (see Figure
5.1).

• The (i+ 1)-th session is executed in such a way that it is completely contained in
32Here, nlog log n can be replaced with any super-polynomial function. We use nlog log n for concreteness.
33The circularity about the simulator committing to a machine that emulates the simulator itself can

be avoided by separating it to the main simulator S and an auxiliary simulator aux-S. Roughly speaking,
aux-S takes a code of a machine Π as input and does simulation by committing to Π; then, S invokes
aux-S with input Π = aux-S.

106

WIUA

WIUA

WIUA

WIUA

1st 2nd 3rd m-th

P V

Figure 5.1: The “nested concurrent sessions” schedule.

the slot of the i-th session. That is, V∗ starts the (i + 1)-th session after receiving
c in the i-th session, and sends r in the i-th session after completing the (i+ 1)-th
session.

Let m be the number of sessions, and let t be the running time ofS during the simulation
of the m-th session. Then, to simulate the (m − 1)-th session, S need to run at least 2t
steps—t steps for simulating the slot (which contains the m-th session) and t steps for
simulating WIUA. Then, to simulate the (m − 2)-th session, S need to run at least 4t
steps—2t steps for simulating the slot and 2t steps for simulating WIUA. In general, to
simulate the i-th session, S need to run at least 2m−it steps. Thus, the running time of
S becomes super-polynomial when m = ω(log n).

Protocol of Canetti et al. [CLP13a]. To avoid the blow-up of the simulator’s run-
ning time, Canetti, Lin, and Paneth (CLP) [CLP13a] used the “multiple slots” ap-
proach, which was originally used in black-box concurrent zero-knowledge proto-
cols [RK99, KP01, PRS02]. The idea is that if BarakZK has multiple sequential slots,
S can choose any of them as a witness in WIUA, and therefore S can avoid the nested
computations in WIUA by using a good proving strategy that determines which slot to
use as a witness in each session. To implement this approach, CLP first observed that
the four-round public-coin UA of Barak and Goldreich [BG08], from which WIUA can
be constructed, can be divided into the offline phase and the online phase such that all
heavy computations are done in the offline phase. Concretely, CLP divided the UA
of [BG08] as follows. Let x ∈ L be the statement to be proven in UA and w be a witness
for x ∈ L.

Offline/online UA

• Offline Phase:

107

1. V sends a random hash function h ∈ Hn to P.
2. P generates a PCP proof π of statement x ∈ L by using w as a witness, and

then computes UA2 := h(π). In the following, (h, π,UA2) is called the offline
proof.

• Online Phase:

1. P sends UA2 to V .
2. V chooses randomness ρ for the PCP-verifier and sends UA3 := ρ to P.
3. P computes a PCP-query Q by executing the PCP-verifier with statement

x ∈ L and randomness ρ, and then sends {πi}i∈Q to V (i.e., partially reveals π
according to the locations that are specified by Q) while proving that {πi}i∈Q

is correctly computed w.r.t. the string it hashed in UA2. (Such a proof can
be generated efficiently if P computes UA2 = h(π) by tree hashing.)

4. V first verifies the correctness of the revealed bits {πi}i∈Q, and next verifies
the PCP proof by executing the PCP-verifier on {πi}i∈Q.

Note that the only heavy computations—the generation of π and the computation of
h(π)—are performed in the offline phase; the other computations can be performed in
a fixed polynomial time. (For simplicity, here we assume that P has random access
to π.34) Thus, in the online phase, the running time of P can be bounded by a fixed
polynomial in n. In the offline phase, the running time of P is bounded by a fixed
polynomial in t, where t is the time needed for verifying x ∈ L with witness w. The
length of the offline proof is also bounded by a polynomial in t.

CLP then considered the following protocol (which is an over-simplified version of
their final protocol). Let Nslot be a parameter that is determined later.

Protocol BasicCLP

Stage 1. V chooses a hash function h ∈ Hn and sends it to P.

Stage 2. For each i ∈ [Nslot] in sequence, P and V do the following.

• P sends Ci ← Com(0n) to V . Then, V sends a random string ri ∈ {0, 1}n to
P.

Stage 3. P and V execute the special-purpose WIUA of Pass and Rosen [PR05b] with
the UA system of Barak and Goldreich [BG08] being used as the underlying UA
system. Concretely, P and V do the following.

1. P sends DUA ← Com(0n) to V .
2. V sends a third-round UA message UA3 to P (i.e., V sends a random string

of appropriate length).
3. P proves the following statement by using a witness-indistinguishable proof

of knowledge (WIPOK).
34This assumption is used only in this overview.

108

• x ∈ L, or
• there exist i ∈ [Nslot] and a second- and a fourth-round UA message

UA2,UA4 such that DUA is a commitment to UA2 and (h,UA2,UA3,UA4)
is an accepting proof for the statement (h,Ci, ri) ∈ Λ.

Recall that the idea of the multiple-slot approach is thatS avoids nested computations in
WIUA by using a good proving strategy that determines which slots to use as witnesses.
Based on this idea, CLP designed a proving strategy and a simulator as follows. First,
their simulator works roughly as follows: S commits to a machine in each slots, where
the committed machines emulate S as mentioned above; S then computes an offline
proof (including a PCP proof) w.r.t. a slot that is chosen according to a proving strategy;
S then commits to the second-round UA message (i.e., the hash vlaue of the PCP proof)
in Stage 3-1 and gives a WIPOK proof in Stage 3-3 using the offline proof as a witness.
Second, their proving strategy works roughly as follows. As in the oblivious rewinding
strategy of black-box concurrent zero-knowledge protocols [KP01, PRS02], the proving
strategy of CLP recursively divides the entire transcript between honest provers and the
cheating verifier into “blocks.” Let M be the total number of messages and q be a
parameter called the splitting factor. Assume for simplicity that M is a power of q, i.e.,
M = qd for d ∈ N.

• The level-d block is the entire transcript. Thus, the level-d block contains M = qd

messages.

• Then, the level-d block is divided into q sequential blocks, where each of them
contains qd−1 messages. These blocks are called the level-(d − 1) blocks.

• Similarly, each level-(d−1) block is divided into q sequential blocks, where each
of them contains qd−2 messages. These blocks are called the level-(d− 2) blocks.

• In this way, each block is continued to be divided into q blocks until the level-0
blocks are obtained. A level-0 block contains only a single message.

Then, the proving strategy of CLP specifies that at the end of each block in each level,
S computes offline proofs w.r.t. each slot that is contained in that block. Note that the
offline proofs are computed only at the end of the blocks, and the maximum level of
the blocks (i.e., d) is constant when q = nϵ for a constant ϵ. We therefore have at most
constant levels of nesting in the executions of WIUA. Furthermore, it was shown by
CLP that when Nslot = ω(q) = ω(nϵ), the simulator does not “get stuck,” i.e., in every
session, the simulator obtains an offline proof before Stage 3 starts.

The protocol BasicCLP is, however, not concurrent zero-knowledge in the plain
model. Roughly speaking, this is because the size of S’s state can become super-
polynomial. Recall that S generates an offline proof in Stage 2 and uses it in Stage
3 in each session. Then, since V∗ can choose any concurrent schedule (and in particu-
lar can delay the execution of Stage 3 arbitrarily), in general, S need to remember every
previously generated offline proof during its execution. This means that each commit-
ted machine also need to contain every previously generated offline proof (otherwise
they cannot emulate the simulator), and therefore an offline proof (which is generated

109

by using a committed machine as a witness) is as long as the total length of all the of-
fline proofs that are generated previously. Thus, the length of the offline proofs can be
rapidly blowing up and the size of S’s state cannot be bounded by a polynomial.

A key observation by CLP is that this problem can be solved in the global hash
model, in which a global hash function is shared by all sessions. Roughly speaking,
CLP avoided the blow-up of the simulator’s size by considering machines that contain
only the hash values of the offline proofs; then, to guarantee that the simulation works
with such machines, they modified BasicCLP in such a way that P proves in WIUA that
x ∈ L or the committed machine outputs r given access to the hash-inversion oracle;
in the simulation, S commits to a machine that emulates S by recovering offline proofs
from their hash values using the hash-inversion oracle. In this modified protocol, the
soundness is proven by using the fact that the same hash function is used across all the
sessions.

In this way, CLP obtained a public-coin concurrent zero-knowledge protocol in the
global hash model. Since q = nϵ and Nslot = ω(q), the round complexity is O(nϵ

′
) for

a constant ϵ′. (Since ϵ is an arbitrary constant, ϵ′ can be an arbitrary small constant.)
CLP also showed that by modifying the protocol further, the round complexity can be
reduced to O(log1+ϵ n).

5.2.2 Our Techniques
We obtain our O(nϵ)-round protocol by modifying BasicCLP of Canetti et al. [CLP13a]
so that its concurrent zero-knowledge property can be proven without using global hash
functions. Recall that a global hash function is used in [CLP13a] to avoid the blow-up of
the simulator’s state size. In particular, a global hash function is used so that the simula-
tion works even when the committed machines do not contain any previously computed
offline proof. Below, we first introduce the machines that our simulator commits to in
the slots. They do not contain any previously generated offline proof and therefore their
sizes are bounded by a fixed polynomial. We then explain our protocol and simulator,
which are designed so that the simulation works even when the committed machines do
not contain any previously computed offline proof. In the following, we set q := O(nϵ),
Nslot := ω(q), and Ncol := ω(1).

The machines to be committed. Our first observation is that if the committed ma-
chines emulate a larger part of the simulation, they generate more offline proofs by itself
and therefore are more likely to be able to output r even when they contain no offline
proof. For example, let us consider an extreme case that the committed machines emu-
late the simulator from the beginning of the simulation (rather than from the beginning
of the slots in which they are committed to). In this case, the committed machines gen-
erate every offline proof by themselves, so they can output r even when they contain
no offline proof. A problem of this case is that the running time of each committed
machine is too long and the running time of the simulator becomes super-polynomial.

Based on this observation, we consider machines that emulate the simulator from
the beginning of the “current blocks,” i.e., machines that emulate the simulator from the
beginning of the blacks that contain the commitments in which they are committed to.

110

Figure 5.2: An illustration of the current blocks. When the next scheduled message is
located on the place specified by the triangle, the current blocks are the ones described
with the thick lines.

More precisely, we first modify BasicCLP so that P gives Ncol parallel commitments
in each slot. Then, our simulator commits to machines in each slot as follows. Below,
the i-th column (i ∈ [Ncol]) of a slot is the i-th commitment of the slot, and the current
level-ℓ block (ℓ ∈ [d]) at a point during the interaction with V∗ is the level-ℓ block that
will contain the next-scheduled message (see Figure 5.2).

• In the i-th column (i ∈ [d]) of a slot, our simulator commits to a machine Πi that
emulates the simulator from the beginning of the current level-i block, where
Πi does not contain any offline proofs and it terminates with output fail if the
emulation fails due to the lack of the offline proofs.

Now, we observe that the simulator’s running time does not blow-up when the sim-
ulator commits to machines as above. Assume that, as in the proving strategy of CLP,
the simulator computes the offline proofs only at the end of the blocks. Specifically,
assume that the simulator compute the offline proofs at the end of the blocks as follows.

• At the end of a level-ℓ block b (ℓ ∈ [d]), the simulator finds all the slots that are
contained in block b, and generates offline proofs w.r.t. those slots by using the
machine that are committed to in their ℓ-th columns. Note that those committed
machines emulate the simulator from the beginning of block b, so the simulator
can indeed use them as witness when generating the offline proofs.

Let ti be the maximum time needed for simulating a level-i block (i ∈ {0, . . . , d}). Recall
that a level-i block consists of q level-(i − 1) blocks, and at most m := poly(n) offline
proofs are generated at the end of each level-(i−1) block. Then, since each offline proof
at the end of a level-(i − 1) block can be computed in poly(ti−1) steps, we have

ti ≤ q · (ti−1 + m · poly(ti−1)) ≤ poly(ti−1) .

Recall that we have t0 = poly(n) (this is because a level-0 block contains only a single
message), and the maximum level d = logq M is constant. We therefore have td =

poly(n), so the running time of the simulator is bounded by a polynomial in n.
We note that although the above machines do not contain any previously generated

offline proof, they do contain every previously generated WIPOK witness (i.e., UA2

and UA4).35 As explained below, allowing the committed machines to contain every
previously generated WIPOK witness is crucial to obtain our protocol and simulator.

35Since the length of the WIPOK witnesses is bounded by a fixed polynomial, the sizes of the com-
mitted machines do not blow up even when they contain every previously generated WIPOK witness.

111

Our protocol and simulator. When the simulator commits to the above machines,
the simulation does not work if the committed machines output fail. In particular, the
simulation fails if there exists a block in which the simulator uses an offline proof that
are generated before the beginning of that block. (If such a block exists, the machines
that are committed in this block output fail since they cannot emulate the simulator due
to the lack of the offline proof.) Thus, to guarantee successful simulation, we need to
make sure that in each block, the simulator uses only the offline proofs that are generated
in that block. Of course, we also need to make sure that the simulator does not “get
stuck,” i.e., we need to guarantee that in each session, the simulator obtains a valid
witness before WIPOK starts.

To avoid the simulation failure, we first modify BasicCLP as follows. As noted
in the previous paragraph, we need to construct a simulator such that in each block, it
uses only the offline proofs that are generated in that block. In BasicCLP, it is hard to
construct such a simulator since offline proofs may be used long after they are generated.
(Recall that during the simulation, the offline proofs are generated in Stage 2 and they
are used in Stage 3 to compute WIPOK witnesses, and V∗ can delay the execution of
Stage 3 arbitrarily.) Thus, we modify BasicCLP so that the simulator can use the offline
proofs soon after generating them; in particular, we modify BasicCLP so that Stage 3
can be executed “in the middle of” Stage 2. Concretely, after each slot in Stage 2, we
add another slot, a UA-slot, that can be used for executing Stage 3-1 and Stage 3-2. That
is, we consider the following protocol. (As stated before, we also modify BasicCLP so
that P gives Ncol parallel commitments in each slot.)

Protocol OurZK

Stage 1. V chooses a hash function h ∈ Hn and sends it to P.

Stage 2. For each i ∈ [Nslot] in sequence, P and V do the following.

Π-slot: P sends Ci,1 ← Com(0n), . . . ,Ci,Ncol ← Com(0n) to V . Then, V sends a
random string ri ∈ {0, 1}n

2 to P.

UA-slot: P sends Di,1 ← Com(0n), . . . ,Di,Ncol ← Com(0n) to V . Then, V sends
a random string ωi to P.

Stage 3. P proves the following statement with WIPOK.

• x ∈ L, or

• there exist i1, i2 ∈ [Nslot], j ∈ [Ncol], and a second- and a fourth-round
UA message UA2 and UA4 such that Di2, j is a commitment to UA2 and
(h,UA2, ωi2 ,UA4) is an accepting proof of the statement (h,Ci1, j, ri1) ∈ Λ.

We then consider the following simulator. Recall that, as explained above, our simu-
lator commits to machines that emulate the simulation from the beginning of the current
blocks, and its running time can be bounded by a polynomial if the offline proofs are
computed only at the end of the blocks. Recall also that we need to make sure that (i) in
each block the simulator uses only the offline proofs that are generated in that block (so

112

commit to offline proof

compute offline proof compute WIPOK witness
from and

Figure 5.3: Our simulator’s strategy.

that each committed machine does not output fail due to the lack of the offline proofs),
and (ii) the simulator does not get stuck.

Roughly speaking, our simulator does the following in each block (see Figure 5.3).
Consider any level-(i + 1) block b (i ∈ [d − 1]), and recall that b consists of q level-i
blocks. The goal of our simulator in block b is to compute offline proofs by using the
machines that emulate the simulation from the beginning of those level-i blocks, and
find opportunities to use them before block b completes. Therefore, for each session s,
our simulator first tries to find a level-i block that contains a Π-slot of session s. If it
finds such a level-i block and a Π-slot, it computes an offline proof at the end of that
level-i block by using the machine that is committed to in the i-th column of thatΠ-slot,
and commits to this offline proof in the i-th column of the UA-slots of session s in the
subsequent level-i blocks. If a subsequent level-i block contains a UA-slot of session
s, it computes a WIPOK witness from this offline proof (i.e., by using the third-round
UA message in that UA-slot, it computes a fourth-round UA message from that offline
proof).

More precisely, we consider the following simulator. In what follows, for each i ∈
{0, . . . , d − 1}, we say that two level-i blocks are sibling if they are contained by the
same level-(i + 1) block.

• In the i-th column (i ∈ [d]) of a Π-slot of a session s, our simulator commits to
a machine that emulates the simulator from the beginning of the current level-i
block.

• In the i-th column (i ∈ [d]) of a UA-slot of a session s, our simulator commits
to 0n if no prior sibling of the current level-i block contains a Π-slot of session
s; if a prior sibling contains a Π-slot of session s, an offline proof w.r.t. such a
Π-slot was computed at the end of that prior sibling (see below), so our simulator
commits to that offline proof instead of 0n.

• When WIPOK starts, our simulator does the following. If it already obtained a
valid witness (see below), it gives a proof by using this witness. If it does not
have a valid witness, it aborts with output stuck.

• At the end of a level-i block b (i ∈ [d − 1]), our simulator does the following.
For each Π-slot that is contained in block b, it computes an offline proof by using

113

Case 1 Case 2

Figure 5.4: If a block contains two slots of a session, it contains both a Π-slot and a
UA-slot.

the machine that is committed to in the i-th column of that Π-slot. Also, for each
UA-slot that is contained in block b, if an offline proof is committed to in the i-th
column of that UA-slot, it computes a WIPOK witness by using that offline proof.

In the simulation by our simulator, the committed machines never fail due to the
lack of the offline proofs. This is because in each block, our simulator uses only the
offline proofs that are generated in that block.

Thus, it remains to show that our simulator does not get stuck, i.e., in each session
our simulator has a valid witness when WIPOK starts. Below, we use the following
terminologies.

• For any session s, a block is good w.r.t. s if it contains at least two slots of session
s and does not contain the first prover message of WIPOK of session s. Here, we
use “slots” to refer to both Π-slots and UA-slots. Hence, if a block is good w.r.t.
session s, it contains both a Π-slot and a UA-slot of session s (see Figure 5.4).

• For each i ∈ [d], we say that a level-(i− 1) block is a child of a level-i block if the
former is contained by the latter. (Thus, each block has q children.)

From the construction, our simulator does not get stuck if for any session s that reaches
WIPOK, there exists a block such that at least two of its children are good w.r.t. session
s. (Indeed, if such a block exists, an offline proof is computed at the end of the first
good child, and a WIPOK witness is computed at the end of the second good child, so
the simulator obtains a WIPOK witness before WIPOK starts in session s.) Thus, we
show that if a session s reaches WIPOK, there exists a block such that at least two of
its children are good w.r.t. session s. To prove this, it suffices to show that if a session s
reaches WIPOK, there exists a block such that at least three of its children contain two
or more slots of session s. (This is because at most one child contains the first message
of WIPOK of session s.) Assume for contradiction that there exists a session s∗ such
that s∗ reaches WIPOK but every block has at most two children that contain two or
more slots of s∗. Let Γ(i) be the maximum number of the slots that belong to s∗ and are
contained by a level-i block. Then, since in each block b,

• at most two children of b contain two or more slots of s∗, and the other children
contain at most a single slot of s∗, and

• s∗ has at most q − 1 slots that are contained by block b but are not contained by
its children (see Figure 5.5),

114

we have

Γ(i) ≤ 2 · Γ(i − 1) + (q − 2) · 1 + q − 1 = 2Γ(i − 1) + 2q − 3 .

Then, since Γ(0) = 0 (this is because a level-0 block contains only a single message),
and the maximum level d is constant, we have

Γ(d) ≤ 2dΓ(0) +
d−1∑
i=0

2i(2q − 3) = O(q) .

This means that there are at most O(q) slots of s∗ in the entire transcript. This is a
contradiction since we have Nslot = ω(q) and assume that s∗ reaches WIPOK. Thus, if
a session reaches WIPOK, there exists a block such that at least two of its children are
good w.r.t. that session. Thus, the simulator does not get stuck.

Figure 5.5: An example that a session has q− 1 slots that are contained by a block but
are not contained by its children. (For simplicity, only Π-slots are illustrated.)

Since q = O(nϵ) and Nslot = ω(q), the round complexity of our protocol is O(nϵ
′
) for

a constant ϵ′ > ϵ. Since ϵ is an arbitrary constant, ϵ′ can be an arbitrary small constant.

Toward the final protocol. To obtain a formal proof of security, we need to add
a slight modification to the above protocol. Specifically, as pointed out in previous
work [Goy13, CLP13a, CLP13b, PPS15], when the code of the simulator is committed
in the simulation, we have to take special care to the randomness of the simulator.36

Fortunately, the techniques used in the previous work can also be used here to over-
come this problem. In this work, we use the technique of [CLP13a, CLP13b], which
uses forward-secure pseudorandom generators (which can be obtained from one-way
functions).

36When the code of the simulator is committed, the randomness used for generating this commitment
is also committed; thus, if a protocol is designed naively, we need a commitment scheme such that the
committed value is hidden even when it contains the randomness used for the commitment.

115

5.2.3 Comparison with the Non-black-box Simulation Technique of
Goyal [Goy13]

In this section, we compare the simulation technique of ours with that of Goyal [Goy13],
which is the only known simulation technique that realizes straight-line concurrent sim-
ulation in the plain model under standard assumptions.

First of all, our protocol is almost identical with that of Goyal. The only difference
is that the prover gives ω(1) commitments in each slot in our protocol whereas it gives
only a single commitment in each slot in Goyal’s protocol.

Our simulation technique is also very similar to Goyal’s simulation technique. For
example, in both simulation techniques, the simulator commits to machines that em-
ulate itself, and it has multiple opportunities to give UA proof and determines which
opportunities to take by using the blocks.

However, there are also differences between the two simulation techniques. A no-
table difference is how the simulator determines which opportunities to take to give UA
proofs. Recall that, in the simulation technique of ours, the strategy that the simula-
tor uses to determine whether it embeds a UA message in a slot is deterministic (the
simulator checks whether a prior sibling of the current block contains aΠ-slot; see Fig-
ure 5.3 in Section 5.2.2). In contrast, in the simulation technique of Goyal, the strategy
that the simulator uses is probabilistic (the simulator uses a probabilistic procedure that
performs the “marking” of the blocks and the UA messages). Since in the simulation
technique of ours the simulator uses a deterministic strategy, the analysis of our simula-
tor is simple: We use only a simple counting argument (and no probabilistic argument)
to show that the simulator will not get stuck.

5.3 Preliminaries
5.3.1 Notations
We use Com to denote Naor’s 2-round statistically binding commitment scheme, and
Comτ(·) to denote an algorithm that, on input m ∈ {0, 1}∗, computes a commitment to m
by using Naor’s commitment scheme with the first-round message being τ (cf. Section
2.3.1).

5.3.2 Tree Hashing
In this chapter, we use a family of collision-resistant hash functionsH = {hα}α∈{0,1}∗ that
satisfies the following properties.

• For any h ∈ Hn
def
= {hα ∈ H : α ∈ {0, 1}n}, the domain of h is {0, 1}∗ and the range

of h is {0, 1}n.

• For any h ∈ Hn, x ∈ {0, 1}≤nlog log n , and i ∈ {1, . . . , |x|}, one can compute a short
certificate authi(x) ∈ {0, 1}n2 such that given h(x), xi, and authi(x), anyone can
verify that the i-th bit of x is indeed xi.

116

We obtain such a collision-resistant hash function family from any (standard) length-
halving collision-resistant hash function family by using Merkle’s tree-hashing tech-
nique. We notice that whenH is obtained in this way,H satisfies an additional property
that one can find a collision of the underlying hash function from any two “contradict-
ing” certificates, i.e., two pairs (xi, authi(x)) and (x′i , authi(x′)) such that xi , x′i , and
finding a collision in this way takes only time polynomial in the size of the hash value
(i.e., |h(x)| = n).

5.3.3 Concurrent Zero-Knowledge Arguments
In this section, we recall the definition of the concurrent zero-knowledge property of
interactive proofs and arguments from [RK99]. For any polynomial m(·), m-session
concurrent cheating verifier is a ppt Turing machine V∗ such that on input (x, z), V∗

concurrently interacts with m(|x|) independent copies of P. The interaction between V∗

and each copy of P is called session. There is no restriction on how V∗ schedules mes-
sages among sessions, and V∗ can abort some sessions. Let viewV∗ [P(x,w)↔ V∗(x, z)]
be the view of V∗ in the above concurrent execution, where x ∈ L is the common input,
w ∈ RL(x) is the private input to P, and z is the non-uniform input to V∗.

Definition 5.1 (Concurrent Zero-Knowledge). An interactive proof (or argument)
⟨P,V⟩ for an NP language L is concurrent zero-knowledge if for every polynomial
m(·) and every m-session concurrent cheating verifier V∗, there exists a ppt simulator
S such that for any sequence {wx}x∈L such that wx ∈ RL(x), the following indistinguisha-
bility holds.

{viewV∗ [P(x,wx)↔ V∗(x, z)]}x∈L,z∈{0,1}∗
c≈ {S(x, z)}x∈L,z∈{0,1}∗ .

^

Remark 5.1. As in previous work (e.g., [RK99, KP01, PRS02]), we consider the setting
where the same statement x is proven in all the sessions. We comment that our protocol
and its security proof work even in a slightly generalized setting where predetermined
statements x1, . . . , xm are proven in the sessions. (However, they do not work if the
statements are chosen adaptively by the cheating verifier.)

5.3.4 PCP and Universal Argument
In this section, we explain the universal arguments system that we use in this chapter,
namely the universal argument system of Barak and Goldreich [BG08]. (Recall that the
definition of universal arguments is given in Section 2.5.) Since their instantiation uses
probabilistically checkable proof (PCP) systems [AS98] as a building block, we also
recall the definition of PCP systems below.

Recall that, as noted in Section 2.5, universal arguments are used in this thesis only
for proving the membership of a single “universal” language LU, where for any triplet
y = (M, x, t), we have y ∈ LU if non-deterministic machine M accepts x within t steps.

117

5.3.4.1 PCP System

Roughly speaking, a PCP system is a ppt verifier that can decide the correctness of a
statement y ∈ LU given access to an oracle π that represents a proof in a redundant
form. Typically, the verifier reads only few bits of π in the verification.
Definition 5.2 (PCP system—basic definition). A probabilistically checkable proof
(PCP) system (with a negligible soundness error) is a ppt oracle machine V (called a
verifier) that satisfies the following.

• Completeness: For every y ∈ LU, there exists an oracle π such that
Pr

[
Vπ(y) = 1

]
= 1 .

• Soundness: For every y < LU and every oracle π, there exists a negligible func-
tion negl(·) such that

Pr
[
Vπ(y) = 1

]
< negl(|y|) .

^

In this thesis, PCP systems are used as a building block in the universal argument
system of Barak and Goldreich [BG08]. To be used in their universal argument sys-
tem, PCP systems need to satisfy four auxiliary properties: relatively efficient oracle
construction, non-adaptive verifier, efficient reverse sampling, and proof of knowledge.
Only the definitions of the first two properties are required to understand this chapter;
for the definitions of the other properties, see [BG08].
Definition 5.3 (PCP system—auxiliary properties). Let V be a PCP-verifier.

• Relatively efficient oracle construction: There exists an algorithm P (called a
prover) such that, given any (y,w) ∈ RU, algorithm P outputs an oracle πy that
makes V always accept (i.e., as in the completeness condition). Furthermore,
there exists a polynomial p(·) such that on input (y,w), the running time of P is
p(|y| + |w|).

• Non-adaptive verifier: The verifier’s queries are determined based only on the
input and its internal coin tosses, independently of the answers given to previ-
ous queries. That is, V can be decomposed into a pair of algorithms Q and D
such that on input y and random tape r, the verifier makes the query sequence
Q(y, r, 1),Q(y, r, 2), . . . ,Q(y, r, p(|y|)), obtains the answers b1, . . . , bp(|y|), and de-
cides according to D(y, r, b1 · · · bp(|y|)), where p is some fixed polynomial.

^

5.3.4.2 Universal Argument System of [BG08]

The public-coin four-round universal argument system UA of Barak and Goldre-
ich [BG08] is shown in Figure 5.6. As in [CLP13a], the construction of UA is sep-
arated into an offline stage and an online stage. In the offline stage, the running time
of the prover is bounded by a fixed polynomial in n + TM(x,w). (Recall that for any
y = (M, x, t) ∈ LU, we use TM(x,w) to denote the running time of M on input x with
witness w; cf. Section 2.5.)

118

• Input: The common input is y = (M, x, t) ∈ LU, and the private input to P
is w ∈ RU(y). Let n def

= |y|.

• Offline Phase:

1. V sends a random hash function h ∈ Hn to P.
2. P generates a PCP proof π of statement y ∈ LU by using w as a witness.

Then P computes UA2 := h(π). The tuple (h, π,UA2) is called the offline
proof.

• Online Phase:

1. P sends UA2 to V .
2. V chooses randomness ω ∈ {0, 1}n2 for the PCP-verifier and sends

UA3 := ω to P.
3. P computes queries Q by executing the PCP-verifier with statement y ∈

LU and randomness ω. Then, P sends UA4 := {(i, πi, authi(π))}i∈Q to V ,
where πi is the i-th bit of π and authi(π) is a certificate that the i-th bit
of π is indeed πi.

4. V verifies the correctness of all the certificates and checks whether the
PCP-verifier accepts on input (y, {(i, πi)}i∈Q) with randomness ω.

Figure 5.6: Online/offline UA system of [BG08, CLP13a].

5.3.5 Forward-secure PRG
In this section, we recall the definition of forward-secure pseudorandom generators
(PRGs) [BY03]. Roughly speaking, a forward-secure PRG is a pseudorandom generator
such that

• It periodically updates the seed. Hence, we have a sequence of seeds (σ1, σ2, . . .)
that generates a sequence of pseudorandomness (ρ1, ρ2, . . .).

• Even if the seed σt is exposed (and thus the “later” pseudorandom sequence
ρt+1, ρt+2, . . . is also exposed), the “earlier” sequence ρ1, . . . , ρt remains pseudo-
random.

In this chapter, we use a simple variant of the definition by [CLP13b]. We notice that
in the following definition, the indices of the seeds and pseudorandomness are written
in the reverse order because we use them in the reverse order in the analysis of our
concurrent zero-knowledge protocol.

Definition 5.4 (Forward-secure PRG). We say that a polynomial-time computable func-
tion f-PRG is a forward-secure pseudorandom generator if on input a string σ and an
integer ℓ ∈ N, it outputs two sequences (σℓ, . . . , σ1) and (ρℓ, . . . , ρ1) that satisfy the
following properties.

119

• Consistency: For every n, ℓ ∈ N and σ ∈ {0, 1}n, if f-PRG(σ, ℓ) = (σℓ, . . . , σ1,
ρℓ, . . . , ρ1), then it holds f-PRG(σℓ, ℓ − 1) = (σℓ−1, . . . , σ1, ρℓ−1, . . . , ρ1).

• Forward Security: For every polynomial ℓ(·), the following ensembles are com-
putationally indistinguishable.

–
{
(σℓ(n), ρℓ(n))

∣∣∣ σ← Un; (σℓ(n), . . . , σ1, ρℓ(n), . . . , ρ1) := f-PRG(σ, ℓ(n))
}

n∈N

–
{
(σ, ρ)

∣∣∣ σ← Un; ρ← Un

}
n∈N

Here, Un is the uniform distribution over {0, 1}n. ^

The existence of (standard) PRGs implies the existence of forward-secure PRGs. Thus
from the result of [HILL99], the existence of forward-secure PRGs is implied by the
existence of one-way functions.

5.4 Our Public-Coin Concurrent Zero-Knowledge Ar-
gument

In this section, we prove our main theorem.

Theorem 5.1 (restatement of Main Theorem). Assume the existence of a family of colli-
sion resistant hash functions. Then, for any constant ϵ > 0, there exists an O(nϵ)-round
public-coin concurrent zero-knowledge argument of knowledge system.

Proof . Our O(nϵ)-round public-coin concurrent zero-knowledge argument of knowl-
edge, cZKAOK, is shown in Figure 5.7. In cZKAOK, we use the following building
blocks.

• Naor’s two-round statistically binding commitment scheme Com, which can be
constructed from one-way functions (see Section 2.3.1).

• A four-round public-coin witness-indistinguishable proof of knowledge system
WIPOK, which can be constructed from one-way functions by instantiating a
parallel version of Blum’s Hamiltonian-cycle protocol with Naor’s commitment
scheme (see Section 2.4.2) .

• Four-round public-coin universal argument UA of Barak and Goldreich [BG08],
which can be constructed from collision-resistant hash functions (see Sec-
tion 5.3.4.2).

