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Abstract

Ultracold atoms trapped in optical lattices offer a clean and highly flexible experimental
platform to investigate exotic phases of condensed matter. Recently, nonprimitive optical
lattices with multiple lattice sites per unit cell have been realized, revealing nontrivial
ordering and dynamics arising from the orbital degree of freedom. In this thesis, we
present a series of experiments with ultracold ytterbium (Yb) atoms in a Lieb lattice and
dimerized cubic lattice geometry, which are realized by optical means.

In a Lieb lattice, a flat band appears due to destructive interference of the tunneling.
It is a fascinating question whether a Bose-Einstein condensate (BEC) is stable in a flat
band. Experimental study for this question is hampered by the fact that a flat band is in an
excited state in the case of Lieb lattice. We have developed a method to coherently transfer
a BEC of 174Yb into the flat band of Lieb lattice, and studied the stability of the BEC
loaded in the flat band. We also investigate the inter-sublattice dynamics of the system by
projecting the sublattice population onto the band population. This measurement shows
the formation of the localized state in the flat band. Furthermore, we measure the lowest
three bands of an optical Lieb lattice for a BEC in a momentum-resolved manner. A BEC,
which initially prepared around zero quasimomentum in the lattice, is transported to a
desired quasimomentum by applying a constant force. The energy dispersion of the lowest
band is reproduced by integrating measured group velocities. The excited band energy is
reconstructed by measuring the gap from the lowest band with the same quasimomentum,
which can be extracted by from the oscillation of the sublattice populations after preparing
a superposition of the band eigenstates. It is revealed that the second band, which should
be flat in a single-particle description, is shifted and distorted around the Brillouin zone
edge as the interaction strength increases.

A Lieb lattice system has a mathematical analogy to a three-level system with Λ-
type transition. Most interestingly, a localized state in a flat band of the Lieb lattice
corresponds to the dark state in the three-level system. By adiabatically changing the
tunneling amplitudes in an counter-intuitive order, we coherently transfer atoms from
one sublattice to another without populating the intermediate sublattice, which can be
regarded as a spatial analogue of stimulated Raman adiabatic passage. We also success-
fully observe a matter-wave analogue of Autler-Townes doublet effect using the optical
Lieb lattice.

173Yb is characterized by SU(N = 2I +1) symmetric repulsive interaction for nuclear
spin I = 5/2. For this large-spin system, Pomeranchuk cooling is enhanced; large-spin
degrees of freedom can effectively cool down the system by absorbing the entropy from
motional degrees of freedom. The precise control of the spin degree of freedom provided
by optical pumping technique enables us a straightforward comparison between SU(2)
and SU(4). Our main finding is that larger singlet-triplet imbalance is observed in a
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dimerized cubic lattice for SU(4) spin system compared with SU(2) as a consequence of
Pomeranchuk cooling effect. This is an important step towards the realization of novel
SU(N > 2) quantum magnetism.
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Chapter 1

Introduction

In solid state physics, the combination of huge number of particles and Coulomb inter-
actions makes a detailed understanding of the many-body phenomena very difficult. For
some materials, a band theory description in non-interaction regime is effective, which
explains the distinction between metallic, semi-conducting and insulating states, but it is
particularly in the complex material with strong interactions where novel physical phe-
nomena appear. Examples range from frustrated spin systems [3] to high-temperature su-
perconductivity [4]. A problem toward understanding these phenomena is the associated
many-body state emerging at low temperatures, where the strong correlations between
the microscopic particles give rise to novel quantum phases.

Typical approach in condensed-matter physics is to introduce simplified model sys-
tems for the complex many-body problem: one attempts to formulate minimal models
which include few crucial degrees of freedom necessary to reproduce the observed physi-
cal behavior. Yet, such models are the result of several assumptions and approximation.
For several materials, the formulation of a simplified model system is difficult due to
non-negligible contributions of the long-range interactions, higher lattice orbital effects,
coupling between electron and phonon modes in the crystal, and so on. In addition,
understanding even the apparently-simple model systems is exceedingly difficult in the
low-temperature regime, as they have found to be numerically intractable due to the ex-
ponentially growing number of quantum states. Therefore, the model’s ability to provide
a correct description of the system’s key properties needs to be verified.