Clearly, cZKAOK is public-coin and its round complexity is 4Nslot + 5 = O(nϵ). Thus,
Theorem 5.1 follows from the following lemmas.

Lemma 5.1. cZKAOK is concurrent zero-knowledge.

Lemma 5.2. cZKAOK is argument of knowledge.

Lemma 5.1 is proven in Section 5.4.1, and Lemma 5.2 is proven in Section 5.4.2. □

120

Input: The input to the prover P is (x,w), where x ∈ L and w ∈ RL(x). The input
to the verifier V is x. Let n def

= |x|.

Parameter: Integers Nslot = O(nϵ) and Ncol = ω(1), where ϵ is an arbitrary con-
stant.

Stage 1: V chooses a random hash function h ∈ Hn and sends it to P. Additionally,
V sends a first-round message τ ∈ {0, 1}3n of Com to P.

Stage 2: For each i ∈ [Nslot] in sequence, P and V do the following.
Π-slot:

1. P computes Ci, j ← Comτ(0n) for each j ∈ [Ncol]. Then, P sends Ci :=
(Ci,1, . . . ,Ci,Ncol) to V .

2. V sends random ri ∈ {0, 1}n
2 to P.

UA-slot:

3. P computes Di, j ← Comτ(0n) for each j ∈ [Ncol]. Then, P sends Di :=
(Di,1, . . . ,Di,Ncol) to V .

4. V computes a third-round message of UA. (Recall that a third-round
message of UA is just a random string with appropriate length.) Then,
V sends this UA message, ωi, to P.

Stage 3: P proves the following statement by using WIPOK.

• x ∈ L, or
• (h, τ,C1, r1,D1, ω1, . . . ,CNslot , rNslot ,DNslot , ωNslot) ∈ Λ1, where the lan-

guage Λ1 is defined in Figure 5.8.

Figure 5.7: Public-coin concurrent zero-knowledge argument cZKAOK.

Remark 5.2. The languages Λ2 in Figure 5.8 is slightly over-simplified and will make
cZKAOK work only when H is collision resistant against poly(nlog log n)-time adver-
saries. We can make it work under standard collision resistance by using a trick by
Barak and Goldreich [BG08], which uses a “good” error-correcting code ECC (i.e.,
with constant relative distance and with polynomial-time encoding and decoding).
More details are given in Section 5.4.2.

5.4.1 Concurrent Zero-knowledge Property
Proof of Lemma 5.1. Let V∗ be any cheating verifier. Since V∗ takes an arbitrary non-
uniform input z, we assume without loss of generality that V∗ is deterministic. Let m(·)
be a polynomial such that V∗ invokes m(n) concurrent sessions during its execution.
(Recall that n def

= |x|.) Let q def
= nϵ/2. We assume without loss of generality that in

the interaction between V∗ and provers, the total number of messages across all the

121

Language Λ1: (Statement for WIPOK)

(h, τ,C1, r1,D1, ω1, . . . ,CNslot , rNslot ,DNslot , ωNslot) ∈ Λ1 if and only if there exist

• i1, i2 ∈ [Nslot] and j ∈ [Ncol] such that i1 ≤ i2

• a second- and a fourth-round UA message UA2 ∈ {0, 1}n and UA4 ∈ {0, 1}poly(n)

• randomness R ∈ {0, 1}poly(n) for Com

such that

• Di2, j = Comτ(UA2; R), and

• (h,UA2, ωi2 ,UA4) is an accepting proof for (h, τ,Ci1, j, ri1) ∈ Λ2.

Language Λ2: (Statement for UA)

(h, τ,C, r) ∈ Λ2 if and only if there exist

• a machine Π (with some of the inputs being hardwired) such that |Π| ≤
nlog log n

• randomness R ∈ {0, 1}poly(n) for Com

• a string y such that |y| = n

such that

• C = Comτ(h(Π); R), and

• Π(y) outputs a string that has r as a substring, and Π(y) outputs it within
nlog log n steps.

Figure 5.8: Languages used in cZKAOK.

sessions is always the power of q (i.e., it is qd for an integer d). Since the total number
of messages is at most M def

= (4Nslot+5)·m, we have d = logq M = logq(poly(n)) = O(1).

5.4.1.1 Simulator S

In this section, we describe our simulator. We first give an informal description; a for-
mal description is given after the informal one. We recommend the readers to browse
the overview of our techniques in Section 5.2.2 before reading this section. In the in-
formal description, we use some terminologies that we introduced in Section 5.2.2.

Informal Description of S

Our simulator, S, simulates the view of V∗ by using an auxiliary simulator algorithm
aux-S, which simulates the transcript between V∗ and honest provers by recursively

122

executing itself. The input to aux-S is the recursion level ℓ and the transcript trans
that is simulated so far. aux-S is also given oracle access to tables TΠ,TUA,TW (which
aux-S can freely read and update), where TΠ contains the hash values of the machines
that should be committed to in the Π-slots, and TUA and TW contain the second-round
UA messages and the WIPOK witnesses that are computed so far. The goal of aux-S,
on input (ℓ, trans) and access to TΠ,TUA,TW, is to add the next qℓ messages to trans
while updating the tables TΠ,TUA,TW. More details about aux-S are described below.

On level 0 (i.e., when ℓ = 0), aux-S adds a single message to the simulated tran-
script as follows. If the next message is a verifier message, aux-S simulates it by sim-
ply receiving it from V∗. If the next message is a prover message (C1, . . . ,CNcol) in a
Π-slot, aux-S finds the values to be committed from TΠ and generates commitments to
them by using Com. Similarly, if the next message is a prover message (D1, . . . ,DNcol)
in a UA-slot, aux-S finds appropriate second-round UA messages from TUA and gen-
erates commitments to them by using Com. (If appropriate UA messages cannot be
found, aux-S generates commitments to 0n.) If the next message is a prover message
of WIPOK, aux-S computes it honestly by using a witness that is stored in TW. (If the
stored witness is not a valid witness, aux-S aborts.)

On level ℓ > 0, aux-S simulates the next qℓ messages by recursively executing
itself q times in sequence, where each recursive execution simulates qℓ−1 messages.
More precisely, aux-S first updates TΠ by storing the hash values of its own code (with
the inputs and the entries of the tables being hardwired), where the hash functions of
all the existing sessions are used for computing these hash values, and each hash value
is stored as the value to be committed in the ℓ-th commitment in Π-slots. (By requiring
aux-S to store its own code in TΠ in this way, we make sure that when aux-S simulates
a Π-slot, it commits to its own code in the Π-slot.) Then, aux-S recursively executes
itself q times in sequence with level ℓ − 1; at the same time, aux-S updates TUA,TW at
the end of each recursive execution in the following way.

• If aΠ-slot (both the prover message and the verifier message) of a session is sim-
ulated by the recursive execution that has just been completed, aux-S computes
a second-round UA message about such a Π-slot and stores it in TUA.
(A machine that emulates this recursive execution must be committed in the (ℓ −
1)-th commitment of such aΠ-slot (this is because the recursively executed aux-S
must have stored its own code in TΠ at the beginning of its execution), and this
machine can be used as a witness for generating a UA proof about this Π-slot.)

• If a UA-slot of a session is simulated by the recursive execution that has just
been completed, and a second-round UA message for this session was stored in
TUA before this recursive execution, aux-S computes a WIPOK witness for this
session and stores it in TW.
(If such a UA-slot and a second-round UA message exist, that second-round UA
message must be committed to in that UA-slot, and they can be used as a WIPOK
witness.)

Finally, aux-S outputs the qℓ messages that are simulated by these q recursive execu-
tions.

123

We remark that for technical reasons, the formal description ofS below is a bit more
complex.

• To avoid the circularity that arises when aux-S uses its own code, we use a tech-
nique by Chung, Lin, and Pass [CLP13b]. Roughly speaking, aux-S takes the
code of a machineΠ as input and uses this code rather than its own code; we then
design S and aux-S in such a way that when aux-S is invoked, we always have
Π = aux-S.

• To avoid the circularity issue about randomness that we sketched in Section 5.2.2,
we use a technique of [CLP13a, CLP13b] that uses a forward-secure PRG f-PRG.
Roughly speaking, aux-S takes a seed σ of f-PRG as input, computes a sequence
of pseudorandomness ρqℓ , . . . , ρ2, ρ1 (notice that the indices are written in the re-
verse order), and simulates the prover messages in such a way that the i-th mes-
sage in the transcript is simulated with randomness ρi.

Formal Description of S

The input to S is (x, z), and the input to aux-S is (x, z, ℓ,Π, trans, σ) such that:

• ℓ ∈ {0, . . . , d}.

• Π is a code of a machine. (In what follows, we always have Π = aux-S.)

• trans ∈ {0, 1}poly(n) is a prefix of a transcript between V∗(x, z) and honest provers.

• σ ∈ {0, 1}n is a seed of f-PRG.

The auxiliary simulator aux-S is also given oracle access to three tables TΠ,TUA,TW

such that:

• TΠ = {vs, j}s∈[m], j∈[Ncol] is a table of the hash values of machines.

• TUA = {uas, j}s∈[m], j∈[Ncol] is a table of second-round UA messages.

• TW = {ws}s∈[m] is a table of WIPOK witnesses.

We allow aux-S to read and update the entries in TΠ,TUA,TW freely.

Simulator S(x, z):

1. Choose a random seed σqd+1 ∈ {0, 1}n of f-PRG. Initialize TΠ, TUA, TW by vs, j :=
0n, uas, j := 0n, ws := ⊥ for every s ∈ [m] and j ∈ [Ncol].

2. Compute trans := aux-STΠ,TUA,TW(x, z, d, aux-S, ε, σqd+1), where ε is the empty
string.

3. Output (x, z, trans).

124

Auxiliary Simulator aux-STΠ,TUA,TW(x, z, ℓ,Π, trans, σ):

Step 1.
/* Preparing randomness for simulating the next qℓ messages */
Let κ := |trans| (i.e., κ be the number of the messages that are included in trans). Then,
compute

(σκ+qℓ , . . . , σ1, ρκ+qℓ , . . . , ρ1) := f-PRG(σ, κ + qℓ) .

Step 2a: Simulation (base case). If ℓ = 0, do the following.

1. If the next-scheduled message msg is a verifier message, feed trans to V∗(x, z)
and receive msg from V∗.

If the next-scheduled message msg is a prover message of the s-th session (s ∈
[m]), do the following with randomness ρκ+1. (If necessary, ρκ+1 is expanded by
a pseudorandom generator.) Let τs be the first-round message of Com of the s-th
session, which can be found from trans.

• If msg is the prover message in a Π-slot, compute msg = (C1, . . . ,CNcol) by
C j ← Comτs(vs, j) for every j ∈ [Ncol], where vs, j is read from TΠ.

• If msg is the prover message in a UA-slot, compute msg = (D1, . . . ,DNcol)
by D j ← Comτs(uas, j) for every j ∈ [Ncol], where uas, j is read from TUA.

• If msg is the first prover message of WIPOK, compute msg by using ws as
a witness, where ws is read from TW; if ws is not a valid witness, abort with
output stuck.

• If msg is the second prover message of WIPOK, reconstruct the prover state
of WIPOK from ws and ρ1, . . . , ρκ and then honestly compute msg by using
this prover state, where ws is read from TW.37

2. Output msg.

Step 2b: Simulation (recursive case). If ℓ > 0, do the following.

1. /* Storing its own code in TΠ */
Let T′

Π
, T′UA, T′W be the tables that are obtained by copying the current entries of

TΠ, TUA, TW. Let

Πmyself(·)
def
= ΠT′

Π
,T′UA,T

′
W(x, z, ℓ,Π, trans, ·) .

Then, for each s ∈ [m], if the s-th session has already started in trans, do the
following: Let hs be the hash function chosen by V∗ in the s-th session in trans;
then, update TΠ by setting vs,ℓ := hs(Πmyself).

37 From the construction of S and aux-S, the first prover message of WIPOK in trans must have been
computed with witness ws and randomness in ρ1, . . . , ρκ.

125

2. Set temporary variables ctrs := 0 and tmps := ⊥ for every s ∈ [m], and a
temporary variable new-trans := ε. Define a function head(·) as head(k) def

=

κ + 1 + (k − 1)qℓ−1.

3. For each k ∈ [q], do the following:

(a) /* Storing the machine that executes the k-th child-block.
*/
Let T(k)

Π
, T(k)

UA, T(k)
W be the tables that are obtained by copying the current

entries of TΠ, TUA, TW. Then, let

Πk(·)
def
= ΠT(k)

Π
,T(k)

UA,T
(k)
W (x, z, ℓ − 1,Π, trans∥new-trans, ·) .

(b) /* Executing the k-th child-block. */
Compute

transk := ΠTΠ,TUA,TW(x, z, ℓ − 1,Π, trans∥new-trans, σhead(k+1))

while reading and updating TΠ,TUA,TW for Π.
(c) For each s ∈ [m], if the s-th session has already started in trans∥new-trans,

do the following. Let (hs, τs) be the first-round message of the s-th session.
Case 1. ctrs = 0, and transk contains a Π-slot of the s-th session.

/* Computing offline proof */
Let sl denote the Π-slot that is contained by transk. (If there are
more than one such Π-slot, sl denote the first such one.) Let i1 de-
note the slot-index of sl, i.e., i1 ∈ [Nslot] such that sl is the i1-th Π-
slot in the s-th session. Let (Ci1 , ri1) denote the messages in sl, where
Ci1 = (Ci1,1, . . . ,Ci1,Ncol).

i. From ρhead(k), . . . , ρhead(k+1)−1 (which are computed in Step 1), find
the randomness R1 that was used for generating Ci1,ℓ−1.38 Then,
compute a PCP proof πs for statement (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2 us-
ing (Πk,R1, σhead(k+1)) as a witness (see Section 5.4.1.2 for details).
Then, compute UA2 := hs(πs).

ii. Update TUA by setting uas,ℓ−1 := UA2.
iii. Update tmps := (i1, πs,UA2) and ctrs := ctrs + 1.

Case 2. ctrs = 1, and transk contains a UA-slot of the s-th session.
/* Computing WIPOK witness */
Let sl denote the UA-slot that is contained by transk. (If there are
more than one such UA-slot, sl denote the first such one.) Let i2 be
the slot-index of sl. Let (Di2 , ωi2) denote the messages in sl, where
Di2 = (Di2,1, . . . ,Di2,Ncol).

i. Parse (i1, πs,UA2) := tmps. Then, compute a fourth-round UA
message UA4 from the offline proof (hs, πs,UA2) and the third-
round UA message ωi2 .

38 From the construction of aux-S, every message in the k-th child-block is computed by using ran-
domness in ρhead(k), . . . , ρhead(k+1)−1.

126

ii. From ρhead(k), . . . , ρhead(k+1)−1 (which are computed in Step 1), find
the randomness R2 that was used for generating Di2,ℓ−1. Then, if
ws = ⊥, update TW by setting ws := (i1, i2, ℓ − 1,UA2,UA4,R2).

iii. Update ctrs := ctrs + 1.
Case 3. All the other cases.

Do nothing.
(d) Update new-trans := new-trans∥ transk.

4. Output new-trans.

5.4.1.2 Correctness of S.

In this section, we observe the correctness of S. Specifically, we observe that aux-S
can indeed compute a valid PCP proof πs and a valid WIPOK witness ws in Step 2b.

First, we see that aux-S can indeed compute a PCP proof πs in Step 2b. Specifically,
we see that when aux-S computes πs in Step 2b, (Πk,R1, σhead(k+1)) is indeed a witness
for (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2 (that is, Ci1,ℓ−1 is a commitment to hs(Πk) and Πk outputs a
string that has ri1 as a substring).

1. First, we observe that Ci1,ℓ−1 is a commitment to hs(Πk). Recall that when aux-S
computes πs in Step 2b, theΠ-slot (Ci1,ℓ−1, ri1) is contained by transk. Then, since
transk is generated by a recursive execution

ΠTΠ,TUA,TW(x, z, ℓ − 1,Π, trans, σhead(k+1)) ,

and this recursive execution updates vs,ℓ−1 ∈ TΠ to be the hash value of its own
code at the beginning, Ci1,ℓ−1 is a commitment to the hash value of this code,
which is identical with hs(Πk).

2. Next, we observe that Πk outputs transk on input σhead(k+1). This is because from
its definition Πk(σhead(k+1)) is identical with

ΠTΠ,TUA,TW(x, z, ℓ − 1,Π, trans, σhead(k+1))

(including the entries in the tables), which outputs transk.

Since ri1 is contained by transk, we conclude that (Πk,R1, σhead(k+1)) is indeed a witness
for (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2.

Next, we see that aux-S can compute a WIPOK proof in Step 2a as long as ws , ⊥.
In other words, we see that if aux-S updates ws to (i1, i2, ℓ − 1,UA2,UA4,R2) in Step
2b, it is indeed a valid WIPOK witness (that is, Di2,ℓ−1 is a commitment to UA2 and
(hs,UA2, ωi2 ,UA4) is an accepting UA proof for (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2).

1. First, UA2 is the hash value of a PCP proof πs that is computed at the end of
a previous recursive execution, and from what is observed above, πs is a valid
PCP proof for statement (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2. Hence, (hs,UA2, ωi2 ,UA4) is an
accepting proof for (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2

127

2. Next, since uas,ℓ−1 ∈ TUA is not updated during level-(ℓ−1) recursive executions,
Di2,ℓ−1 is a commitment to UA2.

Thus, (i1, i2, ℓ − 1,UA2,UA4,R2) is a valid WIPOK witness.
Finally, we see that we have ws , ⊥ when aux-S computes a WIPOK proof in Step

2a. This follows from the following claim.

Claim 5.1. During the execution of S, any execution of aux-S does not output stuck.

Proof . We first introduce notations. Recall that an execution of S involves recursive
executions of aux-S. We use block to denote each execution of aux-S. Notice that
each block can be identified by the value of ℓ and κ = |trans|. A block is in level ℓ if
the corresponding aux-S is executed with input ℓ. The child-blocks of a block are the
blocks that are recursively executed by this block; thus, each block has q child-blocks.
A block contains a slot of a session if the execution of aux-S that corresponds to this
block outputs a transcript that includes this slot (i.e., includes both the prover and the
verifier message of this slot), where we use slots to refer to both Π-slots and UA-slots.
A block is good w.r.t. a session if this block contains at least two slots of this session
but contain neither the first verifier message of this session nor the first prover message
of WIPOK of this session.39

Given these notations, we prove the claim as follows. From the constructions of S
and aux-S, none of aux-S outputs stuck if for every session that reaches Stage 3, there
exists a block such that two of its child-blocks are good. (Indeed, if there exists such a
block for a session, the first good child-block contains a Π-slot of that session and the
second one contains a UA-slot of that session, so a WIPOK witness for that session is
computed at the end of the second good child-block.) Thus, it suffices to show that if a
session reaches Stage 3, there exists a block such that at least two of its child-blocks are
good w.r.t. that session. To show this, it suffices to show that if a session reaches Stage
3, there exists a block such that at least four of its child-blocks contain two or more slots
of that session. (Indeed, if four child-blocks contain two or more slots, two of them are
good since at most one child-block contains the first verifier message and at most one
child-block contains the first prover message of WIPOK.) Assume for contradiction
that there exists a session s∗ such that s∗ reaches Stage 3 but every block has at most
three child-blocks that contain two or more slots of session s∗. For ℓ ∈ {0, . . . , d} and
κ ∈ [qd], let Γκ(ℓ) be the number of the slots that belong to session s∗ and are contained
by the block that is identified by ℓ and κ, and let Γ(ℓ) def

= maxκ(Γκ(ℓ)). Then, since for
each block b,

• at most three child-blocks of b contain two or more slots of s∗, and the other
child-blocks contain at most a single slot of s∗, and

• s∗ has at most q − 1 slots that are contained by block b but are not contained by
its child-blocks,

39 The definition of good blocks here is slightly different from that in the technical overview in Sec-
tion 5.2.2.

128

we have

Γ(ℓ) ≤ 3 · Γ(ℓ − 1) + (q − 2) · 1 + q − 1 = 3Γ(ℓ − 1) + 2q − 3 .

Thus, we have

Γ(d) ≤ 3Γ(d − 1) + 2q − 3

≤ 32Γ(d − 2) + 3(2q − 3) + 2q − 3

≤ · · · ≤ 3dΓ(0) +
d−1∑
i=0

3i(2q − 3)

= 3dΓ(0) +
1
2

(3d − 1)(2q − 3) .

From d = O(1) and Γ(0) = 0, we have Γ(d) = O(q). Then, since S outputs the view of
V∗ that is generated by the level-d block, there are at most O(q) = O(nϵ/2) slots of s∗

in the simulated transcript. Then, since we have Nslot = O(nϵ), this contradicts to the
assumption that s∗ reaches Stage 3. □

From the above three observations, we conclude that aux-S can indeed compute a
valid PCP proof πs and a WIPOK valid witness ws in Step 2b.

5.4.1.3 Running Time of S

Lemma 5.3. S(x, z) runs in polynomial time.

Proof . We bound the running time of S as follows. Recall that an execution of S
involves recursive executions of aux-S. We identify each execution of aux-S by the
value of ℓ and κ = |trans|. In the following, we use aux-Sℓ,κ to denote the execution of
aux-S with ℓ and κ. Let tℓ,κ be the running time of aux-Sℓ,κ, and let tℓ

def
= maxκ(tℓ,κ).

Then, observe that in the execution of aux-Sℓ,κ, every computation is performed in fixed
polynomial time in n except for the following computations.

1. The recursive executions of aux-S (i.e., the executions of
aux-Sℓ−1,κ, aux-Sℓ−1,κ+qℓ−1 , . . .).

2. The generations of the offline proofs (i.e., PCP proofs and their hash values) and
the fourth-round UA messages.

Each recursive execution takes at most tℓ−1 steps. Furthermore, from the relatively effi-
cient oracle construction property of PCP systems, each offline proof can be generated
in poly(tℓ−1) steps. Then, since for each k ∈ [q] there are a single recursive execution
and at most m computations of offline proofs and fourth-round UA proofs, we have

tℓ ≤ q · (tℓ−1 + m · poly(tℓ−1) + poly(n)) + poly(n) ≤ poly(tℓ−1)

for any ℓ ∈ [d]. Then, since we have d = O(1) and t0 = poly(n), we have td = poly(n).
Thus, S runs in polynomial time. □

129

5.4.1.4 Indistinguishability of Views

Lemma 5.4. The output of S(x, z) is computationally indistinguishable from the view
of V∗.

Proof . We prove this lemma by considering a sequence of hybrid experiments,
H0, . . . ,Hqd+1. Hybrid H0 is identical with the real interaction between V∗ and honest
provers, and Hqd+1 is identical with the execution of S. Hybrid Hi (i ∈ [qd]) is identical
with Hqd+1 except that, roughly speaking, the simulation stops after simulating the i-th
message, and later on the prover messages are generated honestly as in H0. Formally,
we define Hi (i ∈ [qd]) by using the following hybrid auxiliary simulator aux-S̃i, which
differs from aux-S in that it simulates the transcript only until the i-th message and that
it simulates the i-th message using true randomness ρ (rather than pseudorandomness
ρi derived by f-PRG). Though aux-S̃i is very similar to aux-S, we give a complete
description of aux-S̃i below. The differences from aux-S are highlighted by blue color
and underline.

Hybrid Auxiliary Simulator aux-S̃TΠ,TUA,TW
i (x, z, ℓ,Π, trans, σ, Π̃i, ρ):

Step 1.
/* Preparing randomness for simulating the next qℓ messages */
Let κ := |trans| (i.e., κ be the number of the messages that are included in trans). Then,
compute

(σi−1, . . . , σ1, ρi−1, . . . , ρ1) := f-PRG(σ, i − 1)

and let ρi := ρ.

Step 2a: Simulation (base case). If ℓ = 0, do the following.

1. If the next-scheduled message msg is a verifier message, feed trans to V∗(x, z)
and receive msg from V∗.

If the next-scheduled message msg is a prover message of the s-th session (s ∈
[m]), do the following with randomness ρκ+1. (If necessary, ρκ+1 is expanded by
a pseudorandom generator.) Let τs be the first-round message of Com of the s-th
session, which can be found from trans.

• If msg is the prover message in a Π-slot, compute msg = (C1, . . . ,CNcol) by
C j ← Comτs(vs, j) for every j ∈ [Ncol], where vs, j is read from TΠ.

• If msg is the prover message in a UA-slot, compute msg = (D1, . . . ,DNcol)
by D j ← Comτs(uas, j) for every j ∈ [Ncol], where uas, j is read from TUA.

• If msg is the first prover message of WIPOK, compute msg by using ws as
a witness, where ws is read from TW; if ws is not a valid witness, abort with
output stuck.

130

• If msg is the second prover message of WIPOK, reconstruct the prover state
of WIPOK from ws and ρ1, . . . , ρκ and then honestly compute msg by using
this prover state, where ws is read from TW.40

2. Output msg.

Step 2b: Simulation (recursive case). If ℓ > 0, do the following.

1. /* Storing its own code in TΠ */
Let T′

Π
, T′UA, T′W be the tables that are obtained by copying the current entries of

TΠ, TUA, TW. Let

Πmyself(·)
def
= ΠT′

Π
,T′UA,T

′
W(x, z, ℓ,Π, trans, ·) .

Then, for each s ∈ [m], if the s-th session has already started in trans, do the
following: Let hs be the hash function chosen by V∗ in the s-th session in trans;
then, update TΠ by setting vs,ℓ := hs(Πmyself).

2. Set temporary variables ctrs := 0 and tmps := ⊥ for every s ∈ [m], and a
temporary variable new-trans := ε. Define a function head(·) as head(k) def

=

κ + 1 + (k − 1)qℓ−1.

3. For each k ∈ [q] such that head(k) + qℓ−1 < i, do the following:

(a) /* Storing the machine that executes the k-th child-block.
*/
Let T(k)

Π
, T(k)

UA, T(k)
W be the tables that are obtained by copying the current

entries of TΠ, TUA, TW. Then, let

Πk(·)
def
= ΠT(k)

Π
,T(k)

UA,T
(k)
W (x, z, ℓ − 1,Π, trans∥new-trans, ·) .

(b) /* Executing the k-th child-block. */
Compute

transk := ΠTΠ,TUA,TW(x, z, ℓ − 1,Π, trans∥new-trans, σhead(k+1))

while reading and updating TΠ,TUA,TW for Π.
(c) For each s ∈ [m], if the s-th session has already started in trans∥new-trans,

do the following. Let (hs, τs) be the first-round message of the s-th session.
Case 1. ctrs = 0, and transk contains a Π-slot of the s-th session.

/* Computing offline proof */
Let sl denote the Π-slot that is contained by transk. (If there are
more than one such Π-slot, sl denote the first such one.) Let i1 de-
note the slot-index of sl, i.e., i1 ∈ [Nslot] such that sl is the i1-th Π-
slot in the s-th session. Let (Ci1 , ri1) denote the messages in sl, where
Ci1 = (Ci1,1, . . . ,Ci1,Ncol).

40 From the construction of S and aux-S, the first prover message of WIPOK in trans must have been
computed with witness ws and randomness in ρ1, . . . , ρκ.

131

i. From ρhead(k), . . . , ρhead(k+1)−1 (which are computed in Step 1), find
the randomness R1 that was used for generating Ci1,ℓ−1.41 Then,
compute a PCP proof πs for statement (hs, τs,Ci1,ℓ−1, ri1) ∈ Λ2 us-
ing (Πk,R1, σhead(k+1)) as a witness (see Section 5.4.1.2 for details).
Then, compute UA2 := hs(πs).

ii. Update TUA by setting uas,ℓ−1 := UA2.
iii. Update tmps := (i1, πs,UA2) and ctrs := ctrs + 1.

Case 2. ctrs = 1, and transk contains a UA-slot of the s-th session.
/* Computing WIPOK witness */
Let sl denote the UA-slot that is contained by transk. (If there are
more than one such UA-slot, sl denote the first such one.) Let i2 be
the slot-index of sl. Let (Di2 , ωi2) denote the messages in sl, where
Di2 = (Di2,1, . . . ,Di2,Ncol).

i. Parse (i1, πs,UA2) := tmps. Then, compute a fourth-round UA
message UA4 from the offline proof (hs, πs,UA2) and the third-
round UA message ωi2 .

ii. From ρhead(k), . . . , ρhead(k+1)−1 (which are computed in Step 1), find
the randomness R2 that was used for generating Di2,ℓ−1. Then, if
ws = ⊥, update TW by setting ws := (i1, i2, ℓ − 1,UA2,UA4,R2).

iii. Update ctrs := ctrs + 1.
Case 3. All the other cases.

Do nothing.
(d) Update new-trans := new-trans∥ transk.

4. For k ∈ [q] such that head(k) ≤ i < head(k + 1), do the following.

(a) Compute

transk := Π̃TΠ,TUA,TW
i (x, z, ℓ − 1,Π, trans∥new-trans, σhead(k+1), Π̃i, ρ)

while reading and updating TΠ,TUA,TW for Π̃i.
(b) Update new-trans := new-trans∥ transk.

5. Output new-trans.

Now, we formally define the hybrids as follows.

Hybrids H0, . . . ,Hqd+1:

Hybrid H0 is the same as the real interaction between V∗ and honest provers.

Hybrid Hi (i ∈ [qd]) is the same as the real execution of S except for the following.
41 From the construction of aux-S, every message in the k-th child-block is computed by using ran-

domness in ρhead(k), . . . , ρhead(k+1)−1.

132

1. S obtains trans by executing

aux-S̃TΠ,TUA,TW
i (x, z, d, aux-S, ε, σi, aux-S̃i, ρi)

rather than

aux-STΠ,TUA,TW(x, z, d, aux-S, ε, σqd+1) ,

where (σi, ρi) := f-PRG(σi+1, 1) for a randomly chosen seed σi+1 of f-PRG.
We remark that in trans, the view of V∗ is simulated up until the i-th mes-
sage (inclusive) in a way that the i-th message is simulated by using ρi as
randomness.

2. After trans, the simulation of V∗’s view is continued as follows:
• Every message is computed with true randomness.
• Every message in Π-slots and UA-slot is generated by committing to

0n.
• Every WIPOK that starts after trans is executed with a witness for x ∈

L.
• Every WIPOK that already started in trans is executed as in aux-S (i.e.,

by reconstructing the prover state).

Hybrid Hqd+1 is the same as the real execution of S.

From a hybrid argument, it suffices to show the indistinguishability between the outputs
of each neighboring hybrids. In the following, we show the indistinguishability in the
reverse order, i.e., we show that the output of Hi is indistinguishable from that of Hi−1

for every i ∈ [qd + 1].

Claim 5.2. The output of Hqd+1 and that of Hqd are identically distributed.

Proof . This claim can be proven by inspection. Notice that the only difference between
Hqd+1 and Hqd is that in Hqd+1, trans is obtained by executing

aux-STΠ,TUA,TW(x, z, d, aux-S, ε, σqd+1)

whereas in Hqd , trans is obtained by executing

aux-S̃TΠ,TUA,TW

qd (x, z, d, aux-S, ε, σqd , aux-S̃, ρqd)

such that (σqd , ρqd) := f-PRG(σqd+1, 1). The former execution simulates the qd mes-
sages in trans using the randomness ρ1, . . . , ρqd that are obtained by f-PRG(σqd+1, qd),
whereas the latter execution simulates the first qd − 1 messages using the randomness
ρ1, . . . , ρqd−1 that are obtained by f-PRG(σqd , qd − 1) and then simulates the qd-th mes-
sage using the randomness ρqd . Then, since (σqd , ρqd) = f-PRG(σqd+1, 1) in Hqd , it
follows from the consistency of f-PRG that the messages in the latter execution are sim-
ulated using the randomness ρ1, . . . , ρqd that are obtained by f-PRG(σqd+1, qd). Hence,
the messages in the latter execution are generated identically with those in the former
execution. □

133

Claim 5.3. The output of Hi and that of Hi−1 are computationally indistinguishable for
every i ∈ [qd].

Proof . To prove this claim, we consider a sequence of intermediate hybrids in which
Hi is gradually changed to Hi−1 as follows.

Hybrid Hi:1 is the same as Hi except that S obtains trans by executing

aux-S̃TΠ,TUA,TW
i (x, z, d, aux-S, ε, σi, aux-S̃i, ρi)

for random σi and ρi rather than for (σi, ρi) := f-PRG(σi+1, 1).

Notice that in Hi:1, the i-th message is simulated with true randomness rather than
pseudorandomness.

Hybrid Hi:2 is the same as Hi:1 except that if the i-th message is a prover message of
Com (either in a Π-slot or in a UA-slot), then the message is computed as in the
honest prover (i.e., C j ← Com(0n) or D j ← Com(0n) for every j ∈ [Ncol]).