One of the minimal models for interacting fermionic particles in a crystal is the Fermi-
Hubbard model [5]. In the model, we simplify the crystalline structure by periodic lattice
sites, which are filled with spin 1/2 particles that tunnel between the neighbouring sites
and feel an interaction energy when occupying the same site. In spite of the simplicity,
the Fermi-Hubbard model includes many of the diverse phenomena driven by the inter-
play between charge and spin degrees of freedom. For a three-dimensional cubic lattice,
the Fermi-Hubbard model predicts a cross-over from a metallic to Mott-insulating state
at half filling, and a phase transition to an antiferromagnetically ordered state at low
temperature. Despite intense study using this model by the theoretical solid state com-
munity, the exact ground-state for the repulsively-interacting two-compoent ferimons in
the simple cubic lattice is still not clear except at half filling [6]. Furthermore, the case of
more complex lattice structures, which have multiple sites per unit cell, is equally little
understood.
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CHAPTER 1 INTRODUCTION

Ultracold quantum gases in optical lattices [7, 8] emerged as a promising experimental
platform toward further understanding of solid state systems. The basic idea is to cool
a dilute atomic gas down to quantum degeneracy and introduce the gas into an optical
lattice, which is created by interference of counter-propagating laser beams. Due to the
atom-light interaction, the atoms feel a periodical potential. The role of the electrons
moving in a crystal is then taken by the atoms, while the crystalline structure is formed
by the optical lattice. This artificial solid is a defect-free environment and has high
controllability of parameters in the system. The concept to study a quantum system by
choosing a physically different, but fully controllable system with the same properties
originates from Richard P. Feynman; quantum simulation [9].

In real solids, the temperature required to reach degeneracy regime is typically on the
order of the room temperature. In an optical lattice, that is not the case, as the lattice
spacing is on the order of 1 µm, which is a factor of 104 larger than in solids. Due to such
a very low density of dilute atoms in an optical lattice, extremely low temperatures close
to a few nK are required to uncover the quantum nature of the system. A key technique
to reach these temperature scale was brought by the laser cooling and evaporative cooling
[10]. A breakthrough came with the first realization of Bose-Einstein condensation of 87Rb
and 23Na [11, 12], where a macroscopic number of atoms occupies the same quantum
state. Shortly after, the degenerate Fermi gas was first realized with 40K [13]. Such
breakthroughs marked the advent of the prosperous era of ultracold atom physics. Cold
atom research aimed initially at revealing the single-particle coherence effects induced
by quantum statics, but the research field rapidly expanded and developed towards the
investigation of inter-atomic interactions. A lot of experiments succeeded in observing
quantum effects induced by strong interactions, as represented by a detailed understanding
of the BEC-BCS crossover in Fermi gases [14, 15, 16].

After the possibility was pointed out in 1998 that ultracold atoms trapped in an optical
lattice accurately implement the Hubbard model, the first experimental demonstration
was made in 2001 with the observation of the superfluid to Mott-insulator transition for
bosonic atoms [17]. This experiment ensures the capability of ultracold atoms to simulate
and study quantum phases within the Bose-Hubbard model, and promoted a series of
further experimental studies with interacting bosonic atoms [18, 19, 20, 21]. Particularly,
the realization of quantum gas microscope for bosonic atoms enables spatial observation
of Mott-insulating shell structure on the single-site level [22, 23, 24].

Starting from the observation of the Fermi surface of non-interacting Fermi gas, many
experiments with ultracold fermionic atoms in an optical lattice have been performed, such
as mixtures with bosonic atoms [25, 26, 27, 28], noise-correlation measurement [29], An-
derson localization [30], and transport properties [31]. The unique control of inter-atomic
interaction by Feshbach resonances allowed the study of strongly interacting fermionic
gases in optical lattices, which lead to the first realization of a fermionic Mott-insulating
state for repulsive interactions [32, 33].

These experiments were important milestones toward the major goal to realize quan-
tum simulator with optical lattice system, and the next milestone was to observe Néel
ordered states in optical lattices. Yet, further progress had been hampered by the ex-
tremely low temperature required, where the relevant energy scale is given by the exchange
energy. This scale is typically much lower than the already very small tunneling and inter-
action energy in cold atom systems, and therefore leads to the temperature requirements
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SECTION 1.0

in the lattice on the order of 1 nK. A key for quantum magnetism in optical lattices
was the local entropy redistribution scheme, proposed in [34, 35, 36]. The basic idea is
to make the entropy reservoir around the outer region within the trap by manipulating
the trap confinement or lattice geometry. Even though the entire entropy in an optical
lattice conserves, the reservoir absorbs entropy, which leads to low entropy at central re-
gion of the trap. This concept was first demonstrated with an anisotropic and dimerized
lattice, and succeeded in realizing a short-range quantum magnetism in the lattices [37].
By using a compensated optical lattice, in which the confinement of each lattice beam
is compensated by a blue-detuned laser beam, short-range antiferromagnetic correlations
were observed even in a three dimensional cubic lattice [38]. Most surprisingly, the an-
tiferromagnetic long-range order with 6Li atoms in two dimensional square lattice was
realized very recently [39]. They use the combined potential of the optical lattice and
the anti-confinement that is generated by the digital micromirror device (DMD). Thus,
development in experimental technique for manipulating and detecting fermionic atoms
in optical lattices enables us to explore the Fermi-Hubbard phase diagram in theoretically
challenging regimes.

Taking advantage of atoms internal degrees of freedom also permits to expand the
possibilities for quantum simulation, and stimulated a growing interest in several atomic
species, instead of the widely used alkali elements (40K and 6Li). Among others, the atomic
species belonging to the category of alkaline-earth-like atoms got special attention, such
as calcium, strontium and ytterbium. Alkaline-earth-like elements have been primarily
used in the recent past as powerful frequency standards: their atomic structure includes
low-lying metastable electronic levels and the associated ultra-narrow optical transitions
provides a remarkable intrinsic precision. Since the first realization of the optical lattice
clock with alkaline-earth-like atoms [40], many lattice clock systems around the world
were assembled, and currently provide the most precise frequency standards at the level
of 10−18 [41, 42], superior to the performance of the atomic clocks. Along with use of
alkaline-earth-like atoms in quantum metrology, their potential for quantum simulation
arose when the first bosonic isotope of ytterbium was cooled to degeneracy regime [43].
Since then, various isotopes of alkaline-earth-like species have been brought to quantum
degeneracy [44, 45, 46, 46, 47, 48, 49], and even a fermionic Mott insulating state has
already been realized [50]. Among them, the fermionic 87Sr and 173Yb are promising
candidates for the quantum simulation of strongly-correlated phases, owing to their strong
interactions and nuclear spin properties. Their positive scattering lengths a = 10.55
nm for 173Yb [51] and a = 5.09 nm for 87Sr [52] correspond to repulsive interactions,
which is the case of interest in the context of most theoretical studies. In addition, these
fermionic isotopes possess high nuclear spins I = 5/2 for 173Yb and I = 9/2 for 87Sr,
which are strongly decoupled from the electron degree of freedom due to the absence of
electronic angular momentum, and permits the emergence of a high, unique symmetry
of interactions. This SU(N = 2I + 1) symmetry attracts theoretical interests, as it is
predicted to have drastic effect on the properties of interacting fermionic many-body
state [52], and have the possibility of emergence of novel quantum phases, for example,
SU(N > 2) quantum magnetism [53, 54]. Ultracold alkaline-earth-like atoms in optical
lattices are suitable tool to verify such theoretical predictions, as there are (yet) no known
analogue in nature.