Hybrid Hi:3 is the same as Hi:2 except that if the i-th message is the first prover message
of WIPOK, then subsequently all messages in this WIPOK are computed by using
a witness for x ∈ L.

From a hybrid argument, it suffices to show the indistinguishability between each neigh-
boring intermediate hybrids.

Claim 5.4. For every i ∈ [qd], the output of Hi:1 is computationally indistinguishable
from that of Hi.

Proof . The indistinguishability follows immediately from the forward security of
f-PRG. Assume for contradiction that the output of Hi and that of Hi:1 are distinguish-
able. Then, consider the following adversaryD against the forward security of f-PRG.
On input (σ′i , ρ

′
i), adversary D internally invokes V∗ and simulates Hi for V∗ honestly

except for the following.

• Rather than executing

aux-S̃TΠ,TUA,TW
i (x, z, d, aux-S, ε, σi, aux-S̃i, ρi)

for (σi, ρi) := f-PRG(σi+1, 1),D executes it for σi := σ′i and ρi := ρ′i .

When σ′i and ρ′i are generated by (σ′i , ρ
′
i) := f-PRG(σi+1, 1), the output of D is identi-

cally distributed with that of Hi, and when σ′i and ρ′i are chosen randomly, the output of
D is identically distributed with that of Hi:1. Therefore,D breaks the forward security
of f-PRG from the assumption, and thus we reach a contradiction.

□

Claim 5.5. For every i ∈ [qd], the output of Hi:2 is computationally indistinguishable
from that of Hi:1.

134

Proof . It suffices to consider the case that the i-th message msg is a prover message of
Com. Note that both in Hi:1 and Hi:2, the Com commitments in msg are generated by
using true randomness; furthermore, the information about their committed values and
randomness are not used in the other messages (e.g., the randomness is not hardwired in
the committed machines, and the committed value and the randomness are not used as
a witness in the generations of PCP and WIPOK). Thus, the indistinguishability follows
from the hiding property of Com. □

Claim 5.6. For every i ∈ [qd], the output of Hi:3 is computationally indistinguishable
from that of Hi:2.

Proof . It suffices to consider the case that the i-th message msg is the first prover
message of WIPOK. Note that both in Hi:2 and in Hi:3, this WIPOK proof is generated
with true randomness that is not used anywhere else; furthermore, from Claim 5.1, a
valid witness is used both in Hi:2 and in Hi:3. Thus, the indistinguishability follows from
the witness indistinguishability of WIPOK. □

Claim 5.7. For every i ∈ [qd], the output of Hi−1 is identically distributed with that of
Hi:3.

Proof . From the consistency of f-PRG, the first (i− 1) messages are computed both in
Hi:3 and in Hi−1 by using the pseudorandomness that is generated by f-PRG(σi, i − 1)
for random σi. In addition, the i-th message msg is computed in exactly the same way
in Hi:3 and Hi−1. Thus, the claim follows. □

From Claims 5.4, 5.5, 5.6, and 5.7, the output of Hi and that of Hi−1 are computationally
indistinguishable. This completes the proof of Claim 5.3. □

From Claims 5.2 and 5.3, the output of H0 and that of Hqd+1 are indistinguishable.
This completes the proof of Lemma 5.4. □

This completes the proof of Lemma 5.1. □

5.4.2 Argument of Knowledge Property
As noted in Remark 5.2, the languageΛ2 in Figure 5.8 is slightly over-simplified, and we
can prove the argument-of-knowledge property of cZKAOK only when H is collision
resistant against poly(nlog log n)-time adversaries.

Below, we prove the argument-of-knowledge property assuming thatH is collision
resistant against poly(nlog log n)-time adversaries. By using a trick shown in [BG08], we
can extend this proof so that it works even under the assumption that H is collision
resistant against polynomial-time adversaries. The details are given at the end of this
section.

Proof of Lemma 5.2. For any cheating prover P∗, let us consider the following extractor
E.

135

• Given oracle access to P∗, the extractor E emulates a verifier of cZKAOK for P∗

honestly until the beginning of Stage 3. E then extract a witness from WIPOK
using its extractor.

In the following, we assume, as noted above, that H is collision resistant against
poly(nlog log n)-time adversaries.

To show that E outputs a witness for x ∈ L, it suffices to show that the
extracted witness is a witness for (h, τ,C1, r1,D1, ω1, . . . ,CNslot , rNslot ,DNslot , ωNslot) ∈
Λ1 only with negligible probability. In the following, we call a witness for
(h, τ,C1, r1,D1, ω1, . . . ,CNslot , rNslot ,DNslot , ωNslot) ∈ Λ1 a fake witness, and we say that
P∗ is bad if E outputs a fake witness with non-negligible probability. Below, we show
that if there exists a bad cheating prover, we can break the collision resistance ofH .

We first show the following claim, which roughly states that if there exists a bad
P∗, there also exists a prover P∗∗ that can prove a statement in Λ2 with non-negligible
probability.

Claim 5.8. For any ITM P, let us consider an experiment Exp1(n, P) in which P inter-
acts with a verifier V as follows.

1. Interactively generating statement. V sends a random h ∈ Hn and τ ∈ {0, 1}3n to
P. Then, P sends a commitment C of Com to V , and V sends a random r ∈ {0, 1}n2

to P.

2. Generating UA proof. P sends a second-round UA message UA2 of statement
(h, τ,C, r) ∈ Λ2 to V . Then, V sends a third-round UA message ω to P, and P
sends a fourth-round UA message UA4 to V .

3. We say that P wins in the experiment if (h,UA2, ω,UA4) is an accepting UA proof
for (h, τ,C, r) ∈ Λ2.

Then, if there exists a bad P∗, there exists a ppt ITM P∗∗ that wins in Exp1(n, P∗∗) with
non-negligible probability.

Proof . From the assumption that P∗ is bad, for infinitely many n we can extract a fake
witness from P∗ with probability at least δ(n) def

= 1/poly(n). In the following, we fix any
such n. From an average argument, there exist i∗1, i

∗
2 ∈ [Nslot] and j∗ ∈ [Ncol] such that

with probability at least δ′(n) def
= δ(n)/NcolN2

slot > δ(n)/n3, we can extract a fake witness
(i1, i2, j, . . .) such that (i1, i2, j) = (i∗1, i

∗
2, j∗). Then, we consider the following cheating

prover P∗∗ against Exp1.

1. P∗∗ internally invokes P∗ and emulates a verifier of cZKAOK for P∗ honestly with
the following differences:

• In Stage 1, P∗∗ forwards h and τ from the external V to the internal P∗.
• In the i∗1-th Π-slot of Stage 2, P∗∗ forwards Ci∗1, j

∗ from the internal P∗ to the
external V and forwards r from V to P∗.

• In Stage 3, P∗∗ extracts a witness w from P∗ by using the extractor of
WIPOK.

136

2. If w is not a fake witness of the form (i∗1, i
∗
2, j∗, . . .), P∗∗ aborts with output fail.

Otherwise, parse (i∗1, i
∗
2, j∗,UA2,UA4,R) := w. Then, P∗∗ sends UA2 to the exter-

nal V and receives ω.

3. P∗∗ rewinds the internal P∗ to the point just after P∗ sent the Com commitments
in the i∗2-th UA-slot. Then, P∗∗ sends ω to P∗ as the verifier message of the i∗2-th
UA-slot, interacts with P∗ again as an honest verifier, and then extracts a witness
w′ in Stage 3.

4. If w′ is not a fake witness of the form (i∗1, i
∗
2, j∗, . . .), P∗∗ aborts with output fail.

Otherwise, parse (i∗1, i
∗
2, j∗,UA′2,UA′4,R

′) := w′. Then, P∗∗ sends UA′4 to the ex-
ternal V .

To analyze the probability that P∗∗ wins in Exp1(n, P∗∗), we first observe that the
transcript of cZKAOK that is internally emulated by P∗∗ is “good” with probability at
least δ′/2. Formally, let trans be the prefix of a transcript of cZKAOK up until the prover
message of the i∗2-th UA-slot (inclusive). Then, we say that trans is good if under the
condition that trans is a prefix of the transcript, a fake witness of the form (i∗1, i

∗
2, j∗, . . .)

is extracted from P∗ with probability at least δ′/2. From an average argument, the prefix
of the transcript is good with probability at least δ′/2 when P∗ interacts with an honest
verifier of cZKAOK. Then, since a transcript of cZKAOK is perfectly emulated in Step
1 of P∗∗, the prefix of the internally emulated transcript is good with probability at least
δ′/2.

We next observe that under the condition that the prefix of the internally emulated
transcript is good in Step 1 of P∗∗, P∗∗ wins in Exp1(n, P∗∗) with probability at least
(δ′/2)2 − negl(n). First, from the definition of a good prefix, it follows that under the
condition that the prefix of the internally emulated transcript is good in Step 1 of P∗∗,
the probability that both w and w′ are fake witnesses of the form (i∗1, i

∗
2, j∗, . . .) is at least

(δ′/2)2. Next, if w and w′ are fake witnesses, both UA2 and UA′2 are the committed
values of Di∗2, j

∗ , so UA2 = UA′2 holds except with negligible probability; this means
that if w and w′ are fake witnesses, (h,UA2, ω,UA′4) is an accepting UA proof except
with negligible probability. Hence, under the aforementioned condition, P∗∗ wins in
Exp1(n, P∗∗) with probability at least (δ′/2)2 − negl(n).

By combining the above two observations, we conclude that the probability that P∗∗

wins in Exp1(n, P∗∗) is at least

δ′

2

(δ′2
)2

− negl(n)
 ≥ 1

poly(n)
.

□

Next, we show the following claim, which roughly states that if there exists P∗∗ that
proves a statement in Λ2 with non-negligible probability, then we can extract a valid
witness from P∗∗ with non-negligible probability.

Claim 5.9. For any ITM E∗, let us consider an experiment Exp2(n, E∗) in which E∗

interacts with a verifier V as follows.

137

1. Interactively generating statement. This step is the same as the one in Exp1,
where E∗ plays as P. Let (h, τ,C, r) be the interactively generated statement.

2. Outputting witness. E outputs w = (Π,R, y). We say that E wins in the experi-
ment if w is a valid witness for (h, τ,C, r) ∈ Λ2.

Then, if there exists a ppt ITM P∗∗ that wins in Exp1(n, P∗∗) with non-negligible prob-
ability, there exists a poly(nlog log n)-time ITM E∗ that wins in Exp2(n, E∗) with non-
negligible probability.

Proof . We first observe that UA satisfies weak/global proof-of-knowledge property
even when the statement is generated after the hash function h is chosen, i.e., even
when the first-round message of UA is sent before the statement is generated. Roughly
speaking, the UA extractor by [BG08] extracts a witness by combining the extractor
of the underlying PCP system with an oracle-recovery procedure that (implicitly) re-
covers a PCP proof for the extractor of the PCP system. A nice property of the UA
extractor by [BG08] is that it invokes the oracle-recovery procedure on input a random
hash function h that is chosen independently of the statement. Because of this prop-
erty, the UA extractor can be modified straightforwardly so that it works even when h
is chosen before the statement.

We then obtain E∗ by simply using the global UA extractor for P∗∗. Since the run-
ning time of the global UA extractor is poly(nlog log n), the running time of E∗ is also
poly(nlog log n). □

Finally, we reach a contradiction by showing that given E∗ described in Claim 5.9,
we can break the collision resistance ofH .

Claim 5.10. If there exists a poly(nlog log n)-time ITM E∗ that wins in Exp2(n, E∗) with
non-negligible probability, there exists a poly(nlog log n)-time machineA that breaks the
collision resistance ofH .

Proof . We consider the followingA.

1. Given h ∈ H ,A internally invokes E∗ and emulates Exp2(n, E∗) for E∗ perfectly
except that A forwards h to E∗ in Step 1. Let (h, τ,C, r) and w be the statement
and the output of E∗ in this emulated experiment.

2. If w is not a valid witness for (h, τ,C, r) ∈ Λ2, A aborts with output fail. Other-
wise, let (Π,R, y) := w.

3. A rewinds E∗ to the point just after E∗ sent C, and from this point A emulates
Exp2(n, E∗) again with fresh randomness. Let (h, τ,C, r′) be the statement and w′

be the witness in this emulated experiment.

4. If w′ is not a valid witness for (h,C, r′) ∈ Λ2,A aborts with output fail. Otherwise,
let (Π′,R′, y′) := w′.

5. A outputs (Π,Π′) if Π , Π′ and h(Π) = h(Π′). Otherwise,A outputs fail.

138

First, we show that both w and w′ are valid witnesses with non-negligible probabil-
ity. From the assumption that E∗ wins in Exp2(n, E∗) with non-negligible probability,
E∗ outputs a valid witness in Exp2(n, E∗) with probability ϵ def

= 1/poly(n) for infinitely
many n. In the following, we fix any such n. Let trans be the prefix of a transcript of
Exp2(n, E∗) up until E∗ sends C (inclusive). We say that trans is good if under the con-
dition that trans is a prefix of the transcript, E∗ outputs a valid witness with probability
at least ϵ/2. From an average argument, the prefix of the internally emulated transcript
is good with probability at least ϵ/2. Thus, the probability that both w and w′ are valid
witnesses is at least (ϵ/2)(ϵ/2)2 = (ϵ/2)3.

Next, we show that when A obtains two valid witnesses w = (Π,R, y) and w′ =
(Π′,R′, y′), we have Π , Π′ and h(Π) = h(Π′) except with negligible probability. First,
from the binding property of Com, we have h(Π) = h(Π′) except with negligible prob-
ability. (Recall that from the condition that w and w′ are valid witnesses, we have
Comτ(h(Π); R) = Comτ(h(Π′); R′) = C.) Next, since r′ is chosen randomly after Π is
determined, and since we have∣∣∣∣{r′′ ∈ {0, 1}n2 | ∃y ∈ {0, 1}n s.t. r′′ is a substring of the output of Π(y)

}∣∣∣∣
≤ nlog log n · 2n ≤ 2n+1 ,

the probability that there exists y′′ ∈ {0, 1}n such that r′ is a substring of the output of
Π(y′′) is at most 2n+1/2n2

= negl(n). Then, since r′ is a substring of the output ofΠ′(y′),
we conclude that we have Π , Π′ except with negligible probability.

From the above two observations, we conclude that A finds a collision of H with
non-negligible probability. □

From Claims 5.8, 5.9, and 5.10, it follows that there exists no bad P∗. Thus, the ex-
tractor E outputs a witness for x ∈ L except with negligible probability. This concludes
the proof of Lemma 5.2. □

On the proof of Lemma 5.2 whenH is secure only against poly-time adversaries.

As noted before, we can use a trick by [BG08] to extend the above proof so that it works
even when H is secure only against polynomial-time adversaries. Recall that in the
above proof, H need to be secure against super-polynomial-time adversaries because
a collision of H (i.e., the pair of Π and Π′) is found by using the global argument-of-
knowledge property of UA. Hence, the overall strategy is to modify the protocol and
the proof so that the weak argument-of-knowledge property can be used instead of the
global one.

Roughly speaking, the trick by [BG08] works as follows. Recall that, as noted in
Section 5.3.2, H is a hash function family that is obtained by applying Merkle’s tree-
hashing technique on any length-halving collision-resistant hash function family. From
the properties of the tree-hashing, it follows that for any h ∈ Hn and x = (x1, . . . , x|x|) ∈
{0, 1}≤nlog log n , we can compute short certificates auth(x) = {authi(x)}i∈[|x|] such that given
h(x), xi, and authi(x), one can verify in time polynomial in n that the i-th bit of x is
indeed xi. Furthermore, for any collision (x, x′) of H , a collision of the underlying
hash function can be found in polynomial time from any pairs of a bit and a certificate

139

(xi, authi(x)) and (x′i , authi(x′)) such that xi , x′i . Then, the idea of the trick by [BG08]
is, instead of finding a collision of H by extracting the whole of Π and Π′, finding a
collision of the underlying hash function by extracting Π and Π′ in a single bit position
along with their certificates. Specifically, in the trick by [BG08], the languageΛ2 is first
modified in such a way that a witness includes the certificates of the committed machine
so that, if we know a bit position in which Π and Π′ differ, we can find a collision of
the underlying hash function by extracting Π and Π′ in that position along with the
corresponding certificates. Then, to make sure that we can find a position in which Π
and Π′ differ with non-negligible probability, the language Λ2 is further modified in
such a way that the cheating prover is required to commit to the hash value of ECC(Π)
instead of the hash value of Π, where ECC is an error-correcting code with constant
relative distance and with polynomial-time encoding and decoding; since ECC(Π) and
ECC(Π′) differ in a constant fraction of their indices, they differ in a randomly chosen
position with constant probability. Since we can extract ECC(Π) and ECC(Π′) in a
single position along with their certificates in time polynomial in n using the weak
argument-of-knowledge property of UA, the proof now works under collision resistance
against polynomial-time adversaries.

More formally, the trick by [BG08] works as follows. First, we replace the language
Λ2 in Figure 5.8 with the one in Figure 5.9. Next, we modify Claim 5.9 in such a way
that E∗ is required to extract a witness only implicitly (i.e., output the i-th bit of the
witness on input any i); the proof of Claim 5.9 is the same as before except that we
use weak argument-of-knowledge property instead of global one. Finally, we modify
the proof of Claim 5.10 in such a way that, instead of extracting the whole of w and
w′, the adversaryA extracts Π and Π′ only in a randomly chosen bit position and then
extracts the certificates that correspond to that position; also, at the end A outputs a
collision of the underlying hash function if A can compute it from the extracted bits
and certificates. From essentially the same argument as before, it follows that A finds
a collision of the underlying hash function with non-negligible probability. Since the
running time ofA is now bounded by a polynomial, we can derive a contradiction even
when the underlying hash function is collision resistant only against polynomial-time
adversaries.

140

Language Λ2:

Let ECC be an error-correcting code with constant relative distance and with
polynomial-time encoding and decoding.
(h, τ,C, r) ∈ Λ2 if and only if there exist

• a machine Π (with some inputs being hardwired) such that |Π| ≤ nlog log n

• a set of certificates {authi}i∈[|η|], where η def
= ECC(Π)

• randomness R ∈ {0, 1}poly(n) for Com

• a string y such that |y| = n

such that

• C = Comτ((|η|, h(η)); R), and

• authi = authi(η) for every i ∈ [|η|], and

• Π(y) outputs a string that has r as a substring, and Π(y) outputs it within
nlog log n steps.

Figure 5.9: A modified version of Λ2.

141

142

Chapter 6

Round-Efficient Black-Box
Construction of Composable
Multi-Party Computation

In this chapter, we show our last result: A round-efficient black-box construction of
composable secure multi-party computation protocols.

6.1 Background
As informally explained in Section 1.1, secure multi-party computation (MPC) proto-
cols enable mutually distrustful parties to compute a functionality without compromis-
ing the correctness of the outputs and the privacy of their inputs. In the seminal work of
Goldreich et al. [GMW87], it was shown that general MPC protocols—MPC protocols
that can be used to securely compute any functionality—can be constructed even in the
model with malicious adversaries and a dishonest majority.42

In this chapter, we consider a black-box construction of a general MPC protocol
that guarantees composable security. Before stating our result, we explain black-box
constructions and composable security.

Black-Box Constructions.

A construction of a cryptographic protocol is black-box if it uses the underlying cryp-
tographic primitives only in a black-box way (i.e., only through their input/output inter-
faces). If a construction uses the codes of the underlying primitives, it is non-black-box.

As argued by Ishai et al. [IKLP06], constructing black-box constructions is impor-
tant for both theoretical and practical reasons. Theoretically, it is important because
understanding whether non-black-box use of cryptographic primitives is necessary for
a cryptographic task is of great interest. Practically, it is important because black-box
constructions are typically more efficient than non-black-box ones in terms of both com-
munication and computational complexity. (In fact, most non-black-box constructions

42In the following, we consider only such a model.

143

of general MPC protocols are highly inefficient and hard to implement because they
use general NP reductions when executing zero-knowledge proofs.)

Recently, a number of works have studied black-box constructions of general MPC
protocols. Ishai et al. [IKLP06] showed the first construction of a general MPC protocol
that uses the underlying low-level primitives (such as enhanced trapdoor permutations
or homomorphic public-key encryption schemes) in a black-box way. Combined with
the subsequent work by Haitner [Hai08], who showed a black-box construction of a (ma-
liciously secure) oblivious transfer protocol based on a semi-honest oblivious transfer
protocol, their work gave a black-box construction of a general MPC protocol based on
a semi-honest oblivious transfer protocol [HIK+11]. Subsequently, Wee [Wee10] re-
duced the round complexity to O(log∗ n), and Goyal [Goy11] further reduced the round
complexity to O(1).

The security of these black-box protocols are proven in the stand-alone setting.
Hence, these protocols are secure when a single instance of the protocol is executed
at a time.

Composable Security.

A setting that is more general and realistic than the stand-alone setting is the concurrent
setting, in which many instances of many different protocols are concurrently executed
in an arbitrary schedule. A notable difference from the stand-alone setting is that adver-
saries can now perform a coordinated attack by choosing their messages in an instance
based on the executions of the other instances.

As a strong and realistic security notion in the concurrent setting, Canetti [Can01]
proposed universally composable (UC) security. The main advantage of UC security
is composability, which guarantees that UC-secure protocols can be composed in such
a way that the security of the resultant protocol can be deduced from the security of
its components (in other words, UC security enables modular constructions of secure
protocols). Composability also guarantees that a protocol remains secure even when it
is concurrently executed with any other protocols in any schedule (that is, UC security
implies security in the concurrent setting). A UC-secure general MPC protocol was
constructed by Canetti et al. [CLOS02] in the common reference string (CRS) model
(i.e., in a model in which all parties are given a common public string that is chosen by
a trusted third party). A black-box construction of a UC-secure general MPC protocol
was constructed by Ishai et al. [IPS08] in the FOT-hybrid model (i.e., in model with
the ideal oblivious transfer functionality) and by Choi et al. [CDMW09] in the FCOM-
hybrid model (i.e., in the model with the ideal commitment functionality).

UC security, however, turned out to be too strong to achieve in the plain model.
That is, it was shown that even with non-black-box use of cryptographic primitives, we
cannot construct UC-secure general MPC protocols in the model with no trusted setup
[CF01, CKL06].

To achieve composable security in the plain model, Prabhakaran and Sahai [PS04]
proposed a variant of UC security called angel-based UC security. Roughly speak-
ing, angel-based UC security is the same as UC security except that the adversary and
the simulator have access to an additional entity—an angel—that allows some judi-
cious use of super-polynomial-time resources. Angel-based UC security is weaker

144

than UC security but guarantees meaningful security in many settings. (For exam-
ple, angel-based UC security implies super-polynomial-time simulation (SPS) security
[Pas03, Bar05, GGJS12, PLV12], in which the simulator is allowed to run in super-
polynomial time. Hence, angel-based UC security guarantees that whatever an adver-
sary can do in the real world can also be done in the ideal world in super-polynomial
time.) Furthermore, it was proven that, like UC security, angel-based UC security guar-
antees composability. (In contrast, SPS security does not guarantee composability.)
Prabhakaran and Sahai [PS04] presented a general MPC protocol that satisfies angel-
based UC security in the plain model under new assumptions. Subsequently, Malkin et
al. [MMY06] constructed another general MPC protocol that satisfies angel-based UC
security in the plain model under a new number-theoretic assumption.

Several works have constructed general MPC protocols with angel-based UC se-
curity under standard assumptions. Canetti et al. [CLP10, CLP16] constructed a
polynomial-round general MPC protocol in angel-based UC security assuming the exis-
tence of enhanced trapdoor permutations. Subsequently, Goyal et al. [GLP+15] reduced
the round complexity to Õ(log n) under the same assumption. They also showed that
by using enhanced trapdoor permutations that are secure against quasi-polynomial-time
adversaries, the round complexity of their protocols can be reduced to O(1).

The constructions of these MPC protocols are non-black-box, so they use underlying
primitives in a non-black-box way.

Black-Box Constructions of Composable Protocols.

Recently, Lin and Pass [LP12] showed the first black-box construction of a general
MPC protocol that guarantees composable security in the plain model. The security of
their protocol is proven under angel-based UC security and based on the minimal as-
sumption of the existence of semi-honest oblivious transfer (OT) protocols. The round
complexity of their protocol is O(max(nϵ ,ROT)), where ϵ > 0 is an arbitrary constant
and ROT is the round complexity of the underlying semi-honest OT protocols. Thus,
with enhanced trapdoor permutations (from which we can construct constant-round
semi-honest OT protocols), their result gives an O(nϵ)-round protocol. Subsequently, a
constant-round protocol was constructed by Kiyoshima et al. [KMO14] from constant-
round semi-honest OT protocols that are secure against quasi-polynomial-time adver-
saries and one-way functions that are secure against subexponential-time adversaries.

Summarizing the state-of-the-art, for composable protocols in the plain model, we
have

• Õ(log n)-round non-black-box constructions under a standard polynomial-time
hardness assumption [GLP+15],

• a O(nϵ)-round black-box construction under a standard polynomial-time hardness
assumption [LP12], and

• O(1)-round black-box or non-black-box constructions under standard super-
polynomial-time hardness assumptions [GLP+15, KMO14].

Thus, for composable protocols based on standard polynomial-time hardness assump-
tions, there exists a gap between the round complexity of the non-black-box protocols

145

(Õ(log n) rounds [GLP+15]) and that of the black-box protocols (O(nϵ) rounds [LP12]).
The following is therefore an interesting open question.

Does there exist a round-efficient black-box construction of a general
MPC protocol that guarantees composability in the plain model under
polynomial-time hardness assumptions?

6.1.1 Our Result
In this chapter, we narrow the gap between the round complexity of black-box compos-
able general MPC protocols and that of non-black-box ones.

Main Theorem. Assume the existence of ROT-round semi-honest oblivious transfer pro-
tocols. Then, there exists a max(Õ(log2 n),O(ROT))-round black-box construction of a
general MPC protocol that satisfies angel-based UC security in the plain model.

Recall that, assuming the existence of enhanced trapdoor permutations, we have a
constant-round semi-honest OT protocol. Thus, under this assumption, our main theo-
rem gives a Õ(log2 n)-round protocol.

CCA-secure commitment scheme. To prove our main theorem, we construct a
Õ(log2 n)-round black-box construction of a CCA-secure commitment scheme [CLP10,
CLP16, LP12, KMO14, GLP+15] from one-way functions.

Theorem. Assume the existence of one-way functions. Then, there exists a Õ(log2 n)-
round black-box construction of a CCA-secure commitment scheme.

Roughly speaking, a CCA-secure commitment scheme is a tag-based commitment
scheme (i.e., a commitment scheme that takes an n-bit string, a tag, as an additional
input) such that the hiding property holds even against adversaries that interact with
the committed-value oracle during the interaction with the challenger. The committed-
value oracle interacts with the adversary as an honest receiver in many concurrent ses-
sions of the commit phase. At the end of each session, if the commitment of this session
is invalid or has multiple committed values, the oracle returns ⊥ to the adversary. Oth-
erwise, the oracle returns the unique committed value to the adversary.

Lin and Pass [LP12] showed that in angel-based UC security, an O(max(RCCA,ROT))-
round general MPC protocol can be obtained in a black-box way from a RCCA-round
CCA-secure commitment scheme and a ROT-round semi-honest OT protocol. Thus, we
can prove our main theorem by combining the above theorem with the result of Lin and
Pass [LP12].

6.1.2 Outline
In Section 6.2, we give an overview of our CCA-secure commitment scheme. In Section
6.3, we give definitions that are used specifically in this chapter. In Section 6.4, we show
two building blocks that are used in our CCA-secure commitment scheme. In Section
6.5, we show our CCA-secure commitment scheme and prove its security. In Section
6.6, we show our main theorem.

146

6.2 Overview of Our CCA-Secure Commitment
Scheme

In the previous work on CCA-secure commitment schemes [CLP10, CLP16, LP12,
KMO14, GLP+15], extractability and non-malleability play fundamental roles in the
proof of CCA security. Roughly speaking, the CCA security of the existing CCA-
secure commitment schemes is proven by reducing it to the hiding property [CLP10,
CLP16, LP12] or by showing that the proof of the hiding property goes though even in
the presence of the committed-value oracle [KMO14, GLP+15]. During the security
proofs, extractability is used to show that the committed-value oracle can be emulated
in polynomial time by extracting the committed values from the adversary, and non-
malleability is used to show that the emulation of the oracle can be performed without
“disturbing” the hiding property [CLP10, CLP16, LP12] or each step of the proof of
the hiding property [KMO14, GLP+15].

In this work, we use stronger notions of extractability and non-malleability called
strong extractability and one-one CCA security. In the following, we explain how we
construct commitment schemes that satisfy these two notions and how we construct our
CCA-secure commitment scheme by using them as building blocks.

6.2.1 Building Block 1: Strongly Extractable Commitment Scheme
A commitment scheme is strongly extractable if a rewinding extractor can extract the
committed value of a commitment in such a way that the extractor outputs ⊥ when the
commitment is invalid.43 Strong extractability differs from basic extractability in that it
requires the extractor to output ⊥ when the commitment is invalid; basic extractability,
in contrast, allows the extractor to output an arbitrary value when the commitment is in-
valid (this is called over-extraction). A constant-round extractable commitment scheme
ExtCom can be constructed in a black-box way from one-way functions [PW09]; how-
ever, no black-box construction of a strong extractable commitment scheme has been
constructed.

To construct a strongly extractable commitment scheme, we start from the follow-
ing scheme, in which the cut-and-choose technique is used in the same way as in the
previous work on black-box protocols [CDMW08, CDMW09, Wee10, LP12, KMO14].

1. Let v be the value to be committed. Then, the committer computes an (n + 1)-
out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of value v and commits to
each s j in parallel by using ExtCom.

2. The receiver sends a random subset Γ ⊂ [10n] of size n.

3. For every j ∈ Γ, the committer decommits the j-th ExtCom commitment to s j.

4. The receiver accepts the commitment if and only if the decommitments of
ExtCom are valid for every j ∈ Γ.

43Recall that a commitment is valid if there exists a valid decommitment of this commitment.

147

For j ∈ [10n], let us call the j-th ExtCom commitment the j-th column. In this
scheme, the ExtCom commitments are valid in most columns when the receiver ac-
cepts the commitment in Step 4; this is because when the ExtCom commitments are
invalid in, say, n columns, at least one of them is chosen by Γ and the receiver re-
jects the commitment in Step 4 except with exponentially small probability. Since
the committed value of a ExtCom commitment can be extracted when it is valid, this
implies that the committed shares can be extracted in most columns when the re-
ceiver accepts the commitment in Step 4; therefore, when the commitment is valid,
the committed value v can be recovered by extracting the committed shares from the
ExtCom commitments and then using the error-correcting property of Shamir’s se-
cret sharing scheme.44 Furthermore, by carefully designing the decommit phase as in
[CDMW08, CDMW09, Wee10, LP12, KMO14], we can make sure that the extractor
outputs ⊥ when the commitment is invalid.

The problem of this scheme is that we do not know how to prove its hiding prop-
erty. In particular, since the receiver requests the committer to open adaptively-chosen
ExtCom commitments, it can perform selective opening attacks [DNRS03], and there-
fore the hiding property of this scheme cannot be reduced to the hiding property of
ExtCom easily.

We therefore modify the scheme and let the receiver commit to Γ at the beginning
by using a statistically binding commitment scheme Com. Now, since the receiver no
longer chooses the subset Γ adaptively, we can prove the hiding property by using a
standard technique. Furthermore, at first sight, the hiding property of Com seems to
guarantee that the scheme remains strongly extractable.

In the modified scheme, however, we cannot prove the strong extractability. This is
because we can no longer show that most of the ExtCom commitments are valid in an
accepting commitment. Consider, for example, that there exists a cheating committer
C∗ such that after receiving a Com commitment to Γ at the beginning, C∗ somehow gen-
erates an invalid ExtCom commitment in the j-th column for every j < Γ and commits
to 0n in the j-th column for every j ∈ Γ. Intuitively, it seems that C∗ breaks the hiding
property of Com. However, we do not know how to use C∗ to break the hiding property
of Com. To see this, observe the following. Recall that since ExtCom is extractable
with over-extraction, the extractor of ExtCom may output an arbitrary value when the
ExtCom commitment is invalid. Hence, when we extract the committed values of the
ExtCom commitments from C∗, the extracted value may be 0n in every column. There-
fore, although C∗ behaves differently in ExtCom based on the value of Γ, we do not
know how to detect it.