Apart from atoms internal degrees for freedom, complex lattice geometries also provide
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CHAPTER 1 INTRODUCTION

unique physics, owing to their special band structure and orbital degrees of freedom. By
superimposing optical lattices with different lattice constant, or interfering more than
three laser beams at different angles, a lot of non-standard optical lattices are realized
for ultracold atoms, and fascinating experiments are performed. One dimensional optical
superlattice is the simplest example, where the superexchange energy is directly measured
[55]. As for two dimensional lattice system, an optical honeycomb lattice [56], optical
triangular lattice [57], optical checker board lattice [58], optical kagome lattice [59] are so
far realized. In the optical honeycomb lattice, manipulation of Dirac points is reported.
A large variety of magnetic phases is simulated in the optical triangular lattice. In the
optical checker board lattice, a superfluid in higher bands is realized. Kagome lattice has
a flat band, where it is predicted that a bosonic gas in the band shows novel supersolidity,
meaning the counter-intuitive coexistence of superfluid and crystalline order [60]. Yet,
experimental access is hampered by the fact that the flat band exists in an excited state.

In this thesis, we present the experimental realization of an optical Lieb lattice for
ultracold ytterbium atoms [61]. The Lieb lattice geometry [62] is a square lattice with
additional sites at each bond center, and therefore is also called decorated square lattice.
Such a structure is identical to the three-band d-p model, which describes the CuO2

plane of high-Tc superconductors [63, 64, 65]. The Lieb lattice has a flat band and Dirac
cones in the energy spectrum. Emergence of flat-band ferromagnetism in the lattice at
sufficiently low temperature was rigorously proved [66]. Ultracold Fermi gases in an optical
Lieb lattice is a promising experimental platform to study such ordered state. The Lieb
lattice or its one-dimensional analog (sawtooth lattice) was realized in a photonic lattice
[67, 68, 69] and polaritonic systems [70]. However, optical lattice realization has definite
advantages in terms of simple and strong interactions, dynamical controllability of system
parameters, and availability of both bosonic and fermionic systems.

Our first work during the course of this thesis was to demonstrate novel manipulation
and detection of a BEC in a flat band by developing a dynamically tunable optical Lieb
lattice [61]. We invent a method to engineer the population and phase on each sublattice
site, which enables us to coherently transfer atoms into the flat band and to observe frozen
motion of atoms on a specific sublattice. In addition, almost arbitrary superposition of
band eigenstates can be prepared, which drives coherent oscillation modes in the Lieb
lattice and enables mapping out the band structure. This high controllability inspired
our second work [71], where we measured the lowest three bands of an optical Lieb lattice
for a BEC in a momentum-resolved manner. This work systematically investigated the
interaction effect on the band structure, in particular a flat band. Our third work shed
light on a mathematical analogy of a Lieb lattice to a three-level system with Λ-type
transition [72]. A key is the existence of dark eigenstates forming a flat band in an
optical Lieb lattice. This analogy allows us to coherently transfer atoms from a sublattice
to another without populating the intermediate sublattice in the lattice, which can be
regarded as a spatial version of stimulated Raman adiabatic passage in the three-level
system [73, 74, 75]. Our fourth work was to investigate high-spin symmetry effects on a
short-range quantum magnetism of ultracold fermionic atoms in a dimerized cubic lattice.
The spin number of 173Yb is precisely manipulated by optical pumping technique, which
allows a straightforward comparison between SU(2) and SU(4) spins in a dimer. This
work is an important milestone toward future realization of novel SU(N > 2) quantum
magnetism.
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SECTION 1.0

Outline of this thesis

This thesis is organized as follows.