To overcome this problem, we use the commitment scheme wExtCom that was in-
troduced by Goyal et al. [GLOV12]. Roughly speaking, wExtCom is a scheme that is
extractable only in a weak sense—extractions may fail with probability at most 1/2—
but is extractable without over-extraction. That is, the extractor may output ⊥ with
probability 1/2, but when the extractor outputs v , ⊥, the commitment is valid and
its committed value is v. Concretely, the commit phase of wExtCom consists of three
stages.

44Recall that Shamir’s secret sharing is also a codeword of Reed-Solomon code.

148

1. commit stage. The committer commits to random a0, a1 ∈ {0, 1}n such that
a0 ⊕ a1 = v.

2. challenge stage. The receiver sends a random bit ch ∈ {0, 1}.

3. reply stage. The committer reveals ach and decommits the corresponding com-
mitment.

It is easy to see that wExtCom satisfies the following property: For a fixed transcript
of the commit stage, if a cheating committer returns a valid reply with probability
1/poly(n) for both ch = 0 and ch = 1, then the committed value can be extracted with
probability 1 in expected polynomial time by rewinding the cheating committer.

Using wExtCom, we modify our scheme as follows. After committing to s =
(s1, . . . , s10n) with ExtCom, the committer commits to (s j, d j) for each j ∈ [10n] in
parallel by using wExtCom, where (s j, d j) is a decommitment of the ExtCom commit-
ment in the j-th column. We then show that most columns are consistent in an accepted
commitment except with negligible probability, meaning that in most columns on an
accepted commitment, the wExtCom commitment is valid and its committed value is a
valid decommitment of the corresponding ExtCom commitment except with negligible
probability. Toward this end, we observe the following.

• If a cheating committer generates an accepting commitment with non-negligible
probability, in wExtCom of more than 9n columns the cheating committer returns
a valid reply with non-negligible probability for both ch = 0 and ch = 1. This
is because if the cheating committer returns a valid reply with non-negligible
probability for both ch = 0 and ch = 1 in wExtCom of at most 9n columns, there
are n columns in which the wExtCom commitment is accepted with probability
at most 1/2 + negl(n), so the probability that all wExtCom commitments are
accepted is negligible.45

• Then, from the property of wExtCom, we can extract the committed values of
the wExtCom commitments without over-extraction in more than 9n columns.

• Then, from the property of the cut-and-choose technique, we can show that in
most columns of an accepting commitment, the wExtCom commitment is valid
and its committed value is a valid decommitment of the corresponding ExtCom
commitment. Note that since the committed values of wExtCom commitments
can be extracted without over-extraction, we can show that the cheating committer
cannot give invalid wExtCom commitments in many columns.

Then, since the ExtCom commitments are valid in consistent columns, we have that
most of the ExtCom commitments are valid whenever the commitment is accepted. We
can thus extract the committed value of the scheme without over-extraction as before,
i.e., by extracting the committed values of ExtCom commitments and then using the
error-correcting property of Shamir’s secret sharing scheme.

45The formal proof is more complicated because the wExtCom commitments are executed in parallel
and thus the columns are not independent of each other.

149

6.2.2 Building Block 2: One-One CCA-Secure Commitment
Scheme

A one-one CCA-secure commitment scheme, which is closely related to a non-malleable
commitment scheme, is one that is CCA secure w.r.t. a restricted class of adversaries that
execute only a single session with the committed-value oracle and obtain its committed
value from the oracle at the end of the session.46

We construct a black-box O(log n)-round one-one CCA-secure commitment scheme
by simplifying the CCA-secure commitment scheme of Lin and Pass [LP12] and then
applying the “DDN log n trick” [DDN00, LPV08] on it, where the DDN log n trick is
a transformation by Dolev, Dwork, and Naor (DDN) [DDN00] and has been used to
transform a concurrent non-malleable commitment scheme for tags of length O(log n)
to a non-malleable commitment scheme for tags of length O(n) without increasing the
round complexity. Roughly speaking, the scheme of [LP12] consists of polynomially-
many rows—each row is a parallel execution of (a part of) the trapdoor commitment
scheme of [PW09]—and a cut-and-choose phase, which forces the committer to give
valid and consistent trapdoor commitments in every row. Our idea is to reduce the
number of rows from poly(n) to ℓ(n) in the scheme of [LP12], where ℓ(n) is the length
of the tags. The resultant scheme is no longer CCA secure, but can be shown to be
parallel CCA secure, i.e., CCA secure w.r.t. a restricted class of adversaries that give
only a single parallel queries to the oracle. Then, we set ℓ(n) := O(log n) and apply the
DDN log n trick to the above parallel CCA-secure commitment scheme. It is not hard
to show that the resultant scheme is one-one CCA secure.

6.2.3 CCA-Secure Commitment Scheme from the Building Blocks
Now, we explain how we obtain our CCA-secure commitment scheme, CCACom, using
a constant-round strongly extractable commitment scheme sExtCom and a O(log n)-
round one-one CCA-secure commitment scheme CCACom1:1 as building blocks.

In addition to sExtCom and CCACom1:1, we use the concurrently extractable
commitment scheme of Micciancio et al. [MOSV06] in our CCA-secure commitment
scheme. Roughly speaking, concurrent extractability guarantees that a rewinding ex-
tractor can extract committed values even from polynomially many commitments that
are concurrently generated by an adversarial committer. The concurrently extractable
commitment scheme of Micciancio et al. [MOSV06], which we denote by CECom,
is an abstraction of the preamble stage of the concurrent zero-knowledge protocol of
Prabhakaran et al. [PRS02] and is constructed in a black-box way from one-way func-
tions. CECom satisfies even a stronger notion of concurrent extractability called ro-
bust concurrent extractability [GLP+15], which roughly guarantees that the extractor
works even against adversarial committers that additionally participate in an arbitrary
external protocol, and furthermore, even though the extractor rewinds the adversarial
committers, the external protocol is not rewound during the extraction. CECom satis-

46In contrast, a non-malleable commitment scheme is one that is CCA secure w.r.t. a restricted class of
adversaries that execute a single session with the oracle and obtain its committed value after completing
the session with the oracle and the session with the challenger.

150

fies robust concurrent extractability for a k-round external protocol if a parameter ℓ of
CECom (often called “the number of slots” in CECom) satisfies ℓ = ω(k log n). The
round complexity of CECom is O(ℓ).

Using sExtCom, CCACom1:1, and CECom as building blocks, we construct
CCACom roughly as follows. Let v be the value to be committed to and id be the
tag.

1. The receiver commits to a random subset Γ ⊂ [10n] of size n by using
CCACom1:1, where the tag of CCACom1:1 is id.

2. The committer computes an (n + 1)-out-of-10n Shamir’s secret sharing s =
(s1, . . . , s10n) of value v and commits to each s j in parallel by using a two-round
statistically binding commitment scheme Com. Let ϕ1, . . . , ϕ10n be the commit-
ments and d1, . . . , d10n be their decommitments.

3. The committer commits to s j by using CECom for every j ∈ [10n] in parallel.
Let ψ1, . . . , ψ10n be the commitments and e1, . . . , e10n be their decommitments.
The parameter ℓ of CECom is set as ℓ := O(log2 n log log n) so that we have
ℓ = ω(log2 n).

4. The committer commits to u j
def
= (s j, d j, e j) by using sExtCom for every j ∈ [10n]

in parallel.

5. The receiver decommits the CCACom1:1 commitment in the first step to Γ.

6. For every j ∈ Γ, the committer decommits the j-th sExtCom commitment to
u j = (s j, d j, e j). The receiver verifies whether (s j, d j) and (s j, e j) are valid de-
commitments of ϕ j and ψη, j for every j ∈ Γ.

The committed value of a CCACom commitment is defined by the shares that are com-
mitted to in the Com commitments (i.e., the committed value is the value that can be
reconstructed from these shares).

We prove the CCA security using a hybrid argument. Recall that CCA security
requires that the hiding property holds even against adversaries that interact with the
committed-value oracle. Toward proving the CCA security of CCACom, we design
a series of hybrid experiments in which the CCACom commitment that the adversary
receives in the left session (the session between the adversary and the challenger) is
gradually changed as follows.

• In Hybrid H0, the CCA-security experiment is executed honestly.

• In Hybrid H1, the values that are committed to by sExtCom are switched from u j

to 0|u j | for every j < Γ, where Γ is the subset that is committed to by the adversary
in the first step.

• In Hybrid H2, the values that are committed to by CECom are switched from s j

to 0|s j | for every j < Γ.

151

• In Hybrid H3, the values that are committed to by Com are switched from s j to
0|s j | for every j < Γ.

From the security of Shamir’s secret sharing, the adversary receives no information
about v in H3. Hence, from a hybrid argument, we can prove CCA security by showing
indistinguishability between neighboring hybrid experiments.

Since neighboring hybrids differ only in the values that are committed to in the row
of sExtCom, CECom, or Com (i.e., the parallel commitments of sExtCom, CECom,
or Com), our overall strategy for proving the indistinguishability is to use the hiding
property of sExtCom, CECom, and Com. A problem is that the adversary interacts
with the committed-value oracle, which extracts the committed values of the right ses-
sions (the sessions between the adversary and the committed-value oracle) in super-
polynomial time; because of the super-polynomial power of the oracle, the indistin-
guishability does not follow directly from the hiding property of sExtCom, CECom,
and Com. We overcome this problem by showing that the committed-value oracle can
be emulated in polynomial time. Specifically, we show that the oracle can be emu-
lated by extracting the committed shares from the rows of CECom using its concurrent
extractability and then computing the committed value of each right session from the
extracted shares. Roughly speaking, this emulation works because in an accepting right
session, the shares committed to in the row of CECom must be “close” to the shares
that are committed to in the row of Com (recall that the committed value of a CCACom
commitment is defined based on the shares that are committed to in the row of Com);
indeed, if they disagree in many locations, the session will be rejected in the last step
of the scheme.

In more detail, we prove the indistinguishability between, say, the first and second
hybrids in two steps.

Step 1. Prove the indistinguishability assuming that the adversary does not “cheat” in
each right session, where, roughly speaking, we say that the adversary cheats in a
right session if the adversary commits to u j = (s j, d j, e j) in the row of sExtCom
as specified by the scheme in at most 9n locations in an accepting session.

Step 2. Prove that the adversary does not cheat in the right sessions except with negli-
gible probability.

Each step is explained in more detail below.

Step 1. Proving the indistinguishability assuming that the adversary does not
cheat. Recall that H0 and H1 differ only in the values that are committed to in the
row of sExtCom in the left session. For proving indistinguishability between them, we
consider new hybrid experiments, G0 and G1, such that Gh (h ∈ {0, 1}) is the same as
Hh except that the committed-value oracle computes the committed value of each right
session from the shares that are extracted from the row of CECom (rather than from the
row of Com), and those shares are extracted using the robust concurrent extractability
of CECom so that the row of sExtCom in the left session is not rewound during the
extraction. We then prove the indistinguishability between H0 and H1 in two steps.

152

1. First, we show the indistinguishability between Hh and Gh. Since we assume that
the adversary does not cheat in the right sessions, the shares that are committed
to in the row of Com and those that are committed to in the row of CECom
are 0.9-close. Combined with an error-correcting property of Shamir’s secret
sharing, their closeness guarantees that the correct committed values of the right
seasons are computable even from the shares that are committed to in the row of
CECom; hence, the committed-value oracle computes the same value in Hh and
Gh, so these two hybrids are indistinguishable.

2. Second, we show the indistinguishability between G0 and G1 by using the hiding
property of sExtCom. Since these two hybrids run in polynomial time while
the adversary is receiving the row of sExtCom in the left session, and the row
of sExtCom in the left session is not rewound thanks to the robust concurrent
extractability of CECom, we can easily design a (non-uniform) reduction from
the indistinguishability between G0 and G1 to the hiding property of sExtCom.

Combining these two, we obtain the indistinguishability between H0 and H1 under the
assumption that the adversary does not cheat in the right sessions.

Step 2. Proving that the adversary cannot cheat. Intuitively, the adversary cannot
cheat in a right session because the subset that is committed to in the CCACom1:1 com-
mitment of that right session is hidden from the adversary. Indeed, if the subsets are
are hidden from the adversary, we can argue that a right session will be rejected in the
last step of the scheme when the adversary tries to cheat in that session. However, to
formalize this intuition, we need to overcome two obstacles.

Obstacle 1. The adversary interacts with the committed-value oracle, which runs in
super-polynomial time. We overcome this obstacle by, again, considering a hy-
brid in which the oracle is emulated in polynomial time.

Obstacle 2. The challenger cheats in the left session in H1, H2, H3 (recall that in these
hybrids, the challenger commits to 0|u j | rather than u j for every j < Γ in the row
of sExtCom), and thus, the adversary may be able to cheat in a right session
by using the messages in the left session. We overcome this obstacle by using
the simulation-soundness of the cut-and-choose phase. Specifically, since the
cheating challenger can be emulated in polynomial time by making a single query
to the committed-value oracle of CCACom1:1 (that is, the left session can be
emulated in polynomial time if the subset that is committed in to CCACom1:1 is
given), the one-one CCA security of CCACom1:1 guarantees that the subset in
each right session is hidden even though the challenger cheats in the left session.

More formally, the proof proceeds as follows. Assume for contradiction that the adver-
sary cheats in a right session with non-negligible probability in, say, H1. Then, there
exists a right session such that the adversary cheats with non-negligible probability in
this right session but does not cheat except with negligible probability in any right ses-
sion that completed before this right session; we call this right session the target right
session. Then, we consider a hybrid experiment that is the same as H1 except for the
following.

153

• The execution of H1 is terminated just before the committed-value oracle returns
the committed value in the target right session.

• The oracle computes the committed value of each right session from the shares
that are extracted from the row of CECom, and those shares are extracted using
the robust concurrent extractability of CECom so that the row of CCACom1:1 in
the left session, the row of CCACom1:1 in the target right session, and the row of
sExtCom in the target right session are not rewound during the extraction. (Such
robust concurrent extraction is possible since the total round complexity of these
rows is O(log n) and the parameter ℓ of CECom satisfies ℓ = ω(log2 n).)

Since the oracle returns the committed values only in the right session that terminates
before the target right session, and it is assumed that the adversary does not cheat in
such right sessions, we can show, as before, that the oracle is correctly emulated in
this hybrid. Thus, the adversary cheats in the target right session with non-negligible
probability even in this hybrid. Now, since this hybrid runs in polynomial time except
when extracting the subset from the CCACom1:1 commitment in the left session, we
can break the one-one CCA security of CCACom1:1 in the target right session by ex-
tracting the shares committed to in the row of sExtCom in the target right session and
checking the locations where the adversary does not commit to u j = (s j, d j, e j) in the
row of sExtCom as specified by the scheme, while simulating the left session using the
committed-value oracle of CCACom1:1. Hence, we conclude that the adversary does
not cheat in the right sessions except with negligible probability.

Remark 6.1. In the above explanation, we assume that sExtCom has a robust ex-
tractability property such that the extraction from the row of sExtCom is possible even
while the CCACom1:1 commitment in the left session is forwarded to the committed-
value oracle of CCACom1:1. In the actual proof, we remove the necessity of robust
extractability by increasing the number of rows of sExtCom to RCCA1:1 + 1, where RCCA1:1

is the round complexity of CCACom1:1. With RCCA1:1 + 1 rows of sExtCom, we can
argue that one of the rows of sExtCom in the target right session does not “interleave”
with the CCACom1:1 commitment of the left session, so we extract the values that are
committed to in this row of sExtCom. ^

Remark 6.2. We note that in the above argument, CCACom1:1 need to be one-one CCA
secure (rather than just non-malleable) since we need to obtain the committed subset
from the oracle immediately after completing the query to the oracle (and possibly
before completing the challenge commitment). We also note that sExtCom must be
strongly extractable since otherwise the adversary may give invalid commitments in
more than n locations without being detected in the cut-and-choose phase. (As ex-
plained in Section 6.2.1, the existence of such an adversary does not contradict the
one-one CCA security of CCACom1:1 if over-extraction can occur.) ^

Combining Steps 1 and 2, we conclude that H0 and H1 are indistinguishable. The
indistinguishability between other neighboring hybrids can be shown similarly.

154

Reconstruction procedure ValueΓ(s). For s = (s1, . . . , s10n), the output of
ValueΓ(s) is computed as follows. If s is 0.9-close to a valid codeword w =

(w1, . . . ,w10n) that satisfies wi = si for every i ∈ Γ, then Value(s) is the value that
is decoded from w, i.e., ValueΓ(s) def

= Decode(w). Otherwise, ValueΓ(s) def
= ⊥.

Figure 6.1: Function ValueΓ(·).

6.3 Preliminaries
6.3.1 Shamir’s Secret Sharing
We first recall Shamir’s secret sharing scheme. (In this thesis, we use only the
(n + 1)-out-of-10n version of it.) To compute a (n + 1)-out-of-10n secret sharing
s = (s1, . . . , s10n) of a value v ∈ GF(2n), we choose random a1, . . . , an ∈ GF(2n),
let p(z) def

= v + a1z + · · · + anzn, and set si := p(i) for each i ∈ [10n]. Given s, we
can recover v by obtaining polynomial p(·) thorough interpolation and then computing
p(0). We use Decode(·) to denote a function that recovers v from s as above.

For any positive real number x ≤ 1 and any s = (s1, . . . , s10n) and s′ = (s′1, . . . , s′10n),
we say that s and s′ are x-close if |{i ∈ [10n] s.t. si = s′i}| ≥ x · 10n. If s and s′ are
not x-close, we say that they are (1 − x)-far. Since the shares generated by (n + 1)-out-
of-10n Shamir’s secret sharing scheme are actually a codeword of the Reed-Solomon
code with minimum relative distance 0.9, if a (possibly incorrectly generated) sharing
s is 0.55-close to a valid codeword w, we can recover w from s efficiently by using,
for example, the Berlekamp-Welch algorithm.

The following technical lemma will be used in the analyses of our commitment
schemes in Sections 6.4.1 and 6.5.

Lemma 6.1. Let x = (x1, . . . , x10n) and y = (y1, . . . , y10n) be any (possibly incorrectly
generated) shares of (n + 1)-out-of-10n Shamir’s secret sharing scheme, where some
of these shares may be equal to a special error symbol ⊥. For any set Γ ⊂ [10n]
of size n, let ValueΓ(·) be the function that is defined in Figure 6.1. Then, we have
ValueΓ(x) = ValueΓ(y) if the following three conditions hold.

1. For every i ∈ [10n], if xi , ⊥, it holds xi = yi.

2. |{i ∈ [10n] s.t. xi = ⊥}| < n
∧ {i ∈ [10n] s.t. xi = ⊥} ∩ Γ = ∅.

3. x is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies wi = xi

for every i ∈ Γ or 0.2-far from any such valid codeword.

Proof . We consider two cases.

Case 1. x is 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies wi = xi

for every i ∈ Γ: First, we observe that y is also 0.9-close to w. Since w is a valid
codeword, we have wi , ⊥ for every i ∈ [10n]; thus, we have xi , ⊥ for every
i such that xi = wi. Also, from the first assumed condition, we have xi = yi for
every i such that xi , ⊥. Therefore, we have yi = wi for every i such that xi = wi.

155

Then, since x is 0.9-close to w from the assumption of this case, we have that y
is 0.9-close to w.
Next, we observe that w satisfies wi = yi for every i ∈ Γ. From the second
assumed condition, we have xi , ⊥ for every i ∈ Γ. Also, from the first assumed
condition, we have xi = yi for every i such that xi , ⊥. Thus, we have xi = yi for
every i ∈ Γ. Then, since we have wi = xi for every i ∈ Γ from the assumption of
this case, we have wi = yi for every i ∈ Γ.
Now, since y is 0.9-close to w, and w satisfies wi = yi for every i ∈ Γ, we have
ValueΓ(x) = ValueΓ(y) = Decode(w) from the definition of ValueΓ(·).

Case 2. x is 0.2-far from any valid codeword w = (w1, . . . ,w10n) that satisfies wi =

xi for every i ∈ Γ: For any valid codeword w′ = (w′1, . . . ,w
′
10n) that satisfies

w′i = yi for every i ∈ Γ, we observe that y is 0.1-far from w′. Since we have
xi , ⊥ for every i ∈ Γ (the second assumed condition) and xi = yi for every i
such that xi , ⊥ (the first assumed condition), we have xi = yi for every i ∈ Γ.
Then, since we have w′i = yi for every i ∈ Γ, we have w′i = xi for every i ∈ Γ.
Thus, x is 0.2-far from w′ from the assumption of this case. Now, since x and
y are 0.9-close from the first and second assumed conditions, it follows that y is
0.1-far from w′.
Now, from the definition of ValueΓ(·), we conclude that ValueΓ(x) = ValueΓ(y) =
⊥.

Notice that from the third assumed condition, either Case 1 or 2 is true. This concludes
the proof of Lemma 6.1. □

6.3.2 Strong Computational Binding Property of Commitment
Schemes.

We next describe the definition of the strong computational binding property for com-
mitment schemes. (Recall that the standard computational biding property is given in
Section 2.3.1.) Roughly speaking, we say that a commitment scheme ⟨C,R⟩ satisfies
strong computational binding property if any ppt committer C∗ can generate a commit-
ment that has more than one committed value with at most negligible probability.47 A
formal definition of the strong computational binding property is given below.

Definition 6.1 (Strong computational binding property). For a commitment scheme
⟨C,R⟩ and any ppt adversarial committer C∗, consider the following probabilistic ex-
periment Expbind2(⟨C,R⟩,C∗, n, z) for any n ∈ N and z ∈ {0, 1}∗.

On input 1n and auxiliary input z, the adversary C∗ interacts with an hon-
est receiver in the commit phase of ⟨C,R⟩. Then, C∗ is said to win the ex-
periment if there exists two decommitments, (v0, d0) and (v1, d1), such that

47The standard computational binding property guarantees that for any ppt committer C∗, the com-
mitment that C∗ generates cannot be decommitted to more than one value in polynomial time. Thus, the
commitment that C∗ generates is allowed to have more than one committed value.

156

v0 , v1 but the receiver accepts both (v0, d0) and (v1, d1) in the decommit
phase.

Then, ⟨C,R⟩ is strongly computationally binding if for any sequence of auxiliary inputs
{zn}n∈N, the probability that C∗ wins the experiment Expbind2(⟨C,R⟩,C∗, n, zn) is negligi-
ble. ^

6.3.3 Strongly/Weakly Extractable Commitment Schemes
We next describe the definitions of strongly extractable commitment schemes and
weakly extractable commitment schemes, which are variants of the standard extractable
commitment schemes (Section 2.3.2).

Strongly Extractable Commitment Schemes. Roughly speaking, an extractable
commitment scheme is strongly extractable if no over-extraction occurs during the ex-
traction. (Recall that, as explained in Section 2.3.2, we say that over-extraction occurs
during the extraction if the extractor extracts an arbitrary value (rather than ⊥) from an
invalid commitment.) Formally, a statistically binding commitment scheme ⟨C,R⟩ is
strongly extractable if there exists an expected polynomial-time extractor E such that for
any ppt committer C∗, the extractor EC∗ outputs a pair (τ, σ) that satisfies the following
properties.

• τ is identically distributed with the view of C∗ that interacts with an honest re-
ceiver R in the commit phase of ⟨C,R⟩. Let cτ be the commitment that C∗ gives
in τ.

• If cτ is invalid, then σ = ⊥ except with negligible probability.

• If cτ is valid, then it is statistically impossible to decommit cτ to any value other
that σ.

Weakly Extractable Commitment Schemes. Roughly speaking, an extractable
commitment scheme is weakly extractable if the extraction can fail with probability 1/2
but no over-extraction occurs during the extraction. Formally, a commitment scheme
⟨C,R⟩ is weakly extractable if there exists an expected polynomial-time extractor E such
that for any ppt committer C∗, the extractor EC∗ outputs a pair (τ, σ) that satisfies the
following properties.

• τ is identically distributed with the view of C∗ that interacts with an honest re-
ceiver R in the commit phase of ⟨C,R⟩. Let cτ be the commitment that C∗ gives
in τ.

• The probability that cτ is accepting and σ = ⊥ is at most 1/2.

• If σ , ⊥, then cτ is valid and it is statistically impossible to decommit cτ to any
value other than σ.

157

Let Com be any two-round statistically binding commitment scheme that can be
constructed from one-way functions in a black-box way.

Commit Phase
The committer C and the receiver R take common input 1n, and C additionally takes
private input v ∈ {0, 1}n. To commit to v, the committer C does the following with
the receiver R.

commit stage. C chooses a pair of random n-bit strings (a0, a1) such that a0⊕a1 =

v. Then, C commits to a0 and a1 by using Com. For each b ∈ {0, 1}, let cb be
the commitment to ab.

challenge stage. The receiver R sends a random bit e ∈ {0, 1} to C.

reply stage. C decommits ce to ae.

Decommit Phase
C sends v to R and decommits c0 and c1 to a0 and a1. Then, R checks whether
a0 ⊕ a1 = v.

Figure 6.2: Weakly extractable commitment scheme wExtCom [GLOV12].

There exists a four-round weakly extractable commitment scheme wExtCom based
on one-way functions [GLOV12], and it uses the underlying one-way function in a
black-box way. wExtCom is shown in Figure 6.2. We note that given two accepted
transcripts of wExtCom such that commit stage is identical but challenge stage
is different, we can extract the committed value.

6.3.4 Trapdoor Commitment Schemes

We next recall trapdoor commitment schemes [PW09]. Roughly speaking, trapdoor
commitment schemes are commitment schemes such that there exists a simulator that
can generate a simulated commitment and can later decommit it to any value. Pass and
Wee [PW09] showed that the black-box scheme TrapCom in Figure 6.3 is a trapdoor bit
commitment. TrapCom is not statistically binding, but it satisfies the strong computa-
tional binding property. (The strong computational binding property holds since if an
adversarial committer C∗ generates a TrapCom commitment that can be decommitted to
both 0 and 1, we can break the hiding property of Com using C∗ by extracting the com-
mitted values of the ExtCom commitments from C∗ and then computing the committed
value e of Com from them.) Pass and Wee also showed that by running TrapCom in par-
allel, we can obtain a black-box trapdoor commitment scheme PTrapCom for multiple
bits. PTrapCom also satisfies the strong computational binding property.

158

Commit Phase

To commit to σ ∈ {0, 1} on common input 1n, the committer C does the following
with the receiver R.

Step 1. R chooses a random n-bit string e = (e1, . . . , en) and commits to e by using
Com.

Step 2. For each i ∈ [n], the committer C chooses a random ηi ∈ {0, 1} and then
sets

vi :=
(
v00

i v01
i

v10
i v11

i

)
=

(
ηi ηi

σ ⊕ ηi σ ⊕ ηi

)
.

Then, for each i ∈ [n], α ∈ {0, 1}, and β ∈ {0, 1} in parallel, C commits to vαβi

by using ExtCom; let (vαβi , d
αβ
i) be the corresponding decommitment.

Step 3. R decommits the commitment in Step 1 to e.

Step 4. For each i ∈ [n], C sends (vei0
i , dei0

i) and (vei1
i , dei1

i) to R. Then, R checks
whether these are valid decommitments and whether vei0

i = vei1
i .

Decommit Phase

C sends σ and random γ ∈ {0, 1} to R. In addition, for every i ∈ [n], C sends
(v0γ

i , d
0γ
i) and (v1γ

i , d
1γ
i) to R. Then, R checks whether (v0γ

i , d
0γ
i) and (v1γ

i , d
1γ
i) are

valid decommitments and whether v0γ
0 ⊕ v1γ

0 = · · · = v0γ
n ⊕ v1γ

n = σ.

Figure 6.3: Black-box trapdoor bit commitment scheme TrapCom.

6.4 Building Blocks
In this section, we construct a constant-round strongly extractable commitment scheme
and a O(log n)-round one-one CCA-secure commitment scheme. Both schemes are
used in our Õ(log2 n)-round CCA-secure commitment scheme in Section 6.5 as building
blocks.

6.4.1 Strongly Extractable Commitment Scheme
Using one-way functions in a black-box way, we construct a constant-round strongly ex-
tractable commitment scheme sExtCom. Recall that a commitment scheme is strongly
extractable if a rewinding extractor outputs a correct committed value when the com-
mitment is valid and outputs ⊥ when the commitment is invalid.

Lemma 6.2. Assume the existence of one-way functions. Then, there exists a constant-
round strongly extractable commitment scheme sExtCom that uses the underlying one-
way function only in a black-box way.

159

Proof . The scheme sExtCom is shown in Figure 6.4, in which we use the following
tools (all of which can be constructed from one-way functions in a black-box way).

• A two-round statistically binding commitment scheme Com. (A concrete exam-
ple is Naor’s commitment scheme in Section 2.3.1, which can be constructed
from one-way functions in a black-box way [Nao91, HILL99].)

• A constant-round extractable commitment scheme ExtCom. (A concrete exam-
ple is the extractable commitment scheme of Pass and Wee [PW09] in Section
2.3.2, which can be constructed from one-way functions in a black-box way.)

• The constant-round weakly extractable commitment scheme wExtCom of Goyal
et al. [GLOV12]. (See Section 6.3.3.)

We prove the binding property and the hiding property in Section 6.4.1.1 and the strong
extractability in Section 6.4.1.2.

6.4.1.1 Proofs of Binding and Hiding

First, we show that sExtCom is statistically binding and computationally hiding. The
binding property follows directly from that of ExtCom. To show the hiding property,
we consider the following hybrid experiments for any ppt cheating receiver R∗ and each
b ∈ {0, 1}.
Hybrid Hb

0(n, z) is an experiment in which R∗ takes input 1n and auxiliary input z and
receives a sExtCom commitment toσb from an honest committer, where (σ0, σ1)
is the challenge values that R∗ chooses at the beginning. The output of Hb

0(n, z)
is that of R∗.

Hybrid Hb
1(n, z) is the same as Hb

0(n, z) except that the sExtCom commitment from the
committer is modified as follows.

• In Step 1, the committed value Γ is extracted by brute force.
• In Step 2, the committer commits to 0|s j | instead of s j for every j < Γ.
• In Step 3, the committer commits to (0|s j |, 0|d j |) instead of (s j, d j) for every

j < Γ.

Let Hb
i (n, z) be the random variable representing the output of Hb

i (n, z) for i ∈ {0, 1}
and b ∈ {0, 1}. From the construction, R∗ receives no information about b in Hb

1(n, z)
for each b ∈ {0, 1}, so the distributions of H0

1(n, z) and H1
1(n, z) are identical. Hence,

from a hybrid argument, we can show the hiding property by showing that Hb
0(n, z)

and Hb
1(n, z) are indistinguishable for each b ∈ {0, 1}. Assume for contradiction that

there exists b ∈ {0, 1} such that for infinitely many n, there exists z ∈ {0, 1}∗ such that
Hb

0(n, z) and Hb
1(n, z) are distinguishable with advantage 1/poly(n). Fix any such b, n,

and z. From an average argument, there exists a transcript ρ of Step 1 such that under
the condition that the transcript of Step 1 is ρ, Hb

0(n, z) and Hb
1(n, z) are distinguishable

with advantage 1/poly(n). Let Γ be the subset that is committed to in ρ. Since we can
execute Hb

1(n, z) from ρ in polynomial time given ρ and Γ, by using a standard technique
we can break the hiding property of either ExtCom or wExtCom by using ρ and Γ as
auxiliary input. Thus, we reach a contradiction.

160

Commit Phase

The committer C and the receiver R take common input 1n, and C additionally takes
private input σ ∈ {0, 1}n. To commit to σ, the committer C does the following with
the receiver R.

Step 1. R commits to a random subset Γ ⊂ [10n] of size n by using Com.

Step 2. C computes an (n+1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n)
of value σ. Then, for each j ∈ [10n] in parallel, C commits to s j by
using ExtCom. Let ϕ1, . . . , ϕ10n be the commitments and d1, . . . , d10n be
the decommitments.

Step 3. For each j ∈ [10n] in parallel, C commits to (s j, d j) by using wExtCom.
Let ψ0, . . . , ψ10n be the commitments.

Step 4. R decommits the commitment in Step 1 to Γ.

Step 5. C decommits the j-th wExtCom commitment ψ j in Step 3 to (s j, d j) for
each j ∈ Γ. R checks whether (s j, d j) is a valid decommitment of the j-th
ExtCom commitment ϕ j in Step 2 for every j ∈ Γ.

Decommit Phase

• C sends σ and decommits the ExtCom commitments ϕ1, . . . ϕ10n in Step 2 to
s1, . . . , s10n.

• R accepts if and only if the following holds w.r.t. s = (s1, . . . , s10n), where s j

is defined to be ⊥ if the decommitment of ϕ j is invalid.

– s is 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies
w j = s j for every j ∈ Γ, and w is a codeword of σ.

Figure 6.4: Strongly extractable commitment scheme sExtCom.