• Chapter2 introduces theoretical background for optical superlattices, including a
Lieb lattice.

• Chapter3 gives the details of our experimental apparatus and procedures used for
optical Lieb lattice experiments with ytterbium atoms.

• Chapter4 describes a series of experiments with a bosonic matter-wave of 174Yb in
an optical Lieb lattice.

• Chapter5 is devoted to the momentum-resolved measurement of the Bloch bands
for a BEC of 174Yb in an optical Lieb lattice.

• Chapter6 presents demonstration of spatial adiabatic passage of ultracold fermionic
atoms of 171Yb in a Lieb lattice geometry.

• Chapter7 reports the creation of the SU(4)-spin system of 173Yb by optical pumping
and the result of comparison with the cases of SU(2) and SU(4) in a dimerized lattice.

• Chapter8 briefly summarizes the works in this thesis and gives future prospects in
these experimental systems.
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Chapter 2

Basic theory for an optical
superlattice

In this chapter, we introduce the theoretical backgrounds for optical superlattices. First,
we begin with the tight-binding model, where the on-site interaction is neglected.

In this chapter, basic properties of an optical Lieb lattice are described. First, the
Hubbard model of a Lieb lattice is introduced. After optical lattice potentials in our sys-
tem is given in the section 2.2, we present a single-particle band structure calculated from
the potential in 2.3. In section 2.4, the Hubbard parameters of the tunneling amplitudes
and on-site interactions in the lattices are calculated. Using the Hubbard parameters, the
mean-field theory and the atomic limit calculation of the SU(N ) Fermi-Hubbard model
are presented in the sections 2.5, 2.6, respectively.

2.1 Tight-binding model

2.1.1 Dimerized lattice

The tight-binding Hamiltonian in the dimerized lattice is given in

H =

 ∆ −te−iqxd/2 − tde
iqxd/2

−teiqxd/2 − tde
−iqxd/2 −∆

 , (2.1.1)

where td is the intra-dimer tunneling, t is the inter-dimer tunneling, and 2∆ corresponds
to the energy difference between the sublattices.

2.1.2 Lieb lattice

A Lieb lattice is schematically illustrated in Fig.2.1.2. It is the square lattice decorated
with the additional site at each bond center. For a single particle regime, the nearest-
neighbor tight-binding Hamiltonian in the Lieb lattice is given by

H = −J
∑
⟨i,j⟩

c†icj +
∑
i

ϵic
†
ici, (2.1.2)

6



SECTION 2.2 OPTICAL LATTICE POTENTIAL

where ⟨i, j⟩ denotes the nearest-neighboring sites and J is the tunneling amplitude. We
set the site offset energy as ϵB = ϵC = −ϵA = ∆, and write the Hamiltonian in the bases
of the Bloch sums |q, X⟩ = 1√

N

∑
i∈X eiq·kic†i |0⟩ as

H =


∆ −2Jcos(qxd/2) 0

−2Jcos(qxd/2) −∆ −2Jcos(qyd/2)

0 −2Jcos(qyd/2) ∆

 , (2.1.3)

where d is the lattice constant. By diagonalizing this Hamiltonian, we obtain the eigen-
values:

E = ∆,±
√

∆2 + 4J2 [cos(qxd/2)2 + cos(qyd/2)2]. (2.1.4)

The energy dispersion is plotted in the Fig.2.1.2 for ∆ = 0. The Lieb lattice has a
dispersionless band (flat band, in other words) at zero energy, and at q = (±π/d,±π/d)
the 1st band and 3rd band touch the 2nd band.

For ∆ = 0, the eigenstate of each band can be written as

|1st, q⟩ ∝ cos(qxd/2) |q, B⟩+
√

cos2(qxd/2) + cos2(qyd/2) |q, A⟩+ cos(qyd/2) |q, C⟩ ,
(2.1.5)

|2nd, q⟩ ∝ cos(qyd/2) |q, B⟩ − cos(qxd/2) |q, C⟩ , (2.1.6)

|3rd, q⟩ ∝ cos(qxd/2) |q, B⟩ −
√
cos2(qxd/2) + cos2(qyd/2) |q, A⟩+ cos(qyd/2) |q, C⟩ .