6.4.1.2 Proof of Strong Extractability.

Next, we show that sExtCom is strongly extractable. That is, we show that an extractor
extracts a correct committed value from a valid sExtCom commitment and extracts ⊥
from an invalid one except with negligible probability.

We first remark that from the construction of the decommit phase of sExtCom, the
committed value of sExtCom is defined as follows.

Definition 6.2 (Committed value of sExtCom). If the shares s = (s1, . . . , s10n) that
are committed to in Step 2 are 0.9-close to a valid codeword w = (w1, . . . ,w10n) that
satisfies w j = s j for every j ∈ Γ, the committed value of a sExtCom commitment is
Decode(w). Otherwise, the committed value is ⊥ (i.e., the commitment is invalid). ^

We notice that the function ValueΓ(·) in Figure 6.1 (Section 6.3.1) computes the com-

161

mitted value of a sExtCom commitment as above on input the shares s that are com-
mitted to in Step 2.

Our extractor E extracts the committed value of a sExtCom commitment by extract-
ing the committed values of the ExtCom commitments in Step 2. Formally, for any ppt
cheating committer C∗, the extractor E does the following.

• E internally invokes C∗ and interacts with C∗ as a receiver honestly except that in
Step 2, E extracts the committed values of the ExtCom commitments by using the
extractability of ExtCom. Let τ be the view of internal C∗. If the sExtCom com-
mitment in τ is rejecting or E fails to extract the committed values of the ExtCom
commitments in Step 2, E sets σ̃ := ⊥. Otherwise, E sets σ̃ := ValueΓ(s̃), where
s̃ is the shares that are extracted from the ExtCom commitments and Γ is the
subset that is committed to in Step 1. E then outputs (τ, σ̃).

From the extractability of ExtCom, the simulated view τ is identically distributed with
the real view. Hence, it remains to show that σ̃ is a committed value of τ except with
negligible probability.

Fix any ppt cheating committer C∗. Without loss of generality, we assume that C∗

is deterministic.
First, we show that the extracted value σ̃ is indeed equal to a committed value of

the simulated view τ as long as the ExtCom commitments in Step 2 in τ are “good.”

Definition 6.3 (Good ExtCom commitments in Step 2). In a sExtCom commitment, we
say that the ExtCom commitments in Step 2 are good if all of the following conditions
hold.

• Their committed values s = (s1, . . . , s10n) are uniquely determined.
(That is, none of them has more than one committed value.)

•
∣∣∣∣{ j ∈ [10n] s.t. s j = ⊥

}∣∣∣∣ < 0.5n.
(That is, less than 0.5n of them are invalid.)

• s is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = s j

for every j ∈ Γ or 0.2-far from any such valid codeword.

^

Claim 6.1. Assume that in the interaction between C∗ and an honest receiver, the proba-
bility that the sExtCom commitment from C∗ is accepting but the ExtCom commitments
in Step 2 are not good is negligible. Then, in the execution of E, the extracted value σ̃
is a correct committed value of the sExtCom commitment in τ except with negligible
probability.

Proof . When the sExtCom commitment in τ is rejecting, E sets σ̃ := ⊥, which is
a correct committed value of this sExtCom commitment. Hence, it remains to show
that the probability that the sExtCom commitment in τ is accepting but σ̃ is not its
committed value is negligible.

162

Let BAD be the event that in the execution of E, the sExtCom commitment in the
simulated view τ is accepting but the extracted value σ̃ = ValueΓ(s̃) is not a commit-
ted value of it. Our goal is to show that BAD occurs only with negligible probability.
Since the simulated view τ is identically distributed with the real view of C∗, from
our assumption the probability that the sExtCom commitment in τ is accepting but the
ExtCom commitments in Step 2 of it are not good is negligible. Hence, it suffices to
show that under the condition that those ExtCom commitments are good, BAD occurs
only with negligible probability. Furthermore, since the extraction from ExtCom suc-
ceeds except with negligible probability, and the values extracted from valid ExtCom
commitments are the correct committed values except with negligible probability, it
suffices to show that under the conditions that in the sExtCom commitment in τ,

• the ExtCom commitments in Step 2 are good, and

• the (unique) committed value of each valid ExtCom commitment is correctly
extracted,

BAD occurs only with negligible probability. Then, we notice that under the above con-
ditions, we have the following when the sExtCom commitment in τ is accepting.

1. For every j ∈ [10n], if s j , ⊥, it holds s j = s̃ j.

(This is because of the assumption that the correct committed value is extracted
from every valid ExtCom commitment.)

2.
∣∣∣∣{ j s.t. s j = ⊥

}∣∣∣∣ < 0.5n
∧{

j s.t. s j = ⊥
}
∩ Γ = ∅.

(This is because the sExtCom commitment would be rejected in Step 5 if
{ j s.t. s j = ⊥} ∩ Γ , ∅.)

3. s is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j = s j

for every j ∈ Γ or 0.2-far from any such valid codeword.

Hence, using Lemma 6.1 in Section 6.3.1, we conclude that under the above conditions,
we have ValueΓ(s̃) = ValueΓ(s) (i.e., ValueΓ(s̃) is equal to the committed value) when
the sExtCom commitment in τ is accepting. Thus, BAD never occurs under the above
conditions. This completes the proof of Claim 6.1. □

It remains to show that in the interaction between C∗ and an honest receiver, the
probability that the sExtCom commitment from C∗ is accepting but the ExtCom com-
mitments in Step 2 are not good is negligible. Recall that the ExtCom commitments
are good if their committed values s = (s1, . . . , s10n) are uniquely determined, at least
9.5n of them are valid, and s is either 0.9-close to a valid codeword w that satisfies
w j = s j for every j ∈ Γ or 0.2-far from any such codewords. We show the following
two claims.

Claim 6.2. In the interaction between C∗ and an honest receiver, the probability that
the sExtCom commitment from C∗ is accepting but at least 0.5n ExtCom commitments
in Step 2 are invalid is negligible.

163

Claim 6.3. In the interaction with C∗ and an honest receiver, the probability that the
sExtCom commitment from C∗ is accepting but either of the following conditions does
not hold is negligible.

• The committed values s = (s1, . . . , s10n) of the ExtCom commitments are uniquely
determined.

• s is either 0.9-close to a valid codeword w that satisfies w j = s j holds for every
j ∈ Γ or 0.2-far from any such codewords.

Proof of Claim 6.2.

In this proof, we use the following notations. For j ∈ [10n], the j-th column is the pair
of the j-th ExtCom commitment in Step 2 and the j-th wExtCom commitment in Step
3. A column is consistent if the committed value of the wExtCom commitment is a
valid decommitment of the ExtCom commitment in that column; otherwise, the col-
umn is inconsistent. C∗ cheats if all of the following conditions hold: every wExtCom
commitment is accepting, the j-th column is consistent for every j ∈ Γ, and at least
0.5n columns are inconsistent.

In the following, we show that C∗ cheats only with negligible probability. This suf-
fices to prove the claim because from the definition of the cheating, C∗ cheats whenever
the sExtCom commitment from C∗ is accepting but at least 0.5n ExtCom commitments
in Step 2 are invalid.

Assume for contradiction that there exists a constant c such that C∗ cheats with
probability at least 1/nc for infinitely many n. Fix any such c and n.

We derive a contradiction by constructing an adversary B that breaks the hiding
property of Com. For random subsets Γ0,Γ1 ⊂ [10n] of size n, B tries to distinguish a
Com commitment to Γ0 from a Com commitment to Γ1 as follows. B internally invokes
C∗ and interacts with it as a receiver of sExtCom honestly except for the following.

• In Step 1,B receives a Com commitment from the external committer (who com-
mits to either Γ0 or Γ1) and forwards the commitment to C∗ as the commitment
in Step 1.

• If Step 3 is accepting (i.e., all of the wExtCom commitments are accepting), B
does the following repeatedly: B rewinds C∗ to the point just before B sends the
challenge bits of the wExtCom commitments to C∗; then, B sends new random
challenge bits to C∗ and receives the replies from C∗. B repeats this rewinding
until it obtains other nc+3 accepted transcripts of Step 3. If the number of the
rewinding exceeds n3c+4, B terminates and outputs fail. Otherwise, B outputs 1
if and only if all of the following conditions hold.

1. From the nc+3 + 1 accepted transcripts of Step 3 (the first one and the sub-
sequent nc+3 ones), B can extract the committed values of the wExtCom
commitments in at least 9.9n columns.

2. In at least 0.4n columns of these 9.9n columns, the extracted values are not
valid decommitments of the ExtCom commitments.

164

3. For every j ∈ Γ1, either the extraction from the j-th column fails or the value
extracted from the j-th column is a valid decommitment of the ExtCom
commitment of the j-th column.

In the following, the first transcript that B generates in Step 3 is called the main
thread and the other nc+3 accepted transcripts are called the look-ahead threads.

First, we analyze the adversary B′ that is the same as B except that B′ does not
terminate even after rewinding C∗ more than n3c+4 times. When B′ receives a com-
mitment to Γ0, the internal C∗ receives no information about Γ1, so the probability that
the extracted values are not valid decommitments of the ExtCom commitments in at
least 0.4n columns but are valid decommitments in all the columns selected by Γ1 is
exponentially small. Hence, when B′ receives a commitment to Γ0, B′ outputs 1 only
with exponentially small probability. In the following, we show that whenB′ receives a
commitment to Γ1, B′ outputs 1 with probability 1/poly(n). Let CHEAT be the event that
C∗ cheats on the main thread, and EXTRACT be the event that B′ succeeds in extracting
the committed values of the wExtCom commitments from at least 9.9n columns. Since
over-extraction never occurs in the extraction from wExtCom, B′ outputs 1 whenever
CHEAT and EXTRACT occur. Hence, to show that B′ outputs 1 with probability at least
1/poly(n), it suffices to show that we have

Pr [CHEAT ∧ EXTRACT] ≥ 1
poly(n)

. (6.1)

For any prefix ρ of the transcript between C∗ and an honest receiver up until the chal-
lenge bits of wExtCom (exclusive), let PREFIXρ be the event that ρ is a prefix of the
main thread. Since C∗ cheats with probability at least 1/nc, from an average argument
we have Pr

[
CHEAT | PREFIXρ

]
≥ 1/2nc with probability at least 1/2nc over the choice of

ρ (i.e., over the distribution of ρ in the interaction between C∗ and an honest receiver).
Let ∆ be the set of prefixes with which Pr

[
CHEAT | PREFIXρ

]
≥ 1/2nc holds. As noted

above, we have
∑
ρ∈∆ Pr

[
PREFIXρ

]
≥ 1/2nc. Hence, we have

Pr [CHEAT ∧ EXTRACT] ≥
∑
ρ∈∆

Pr
[
CHEAT ∧ EXTRACT | PREFIXρ

]
· Pr

[
PREFIXρ

]
≥ min

ρ∈∆

(
Pr

[
CHEAT ∧ EXTRACT | PREFIXρ

])
·
∑
ρ∈∆

Pr
[
PREFIXρ

]
≥ 1

2nc min
ρ∈∆

(
Pr

[
CHEAT ∧ EXTRACT | PREFIXρ

])
. (6.2)

Thus, to show Equation (6.1), it suffices to show that for any ρ ∈ ∆, we have

Pr
[
CHEAT ∧ EXTRACT | PREFIXρ

]
≥ 1

poly(n)
. (6.3)

Fix any ρ∗ ∈ ∆. From the definition of ∆, we have

Pr
[
CHEAT | PREFIXρ∗

]
≥ 1

2nc . (6.4)

165

Thus, we have

Pr
[
CHEAT ∧ EXTRACT | PREFIXρ∗

]
= Pr

[
CHEAT | PREFIXρ∗

]
· Pr

[
EXTRACT | PREFIXρ∗ ∧ CHEAT

]
≥ 1

2nc Pr
[
EXTRACT | PREFIXρ∗ ∧ CHEAT

]
(6.5)

Thus, to show Equation (6.3), it suffices to show that

Pr
[
EXTRACT | PREFIXρ∗ ∧ CHEAT

]
≥ 1

poly(n)
. (6.6)

Recall that EXTRACT is the event that B′ succeeds in extracting the committed values
of the wExtCom commitments from at least 9.9n columns. From the construction of
wExtCom, EXTRACT occurs if in at least 9.9n columns, the challenge bit of the wExtCom
commitment on a look-ahead thread is different from the challenge bit on the main
thread. Hence, to show Equation (6.6), it suffices to show that in at least 9.9n columns,
the probability that the challenge bit of wExtCom is b is “high” for both b = 0 and b = 1
on each look-ahead thread. Furthermore, since each look-ahead thread is generated by
repeatedly executing the main thread from ρ∗ until a new accepting transcript of Step 3
is obtained, it suffices to show that under the condition that PREFIXρ∗ occurs and Step 3
is accepted, the probability that the challenge bit of the wExtCom commitment is b is
“high” for both b = 0 and b = 1 in at least 9.9n columns. Based on these observations,
we show the following subclaim.

Subclaim 6.1. Let ch j be the random variable representing the challenge bit of
wExtCom in the j-th column on the main thread, and let ACCEPT be the event that ev-
ery wExtCom commitment is accepting on the main thread. Then, there exists a subset
Jgood ⊂ [10n] such that:

• |Jgood| ≥ 9.9n

• For every j ∈ Jgood and b ∈ {0, 1},

Pr
[
ch j = b | PREFIXρ∗ ∧ ACCEPT

]
≥ 1

40nc+1 .

Proof . For any j ∈ [10n] and b ∈ {0, 1}, we have

Pr
[
ch j = b | PREFIXρ∗ ∧ ACCEPT

]
=

Pr
[
ACCEPT ∧ ch j = b

∣∣∣ PREFIXρ∗
]

Pr
[
ACCEPT

∣∣∣ PREFIXρ∗
]

≥ Pr
[
ACCEPT ∧ ch j = b

∣∣∣ PREFIXρ∗
]
. (6.7)

Hence, we show that in at least 9.9n columns, for any b ∈ {0, 1} we have

Pr
[
ACCEPT ∧ ch j = b

∣∣∣ PREFIXρ∗
]
≥ 1

40nc+1 . (6.8)

166

Let

Jbad
def
=

{
j ∈ [10n]

∣∣∣∣ ∃b∗j ∈ {0, 1} s.t. Pr
[
ACCEPT ∧ ch j = b∗j

∣∣∣ PREFIXρ∗
]
<

1
40nc+1

}
.

We have

Pr
[
ACCEPT

∣∣∣∣ PREFIXρ∗
]

≤ Pr

 ∧
j∈Jbad

ch j = 1 − b∗j

 + Pr

ACCEPT
∧ ∨

j∈Jbad

ch j = b∗j

∣∣∣∣∣∣ PREFIXρ∗

≤ 2−|Jbad | +

∑
j∈Jbad

Pr
[
ACCEPT ∧ ch j = b∗j | PREFIXρ∗

]
< 2−|Jbad | + 10n · 1

40nc+1

= 2−|Jbad | +
1

4nc . (6.9)

On the other hand, since ACCEPT occurs whenever CHEAT occurs, from Equation (6.4)
we have

Pr
[
ACCEPT

∣∣∣∣ PREFIXρ∗
]
≥ Pr

[
CHEAT

∣∣∣∣ PREFIXρ∗
]
≥ 1

2nc . (6.10)

From Equations (6.9) and (6.10), we have |Jbad| = O(log n) and therefore |Jbad| < 0.1n.
Thus, in at least 9.9n columns, we have Equation (6.8) for any b ∈ {0, 1}.

Define Jgood
def
= [10n] \ Jbad. Since |Jbad| < 0.1n, we have |Jgood| ≥ 9.9n. Further-

more, from Equations (6.7) and (6.8), for any j ∈ Jgood and b ∈ {0, 1} we have

Pr
[
ch j = b | PREFIXρ∗ ∧ ACCEPT

]
≥ 1

40nc+1 .

This concludes the proof of Subclaim 6.1. □

As mentioned above, we can obtain Equation (6.1) by using Subclaim 6.1. First,
since the distribution of each look-ahead thread is the same as that of the main thread,
Subclaim 6.1 implies that under the condition that PREFIXρ∗ and CHEAT occur, B′ re-
quires 40nc+1 accepted transcripts of Step 3 on average to extract the committed value
of wExtCom in the j-th columns for any j ∈ Jgood. Since B′ collects nc+3 ac-
cepted transcripts, it follows from Markov’s inequality that for any j ∈ Jgood, B′ ex-
tracts the committed value of wExtCom in the j-th column except with probability
40nc+1/nc+3 = 40/n2 under the condition that PREFIXρ∗ and CHEAT occur. Thus, from
the union bound, B′ extracts the committed value of wExtCom in the j-th column for
every j ∈ Jgood except with probability 9.9n · 40/n2 = 396/n. We therefore have

Pr
[
EXTRACT | PREFIXρ∗ ∧ CHEAT

]
≥ 1 − 396

n
. (6.11)

167

Then, from Equations (6.5) and (6.11), we have

Pr
[
CHEAT ∧ EXTRACT | PREFIXρ∗

]
≥ 1

2nc ·
(
1 − 396

n

)
≥ 1

4nc . (6.12)

Since ρ∗ is any prefix in ∆, from Equations (6.2) and (6.12) we have

Pr [CHEAT ∧ EXTRACT] ≥ 1
2nc ·

1
4nc =

1
8n2c .

Thus, we have Equation (6.1). We therefore conclude that B′ outputs 1 with probabil-
ity at least 1/8n2c when B′ receives a commitment to Γ1. Hence, B′ distinguishes a
commitment to Γ1 from a commitment to Γ0 with advantage 1/8n2c − negl(n).

Now, we are ready to show that B breaks the hiding property of Com. The running
time of B is clearly at most poly(n). Hence, to show that B distinguishes a Com com-
mitment, it suffices to show that the output of B is the same as that of B′ except with
probability 1/n2c+1. (This is because B′ distinguishes a Com commitment with advan-
tage 1/8n2c − negl(n).) Recall that the output of B differs from that of B′ if and only if
B′ rewinds C∗ more than n3c+4 times. Let T (n) be a random variable for the number of
rewinding in B′. For any prefix ρ of the transcript between C∗ and an honest receiver
up until the challenge bits of wExtCom (exclusive), we have

E
[
T (n) | PREFIXρ

]
≤ Pr

[
ACCEPT | PREFIXρ

]
· nc+3

Pr
[
ACCEPT | PREFIXρ

] = nc+3 .

Thus, we have

E [T (n)] =
∑
ρ

Pr
[
PREFIXρ

]
E

[
T (n) | PREFIXρ

]
≤ nc+3

∑
ρ

Pr
[
PREFIXρ

]
≤ nc+3 .

From Markov’s inequality,B′ rewinds C∗more than n3c+4 times with probability at most
nc+3/n3c+4 = 1/n2c+1. Thus, the output of B is the same as that of B′ except with prob-
ability 1/n2c+1, and therefore B distinguishes a commitment to Γ1 from a commitment
to Γ0 with advantage at least 1/8n2c − negl(n) − 1/n2c+1 ≥ 1/16n2c. □

Proof of Claim 6.3.

From the binding property of ExtCom, the committed values s = (s1, . . . , s10n) of the
ExtCom commitments in Step 2 are uniquely determined except with negligible prob-
ability. Hence, to prove the claim, it suffices to show that the following holds in an
accepting sExtCom commitment only with negligible probability.

• The committed values s = (s1, . . . , s10n) of the ExtCom commitments are
uniquely determined, but

• s is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies s j = w j for
every j ∈ Γ, but s is 0.1-far from w.

168

Assume for contradiction that for infinitely many n, the above hold in an accepting
sExtCom commitment with probability at least 1/p(n) for a polynomial p(·). Then,
from Claim 6.2, the following holds in an accepting sExtCom commitment with prob-
ability at least 1/2p(n) for infinitely many n.

• At least 9.5n of the ExtCom commitments are valid, and

• the committed values s = (s1, . . . , s10n) of the ExtCom commitments are uniquely
determined, but

• s is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies s j = w j for
every j ∈ Γ, but s is 0.1-far from w.

Fix any such n. We derive a contradiction by constructing an adversary B that breaks
the hiding property of Com. For random subsets Γ0,Γ1 ⊂ [10n] of size n, B tries to
distinguish a Com commitment to Γ0 from a Com commitment to Γ1 as follows. B
internally invokes C∗ and interacts with it as a receiver of sExtCom honestly except for
the following.

• In Step 1,B receives a Com commitment from the external committer (who com-
mits to either Γ0 or Γ1) and forwards the commitment to C∗ as the commitment
in Step 1.

• In Step 2, the committed values are extracted by using the extractor of ExtCom.
If the extractor runs more than 6p(n) ·T (n) steps, B terminates immediately with
output fail, where T (n) = poly(n) is an expected running time of the extractor of
ExtCom. Otherwise, let s̃ = (s̃1, . . . , s̃10n) be the extracted values.

• After Step 2 ends,B outputs 1 if there exists a valid codeword w = (w1, . . . ,w10n)
such that s̃ is 0.8-close to but 0.05-far from w and that s̃ j = w j holds for every
j ∈ Γ1. Otherwise, B outputs 0.

First, we analyze an adversary B′ that is the same as B except that B′ does not ter-
minate even after the extractor of ExtCom runs more than 6p(n) · T (n) steps. When B′
receives a commitment to Γ0, the internal C∗ receives no information about Γ1, so the
probability that s̃ is 0.05-far from w but s̃ j = w j holds for every j ∈ Γ1 is exponen-
tially small; thus, B′ outputs 1 with exponentially small probability. We next compute
the probability that B′ outputs 1 when it receives a commitment to Γ1. From our as-
sumption, with probability 1/2p(n) it holds that 9.5n of the ExtCom commitments are
valid and the unique committed values s = (s1, . . . , s10n) of the ExtCom commitments
are 0.8-close to but 0.1-far from a valid codeword w that satisfies s j = w j for every
j ∈ Γ1. Since the extractability of ExtCom guarantees that s̃ j = s j holds except with
negligible probability when the j-th ExtCom commitment is valid (and in particular
when s j = w j , ⊥), with probability at least 1/3p(n), s̃ is 0.8-close to but 0.05-far
from a valid codeword w that satisfies s̃ j = w j for every j ∈ Γ1. Hence, when B′ re-
ceives a commitment to Γ1, B′ outputs 1 with probability at least 1/3p(n). Therefore,
B′ distinguishes a Com commitment with advantage 1/3p(n) − negl(n).

Now, we are ready to argue that B breaks the hiding property of Com. The output
of B differs from that of B′ if and only if the extraction from ExtCom takes more than

169

6p(n) · T (n) steps. From Markov’s inequality, the extraction from ExtCom takes more
than 6p(n) · T (n) steps only with probability 1/6p(n). Hence, B distinguishes a Com
commitment with advantage 1/3p(n) − negl(n) − 1/6p(n) ≥ 1/6p(n) − negl(n). Since
the running time of B can be bounded by poly(n), B breaks the hiding property of
Com. □

Conclusion of Proof of Lemma 6.2.

From Claims 6.2 and 6.3, the probability that the ExtCom commitments are not good in
an accepting sExtCom commitment is negligible. Hence, from Claim 6.1, the extractor
E outputs a correct committed value except with negligible probability. This completes
the proof of Lemma 6.2. □

6.4.2 One-One CCA-Secure Commitment Scheme
Using one-way functions in a black-box way, we construct a O(log n)-round one-one
CCA-secure commitment scheme CCACom1:1. Recall that a commitment scheme is
one-one CCA secure if it is CCA secure w.r.t. a restricted class of adversaries that start
only a single right session. Our scheme does not satisfy the statistically binding prop-
erty but does satisfy the strong computational binding property.

Lemma 6.3. Assume the existence of one-way functions. Then, there exists a O(log n)-
round one-one CCA-secure commitment scheme CCACom1:1 that satisfies the strong
computational binding property and the computational hiding property. Furthermore,
CCACom1:1 uses the underlying one-way function only in a black-box way.

Proof . We construct CCACom1:1 by slightly modifying the black-box O(nϵ)-round
CCA-secure commitment scheme of Lin and Pass [LP12] and then applying the “DDN
log n trick” [DDN00, LPV08] on it, where the DDN log n trick is a transformation by
Dolev, Dwork, and Naor (DDN) [DDN00] and has been used to transform concurrent
non-malleable commitment schemes for tags of length O(log n) to non-malleable com-
mitment schemes for tags of length O(n) without increasing round complexity.

First, we recall the CCA-secure commitment scheme of [LP12] (see Figure 6.5).
Roughly speaking, the commitment scheme of [LP12] consists of 4ℓ(n)η(n) rows—each
row is a parallel execution of a part of the trapdoor commitment scheme PTrapCom of
[PW09] (see Section 6.3.4)—followed by a cut-and-choose phase, where ℓ(n) is the
length of the tag and η(n) def

= nϵ for ϵ > 0. In the analysis of [LP12], which is based on
that of [CLP10, CLP16], it is shown that in any transcript of one left session and many
right sessions of the scheme, each right session hasΩ(η(n)) safe-points, from which we
can rewind the right session and extract its committed value without breaking the hid-
ing property of the left session. Then, since each right session has Ω(η(n)) safe-points,
we can extract the committed value of each right session even in the concurrent setting
by using the rewinding strategy of Richardson and Kilian [RK99] to deal with the prob-
lem of recursive rewinding. Thus, by extracting the committed-value of a row in each
right session, we can emulate the committed-value oracle in polynomial time without
breaking the hiding property of the left session. Thus, the CCA security follows from
the hiding property of the left session.

170

Commit Phase
Let ℓ, η be two polynomials such that ℓ(n) = nν and η(n) = nϵ for ν, ϵ > 0, and L be
a polynomial such that L(n) = 4ℓ(n)η(n). To commit to a value v, the committer C
and the receiver R, on common input 1n and id ∈ {0, 1}ℓ(n), do the following.

Stage 1: R sends the Step 1 message of a commitment of PTrapCom. That is, a
commitment of Com to a randomly chosen string challenge e = (e1, . . . , en).

Stage 2: C computes an (n + 1)-out-of-10n Shamir’s secret sharing s =

(s1, . . . , s10n) of value v, and commits to these shares using Step 2 of
PTrapCom in parallel for L(n) times; we call the i-th parallel commitment
the i-th row, and all the commitments to s j the j-th column. Messages in
the 4ℓ(n)η(n) rows are scheduled based on id and the schedules design0 and
design1 depicted in Figure 6.6. More precisely, Stage 2 consists of ℓ(n)
phases. In phase i, C provides η(n) sequential designidi

pairs of rows, fol-
lowed by η(n) sequential design1−idi

pairs of rows.

Stage 3: R decommits the commitment in Stage 1 to e. C completes the 10nL(n)
executions of PTrapCom w.r.t. challenge e in parallel.

Stage 4: R sends a randomly chosen subset Γ ⊂ [10n] of size n. For every j ∈ Γ,
C decommits all the commitments in the j-th column. R checks whether all
the decommitments are valid and reveal the same committed values s j.

Figure 6.5: Black-box CCA-secure commitment scheme of [LP12]

Figure 6.6: Description of the schedules used in Stage 2 of the protocol of [LP12].
(α1, β1, γ1) and (α2, β2, γ2) are the transcripts of a pair of rows in Stage 2.

171

Next, we observe that by setting η(n) := 1 in the scheme of [LP12], we obtain a
black-box O(ℓ(n))-round parallel CCA-secure commitment scheme for tags of length
ℓ(n), where a commitment scheme is parallel CCA secure if it is CCA secure w.r.t. a re-
stricted class of adversaries that start only a single parallel right session. This is because
when an adversary starts only a single parallel right session, the problem of recursive
rewinding does not occur, so each right session need to have only a single safe-point as
in the concurrent non-malleable commitment scheme of [LPV08] (on which the CCA-
secure commitment schemes of [CLP10, CLP16, LP12] are based). Therefore, by set-
ting η(n) := 1 and ℓ(n) := O(log n), we obtain a black-box O(log n)-round commitment
scheme that is parallel CCA secure for tags of length O(log n).

We then observe that the DDN log n trick [DDN00, LPV08] transforms any black-
box parallel CCA-secure commitment scheme for tags of length O(log n) to a black-box
one-one CCA-secure commitment scheme for tags of length O(n). This can be proven
in essentially the same way as the proof of the fact that the DDN log n trick transforms
a concurrent non-malleable commitment scheme for tags of length O(log n) to a non-
malleable commitment scheme for tags of length O(n). For details, see Section 6.7.1.

Combining the above, we obtain a black-box O(log n)-round one-one CCA-secure
commitment scheme CCACom1:1. CCACom1:1 satisfies the strong computational bind-
ing property and the computational hiding property because the CCA-secure commit-
ment scheme of [LP12] satisfies both properties and the DDN log n trick preserves both
properties. (The strong computational binding property of [LP12] follows from that of
the trapdoor commitment scheme of [PW09].) □

6.5 CCA-Secure Commitment Scheme
In this section, we construct a Õ(log2 n)-round robust CCA-secure commitment scheme
by using one-way functions in a black-box way.

Theorem 6.1. Assume the existence of one-way functions. Then, there exists a
Õ(log2 n)-round robust CCA-secure commitment scheme CCACom. Furthermore,
CCACom uses the underlying one-way function only in a black-box way.

Proof . CCACom is shown in Figure 6.7, in which we use the following tools (all of
which can be constructed from one-way functions in a black-box way).

• A two-round statistically binding commitment scheme Com. (A concrete exam-
ple is Naor’s commitment scheme in Section 2.3.1, which can be constructed
from one-way functions in a black-box way [Nao91, HILL99].)

• The concurrently extractable commitment scheme CECom of Micciancio et al.
[MOSV06]. (See Section 2.3.3.) The parameter ℓ in CECom is set as ℓ :=
O(log2 n log log n) so that ℓ = ω(log2 n).

• A constant-round strongly extractable commitment scheme sExtCom. (See
Lemma 6.2 in Section 6.4.1.)

172

• A O(log n)-round one-one CCA-secure commitment scheme CCACom1:1 that
satisfies strong computational binding property. (See Lemma 6.3 in Sec-
tion 6.4.2.)

The round complexity of CCACom is clearly Õ(log2 n). The statistical binding prop-
erty of CCACom follows directly from that of Com. Hence, it remains to show that
CCACom is robust CCA secure. (The hiding property follows from CCA security.) In
what follows, we prove CCA security in Section 6.5.1 and robustness in Section 6.5.2.

6.5.1 Proof of CCA Security
Lemma 6.4. CCACom is CCA secure.

Proof . We first remark that from the construction of the decommit phase of CCACom,
the committed value of a CCACom commitment is defined as follows.

Definition 6.4 (Committed value of CCACom). If the shares s = (s1, . . . , s10n) that
are committed to in Stage 2 are 0.9-close to a valid codeword w = (w1, . . . ,w10n) that
satisfies w j = s j for every j ∈ Γ, the committed value of a CCACom commitment is
Decode(w). Otherwise, the committed value is ⊥ (i.e., the commitment is invalid).

^

We notice that the function ValueΓ(·) in Figure 6.1 (Section 6.3.1) computes the com-
mitted value of a CCACom commitment as above on input the shares s that are com-
mitted to in Stage 2.

To prove the CCA security of CCACom, we show the following indistinguishability
for any ppt adversaryAcca (cf. Definition 2.7).

{IND0(CCACom,Acca, n, z)}n∈N,z∈{0,1}∗
c≈ {IND1(CCACom,Acca, n, z)}n∈N,z∈{0,1}∗ .

(6.13)

Fix any ppt adversaryAcca. We prove Indistinguishability (6.13) by a hybrid argument.
Since the experiments IND0(CCACom,Acca, n, z) and IND1(CCACom,Acca, n, z) dif-
fer only in the value that is committed to in the left session, we consider a series of
hybrid experiments in which the left session is gradually modified so that in the last
hybrid the adversary receives no information about the value that is committed to in
the left session. Formally, for each b ∈ {0, 1}, we consider the following hybrid experi-
ments.

Hybrid Hb
0(n, z): Hybrid Hb

0(n, z) is the same as INDb(CCACom,Acca, n, z).

Hybrid Hb
1(n, z) to Hybrid Hb

η(n, z): For k ∈ [η], Hybrid Hb
k (n, z) is the same as

Hb
0(n, z) except for the following.

• In Stage 1 of the left session, the committed value Γ is extracted by brute
force from the CCACom1:1 commitment. If the commitment is invalid, Γ is
set to be a random subset. If the commitment has more than one committed
value, Hb

k (n, z) outputs fail and terminates.

173

Commit Phase

The committer C and the receiver R take common inputs 1n and id ∈ {0, 1}n, and C
additionally takes private input v ∈ {0, 1}n. To commit to v, the committer C does
the following with the receiver R.