(2.1.7)

The 2nd line means that a particle in 2nd band localizes at B-site and C-site regardless of
q. This is because the tunneling amplitudes from B, C-site to A-site destructively interfere
each other. Such localized states construct a flat band. This flat band is intrinsically
different from a narrow band in a square lattice with deep potential. While a small
hopping in the square lattice results in the narrow band, a flat band appears even if
particles in a Lieb lattice are moving around.

(a) (b)

A B

Position

Figure 2.1.1: (a)Dimmerized lattice configuration and (b) the band structure in the tight-
binding model with ∆ = 0, t = 0.5td.
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A B

(a) (b)

unit cell

C d

tt

Figure 2.1.2: (a)Lieb lattice configuration and (b) the band structure in the tight-binding
model with ∆ = 0.

2.2 Optical lattice potential

Ultracold atoms in an optical lattice are expected to be able to simulate the quantum
many-body problems. Since the optical lattice is created by the interference of the counter-
propagating lasers, it is free from the impurities, defects, and distortions. This feature
ensures that a experiment in the optical lattice has good agreement with the theoretical
models. In addition, the optical lattice system has high-controllability of the parameters
appearing in the Hubbard model. In this section, we introduce the form of the optical
lattice potential used in this thesis.

2.2.1 Monochromatic lattice

One-dimentional monochromatic lattice is the simplest optical lattice, which is produced
by interference of the two counter-propagating lasers. The potential can be written as

V (x) = −V0cos2(kLx), (2.2.1)

where kL = 2π/λ is the wave number of the laser, V0 is the potential depth. For conve-
nience, we introduce the scaled lattice depth s such as

s =
V0
ER

, ER =
ℏ2k2

2m
, (2.2.2)

where m is the atomic mass, and ER is called recoil energy.

2.2.2 1D superlattice

Optical superlattice can be realized by superimposing the optical lattices with difference
lattice constants. Optical superlattice consisting of the monochromatic lattices with lat-
tice spacings of λ/2 (short lattice) and λ (long lattice) is given in

V (x) = −Vlongcos2(kLx)− Vshortcos
2(2kLx+ ϕ), (2.2.3)

where Vlong, Vshort is the depth of the short lattice and long lattice, respectively. ϕ is the
relative phase between the short lattice and long lattice.

8
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2.2.3 Lieb lattice

Our optical Lieb lattice consists of the square lattice with lattice spacing 532nm, more
square lattice with spacing 266nm, and one-dimensional diagonal lattice with spacing√
2× 266nm. For convenience, we call them long-square lattice, short-square lattice, and

diagonal-lattice, respectively. The potential is written as.

V (x, y) = −Vlong(cos2(kLx) + cos2(kLy))

−Vshort(cos2(2kLx) + cos2(2kLy))

−Vdiagcos2(kL(x− y) + π/2) (2.2.4)

where kL = 2π/(1064 nm) = π/(532 nm). The first, second, and third terms denote the
long-square lattice, short-square lattice, and diagonal lattice, respectively.

2.3 Band structure by optical lattice

The band structure is a key to understand the behavior of a particle in a periodic potential.
In this section, we introduce the numerical calculation method of the single-particle band
structure in an optical lattice. Single-particle Hamiltonian in a 1D periodic potential
(periodicity: d) is written as

H = H0 + V (x̂) =
ℏ2k̂2

2M
+ V (x̂), V (x̂+ a) = V (x̂). (2.3.1)

The problem is to solve Schrödinger equation for this Hamiltonian. The idea is to display
the matrix elements in terms of plane-wave and to diagonalize it. We set the system size
as L = Nsited (Nsite: the number of sites) and impose a periodic boundary condition. The
eigenstate of free particle Hamiltonian H0 is the plane-wave such as,

|k⟩ , ψk(x) = ⟨x|k⟩ = 1√
L
eikx, (2.3.2)

k =
2π

L
l, l = 0,±1,±2, · · · .

On the other hand, due to the periodicity, the potential V can be expanded in terms of
the plane-wave (Fourier components, in other words) whose wave-number coincides with
the reciprocal lattice vector K.

V (x̂) =
∑

m=0,±1,···

Vme
imKx̂, K =

2π

d
(2.3.3)

It is only when k− k′ is the integer multiple of K that a matrix element Vkk′ = ⟨k|V |k′⟩
has non-zero value (Remember eimK |k⟩ = |k +mK⟩):

Vkk′ =
∑

m=0,±1,···

Vmδk,k′+mK . (2.3.4)

The matrix (Vkk′) has block diagonal form, and the number of submatrices is equal to
Nsite because momentum k is quantized and the equation 2π

L
×Nsite = K determines the

9
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number of submatrices. Below we assume the number of sites is even Nsite = 2N ′
site. We

can take a series of momentum inside the 1st Brillouin zone [−K,K) as a label for the
submatrices, where

q =
2π

L
l, l = −N ′

site,−N ′
site + 1, · · · , N ′

site − 1. (2.3.5)

This q is so called quasi-momentum.
The eigenenergies and eigenstates can be obtained by digonalizing the submatrix

H(q) = H
(q)
0 + V (q) for each quasi-momentum. The eigenstates for H(q) labeled by band

index n should be superposition fo plane-wave:

|q, n⟩ =
∑

m=0,±1,···

A(q,n)
m |q +mK⟩ , (2.3.6)

ψ(n)
q (x) = ⟨x|q, n⟩ = 1√

L

∑
m=0,±1,···

A(q,n)
m ei(q+mK)x. (2.3.7)

For translational motion by the lattice constant d, ψ
(n)
q (x) is transformed as

ψ(n)
q (x+ d) = eiqdψ(n)

q (x). (2.3.8)

This is well-known Bloch theorem.

2.3.1 Monochromatic lattice

The one-dimensional monochromatic lattice induces a sinusoidal potential for atoms:

V (x) = V0sin
2(kLx) =

V0
2

(
1− e2ikLx + e−2ikLx

2

)
. (2.3.9)

Here, V0 is the lattice potential depth, and kL is the wave number of a laser beam. The
reciprocal lattice vector is K = 2kL. In this case, there are only two Fourier components
±K. Therefore, the submatrix H(q) has the form such as

H
(q)
ll′ = ⟨q + lK|

(
ℏ2k̂2

2M
+ V (x̂)

)
|q + l′K⟩

= ER ×



(
q
kL

+ 2l
)2

+ s
2

l = l′

− s
4

|l − l′| = 1

0 otherwise

(2.3.10)

with l, l′ = 0,±1,±2, · · · . s = V0/ER is lattice potential depth scaled by recoil energy

ER = ℏ2kL2

2M
. This matrix has infinite dimension. In actual numerical calculation, we have

to truncate it like setting maximum |l|, |l′| as l = lmax, and make it 2lmax + 1 dimensional
matrix. The maximum value should be large enough so that the calculation result becomes
the same for the larger matrix. As for the number of sites Nsite, we set it large enough

10
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Figure 2.3.1: Band structure of monochromatic lattices. s denotes the potential depth
scaled by the recoil energy ER. The deeper the lattice potential is, the larger the band
gap is, and the smaller the band width is, which means the suppressed tunneling.

so as to obtain smooth band structure since it determines step size of quasi-momentum
q. To show the band dispersion ϵ

(n)
q , we diagonalize Nsite pieces of submatrices H(q) and

plot the eigenvalues as a function of q (See