Stage 1. R commits to a random subset Γ ⊂ [10n] of size n by using CCACom1:1

with tag id.

Stage 2. C computes an (n + 1)-out-of-10n Shamir’s secret sharing s =

(s1, . . . , s10n) of value v. Next, for each j ∈ [10n] in parallel, C com-
mits to s j by using Com. Let ϕ1, . . . , ϕ10n denote the commitments and
d1, . . . , d10n denote the decommitments.

Stage 3. For each j ∈ [10n] in parallel, C commits to s j by using CECom, where
the parameter ℓ in CECom is set as ℓ := Õ(log2 n). Let ψ1, . . . , ψ10n

denote the commitments and e1, . . . , e10n denote the decommitments.
We call these parallel CECom commitments the row of CECom, and the
commitment ψ j in the row the j-th column (of CECom).

Stage 4. Let RCCA1:1 := RCCA1:1(n) be the round complexity of CCACom1:1. Let
η := RCCA1:1 + 1. Then, for each i ∈ [η] in sequence, C does the following.

• For each j ∈ [10n] in parallel, C commits to (s j, d j, e j) by using
sExtCom. Let θi,1, . . . , θi,10n denote the commitments.

We call the i-th parallel commitments the i-th row (of sExtCom), and call
all the commitments to (s j, d j) the j-th column (of sExtCom).

Stage 5. R decommits the commitment in Stage 1 to Γ.

Stage 6. For each j ∈ Γ, C decommits θi, j to (s j, d j, e j) for each i ∈ [η]. Then, for
every j ∈ Γ, R checks whether (s j, d j) is a valid decommitment of ϕ j and
(s j, e j) is a valid decommitment of ψ j.

Decommit Phase

• C sends v and decommits the Com commitments ϕ1, . . . ϕ10n in Stage 2 to
s1, . . . , s10n.

• R accepts if and only if the following holds w.r.t. s = (s1, . . . , s10n), where
s j is defined to be ⊥ if the decommitment of ϕ j is invalid.

– s is 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies
w j = s j for every j ∈ Γ, and w is a codeword of v.

Figure 6.7: CCA commitment scheme CCACom.

174

• In Stage 4 of the left session, the left committer commits to 0|u j | instead of
u j for every j < Γ in the i-th row for i ∈ [k].

Hybrid Hb
η+1(n, z): Hybrid Hb

η+1(n, z) is the same as Hb
η(n, z) except that in Stage 3 of

the left session, the left committer commits to 0|s j | instead of s j for every j < Γ.

Hybrid Hb
η+2(n, z): Hybrid Hb

η+2(n, z) is the same as Hb
η+1(n, z) except that in Stage 2 of

the left session, the left committer commits to 0|s j | instead of s j for every j < Γ.

For k ∈ {0, . . . , η + 2}, let Hb
k(n, z) be the random variable for the output of Hb

k (n, z).
SinceAcca receives no information about b in Hb

η+2(n, z), we have{
H0
η+2(n, z)

}
n∈N,z∈{0,1}∗

=
{
H1
η+2(n, z)

}
n∈N,z∈{0,1}∗

. (6.14)

Hence, from a hybrid argument, we can show Indistinguishability (6.13) by showing
the following three claims.

Claim 6.4. For every b ∈ {0, 1} and k ∈ [η], we have the following indistinguishability.{
Hb

k−1(n, z)
}

n∈N,z∈{0,1}∗
c≈
{
Hb

k(n, z)
}

n∈N,z∈{0,1}∗
.

Claim 6.5. For every b ∈ {0, 1}, we have the following indistinguishability.{
Hb
η(n, z)

}
n∈N,z∈{0,1}∗

c≈
{
Hb
η+1(n, z)

}
n∈N,z∈{0,1}∗

.

Claim 6.6. For every b ∈ {0, 1}, we have the following indistinguishability.{
Hb
η+1(n, z)

}
n∈N,z∈{0,1}∗

c≈
{
Hb
η+2(n, z)

}
n∈N,z∈{0,1}∗

.

We prove Claim 6.4 in Section 6.5.1.1 and prove Claims 6.5 and 6.6 in Section 6.5.1.4.

6.5.1.1 Proof of Claim 6.4

Below, we prove Claim 6.4 using the following subclaim.

Subclaim 6.2. For every b ∈ {0, 1} and k ∈ {0, . . . , η + 2}, Hb
k (n, z) outputs fail with at

most negligible probability.

The proof of Subclaim 6.2 is given in Section 6.5.1.3.

Proof of Claim 6.4. Since Hb
k−1(n, z) and Hb

k (n, z) differ only in the values that are com-
mitted to in a row of sExtCom in the left session, we use the hiding property of
sExtCom to prove the indistinguishability. A problem is that Acca interacts with the
committed-value oracle O, which runs in super-polynomial time; because of the super-
polynomial-time power of O, the indistinguishability between the two hybrids does not
follow directly from the computational hiding property of sExtCom. To overcome this
problem, we show that the oracle O can be emulated in polynomial time. Specifically,
we show that the oracle O can be emulated by extracting the shares that are committed
to in the rows of CECom and then computing the committed values of the right ses-
sions from the extracted shares. When extracting the committed shares from the row of

175

CECom, we use the robust concurrent extraction lemma (Lemma 2.1) so that we can use
the hiding property of the k-th row of sExtCom even in the presence of the extraction
from CECom. Formally, we consider the following hybrids Gb

h:1(n, z), . . . ,Gb
h:3(n, z) for

each h ∈ {k − 1, k}.

Hybrid Gb
h:1(n, z): Hybrid Gb

h:1(n, z) is the same as Hb
h(n, z) except that at the end of each

right session, the oracle O returns ValueΓ(sCEC) to Acca rather than ValueΓ(s) as
the committed value of this session, where s = (s1, . . . , s10n) is the shares that are
committed to in the row of Com in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares

that are committed to in the row of CECom in Stage 3, and Γ is the subset that is
committed to in the CCACom1:1 commitment in Stage 1.

Hybrid Gb
h:2(n, z): Hybrid Gb

h:2(n, z) is the same as Gb
h:1(n, z) except for syntactical dif-

ferences: Roughly speaking, Gb
h:2(n, z) is an experiment in which Gb

h:1(n, z) is ex-
ecuted in such a way that we can use the robust concurrent extraction lemma
(Lemma 2.1) later. Formally, Gb

h:2(n, z) is defined as follows. Recall that in the
setting of the robust concurrent extraction lemma, an adversary,Arobust, launches
the robust-concurrent attack by interacting with the online extractor E; specif-
ically Arobust interacts with E as a party A of an arbitrary two-party protocol
Π = ⟨B, A⟩ while interacting with E as the committers of CECom concurrently
and obtaining a value from E at the end of each session of CECom (where the
values that are returned from E are supposed to be the committed values of the
CECom sessions). Then, consider the following Π and Arobust (see also Fig-
ure 6.8).

Π = ⟨B, A⟩: First, party A gives a CCACom1:1 commitment to party B, where
the tag in the CCACom1:1 commitment is chosen by A. Then, B extracts
the committed value Γ of this CCACom1:1 commitment by brute force and
sends it back to A. (If the CCACom1:1 commitment is invalid, Γ is set to
be a random subset, and if the CCACom1:1 commitment has more than one
committed value, B outputs fail and terminates.)
Next, A sends a sequence of strings (m1, . . . ,m9n) to B. Then, when h = k−1,
B commits to each m j (j ∈ [9n]) in parallel using sExtCom, and when h = k,
B commits to each 0|m j | (j ∈ [9n]) in parallel using sExtCom.

Arobust: Arobust takes non-uniform advice z and internally executes Gb
h:1(n, z) with

the following changes. (Recall that the execution of Gb
h:1(n, z) involves an

interaction with the CCA-security adversaryAcca.)

• In Stage 1 of the left session, Arobust forwards the CCACom1:1 com-
mitment from Acca to the online extractor E (who internally emulates
party B ofΠ). Then, instead of extracting the committed subset Γ from
this CCACom1:1 commitment by brute force,Arobust obtains Γ from E.

• In the k-th row of sExtCom of the left session, Arobust sends {u j} j<Γ to
E (who internally emulates party B of Π), receives sExtCom commit-
ments from E, and forwards them to Acca. (At the same time, Arobust

correctly commits to {u j} j∈Γ forAcca by using sExtCom.)

176

• In Stage 3 of each right session,Arobust receives a row of CECom com-
mitments from Acca and forwards it to E (who internally emulates the
receivers of CECom). Let α = (α1, . . . , α10n) denote the responses
from E at the end of the row of the CECom commitments.

• At the end of each right session,Arobust sends ValueΓ(α) toAcca as the
committed value of this right session.

The output ofArobust is that of the internally executed Gb
h:1(n, z).

From the robust concurrent extraction lemma, there exists a robust simulator S
such that for the aboveArobust, there exists an online extractor E that satisfies the
following.

• For any row of CECom that Arobust sends to E, let sCEC = (sCEC
1 , . . . , sCEC

10n)
be the shares that are committed to in this row of CECom and α =

(α1, . . . , α10n) be the responses from E at the end of this row. Then, for
every j ∈ [10n], if the j-th CECom commitment in this row is valid and
its committed value is uniquely determined, α = (α1, . . . , α10n) satisfies
α j = sCEC

j .
• S can simulate the robust-concurrent attack betweenArobust and E.

Hybrid Gb
h:2(n, z) is the experiment RealArobust

E,Π (n,⊥, z) of the robust concurrent
extraction lemma. The output of Gb

h:2(n, z) is that ofArobust in RealArobust
E,Π (n,⊥, z).

Hybrid Gb
h:3(n, z): Hybrid Gb

h:3(n, z) differs from Gb
h:2(n, z) in that the execution of

RealArobust
E,Π (n,⊥, z) (i.e., the robust-concurrent attack between Arobust and E) is

replaced with an interaction between party B of Π and the robust simulator S of
the robust concurrent extraction lemma (see Figure 6.9). The output of Gb

h:3(n, z)
is that ofArobust that is simulated by S.

For ℓ ∈ {1, 2, 3}, let Gb
h:ℓ(n, z) be the random variable for the output of Gb

h:ℓ(n, z). We
now prove the following four claims.

Claim 6.7. For every b ∈ {0, 1} and h ∈ {k−1, k}, we have the following indistinguisha-
bility. {

Hb
h(n, z)

}
n∈N,z∈{0,1}∗

s≈
{
Gb

h:1(n, z)
}

n∈N,z∈{0,1}∗
.

Claim 6.8. For every b ∈ {0, 1} and h ∈ {k−1, k}, we have the following indistinguisha-
bility. {

Gb
h:1(n, z)

}
n∈N,z∈{0,1}∗

s≈
{
Gb

h:2(n, z)
}

n∈N,z∈{0,1}∗
.

Claim 6.9. For every b ∈ {0, 1} and h ∈ {k−1, k}, we have the following indistinguisha-
bility. {

Gb
h:2(n, z)

}
n∈N,z∈{0,1}∗

s≈
{
Gb

h:3(n, z)
}

n∈N,z∈{0,1}∗
.

177

CECom
 sessions

Interaction
with B

Figure 6.8: AdversaryArobust in Hybrid Gb
h:2(n, z). For simplicity, the right sessions are

illustrated as if they are executed sequentially.

Figure 6.9: Simulator S in Hybrid Gb
h:3(n, z).

178

Claim 6.10. For every b ∈ {0, 1}, we have the following indistinguishability.{
Gb

k−1:3(n, z)
}

n∈N,z∈{0,1}∗
c≈
{
Gb

k:3(n, z)
}

n∈N,z∈{0,1}∗
.

Claim 6.4 follows from these four claims.

Proof of Claim 6.7. Recall that Gb
h:1(n, z) differs from Hb

h(n, z) in that the committed
value of a right session is computed by ValueΓ(sCEC) rather than by ValueΓ(s), where
s = (s1, . . . , s10n) is the shares that are committed to in the row of Com in Stage 2,
sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are committed to in the row of CECom in Stage

3, and Γ is the subset that is committed to in the CCACom1:1 commitment in Stage 1.
Roughly speaking, we prove this claim in two steps.

Step 1. Showing that ValueΓ(sCEC) = ValueΓ(s) holds in any right session ifAcca does
not “cheat” in that right session.

Step 2. Showing thatAcca “cheats” in a right session with at most negligible probabil-
ity.

Here, we say that Acca cheats in a right session if, roughly speaking, in every row of
sExtCom in that session Acca does not commit to u j = (s j, d j, e j) correctly in many
columns. Hence, if Acca does not cheat, there exists a row of sExtCom in which Acca

commits to u j = (s j, d j, e j) as specified by the protocol in most columns, which guaran-
tees that in most columns the share that is committed to by CECom is equal to the share
that is committed to by Com, which in turn guarantees that the committed value of the
session can be recovered from the shares that are committed to in the row of CECom
instead of from those that are committed to in the row of Com. Details are given below.

First, we define the cheating behavior ofAcca.

Definition 6.5 (Cheating by Acca). In each right session, let us say that a row of
sExtCom in Stage 4 is bad if the values {u′j = (s′j, d

′
j, e
′
j)} j∈[10n] that are committed

to in it satisfy the following condition.

Badness Condition: Let ssExt = (ssExt
1 , . . . , ssExt

10n) be the shares that are defined as fol-
lows. Let ssExt

j
def
= s′j if (s′j, d

′
j) is a valid decommitment of the j-th Com commit-

ment in Stage 2 and (s′j, e
′
j) is a valid decommitment of the j-th CECom commit-

ment in Stage 3. Let ssExt
j

def
= ⊥ otherwise. Then, the badness condition is defined

as follows.

1.
∣∣∣∣{ j ∈ [10n] s.t. ssExt

j = ⊥
}∣∣∣∣ ≥ n

∧{
j ∈ [10n] s.t. ssExt

j = ⊥
}
∩ Γ = ∅, or

2. ssExt is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j =

ssExt
j for every j ∈ Γ, but ssExt is 0.1-far from w.

Let us say that a row of sExtCom is good if it is not bad. Then, we say thatAcca cheats
in a right session if every row of sExtCom in that right session is bad. ^

We then prove the following two subclaims.

179

Subclaim 6.3. If the probability thatAcca cheats in a right session in Hb
h(n, z) is negli-

gible, we have the following indistinguishability.{
Hb

h(n, z)
}

n∈N,z∈{0,1}∗
s≈
{
Gb

h:1(n, z)
}

n∈N,z∈{0,1}∗
.

Subclaim 6.4. The probability that Acca cheats in a right session in Hb
h(n, z) is negli-

gible.

The proof of Subclaim 6.3 is given below. The proof of Subclaim 6.4 is given in Sec-
tion 6.5.1.2.

Proof of Subclaim 6.3. We first show that ValueΓ(s) = ValueΓ(sCEC) holds in an ac-
cepting right session if Acca does not cheat in that right session, where, as defined
in the description of Hybrid Gb

h:1(n, z), s = (s1, . . . , s10n) is the shares that are com-
mitted to in the row of Com in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are

committed to in the row of CECom in Stage 3, and Γ is the subset that is commit-
ted to in the CCACom1:1 commitment in Stage 1. Fix any right session, and assume
that that right session is accepting and A does not cheat in it. Then, from the defini-
tion of cheating (Definition 6.5), that right session has a good row of sExtCom. Let
{u′j = (s′j, d

′
j, e
′
j)} j∈[10n] be the values that are committed to in that good row of sExtCom.

Let ssExt = (ssExt
1 , . . . , ssExt

10n) be the shares that are derived from u′ = (u′1, . . . , u
′
10n) as in

the definition of cheating. Then, from the definitions of cheating and ssExt, we have the
following.

1. For every j ∈ [10n], if ssExt
j , ⊥, it holds ssExt

j = s j = sCEC
j .

(This follows from the definition of ssExt.)

2.
∣∣∣∣{ j s.t. ssExt

j = ⊥
}∣∣∣∣ < n

∧{
j s.t. ssExt

j = ⊥
}
∩ Γ = ∅.

(This is because the session would be rejected in Stage 6 if { j s.t. ssExt
j = ⊥}∩Γ ,

∅.)

3. ssExt is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j =

ssExt
j for every j ∈ Γ or 0.2-far from any such valid codeword.

Hence, from Lemma 6.1 in Section 6.3.1, we have ValueΓ(s) = ValueΓ(sCEC) =
ValueΓ(ssExt) in that session. Therefore, for any accepting right session, we have
ValueΓ(s) = ValueΓ(sCEC) ifAcca does not cheat in that session.

Since Gb
h:1(n, z) differs from Hb

h(n, z) only in that O returns ValueΓ(sCEC) to Acca

rather than ValueΓ(s) in each right session, we conclude that Hb
h(n, z) and Gb

h:1(n, z) are
statistically indistinguishable if Acca cheats in a right session with at most negligible
probability. □

Now, Claim 6.7 follows immediately from Subclaims 6.3 and 6.4. This concludes the
proof of Claim 6.7. □

Proof of Claim 6.8. From the construction of Gb
h:2(n, z), the execution of Gb

h:1(n, z) is
perfectly emulated in Gh:2(n, z) as long as we have ValueΓ(α) = ValueΓ(sCEC) in each
accepting right session.

180

First, we observe that if Acca does not cheat in an accepting right session, we have
ValueΓ(α) = ValueΓ(sCEC) in that right session except with negligible probability.
Fix any right session, and assume that that right session is accepting and A does not
cheat in it. Then, from the definition of cheating, that right session has a good row
of sExtCom. Let {u′j = (s′j, d

′
j, e
′
j)} j∈[10n] be the values that are committed to in that

good row of sExtCom. Let ssExt = (ssExt
1 , . . . , ssExt

10n) be the shares that are derived from
u′ = (u′1, . . . , u

′
10n) as in the definition of the cheating. From the definition of cheat-

ing and the robust concurrent extraction lemma, we have the following in that session
except with negligible probability.

1. For every j ∈ [10n], if ssExt
j , ⊥, it holds ssExt

j = sCEC
j = α j.

(When ssExt
j , ⊥, the j-th CECom commitment in the row of CECom is valid and

has a unique committed value except with negligible probability; therefore, from
the robust concurrent extraction lemma, α j = sCEC

j holds except with negligible
probability.)

2.
∣∣∣∣{ j s.t. ssExt

j = ⊥
}∣∣∣∣ < n

∧{
j s.t. ssExt

j = ⊥
}
∩ Γ = ∅.

3. ssExt is either 0.9-close to a valid codeword w = (w1, . . . ,w10n) that satisfies w j =

ssExt
j for every j ∈ Γ or 0.2-far from any such valid codeword.

Hence, from Lemma 6.1 in Section 6.3.1, we have ValueΓ(sCEC) = ValueΓ(α) =
ValueΓ(ssExt) except with negligible probability. Therefore, if Acca does not cheat in
an accepting right session, we have ValueΓ(α) = ValueΓ(sCEC) in that right session
except with negligible probability.

Next, we observe that in Gb
h:1(n, z), Acca cheats in a right session with at most neg-

ligible probability. This follows immediately from Subclaim 6.4 (which says thatAcca

cheats in a right session with negligible probability in Hb
h(n, z)) and Claim 6.7 (which

says that the view of Acca in Gb
h:1(n, z) is statistically indistinguishable from that in

Hb
h(n, z)).

From what are observed in the above two paragraphs, it follows that we have
ValueΓ(α) = ValueΓ(sCEC) in each accepting right session except with negligible prob-
ability. □

Proof of Claim 6.9. Recall that Gb
h:3(n, z) differs from Gb

h:2(n, z) in that the execution of
RealArobust

E,Π (n,⊥, z) (i.e., the robust-concurrent attack betweenArobust and E) is replaced
with an interaction between party B of Π and the robust simulator S of the robust con-
current extraction lemma. Hence, this claim follows immediately from the robust con-
current extraction lemma. (Notice that the round complexity of Π, denoted by RΠ, is
O(RCCA1:1) = O(log n) and thus the parameter ℓ of CECom satisfies ℓ = ω(RΠ log n).) □

Proof of Claim 6.10. We prove this claim by using the hiding property of sExtCom.
Roughly speaking, since Gb

k−1:3(n, z) and Gb
k:3(n, z) differ only in the shares that are com-

mitted to in the row of sExtCom that S receives in Π, and Gb
k−1:3(n, z) and Gb

k:3(n, z) run
in polynomial time while S is receiving the row of sExtCom, the indistinguishability
follows directly from the hiding property of sExtCom.

181

Formally, assume for contradiction that for infinitely many n, there exists z ∈ {0, 1}∗
such that Gb

k−1:3(n, z) and Gb
k:3(n, z) are distinguishable with advantage 1/poly(n). Since

Gb
k−1:3(n, z) and Gb

k:3(n, z) proceed identically until B starts sending the row of sExtCom
to S, there exists a prefix ρ of a transcript of Gb

k−1:3(n, z) up until the row of sExtCom
(exclusive) such that under the condition that ρ is a prefix of the transcript, Gb

k−1:3(n, z)
and Gb

k:3(n, z) are distinguishable with advantage 1/poly(n). Note that ρ contains the
entire transcript of the CCACom1:1 commitment that S sends to B, and thus ρ uniquely
determines the committed value Γ of this CCACom1:1 commitment. We then consider
the following ppt adversary B against the hiding property of sExtCom.

• Taking ρ and Γ as auxiliary inputs, B internally invokes S and emulates
Gb

k−1:3(n, z) from ρ by receiving either commitments to {u j} j<Γ or commitments
to {0|u j |} j<Γ from the external committer and then forwarding them to S. Finally,
B outputs whatever S outputs.

Since B perfectly emulates either Gb
k−1:3(n, z) or Gb

k:3(n, z) depending on the commit-
ments it receives, our assumption implies that B distinguishes commitments to {u j} j<Γ
and commitments to {0|u j |} j<Γ with advantage 1/poly(n). Thus, we reach a contradic-
tion. □

As noted before, Claim 6.4 follows immediately from Claims 6.7 – 6.10. This concludes
the proof of Claim 6.4. □

6.5.1.2 Proof of Subclaim 6.4

We now prove Subclaim 6.4, which says that Acca cheats in a right session in Hb
h(n, z)

with at most negligible probability.

Proof of Subclaim 6.4. First, we introduce notations. For any q ∈ N, we say that a right
session has end-index q if this session is the q-th right session that Acca completes.
Similarly, we say that a right session has start-index q if this session is the q-th right
session that Acca starts. Note that the end-index of a session is undefined until the
session completes, whereas the start-index is defined when the session starts. Jumping
ahead, in the proof, we assume for contradiction that there exists an end-index qend such
thatAcca cheats in the session having end-index qend. Then, since we do not know which
session has the end-index qend until the session completes, we guess a start-index qstart

such that the session having the start-index qstart has the end-index qend.
We argue thatAcca cannot cheat in any right session because of the hiding property

of CCACom1:1. However, there are two problems.

• Since Acca interacts with the committed-value oracle O, which runs in super-
polynomial-time, we cannot directly use the computational hiding property of
CCACom1:1. We overcome this problem by considering a hybrid experiment in
which O is emulated in polynomial time.

• Acca may cheat in a right session by using the messages that it receives in the
left session, in which the left committer cheats. We overcome this problem by
using one-one CCA-security of CCACom1:1 instead of its hiding property. Since

182

the left session can be emulated in polynomial time given the committed value
Γ of the CCACom1:1 commitment in the left session, one-one CCA-security of
CCACom1:1 guarantees that the CCACom1:1 commitment in each right session
is hiding even when the left committer cheats.

When simulatingO in polynomial time, we use the concurrent extractability of CECom
for obtaining the shares that are committed to in the row of CECom. Since we want to
use the one-one CCA security of CCACom1:1, we use the robust concurrent extraction
lemma so that we can use the one-one CCA security of CCACom1:1 even in the presence
of the concurrent extraction from CECom.

Formally, assume for contradiction that there exists a right session in which Acca

cheats with non-negligible probability. Then, there exists an end-index qend such that (i)
Acca cheats with at most negligible probability in any right session having an end-index
less than qend, but (ii)Acca cheats with non-negligible probability in the session having
end-index qend.

To reach a contradiction, we consider the following hybrid experiments
Fb

h:1(n, z), . . . , Fb
h:4(n, z).

• Hybrid Fb
h:1(n, z) is the same as Hb

h(n, z) except that Fb
h:1(n, z) halts immediately

afterAcca completes the session having end-index qend (and immediately beforeO
returns the committed value of this session toAcca). Note that in Fb

h:1(n, z), O re-
turns the committed values toAcca only in the right sessions having the end-index
less than qend, andAcca cheats in those sessions only with negligible probability.

• Hybrid Fb
h:2(n, z) is the same as Fb

h:1(n, z) except that at the end of each right
session, the oracle O returns ValueΓ(sCEC) to Acca rather than ValueΓ(s) as the
committed value of this session, where s = (s1, . . . , s10n) is the shares that are
committed to in the row of Com in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares

that are committed to in the row of CECom in Stage 3, and Γ is the subset that is
committed to in the CCACom1:1 commitment in Stage 1.

• Hybrid Fb
h:3(n, z) is the same as Fb

h:2(n, z) except for syntactical differences:
Roughly speaking, Fb

h:3(n, z) is an experiment in which Fb
h:2(n, z) is executed in

such a way that we can use the robust concurrent extraction lemma (Lemma 2.1)
later. Formally, Fb

h:3(n, z) is defined as follows. Recall that in the setting of the
robust concurrent extraction lemma, an adversary, Arobust, launches the robust-
concurrent attack by interacting with the online extractor E; specifically, Arobust

interacts with E as a party A of an arbitrary two-party protocol Π = ⟨B, A⟩ while
interacting with E as the committers of CECom concurrently and obtaining a
value from E at the end of each session of CECom (where the values that are re-
turned from E are supposed to be the committed values of the CECom sessions).
Then, consider the following Π andArobust (see also Figure 6.10).

Π = ⟨B, A⟩: Parties A and B do the following two interactions concurrently. (The
schedule is controlled by A.)
Interaction 1. A gives a CCACom1:1 commitment to B, where the tag is
chosen by A. Then, B extracts the committed value of this CCACom1:1

183

commitment, denoted by Γleft, by brute force and sends it back to A. (If
the CCACom1:1 commitment is invalid, Γleft is set to be a random subset,
and if the CCACom1:1 commitment has more than one committed value, B
outputs fail and terminates.)
Interaction 2. First, B commits to a random subset Γright ⊂ [10n] of size n
using CCACom1:1, where the tag is chosen by A. Next, A sends a transcript
T of Stages 2 and 3 of CCACom (i.e., a row of Com followed by a row of
CECom), and then gives η rows of sExtCom to B, where each row consists
of 10n parallel sExtCom commitments. (Recall that η is the number of
the rows of sExtCom in CCACom.) Finally, B decommits the CCACom1:1

commitment to Γright.
Arobust: Arobust takes non-uniform advice z and internally executes Fb

h:2(n, z) as
follows. (Recall that the execution of Fb

h:2(n, z) involves an interaction with
the CCA-security adversaryAcca.)

– A start-index qstart is chosen at random at the beginning.
– In the left session, Arobust receives a CCACom1:1 commitment from
Acca in Stage 1 and forwards it to the online extractor E (who internally
emulates party B of Π). Then, instead of extracting the committed
subset Γleft from this CCACom1:1 commitment by brute force, Arobust

obtains Γleft from E. Subsequently,Arobust emulates the left session for
Acca honesty by using Γleft.

– In the right session having start-index qstart, Arobust receives a
CCACom1:1 commitment from E (who internally emulates party B of
Π) and forwards it to Acca in Stage 1. Then, Arobust emulates Stages
2 and 3 for Acca honestly and sends the transcript T of these stages
to E. Then, Arobust receives η rows of sExtCom from Acca in Stage 4
and forwards them to E. Then,Arobust receives a decommitment for the
CCACom1:1 commitment from E and forwards it to Acca in Stage 5.
Then,Arobust emulates Stage 6 forAcca honestly.

– In every other right session,Arobust emulates Stages 1 – 6 honestly ex-
cept for forwarding the row of CECom in Stage 3 to E (who internally
emulates the receivers of CECom). Let α = (α1, . . . , α10n) denote the
responses from E at the end of the row of CECom. Then, at the end
of the right session, Arobust sends ValueΓ(α) to Acca as the committed
value of this right session.

The output ofArobust is that of the internally executed Fb
h:2(n, z).

From the robust concurrent extraction lemma, there exists a robust simulator S
such that for the aboveArobust, there exists an online extractor E that satisfies the
following.

– For any row of CECom that Arobust sends to E, let sCEC = (sCEC
1 , . . . , sCEC

10n)
be the shares that are committed to in this row of CECom and α =

(α1, . . . , α10n) be the responses from E at the end of this row. Then, for
every j ∈ [10n], if the j-th CECom commitment in this row is valid and

184

its committed value is uniquely determined, α = (α1, . . . , α10n) satisfies
α j = sCEC

j .
– S can simulate the robust-concurrent attack betweenArobust and E.

Hybrid Fb
h:3(n, z) is the experiment RealArobust

E,Π (n,⊥, z) of the robust concurrent
extraction lemma. The output of Fb

h:3(n, z) is that ofArobust in RealArobust
E,Π (n,⊥, z).

In what follows, we say thatArobust cheats in Fb
h:3(n) if in the execution of Fb

h:2(n, z)
that is emulated byArobust in Fb

h:3(n),Acca cheats in the right session having start-
index qstart. We remark that, since Arobust sends the transcript T of Stages 2 and
3 to E in Π, we can see whetherArobust cheats in Fb

h:3(n) or not by examining the
transcript of Π between Arobust and E (specifically, by extracting the committed
values from each row of sExtCom by brute force and then checking whether those
committed values satisfy the badness condition in Definition 6.5 w.r.t. Stages 2
and 3 of CCACom that appear in T).

• Hybrid Fb
h:4(n, z) differs from Fb

h:3(n, z) in that the execution of RealArobust
E,Π (n,⊥, z)

(i.e., the robust-concurrent attack betweenArobust and E) is replaced with an inter-
action between party B of Π and the robust simulator S of the robust concurrent
extraction lemma (see Figure 6.11). The output of Fb

h:4(n, z) is that ofArobust that
is simulated by S.
In what follows, we say that S cheats in Fb

h:4(n, z) ifArobust cheats in the view that
is simulated by S.

First, we notice that in Fb
h:1(n, z),Acca cheats with at most negligible probability in

any right session having an end-index less than qend, andAcca cheats with non-negligible
probability in the session having end-index qend. This is because Fb

h:1(n, z) proceeds
identically with Hb

h(n, z) until the end of the right session having end-index qend.
Next, we observe that in Fb

h:2(n, z), Acca cheats with non-negligible probability in
the session having end-index qend. Recall that Fb

h:2(n, z) differs from Fb
h:1(n, z) in that at

the end of each right session having an end-index less than qend, the oracle O computes
the committed value of the session by ValueΓ(sCEC) rather than by ValueΓ(s). Then,
since in Fb

h:1(n, z) Acca cheats with at most negligible probability in any right session
having an end-index less than qend, we can show that ValueΓ(sCEC) = ValueΓ(s) holds in
any such right session except with negligible probability by using the same argument
as in the proof of Subclaim 6.3. Hence, the view of Acca in Fb

h:2(n, z) is statistically
indistinguishable from that in Fb

h:1(n, z), soAcca cheats with non-negligible probability
in the session having end-index qend in Fb

h:2(n, z).
Next, we observe that Arobust cheats in Fb

h:3(n, z) with non-negligible probability.
From the construction of Fb

h:3(n, z), an execution of Fb
h:2(n, z) is perfectly emulated in

Fb
h:3(n, z) as long as we have ValueΓ(α) = ValueΓ(sCEC) in each accepting right session

that has an end-index less than qend. Then, since in Fb
h:2(n, z) Acca cheats with at most

negligible probability in any right session having an end-index less than qend, we can
show that ValueΓ(α) = ValueΓ(sCEC) holds in any such right session except with negli-
gible probability by using the same argument as in the proof of Claim 6.8. Hence, in
the execution of Fb

h:2(n, z) that is emulated in Fb
h:3(n, z),Acca cheats with non-negligible

185

q-1

CECom
 sessions

Interaction 2
with B

1

q

left

Interaction1
with B

Figure 6.10: Adversary Arobust in Hybrid Fb
h:3(n, z). For simplicity, the right sessions

are illustrated as if they are executed sequentially.

Interaction 2
with B

Interaction1
with B

Figure 6.11: Simulator S in Hybrid Fb
h:4(n, z).

186

probability in the session having end-index qend. Now, since the number of the right
sessions is polynomially bounded, we conclude that in the execution of Fb

h:2(n, z) that is
emulated in Fb

h:3(n, z),Acca cheats with non-negligible probability in the session having
start-index qstart.

Next, we observe that S cheats in Fb
h:4(n, z) with non-negligible probability. This

follows from the robust concurrent extraction lemma, which guarantees that Arobust’s
view is statistically simulated in Fb

h:4(n, z). (Notice that the round complexity RΠ of Π
is O(RCCA1:1) = O(log n) and thus the parameter ℓ of CECom satisfies ℓ = ω(RΠ log n).)

We then derive a contradiction by showing that we can break the one-one CCA
security of CCACom1:1 using Fb

h:4(n, z).
For a warm up, we first consider the following super-polynomial-time adversaryM′

against the one-one CCA security of CCACom1:1 (see also Figure 6.12).

• Externally, M′ sends random subsets Γ0,Γ1 ⊂ [10n] to a committer of
CCACom1:1 and receives a CCACom1:1 commitment from it (the committed
value is either Γ0 or Γ1). Concurrently, M′ also interacts with the committed-
value oracle of CCACom1:1 in a single session.
Internally, M′ invokes S and emulates Fb

h:4(n, z) for S honestly except for the
following.

– When sending a CCACom1:1 commitment to S as the commitment from B
in Π,M′ obtains a CCACom1:1 commitment from the external committer
and forwards it to S.

– When S starts sending a CCACom1:1 commitment to B in Π,M′ forwards
it to external O, and then, instead of extracting its committed value Γleft by
brute force,M′ obtains Γleft from O.

– When S starts sending η rows of sExtCom to B in Π,M′ extracts the com-
mitted values of an arbitrarily chosen row by brute force. M′ then stops
emulating Fb

h:4(n, z).

Let {u j = (s j, d j, e j)} j∈[10n] be the values that are extracted from the arbitrarily
chosen row of sExtCom, and T be the message that S sends to B in Π as the
transcript of Stages 2 and 3 of CCACom. Let ssExt = (ssExt

1 , . . . , ssExt
10n) be the shares

that are derived from u = (u1, . . . , u10n) and T as in the definition of the cheating
(Definition 6.5). Then,M′ outputs 1 if and only if either of the following holds.

1.
∣∣∣∣{ j ∈ [10n] s.t. ssExt

j = ⊥
}∣∣∣∣ ≥ n

∧{
j ∈ [10n] s.t. ssExt

j = ⊥
}
∩ Γ1 = ∅.

2. ssExt is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies ssExt
j =

w j for every j ∈ Γ1, but ssExt is 0.1-far from w.

WhenM′ receives a commitment to Γ0, M′ outputs 1 only with negligible probabil-
ity; this is because whenM′ receives a commitment to Γ0, the internal S receives no
information about Γ1, and thus, the probability that either of the following holds is neg-
ligible.

1.
∣∣∣∣{ j ∈ [10n] s.t. ssExt

j = ⊥
}∣∣∣∣ ≥ n but

{
j ∈ [10n] s.t. ssExt

j = ⊥
}
∩ Γ1 = ∅.

187

Interaction
with oracle

Challenge from
Challenger

Figure 6.12: AdversaryM′ against the one-one CCA security of CCACom1:1.

2. ssExt is 0.1-far from a valid codeword w = (w1, . . . ,w10n) but we have ssExt
j = w j

for every j ∈ Γ1.

On the other hand, when M′ receives a commitment to Γ1, the internal S cheats in
the emulated execution of Fb

h:4(n, z) with non-negligible probability, so all the rows of
sExtCom from S are bad (w.r.t. Stages 2 and 3 of CCACom that appear in T) with
non-negligible probability; hence, from the definition of cheating (Definition 6.5),M′

outputs 1 with non-negligible probability. Thus,M′ distinguishes a commitment to Γ0

and a commitment to Γ1 with non-negligible advantage.
We then consider an adversaryM that emulatesM′ in polynomial time by extract-

ing the committed values of a row of sExtCom by using the extractability of sExtCom.
To formally defineM, we first define the following machine M̂.

• Externally, M̂ sends random subsets Γ0,Γ1 ⊂ [10n] to an external party, receives
a CCACom1:1 commitment from a committer of CCACom1:1 (the committed
value is either Γ0 or Γ1), sends a transcript T of Stages 2 and 3 of CCACom
to an external party, and then gives a row of sExtCom to a receiver of sExtCom.
Concurrently, M̂ also interacts with the committed-value oracle of CCACom1:1

in a single session.

Internally, M̂ invokes S and emulates Fb
h:4(n, z) for S honestly except for the

following.

– When sending a CCACom1:1 commitment to S as the commitment from B
in Π, M̂ obtains a CCACom1:1 commitment from the external committer
and forwards it to S.

– When S starts sending a CCACom1:1 commitment to B in Π, M̂ forwards
it to external O, and then, instead of extracting its committed value Γleft by
brute force, M̂ obtains Γleft from O.

– After receiving a transcript T of Stages 2 and 3 of CCACom from S, M̂
forwards it to the external party.

– When S starts sending η rows of sExtCom to B in Π, M̂ forwards a ran-
domly chosen row among them to the external receiver of sExtCom. If the
randomly chosen row of sExtCom “interleaves” with any messages of the
CCACom1:1 commitment that are being forwarded to O (namely, if S tries

188

to send/receive a message of that CCACom1:1 commitment while sending
that row of sExtCom), M̂ stops emulating Fb

h:4(n, z) immediately and ter-
minates. In other cases, M̂ stops emulating Fb

h:4(n, z) and terminates when
the randomly chosen row of sExtCom completes.

We remark that once M̂ starts sending a sExtCom commitment to the external
receiver of sExtCom, M̂ no longer interacts with the oracle O. (Once M̂ starts
sending a sExtCom commitment, either M̂ terminates in the middle of sExtCom
(because the internal S tries to send/receive a message of CCACom1:1) or M̂
completes the sExtCom commitment.) Furthermore, since η = RCCA1:1 + 1 (and
thus the number of rows of sExtCom is bigger than the number of rounds in
CCACom1:1), a randomly chosen row of sExtCom does not interleave with any
messages of CCACom1:1 with non-negligible probability; thus, M̂ completes the
sExtCom commitment with non-negligible probability.

Using M̂, we defineM as follows.

• Externally, M sends random subsets Γ0, Γ1 ⊂ [10n] to a committer of
CCACom1:1 and receives a CCACom1:1 commitment from it (the committed
value is either Γ0 or Γ1). Concurrently, M also interacts with the committed-
value oracle of CCACom1:1 in a single session.

Internally, M invokes M̂ and lets it interact with the external committer of
CCACom1:1 and the oracle O. When M̂ starts sending a row of sExtCom, M
invokes the extractor of sExtCom against M̂ and obtains (τ, σ), where τ is the
view of M̂ as a committer of sExtCom and σ is a possible value that M̂ com-
mitted to in τ.
If the sExtCom commitment that M̂ gives in τ is not accepting or the extractor of
sExtCom fails (i.e., the commitment in τ is accepting but σ = ⊥ holds),M out-
puts 0. Otherwise, parse σ as {u j = (s j, d j, e j)} j∈[10n], and let T be the transcript
thatM obtained from M̂ before the row of sExtCom. Let ssExt = (ssExt

1 , . . . , ssExt
10n)

be the shares that are derived from u = (u1, . . . , u10n) and T as in the definition
of the cheating (Definition 6.5). Then, M outputs 1 if and only if either of the
following holds.

1.
∣∣∣∣{ j ∈ [10n] s.t. ssExt

j = ⊥
}∣∣∣∣ ≥ n

∧{
j ∈ [10n] s.t. ssExt

j = ⊥
}
∩ Γ1 = ∅.

2. ssExt is 0.8-close to a valid codeword w = (w1, . . . ,w10n) that satisfies ssExt
j =

w j for every j ∈ Γ1, but ssExt is 0.1-far from w.

Recall that, as observed above, M̂ gives an accepting sExtCom commitment with non-
negligible probability. Furthermore, the extractor of sExtCom fails only with negligible
probability, and no over-extraction occur during the extraction. Hence, from exactly the
same argument as in the analysis ofM′ above, M distinguishes a commitment to Γ0

and a commitment to Γ1 with non-negligible advantage. SinceM runs in polynomial
time, this is a contradiction. □

189

6.5.1.3 Proof of Subclaim 6.2

We now prove Subclaim 6.2, which says that Hb
k (n, z) outputs fail with at most negligible

probability. Recall that Hb
k (n, z) outputs fail when the CCACom1:1 commitment in Stage

1 of the left session has more than one committed value.

Proof of Subclaim 6.2. Since Hb
k (n, z) outputs fail only if the commitment in Stage 1

has more than one committed value in the left session, we prove this claim by using the
binding property of CCACom1:1. A problem is thatAcca interacts with the committed-
value oracleO, which runs in super-polynomial time; because of the super-polynomial-
time power of O, the claim does not follow directly from the strong computational
binding property of CCACom1:1. We overcome this problem by, again, emulating O in
polynomial time using the robust concurrent extraction lemma on CECom. The proof
is similar to that of Claim 6.4.

Formally, assume for contradiction that Hb
k (n, z) outputs fail with non-negligible

probability. Then, the CCACom1:1 commitment in Stage 1 of the left session has more
than one committed value with non-negligible probability.

We consider the following hybrid experiments.

Hybrid Eb
k:1(n, z): Hybrid Eb

k:1(n, z) is the same as Hb
k (n, z) except for the following.

• At the end of each right session, the oracle O returns ValueΓ(sCEC) to
Acca rather than ValueΓ(s) as the committed value of this session, where
s = (s1, . . . , s10n) is the shares that are committed to in the row of Com
in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are committed to in the

row of CECom in Stage 3, and Γ is the subset that is committed to in the
CCACom1:1 commitment in Stage 1.

• The experiment is terminated at the end of Stage 1 of the left session.

Hybrid Eb
k:2(n, z): Hybrid Eb

k:2(n, z) is the same as Eb
k:1(n, z) except for syntactical dif-

ferences: Roughly speaking, Eb
k:2(n, z) is an experiment in which Eb

k:1(n, z) is exe-
cuted in such a way that we can use the robust concurrent extraction lemma later
(Lemma 2.1). Formally, Eb

k:2(n, z) is defined as follows. Recall that in the setting
of the robust concurrent extraction lemma, an adversary, Arobust, launches the
robust-concurrent attack by interacting with the online extractor E; specifically,
Arobust interacts with E as a party A of an arbitrary two-party protocol Π = ⟨B, A⟩
while interacting with E as the committers of CECom concurrently and obtaining
a value from E at the end of each session of CECom (where the values that are re-
turned from E are supposed to be the committed values of the CECom sessions).
Then, consider the following Π andArobust.

Π = ⟨B, A⟩: Party A gives a CCACom1:1 commitment to party B, where the tag
in the CCACom1:1 commitment is chosen by A.

Arobust: Arobust takes non-uniform advice z and internally executes Eb
k:1(n, z) with

the following changes. (Recall that the execution of Eb
k:1(n, z) involves an

interaction with the CCA-security adversaryAcca.)

190

• In Stage 1 of the left session, Arobust forwards the CCACom1:1 com-
mitment from Acca to the online extractor E (who internally emulates
party B of Π).

• In Stage 3 of each right session,Arobust receives a row of CECom com-
mitments from Acca and forwards it to E (who internally emulates the
receivers of CECom). Let α = (α1, . . . , α10n) denote the responses
from E at the end of the row of the CECom commitments.

• At the end of each right session,Arobust sends ValueΓ(α) toAcca as the
committed value of this right session.

From the robust concurrent extraction lemma, there exists a robust simulator S
such that for the aboveArobust, there exists an online extractor E that satisfies the
following.

• For any row of CECom that Arobust sends to E, let sCEC = (sCEC
1 , . . . , sCEC

10n)
be the shares that are committed to in this row of CECom and α =

(α1, . . . , α10n) be the responses from E at the end of this row. Then, for
every j ∈ [10n], if the j-th CECom commitment in this row is valid and
its committed value is uniquely determined, α = (α1, . . . , α10n) satisfies
α j = sCEC

j .
• S can simulate the robust-concurrent attack betweenArobust and E.

Hybrid Eb
k:2(n, z) is the experiment RealArobust

E,Π (n,⊥, z) of the robust concurrent
extraction lemma.

Hybrid Eb
k:3(n, z): Hybrid Eb

k:3(n, z) differs from Eb
k:2(n, z) in that the execution of

RealArobust
E,Π (n,⊥, z) (i.e., the robust-concurrent attack by Arobust against E) is re-

placed with an interaction between party B of Π and the robust simulator S of
the robust concurrent extraction lemma.

First, we notice that in Eb
k:1(n, z), the CCACom1:1 commitment in Stage 1 of the left

session has more than one committed value with non-negligible probability. This is
because from the same argument as in the proof of Claim 6.7, we can show that the
view ofAcca in Eb

k:1(n, z) is statistically close to that in Hb
k (n, z).

Next, we notice that in Eb
k:2(n, z), the CCACom1:1 commitment from Arobust to E

has more than one committed value with non-negligible probability. This is because
from the same argument as in the proof of Claim 6.8, we can show that an execution of
Eb

k:1(n, z) is statistically simulated in Eb
k:2(n, z).

Next, we notice that in Eb
k:3(n, z), the CCACom1:1 commitment from S to B has

more than one committed value with non-negligible probability. This is because from
the robust concurrent extraction lemma, we can show that the CCACom1:1 commit-
ment between S and B in Eb

k:3(n, z) is statistically close to that betweenArobust and E in
Eb

k:2(n, z).
Now, since Eb

k:3(n, z) runs in polynomial time andS interacts with an honest receiver
of CCACom1:1 in it, we reach a contradiction to the strong computational binding prop-
erty of CCACom1:1. This concludes the proof of Subclaim 6.2. □

191

6.5.1.4 Proofs of Claims 6.5 and 6.6

Claims 6.5 and 6.6 can be proven very similarly to Claim 6.4. For example, consider
the case of Claim 6.5, which says that the output of Hb

η(n, z) and that of Hb
η+1(n, z) are

computationally indistinguishable. Since Hb
η(n, z) and Hb

η+1(n, z) differ only in the com-
mitted values of a row of CECom, we can prove Claim 6.5 by modifying the proof of
Claim 6.4 accordingly. (Recall that in the proof of Claim 6.4, our goal is to show the
indistinguishability between the outputs of two hybrids that differ only in the values
committed to in a row of sExtCom.) The only problem is that the round complexity of
CECom is O(ℓ) = Õ(log2 n) (whereas the round complexity of sExtCom is O(1)), and
thus we cannot use the robust concurrent extraction lemma in the same way as in the
proof of Claim 6.4. However, since a CECom commitment can be decomposed into
n ExtCom commitments, we can easily solve this problem by designing a sequence of
sub-hybrids such that each neighboring sub-hybrids differ in the values that are com-
mitted to in a row of ExtCom, which has only O(1) rounds.

Below, we give more details about the proofs of Claims 6.5 and 6.6, which can be
skipped with little loss of understanding.

Proof sketch of Claim 6.5. We consider the following sub-hybrids
Hb
η:0(n, z), . . . ,Hb

η:k(n, z). Recall that a CECom commitment consists of n ExtCom
commitments (cf. Figure 2.2 in Section 2.3.3).

Sub-hybrid Hb
η:0(n, z): Sub-hybrid Hb

η:0(n, z) is the same as Hb
η(n, z).

Sub-hybrid Hb
η:1(n, z) to Sub-hybrid Hb

η:n(n, z): For k ∈ [n], Sub-hybrid Hb
η:k(n, z) is

the same as Hb
η:0(n, z) except that in Stage 3 of the left session, for every j <

Γ the j-th commitment in the row of CECom is computed as follows. Recall
that a CECom commitment consist of n ExtCom commitments. Then, the left
committer commits to 0|s j | instead of s j in the first k ExtCom commitments and
commits to s j in the other (n − k) ExtCom commitments.

Notice that Hb
η:k(n, z) is identical with Hb

η+1(n, z).
We can prove Claim 6.5 by showing that the output of Hb

η:k−1(n, z) and that of
Hb
η:k(n, z) are computationally indistinguishable for each k ∈ [n], and we can prove

this indistinguishability similarly to Claim 6.4. In more detail, we can prove this indis-
tinguishability as follows.

1. Design hybrid experiments G′bh:1(n, z), . . . ,G′bh:3(n, z) for h ∈ {k−1, k} in the same
way as we design Gb

h:1(n, z), . . . ,Gb
h:3(n, z) in the proof of Claim 6.4, where the

differences from Gb
h:1(n, z), . . . ,Gb

h:3(n, z) are the following.

• G′bh:1(n, z), . . . ,G′bh:3(n, z) are defined by modifying Hb
η:h(n, z) rather than

Hb
h(n, z).

• In the definition of G′bh:2(n, z), party B in the two-party protocol Π sends
party A a row of ExtCom commitments rather than a row of sExtCom, and
Arobust forwards the ExtCom commitments from E to the internally emu-
lated Acca as the k-th ExtCom commitment of each CECom commitment

192

in Stage 3 of the left session (rather than forwarding the sExtCom commit-
ments in a row of sExtCom in the left session).

2. Prove, as in the proofs of Claims 6.7 – 6.10, that the outputs of
Hb
η:h(n, z),G′bh:1(n, z), . . . ,G′bh:3(n, z) are computationally indistinguishable for

each h ∈ {k − 1, k} and that the outputs of G′bk−1:3(n, z) and G′bk:3(n, z) are compu-
tationally indistinguishable. The only difference from the proofs of Claims 6.7 –
6.10 is that we use the hiding property of ExtCom (rather than that of sExtCom)
when proving the indistinguishability between the outputs of G′bk−1:3(n, z) and
G′bk:3(n, z).
(When proving these indistinguishabilities, it is required to prove thatAcca does
not cheat in Hb

η:h(n, z), and this can be proven in the same way as in the proof of
Subclaim 6.4.)

3. Use a hybrid argument to conclude that the output of Hb
η:k−1(n, z) and that of

Hb
η:k(n, z) are computationally indistinguishable.

□

Proof sketch of Claim 6.6. We can prove the indistinguishability between the outputs
of Hb

η+1(n, z) and Hb
η+2(n, z) similarly to Claim 6.4. In more detail, we can prove this

indistinguishability as follows.

1. Design hybrid experiments G′′bh:1(n, z), . . . ,G′′bh:3(n, z) for h ∈ {η+ 1, η+ 2} in the
same way as we design Gb

h:1(n, z), . . . ,Gb
h:3(n, z) in the proof of Claim 6.4, where

the difference from Gb
h:1(n, z), . . . ,Gb

h:3(n, z) is the following.

• In the definition of G′′bh:2(n, z), party B in the two-party protocol Π sends
party A a row of Com commitments rather than a row of sExtCom, and
Arobust forwards the Com commitments from E to the internally emulated
Acca as the row of Com in Stage 2 of the left session (rather than forwarding
the sExtCom commitments in a row of sExtCom in the left session).

2. Prove, as in the proofs of Claims 6.7 – 6.10, that the outputs of
Hb

h(n, z),G′′bh:1(n, z), . . . ,G′′bh:3(n, z) are computationally indistinguishable for
each h ∈ {η+1, η+2} and that the outputs of G′′bη+1:3(n, z) and G′′bη+2:3(n, z) are com-
putationally indistinguishable. The only difference from the proofs of Claims 6.7
– 6.10 is that we use the hiding property of Com (rather than that of sExtCom)
when proving the indistinguishability between the outputs of G′′bη+1:3(n, z) and
G′′bη+2:3(n, z).

3. Use a hybrid argument to conclude that the output of Hb
η+1(n, z) and that of

Hb
η+2(n, z) are computationally indistinguishable.

□

Combining Claims 6.4, 6.5, and 6.6 and Equation (6.14), we obtain Lemma 6.4. This
concludes the proof of Lemma 6.4. □

193

6.5.2 Proof of Robustness
Lemma 6.5. For any constant κ ∈ N, CCACom is κ-robust.

Like the robustness of previous CCA-secure commitments [CLP10, CLP16, LP12],
the robustness of our CCA-secure commitment can be shown by using the techniques
in the proof of its CCA security.

Proof of Lemma 6.5. We show that there exists a ppt simulator S such that for any ppt
adversaryA and any κ-round ppt ITM B, the following indistinguishability holds.{

outputB,AO
[
B(1n, y)↔ AO(1n, z)

]}
n∈N,y,z∈{0,1}n

c≈
{
outputB,S

[
B(1n, y)↔ S(1n, z)

]}
n∈N,y,z∈{0,1}n

(6.15)

First, we consider the following hybrid experiments.

Hybrid D0(n, y, z): Hybrid D0(n, y, z) is an experiment in which AO(1n, x, z) interacts
with party B(1n, y, z) as in the definition of robustness, i.e., A interacts with B
while interacting with the committed-value oracle O in concurrent sessions of
CCACom. The output of the experiment is the joint output of B andA.

Hybrid D1(n, y, z): Hybrid D1(n, y, z) is the same as D0(n, y, z) except that at the end
of each right session (i.e., each session between A and O), the oracle O returns
ValueΓ(sCEC) to A rather than ValueΓ(s) as the committed value of this session,
where s = (s1, . . . , s10n) is the shares that are committed to in the row of Com in
Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are committed to in the row of

CECom in Stage 3, and Γ is the subset that is committed to in the CCACom1:1

commitment in Stage 1.

Hybrid D2(n, y, z): Hybrid D2(n, y, z) is the same as D1(n, y, z) except for syntactical
differences: Roughly speaking, D2(n, y, z) is an experiment in which D1(n, y, z)
is executed in such a way that we can use the robust concurrent extraction lemma
(Lemma 2.1) later. Formally, D2(n, y, z) is defined as follows. Recall that in the
setting of the robust concurrent extraction lemma, an adversary,Arobust, launches
the robust-concurrent attack by interacting with the online extractor E; specifi-
cally, Arobust interacts with E as a party A of an arbitrary two-party protocol Π
while interacting with E as the committers of CECom concurrently and obtaining
a value from E at the end of each session of CECom (where the values that are re-
turned from E are supposed to be the committed values of the CECom sessions).
Then, consider the following Π andArobust.

Π: In Π, the κ-round ppt ITM B (for which we are proving robustness of
CCACom) interacts with party A honestly.

Arobust: Arobust takes a non-uniform advice z and internally executes D1(n, y, z)
with the following changes. (Recall that the execution of D1(n, y, z) involves
an interaction withA.)

194

• In the session betweenA and B,Arobust forwards all the messages from
A to E (who internally emulates B) and forwards back all the messages
from E toA.

• In Stage 3 of each right session,Arobust receives a row of CECom com-
mitments from A and forwards it to E (who internally emulates the
receivers of CECom). Let α = (α1, . . . , α10n) denote the responses
from E at the end of the row of the CECom commitments.

• At the end of each right session, Arobust sends ValueΓ(α) to A as the
committed value of this right session.

The output ofArobust is that of the internally emulatedA.

From the robust concurrent extraction lemma, there exists a robust simulator
Srobust such that for the aboveArobust, there exists an online extractor E that satis-
fies the following.

• For any row of CECom that Arobust sends to E, let sCEC = (sCEC
1 , . . . , sCEC

10n)
be the shares that are committed to in this row of CECom and α =

(α1, . . . , α10n) be the responses from E at the end of this row. Then, for
every j ∈ [10n], if the j-th CECom commitment in this row is valid and
its committed value is uniquely determined, α = (α1, . . . , α10n) satisfies
α j = sCEC

j .
• Srobust can simulate the robust-concurrent attack betweenArobust and E.

Hybrid D2(n, y, z) is the experiment RealArobust
E,Π (n, y, z) of the robust concurrent

extraction lemma. The output of D2(n, y, z) is that of the internally emulated
RealArobust

E,Π (n, y, z).

Hybrid D3(n, y, z): Hybrid D3(n, y, z) differs from D2(n, y, z) in that the execution of
RealArobust

E,Π (n, y, z) (i.e., the robust-concurrent attack betweenArobust and E) is re-
placed with an interaction between party B of Π and the robust simulator Srobust

of the robust concurrent extraction lemma. The output of D3(n, y, z) is the joint
output of B and Srobust.

For k ∈ {0, . . . , 3}, let Dk(n, y, z) be the random variable for the output of Dk(n, y, z).
Our simulator S is the simulator Srobust in D3(n, y, z). Notice that from the construc-

tions of the hybrids, we have

D0(n, y, z) = outputB,AO
[
B(1n, y)↔ AO(1n, z)

]
,

D3(n, y, z) = outputB,S
[
B(1n, y)↔ S(1n, z)

]
.

First, we notice that we have {D0(n, y, z)}n∈N,y,z∈{0,1}n
s≈ {D1(n, y, z)}n∈N,y,z∈{0,1}n . This

is because from the same argument as in the proof of Claim 6.7, we can show that the
view ofA in D1(n, y, z) is statistically close to that in D0(n, y, z).

Next, we notice that we have {D1(n, y, z)}n∈N,y,z∈{0,1}n
s≈ {D2(n, y, z)}n∈N,y,z∈{0,1}n . This

is because from the same argument as in the proof of Claim 6.8, we can show that an
execution of D1(n, y, z) is statistically simulated in D2(n, y, z).

195

Next, we notice that we have {D2(n, y, z)}n∈N,y,z∈{0,1}n
s≈ {D3(n, y, z)}n∈N,y,z∈{0,1}n . This is

because from the robust concurrent extraction lemma, we can show that the interaction
between Srobust and B in D3(n, y, z) is statistically close to that betweenArobust and E in
D2(n, y, z).

Now, from the hybrid argument, we obtain Indistinguishability (6.15). □

Combining Lemmas 6.4 and 6.5, we obtain Theorem 6.1. This concludes the proof of
Theorem 6.1. □

6.6 Black-Box Composable MPC Protocol
In this section, we show our black-box construction of a general MPC protocol. Our
protocol is secure in the angel-based UC framework [PS04, CLP10, CLP16]. Roughly
speaking, this framework (called theH-EUC framework) is the same as the UC frame-
work [Can01] except that both the adversary and the environment in the real and ideal
worlds have access to a super-polynomial-time functionality H called an angel (or a
helper). For details, see [PS04, CLP10, CLP16].

We use the results of Canetti et al. [CLP10, CLP16] and Lin and Pass [LP12]. Let
⟨C,R⟩ be any RCCA-round robust CCA-secure commitment scheme, ⟨S ,R⟩ be any ROT-
round semi-honest oblivious transfer protocol, and H be a helper that breaks ⟨C,R⟩
in essentially the same way as the committed-value oracle of ⟨C,R⟩ does. Then, Lin
and Pass [LP12] showed that there exists a black-box O(max(ROT,RCCA))-round proto-
col that securely realizes the ideal oblivious transfer functionality FOT in the H-EUC
framework.

Theorem 6.2 ([LP12]). Assume the existence of an RCCA-round robust CCA-secure
commitment scheme ⟨C,R⟩ and the existence of an ROT-round semi-honest oblivious
transfer protocol ⟨S ,R⟩. Then, there exists an O(max(RCCA,ROT))-round protocol that
H-EUC-realizesFOT . Furthermore, this protocol uses ⟨C,R⟩ and ⟨S ,R⟩ only in a black-
box way.

In [CLP10, CLP16], Canetti et al. showed the following.

Theorem 6.3 ([CLP10, CLP16]). For every well-formed functionality F , there exists
a constant-round FOT -hybrid protocol thatH-EUC-realizes F .

Then, we obtain the following theorem by combining Theorems 6.1, 6.2, and 6.3.

Theorem 6.4 (restatement of Main Theorem). Assume the existence of ROT-round
semi-honest oblivious transfer protocols. Then, there exists a super-polynomial-
time helper H such that for every well-formed functionality F , there exists a
max(Õ(log2 n),O(ROT)))-round protocol that H-EUC-realizes F . Furthermore, this
protocol uses the underlying oblivious transfer protocol only in a black-box way.

196

Commit Phase
The committer C and the receiver R receive common inputs 1n and id ∈ {0, 1}2t(n)−1 .
To commit to v ∈ {0, 1}, the committer C chooses random v1, . . . , v2t(n)−1 ∈ {0, 1}n
such that v =

⊕
j v j, and for each j ∈ [2t(n)−1] in parallel, C∗ commits to v j by using

CCACom with tag (j, id j), where id j is the j-th bit of id.

Decommit Phase
C sends v to R and decommits all the CCACom commitments.

Figure 6.13: One-one CCA-secure commitment scheme CCACom1:1.

6.7 Appendix to Chapter 6
6.7.1 One-One CCA Commitment for Long Tags from Parallel

CCA Commitment for Short Tags
Lemma 6.6. Let r(·) and t(·) be arbitrary functions such that t(n) = O(log n), and
let CCACom be an r(n)-round commitment scheme that satisfies strong computational
binding property and parallel CCA security for tags of length t(n). Then, there exists an
r(n)-round commitment scheme CCACom1:1 that satisfies strong computational binding
property and one-one CCA security for tags of length 2t(n)−1. Furthermore, if CCACom
uses the underlying one-way function only in a black-box way, so does CCACom1:1.

Proof . CCACom1:1 is shown in Figure 6.13. The strong computational binding prop-
erty follows from that of CCACom. Thus, it remains to show that CCACom1:1 is one-
one CCA secure.

We show that for any ppt adversaryA that interacts with O only in a single session,
the following are computationally indistinguishable:

• {IND0(CCACom1:1,A, n, z)}n∈N,z∈{0,1}∗

• {IND1(CCACom1:1,A, n, z)}n∈N,z∈{0,1}∗

Without loss of generality, we can assume that the tag thatA uses in the right session is
always different from the tag thatA uses in the left session. (This is because instead of
using the same tag in the left and right sessions,A can use different tags in the left and
right sessions and then output ⊥; recall that the output of the experiment is ⊥whenever
A uses the same tag in the left and right sessions.)

Assume for contradiction that there exist a ppt distinguisher D and a polyno-
mial p(·) such that for infinitely many n, there exists z ∈ {0, 1}∗ such that D distin-
guishes IND0(CCACom1:1,A, n, z) and IND1(CCACom1:1,A, n, z) with advantage at
least 1/p(n). In the following, we fix any such n and z.

Let us consider the following ppt adversary B against CCA security of CCACom.
B internally invokesA and simulates the experiment IND0(CCACom1:1,A, n, z) forA
as follows. First, B chooses random j∗ ∈ [2t(n)−1], and for each j ∈ [2t(n)−1] \ { j∗},

197

B chooses random v j ∈ {0, 1}n. Then, in the left session, when A outputs challenge
values m0,m1 ∈ {0, 1}n and tag id = (id1, . . . , id2t(n)−1), B sets v(b)

j∗ := mb ⊕
⊕

j, j∗ v j for
each b ∈ {0, 1} and sends challenge v(0)

j∗ , v
(1)
j∗ and tag (j∗, id j∗) ∈ {0, 1}t(n) to the external

left committer. When B receives a CCACom commitment from the left committer
(the committed value is either v(0)

j∗ or v(1)
j∗), B forwards it to A. At the same time, B

generates CCACom commitments to (v j) j, j∗ and sends them toA. In the right session,
B forwards a CCACom1:1 commitment fromA to O as 2t(n)−1 parallel commitments of
CCACom with tags {(j, ĩd j)} j∈[2t(n)−1]. Then, B receives (v1, . . . , v2t(n)−1) from O, and if
v j , ⊥ for all j ∈ [2t(n)−1], B returns v :=

⊕
j v j toA; if v j = ⊥ for some j, B returns ⊥

toA. Let y be the output of the simulated experiment IND0(CCACom1:1,A, n, z), and
let β ← D(y). Then, if id j∗ = ĩd j∗ , B outputs fail, and otherwise, A outputs fail with
probability (N − 1)/N and outputs β with probability 1/N, where N = |{ j s.t. id j , ĩd j}|
is the Hamming distance between id and ĩd.

We reach a contradiction by showing that B breaks the CCA security of CCACom;
in particular,∣∣∣∣∣Pr [IND0(CCACom,B, n, z) = 1] − Pr [IND1(CCACom,B, n, z) = 1]

∣∣∣∣∣ ≥ 1
p(n) · poly(n)

.

For b ∈ {0, 1}, let βb be the random variable representing the value of
β in INDb(CCACom,B, n, z) and abortb be the event that B outputs fail in
INDb(CCACom,B, n, z). Since B internally simulates IND0(CCACom1:1,A, n, z) or
IND1(CCACom1:1,A, n, z) perfectly depending on the value that is committed to in the
left session, we have

Pr
[
βb = 1

]
= Pr

[
D(INDb(CCACom1:1,A, n, z)) = 1

]
.

Hence, from our assumption, we have∣∣∣∣∣Pr
[
β0 = 1

] − Pr
[
β1 = 1

]∣∣∣∣∣ ≥ 1
p(n)

.

Also, since we assume that it always holds that id , ĩd, for each b ∈ {0, 1} we have

Pr [¬abortb] =
N

2t(n)−1 ·
1
N
=

1
2t(n)−1 .

Note that when id j∗ , ĩd j∗ , a tag (j, ĩd j) in the right session is different from the tag
(j∗, id j∗) in the left session for each j ∈ [2t(n)−1]. Hence, when abortb does not occur,
the output of INDb(CCACom,B, n, z) is βb. Thus, we have∣∣∣∣∣Pr [IND0(CCACom,B, n, z) = 1] − Pr [IND1(CCACom,B, n, z) = 1]

∣∣∣∣∣
=

∣∣∣∣∣Pr
[
β0 = 1 ∧ ¬abort0

] − Pr
[
β1 = 1 ∧ ¬abort1

]∣∣∣∣∣
=

∣∣∣∣∣Pr
[
β0 = 1

] − Pr
[
β1 = 1

]∣∣∣∣∣ · 1
2t(n)−1

≥ 1
p(n) · poly(n)

.

198

In the third line, we use Pr
[
βb = 1 ∧ ¬abortb

]
= Pr

[
βb = 1

] · Pr [¬abortb] (i.e., the
independence between the event abortb and the event that βb = 1, which follows from
the fact that abortb always occurs with probability 1/2t(n)−1, independently of the values
of id and ĩd). This concludes the proof. □

199

200

Chapter 7

Conclusion

In this thesis, we studied zero-knowledge proofs and secure computation, two of the
most fundamental protocols in cryptography. Zero-knowledge proofs are counter-
intuitive protocols that allow provers to convince verifiers of the correctness of state-
ments without revealing any additional knowledge about the statements, and secure
computation protocols are powerful protocols that enable mutually distrustful parties
to jointly compute any functionalities on their secret inputs without compromising the
correctness of the outputs and the privacy of the inputs. Zero-knowledge proofs are
fundamental in cryptography because they are used as key building blocks in numer-
ous other protocols, and secure computation protocols are fundamental in cryptogra-
phy because their powerful generality allows us to obtain strong feasibility results about
cryptographic protocols.

Our focus was to obtain new constructions that satisfy two strong security notions,
concurrent security and leakage resilience. As discussed in Chapter 1, the main advan-
tage of achieving strong security is that it enables us to use protocols in more broad
applications—in the case of concurrent security and leakage-resilience, the former al-
lows us to use protocols in a setting where multiple instances of the protocols are exe-
cuted concurrently, and the latter allows us to use protocols in the setting where adver-
saries might employ side-channel attacks on physical implementations of the protocols.

The result of this thesis was four results about zero-knowledge proofs and secure
computation with strong security guarantees. A common motivation behind these re-
sults is to achieve concurrent security and leakage resilience at as low additional cost as
possible, where the cost is defined in terms of efficiency and hardness assumptions; in
other words, our results concern the problem of constructing zero-knowledge protocols
and secure computation that satisfy concurrent security or leakage resilience with good
efficiency under weak hardness assumptions.

Concretely, we showed the following four results in this thesis.

1. In Chapter 3, we constructed a statistical concurrent non-malleable zero-
knowledge argument from one-way functions, where statistical concurrent non-
malleable zero-knowledge is currently the strongest notion of concurrent secu-
rity for zero-knowledge protocols in the plain model (i.e., in the model without
any help from trusted third parties). Since the existence of one-way functions
is the weakest hardness assumption from which (standard) zero-knowledge ar-

201

guments are known to be obtained, this result implies that statistical concurrent
non-malleable zero-knowledge arguments can be obtained at no additional cost
in terms of hardness assumptions.

2. In Chapter 4, we constructed a constant-round leakage-resilient zero-knowledge
argument from collision-resistant hash functions. Since the existing construc-
tions either have more than constant number of rounds [GJS11] or rely on an as-
sumption that is seemingly much stronger than the existence of collision-resistant
hash functions [Pan14], this result implies that leakage-resilient zero-knowledge
arguments with asymptotically optimal round complexity can be obtained under
much weaker assumptions than previously known. Constructing them from even
weaker assumptions, such as the existence of one-way functions, is an interesting
open question.

3. In Chapter 5, we constructed a concurrent zero-knowledge argument that has
a new non-black-box simulation proof of security. Since non-black-box simu-
lation is proven to be essential for solving the long-standing open question of
constructing constant-round concurrent zero-knowledge arguments [CKPR02],
and our non-black-box simulation technique for concurrent zero-knowledge is
arguably simpler than the existing one [Goy13], this result can be a useful start-
ing point for future research. Using our technique to obtain a constant-round (or
even sub-polynomial-round) concurrent zero-knowledge argument is the biggest
open problem that is left by this thesis.

4. In Chapter 6, we constructed a polylogarithmic-round concurrently secure multi-
party computation protocol that makes only black-box use of the underlying cryp-
tographic primitives. Since the existing constructions that satisfy the same secu-
rity notion as ours (namely, angel-based UC security) either make non-black-box
use of underlying primitives (and thus are typically inefficient) [PS04, MMY06,
CLP10, CLP16, GLP+15] or have polynomial number of rounds [LP12], this re-
sult implies that concurrently secure computation can be obtained in a black-box
way with much smaller round complexity than previously known.

We notice that, at a high level, our results can be viewed as a step to solve a funda-
mental problem about concurrent security and leakage resilience, that is, the problem
of constructing secure computation protocols that satisfy concurrent security and leak-
age resilience with optimal efficiency under minimum assumptions. (This problem is
fundamental because by solving it, we can obtain a strong feasibility result about con-
current security and leakage resilience thorough the generality of secure computation.)
Indeed, it is easy to see that each of our results concerns a natural simplified version of
this fundamental problem, where the simplification is

• to focus on zero-knowledge protocols rather than secure computation,48 and/or

48Studying a security notion on zero-knowledge protocols is a natural first step to study it on secure
computation since zero-knowledge protocols are key building blocks of existing secure computation
protocols.

202

• to focus on either concurrent security or leakage resilience (i.e., not to consider
them simultaneously).

When viewed as a step to solve this fundamental problem, our results made signifi-
cant advances on its natural simplified versions by reducing required cost in terms of
efficiency and hardness assumptions:

• Case 1. Focus on zero-knowledge protocols and concurrent security: Our
first result implies that on zero-knowledge protocols, even the strongest notion of
concurrent security can be achieved under a minimum assumption.

• Case 2. Focus on zero-knowledge protocols and leakage resilience: Our sec-
ond result implies that on zero-knowledge protocols, leakage resilience can be
achieved with asymptotically optimal round complexity under a much weaker
hardness assumption than previously known.

• Case 3. Focus on secure computation and concurrent security: Our fourth
result implies that on secure computation, a popular notion of concurrent secu-
rity (namely angel-based UC security) can be achieved without using inefficient
non-black-box uses of underlying cryptographic primitives and large round com-
plexity.

Additionally, as we discuss below, our third result has a potential to become a useful
starting point for removing a main obstacle about this fundamental problem.

Future Directions

A natural future direction is to pursue feasibility results about concurrent security and
leakage resilience further. In other words, a natural direction is to try to strengthen
the results of this thesis in order to solve the aforementioned fundamental problem of
constructing secure computation protocols that satisfy concurrent security and leakage
resilience with optimal efficiency under minimum assumptions.

Regarding this direction, there are (at least) three major problems that are not ad-
dressed in this thesis.

• Achieving concurrent security with optimal round complexity: The first one
is the problem of improving the round complexity of concurrent zero-knowledge
protocols. As mentioned in Chapter 5, the state-of-the-art of this problem is
ω(log n) rounds [PRS02], and the construction of constant-round concurrent
zero-knowledge protocols under standard hardness assumptions is considered to
be a big open question about concurrent security (indeed, this open question is
currently a major obstacle to achieve concurrent security in constant number of
rounds on many other cryptographic protocols; for example, concurrently secure
computation currently requires logarithmic complexity because concurrent zero-
knowledge requires logarithmic round complexity).
An approach towards this problem is to improve our new non-black-box simu-
lation technique in the third result of this thesis so that it requires fewer rounds

203

than what it currently requires. (Recall that, as mentioned in Chapter 5, non-
black-box simulation techniques are necessary to improve the state-of-the-art of
the round complexity of concurrent zero-knowledge protocols.) Another, more
ambitious, approach is to develop a new non-black-box simulation technique that
is completely different from the existing ones [Bar01, BP15].

• Achieving leakage resilience on secure computation: The second one is the
problem of constructing leakage-resilient (or leakage-tolerant49) secure compu-
tation protocols. There already exist several works that study leakage-resilient
secure computation protocols [BGJK12, BGJ+13, BDL14], but their results have
a drawback that either leakage-free preprocessing phases are required or only a
weaker security notion is achieved (see [BDL14] for details). To the best of our
knowledge, construing secure computation protocols that do not have this draw-
back is an open question.
A potential approach towards this problem is to use the techniques that we de-
veloped for leakage-resilient zero-knowledge protocols in the second result of
this thesis. Another potential approach is to prove an impossibility result about
leakage-resilient secure computation (it is already shown that, as long as the secu-
rity is proven thorough black-box simulation techniques, interactive leakage-free
preprocessing is necessary for leakage-resilient secure computation [OPV15]).

• Achieving concurrent security and leakage resilience simultaneously: The
third one is the problem of achieving concurrent security and leakage resilience
simultaneously. It is known that one can achieve concurrent security and leakage
resilience simultaneously on several cryptographic protocols and even on secure
computation in the UC framework [BCH12, BGJ+13, BDL14]; however, these
results are not quite satisfactory because UC security has a drawback that it can-
not be achieved in the plain model (cf. Section 6.1) and indeed these results are
shown in a model where a little help from trusted third party is available.50 To the
best of our knowledge, the problem of achieving concurrent security and leakage
resilience simultaneously on zero-knowledge protocols and secure computation
in the plain model is an open question.
A potential approach towards this problem is to focus on zero-knowledge proofs
and try to combine existing concurrent zero-knowledge protocols (such as that in
Chapter 3) with existing leakage-resilient zero-knowledge protocols (such as that
in Chapter 4).

Another natural future direction is to study zero-knowledge proofs and secure com-
putation that satisfy other strong security notions. An interesting candidate is resettable
security (cf. Section 1.2), which has been studied for both zero-knowledge proofs and
security computation [CGGM00, BGGL01, DGS09, GS09] and is deeply related to
concurrent security (for example, it is known that resettable zero-knowledge implies
concurrent zero-knowledge [CGGM00]).

49See Footnote 21 in Section 4.1.
50Additionally, the result about secure computation in [BDL14] is shown in a model where leakage-

free preprocessing is available

204

Acknowledgment

First and foremost, I would like to thank Prof. Tatsuaki Okamoto for his invaluable
guidance since the very beginning of my career as a cryptographer. He was a supervisor
when I was a master-course student and now is a colleague at NTT, and I feel extremely
fortunate to have had the opportunity to learn from his remarkably deep and broad
knowledge and perspective about cryptography. I also would like to thank him for
serving on my thesis committee; without his supports, I could not have written this
thesis.

I also would like to thank Prof. Yoshifumi Manabe (now at Kogakuin University)
for his guidance as a co-supervisor during my master-course studies. I am especially
grateful to him for having a meeting with me almost every week and listening patiently
to all of my questions during my master-course studies. Thinking that he worked at
NTT at that time and thus must have been very busy (I can now guess how busy he
must have been from my own experience of working at NTT), I feel deep gratitude for
continuously finding time just for having meetings with me.

I also would like to express my deep gratitude to Prof. Toru Ishida, Prof. Yoshimasa
Nakamura, and Prof. Yasuo Okabe for serving on my thesis committee. Their advice
and comments greatly helped me write this thesis.

Special thanks go to the members of the NTT crypto team. Working with great and
hardworking cryptographers like them is really delightful and always motivates me. I
also thank them for allowing me to focus on my own research since my first year at
NTT—all the results in this thesis were obtained after I joined NTT.

Finally, I would like to thank my family members. Without their continuous help,
my life would have been completely different.

205

206

Bibliography

[AGP14] Prabhanjan Ananth, Vipul Goyal, and Omkant Pandey. Interactive proofs
under continual memory leakage. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 164–182.
Springer, Heidelberg, August 2014.

[AK96] Ross Anderson and Markus Kuhn. Tamper resistance: A cautionary note.
In WOEC, pages 1–11, 1996.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new
characterization of np. Journal of the ACM, 45(1):70–122, January 1998.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd
FOCS, pages 106–115. IEEE Computer Society Press, October 2001.

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or
realizing the shared random string model. In 43rd FOCS, pages 345–355.
IEEE Computer Society Press, November 2002.

[Bar05] Boaz Barak. How to play almost any mental game over the net - Concur-
rent composition via super-polynomial simulation. In 46th FOCS, pages
543–552. IEEE Computer Society Press, October 2005.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclo-
sure proofs of knowledge. Journal of Computer and System Sciences,
37(2):156–189, 1988.

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive
protocols. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 266–284. Springer, Heidelberg, March 2012.

[BCY91] Gilles Brassard, Claude Crépeau, and Moti Yung. Constant-round per-
fect zero-knowledge computationally convincing protocols. Theoretical
Computer Science, 84(1):23–52, July 1991.

[BDL14] Nir Bitansky, Dana Dachman-Soled, and Huijia Lin. Leakage-tolerant
computation with input-independent preprocessing. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 146–163. Springer, Heidelberg, August 2014.

207

[Bea92] Donald Beaver. Foundations of secure interactive computing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 377–391.
Springer, Heidelberg, August 1992.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge.
In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
390–420. Springer, Heidelberg, August 1993.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applica-
tions. SIAM Journal on Computing, 38(5):1661–1694, 2008.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell.
Resettably-sound zero-knowledge and its applications. In 42nd FOCS,
pages 116–125. IEEE Computer Society Press, October 2001.

[BGJ+13] Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit
Sahai. Secure computation against adaptive auxiliary information. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 316–334. Springer, Heidelberg, August 2013.

[BGJK12] Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai.
Multiparty computation secure against continual memory leakage. In
Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages
1235–1254. ACM Press, May 2012.

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal
zero-knowledge arguments based on any one-way function. In Walter
Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 280–305.
Springer, Heidelberg, May 1997.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In the
International Congress of Mathematicians, pages 1444–1451, 1986.

[BP12] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a
new non-black-box simulation technique. In 53rd FOCS, pages 223–232.
IEEE Computer Society Press, October 2012.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate ob-
fuscation and applications to resettable cryptography. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
241–250. ACM Press, June 2013.

[BP15] Nir Bitansky and Omer Paneth. On non-black-box simulation and the
impossibility of approximate obfuscation. SIAM Journal on Computing,
44(5):1325–1383, 2015.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-
malleable zero knowledge. In 47th FOCS, pages 345–354. IEEE Com-
puter Society Press, October 2006.

208

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryp-
tography. In Marc Joye, editor, CT-RSA 2003, volume 2612 of LNCS,
pages 1–18. Springer, Heidelberg, April 2003.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic pro-
tocols. Journal of Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd FOCS, pages 136–145. IEEE Computer So-
ciety Press, October 2001.

[CDMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee.
Black-box construction of a non-malleable encryption scheme from any
semantically secure one. In Ran Canetti, editor, TCC 2008, volume 4948
of LNCS, pages 427–444. Springer, Heidelberg, March 2008.

[CDMW09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee.
Simple, black-box constructions of adaptively secure protocols. In Omer
Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 387–402.
Springer, Heidelberg, March 2009.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40.
Springer, Heidelberg, August 2001.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Re-
settable zero-knowledge (extended abstract). In 32nd ACM STOC, pages
235–244. ACM Press, May 2000.

[CKL06] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of
universally composable two-party computation without set-up assump-
tions. Journal of Cryptology, 19(2):135–167, April 2006.

[CKPR02] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box con-
current zero-knowledge requires (almost) logarithmically many rounds.
SIAM Journal on Computing, 32(1):1–47, 2002.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In 34th
ACM STOC, pages 494–503. ACM Press, May 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and com-
posable security in the plain model from standard assumptions. In 51st
FOCS, pages 541–550. IEEE Computer Society Press, October 2010.

[CLP13a] Ran Canetti, Huijia Lin, and Omer Paneth. Public-coin concurrent zero-
knowledge in the global hash model. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 80–99. Springer, Heidelberg, March 2013.

209

[CLP13b] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent
zero knowledge from P-certificates. In 54th FOCS, pages 50–59. IEEE
Computer Society Press, October 2013.

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent
zero-knowledge from indistinguishability obfuscation. In Rosario Gen-
naro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume
9215 of LNCS, pages 287–307. Springer, Heidelberg, August 2015.

[CLP16] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and com-
posable security in the plain model from standard assumptions. SIAM
Journal on Computing, 45(5):1793–1834, 2016.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti.
Delayed-input non-malleable zero knowledge and multi-party coin toss-
ing in four rounds. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part I, volume 10677 of LNCS, pages 711–742. Springer, Heidelberg,
November 2017.

[CPS13] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simula-
tion from one-way functions and applications to resettable security. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 231–240. ACM Press, June 2013.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptogra-
phy. SIAM Journal on Computing, 30(2):391–437, 2000.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous reset-
tability conjecture and a new non-black-box simulation strategy. In 50th
FOCS, pages 251–260. IEEE Computer Society Press, October 2009.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer.
Magic functions. Journal of the ACM, 50(6):852–921, 2003.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-
knowledge. Journal of the ACM, 51(6):851–898, 2004.

[DPP98] Ivan Damgård, Torben P. Pedersen, and Birgit Pfitzmann. Statistical se-
crecy and multibit commitments. IEEE Transactions on Information The-
ory, 44(3):1143–1151, 1998.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information Theory,
31:469–472, 1985.

[FS90a] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding
protocols. In 22nd ACM STOC, pages 416–426. ACM Press, May 1990.

210

[FS90b] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two
rounds. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 526–544. Springer, Heidelberg, August 1990.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently
secure computation in constant rounds. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 99–
116. Springer, Heidelberg, April 2012.

[GGS15] Vipul Goyal, Divya Gupta, and Amit Sahai. Concurrent secure computa-
tion via non-black box simulation. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
23–42. Springer, Heidelberg, August 2015.

[GJO+13] Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, and
Ivan Visconti. Constant-round concurrent zero knowledge in the
bounded player model. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 21–40. Springer, Hei-
delberg, December 2013.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero
knowledge. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of
LNCS, pages 297–315. Springer, Heidelberg, August 2011.

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. Journal of Cryptology, 9(3):167–190,
1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-
knowledge proof systems. SIAM Journal on Computing, 25(1):169–192,
1996.

[GL91] Shafi Goldwasser and Leonid A. Levin. Fair computation of general
functions in presence of immoral majority. In Alfred J. Menezes and
Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages 77–
93. Springer, Heidelberg, August 1991.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Con-
structing non-malleable commitments: A black-box approach. In 53rd
FOCS, pages 51–60. IEEE Computer Society Press, October 2012.

[GLP+15] Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai.
Round-efficient concurrently composable secure computation via a robust
extraction lemma. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part I, volume 9014 of LNCS, pages 260–289. Springer, Hei-
delberg, March 2015.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

211

[GMOS07] Vipul Goyal, Ryan Moriarty, Rafail Ostrovsky, and Amit Sahai. Concur-
rent statistical zero-knowledge arguments for NP from one way functions.
In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS,
pages 444–459. Springer, Heidelberg, December 2007.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal
on Computing, 17(2):281–308, April 1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any men-
tal game or A completeness theorem for protocols with honest majority.
In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity or all languages in NP have zero-knowledge
proof systems. Journal of the ACM, 38(3):691–729, 1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, 1994.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1.
Cambridge University Press, Cambridge, UK, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, vol-
ume 2. Cambridge University Press, Cambridge, UK, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way
functions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM
STOC, pages 695–704. ACM Press, June 2011.

[Goy13] Vipul Goyal. Non-black-box simulation in the fully concurrent setting. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 221–230. ACM Press, June 2013.

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In Antoine
Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 54–71.
Springer, Heidelberg, April 2009.

[GST17] Daniel Genkin, Adi Shamir, and Eran Tromer. Acoustic cryptanalysis.
Journal of Cryptology, 30(2):392–443, April 2017.

212

[Hai08] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-
box way. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
412–426. Springer, Heidelberg, March 2008.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez
Petrank. Black-box constructions of protocols for secure computation.
SIAM Journal on Computing, 40(2):225–266, 2011.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

[HNO+09] Iftach Haitner, Minh-Huyen Nguyen, Shien Jin Ong, Omer Reingold, and
Salil P. Vadhan. Statistically hiding commitments and statistical zero-
knowledge arguments from any one-way function. SIAM Journal on Com-
puting, 39(3):1153–1218, 2009.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-
knowledge protocols. In Hugo Krawczyk, editor, CRYPTO’98, volume
1462 of LNCS, pages 408–423. Springer, Heidelberg, August 1998.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-
box constructions for secure computation. In Jon M. Kleinberg, editor,
38th ACM STOC, pages 99–108. ACM Press, May 2006.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential
for complexity based cryptography (extended abstract). In 30th FOCS,
pages 230–235. IEEE Computer Society Press, October / November 1989.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryp-
tography on oblivious transfer - efficiently. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer, Hei-
delberg, August 2008.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In 21st ACM STOC, pages 44–61.
ACM Press, May 1989.

[Kiy14] Susumu Kiyoshima. Round-efficient black-box construction of compos-
able multi-party computation. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 351–368.
Springer, Heidelberg, August 2014.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,
pages 388–397. Springer, Heidelberg, August 1999.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy. CRC press, 2014.

213

[KMO14] Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto.
Constant-round black-box construction of composable multi-party com-
putation protocol. In Yehuda Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 343–367. Springer, Heidelberg, February 2014.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, vol-
ume 1109 of LNCS, pages 104–113. Springer, Heidelberg, August 1996.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge
in poly-loalgorithm rounds. In 33rd ACM STOC, pages 560–569. ACM
Press, July 2001.

[LP09] Huijia Lin and Rafael Pass. Non-malleability amplification. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 189–198. ACM Press,
May / June 2009.

[LP11a] Huijia Lin and Rafael Pass. Concurrent non-malleable zero knowledge
with adaptive inputs. In Yuval Ishai, editor, TCC 2011, volume 6597 of
LNCS, pages 274–292. Springer, Heidelberg, March 2011.

[LP11b] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments
from any one-way function. In Lance Fortnow and Salil P. Vadhan, edi-
tors, 43rd ACM STOC, pages 705–714. ACM Press, June 2011.

[LP12] Huijia Lin and Rafael Pass. Black-box constructions of composable pro-
tocols without set-up. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 461–478. Springer, Heidel-
berg, August 2012.

[LP15] Huijia Lin and Rafael Pass. Constant-round nonmalleable commitments
from any one-way function. Journal of the ACM, 62(1):5:1–5:30, March
2015.

[LPTV10] Huijia Lin, Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan
Venkitasubramaniam. Concurrent non-malleable zero knowledge proofs.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 429–
446. Springer, Heidelberg, August 2010.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam.
Concurrent non-malleable commitments from any one-way function. In
Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 571–588.
Springer, Heidelberg, March 2008.

[LZ11] Yehuda Lindell and Hila Zarosim. Adaptive zero-knowledge proofs and
adaptively secure oblivious transfer. Journal of Cryptology, 24(4):761–
799, October 2011.

214

[MMY06] Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. Generalized envi-
ronmental security from number theoretic assumptions. In Shai Halevi
and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 343–
359. Springer, Heidelberg, March 2006.

[MOSV06] Daniele Micciancio, Shien Jin Ong, Amit Sahai, and Salil P. Vadhan.
Concurrent zero knowledge without complexity assumptions. In Shai
Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages
1–20. Springer, Heidelberg, March 2006.

[MR92] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 392–404.
Springer, Heidelberg, August 1992.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryp-
tology, 4(2):151–158, 1991.

[NOVY98] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung.
Perfect zero-knowledge arguments for NP using any one-way permuta-
tion. Journal of Cryptology, 11(2):87–108, 1998.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In 21st ACM STOC, pages 33–43. ACM
Press, May 1989.

[OOR+14] Claudio Orlandi, Rafail Ostrovsky, Vanishree Rao, Amit Sahai, and
Ivan Visconti. Statistical concurrent non-malleable zero knowledge. In
Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 167–
191. Springer, Heidelberg, February 2014.

[OPV10] Rafail Ostrovsky, Omkant Pandey, and Ivan Visconti. Efficiency pre-
serving transformations for concurrent non-malleable zero knowledge. In
Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 535–
552. Springer, Heidelberg, February 2010.

[OPV15] Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti. Impossibility
of black-box simulation against leakage attacks. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of
LNCS, pages 130–149. Springer, Heidelberg, August 2015.

[OW93] Rafail Ostrovsky Ostrovsky and Avi Wigderson. One-way functions are
essential for non-trivial zero-knowledge. In 2nd ISTCS, pages 3–17. IEEE
Computer Society, June 1993.

[Pan14] Omkant Pandey. Achieving constant round leakage-resilient zero-
knowledge. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS,
pages 146–166. Springer, Heidelberg, February 2014.

215

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to
protocol composition. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 160–176. Springer, Heidelberg, May 2003.

[PLV12] Rafael Pass, Huijia Lin, and Muthuramakrishnan Venkitasubramaniam.
A unified framework for UC from only OT. In Xiaoyun Wang and Kazue
Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 699–717.
Springer, Heidelberg, December 2012.

[PPS15] Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based
non-black-box simulation and four message concurrent zero knowledge
for NP. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 638–667. Springer, Heidelberg,
March 2015.

[PR05a] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments.
In 46th FOCS, pages 563–572. IEEE Computer Society Press, October
2005.

[PR05b] Rafael Pass and Alon Rosen. New and improved constructions of non-
malleable cryptographic protocols. In Harold N. Gabow and Ronald Fa-
gin, editors, 37th ACM STOC, pages 533–542. ACM Press, May 2005.

[PR08] Rafael Pass and Alon Rosen. New and improved constructions of nonmal-
leable cryptographic protocols. SIAM Journal on Computing, 38(2):702–
752, 2008.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero
knowledge with logarithmic round-complexity. In 43rd FOCS, pages
366–375. IEEE Computer Society Press, November 2002.

[PRT13] Rafael Pass, Alon Rosen, and Wei-Lung Dustin Tseng. Public-coin par-
allel zero-knowledge for NP. Journal of Cryptology, 26(1):1–10, January
2013.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving
universal composability without trusted setup. In László Babai, editor,
36th ACM STOC, pages 242–251. ACM Press, June 2004.

[PTV14] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkita-
subramaniam. Concurrent zero knowledge, revisited. Journal of Cryp-
tology, 27(1):45–66, January 2014.

[PTW09] Rafael Pass, Wei-Lung Dustin Tseng, and Douglas Wikström. On the
composition of public-coin zero-knowledge protocols. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 160–176. Springer,
Heidelberg, August 2009.

216

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-
round concurrent zero-knowledge. In Ran Canetti, editor, TCC 2008, vol-
ume 4948 of LNCS, pages 553–570. Springer, Heidelberg, March 2008.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party pro-
tocols from one-way functions. In Omer Reingold, editor, TCC 2009, vol-
ume 5444 of LNCS, pages 403–418. Springer, Heidelberg, March 2009.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis
(EMA): measures and counter-measures for smart cards. In E-smart,
pages 200–210, 2001.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of
zero-knowledge proofs. In Jacques Stern, editor, EUROCRYPT’99, vol-
ume 1592 of LNCS, pages 415–431. Springer, Heidelberg, May 1999.

[Ven14] Muthuramakrishnan Venkitasubramaniam. On adaptively secure proto-
cols. In Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume
8642 of LNCS, pages 455–475. Springer, Heidelberg, September 2014.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-
malleability amplification. In 51st FOCS, pages 531–540. IEEE Com-
puter Society Press, October 2010.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

217

218

List of Earlier Publications

This thesis is based on the following earlier publications.

Chapter 3.

Susumu Kiyoshima. Statistical concurrent non-malleable zero-knowledge from one-
way functions. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO
2015, Part II, volume 9216 of LNCS, pages 85–106. Springer, Heidelberg, August
2015. ©IACR 2015, http://dx.doi.org/10.1007/978-3-662-48000-7_5.

Chapter 4.

Susumu Kiyoshima. Constant-round leakage-resilient zero-knowledge from collision
resistance. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 93–123. Springer, Heidelberg, May 2016.
©IACR 2016, http://dx.doi.org/10.1007/978-3-662-49896-5_4.

Chapter 5.

Susumu Kiyoshima. An alternative approach to non-black-box simulation in fully con-
current setting. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part
I, volume 9014 of LNCS, pages 290–318. Springer, Heidelberg, March 2015. ©IACR
2015, http://dx.doi.org/10.1007/978-3-662-46494-6_13.

Chapter 6.

Susumu Kiyoshima. Round-efficient black-box construction of composable multi-party
computation. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 351–368. Springer, Heidelberg, August 2014. ©IACR
2014, http://dx.doi.org/10.1007/978-3-662-44381-1_20.

219

http://dx.doi.org/10.1007/978-3-662-48000-7_5
http://dx.doi.org/10.1007/978-3-662-49896-5_4
http://dx.doi.org/10.1007/978-3-662-46494-6_13
http://dx.doi.org/10.1007/978-3-662-44381-1_20

	Introduction
	Zero-knowledge Proofs and Secure Computation
	Quest for Stronger Security
	Our Results
	Results about Zero-knowledge Protocols
	Result about Secure Computation

	Outline

	Preliminaries
	Notations
	Basic Definitions
	Commitment Schemes
	Basic Definitions
	Extractability
	Concurrent Extractability
	Non-malleability
	CCA Security

	Interactive Proofs
	Basic Definitions
	Witness Indistinguishability
	Zero Knowledge
	Proof of Knowledge

	Universal Arguments

	Statistical Concurrent Non-malleable Zero-knowledge from One-way Functions
	Background
	Our Result
	Outline

	Overview of Our Techniques
	Previous Techniques
	Our Techniques

	Preliminaries
	Concurrently Extractable Commitment Schemes
	One-one CCA-secure Commitment Schemes
	Witness Indistinguishable Proofs and Arguments
	Statistical Concurrent Non-malleable Zero-knowledge Arguments

	Our Statistical Concurrent Non-malleable ZK Argument
	Proof of Soundness
	Proof of Statistical CNMZK Property

	Appendices to Chapter 3
	Constant-round One-one CCA-secure Commitment Scheme from OWF
	On the Robust Extractability of CECom

	Constant-round Leakage-resilient Zero-knowledge from Collision Resistance
	Background
	Our Results
	Open Questions
	Related Works
	Outline

	Overview of Our Techniques
	Previous Techniques
	Our Techniques

	Preliminaries
	Notations
	Leakage-resilient Zero-knowledge
	Hamiltonicity Commitment Scheme
	Adaptive Hamiltonicity Commitment Scheme
	Barak's Non-black-box Zero-knowledge Protocols
	Somewhat Extractable Commitment Schemes

	Building Blocks
	Special-purpose Encrypted Barak's Preamble
	Special-purpose Instance-dependent Commitment

	Our Leakage-resilient Zero-knowledge Argument
	Soundness
	Leakage-resilient Zero-knowledgeness

	Non-black-box Zero-knowledge in the Fully Concurrent Setting
	Background
	Our Result
	Outline

	Overview of Our Techniques
	Known Techniques
	Our Techniques
	Comparison with the Non-black-box Simulation Technique of Goyal STOC:Goyal13

	Preliminaries
	Notations
	Tree Hashing
	Concurrent Zero-Knowledge Arguments
	PCP and Universal Argument
	Forward-secure PRG

	Our Public-Coin Concurrent Zero-Knowledge Argument
	Concurrent Zero-knowledge Property
	Argument of Knowledge Property

	Round-Efficient Black-Box Construction of Composable Multi-Party Computation
	Background
	Our Result
	Outline

	Overview of Our CCA-Secure Commitment Scheme
	Building Block 1: Strongly Extractable Commitment Scheme
	Building Block 2: One-One CCA-Secure Commitment Scheme
	CCA-Secure Commitment Scheme from the Building Blocks

	Preliminaries
	Shamir's Secret Sharing
	Strong Computational Binding Property of Commitment Schemes.
	Strongly/Weakly Extractable Commitment Schemes
	Trapdoor Commitment Schemes

	Building Blocks
	Strongly Extractable Commitment Scheme
	One-One CCA-Secure Commitment Scheme

	CCA-Secure Commitment Scheme
	Proof of CCA Security
	Proof of Robustness

	Black-Box Composable MPC Protocol
	Appendix to Chapter 6
	One-One CCA Commitment for Long Tags from Parallel CCA Commitment for Short Tags

	Conclusion
	Acknowledgment
	Bibliography
	List of Earlier Publications

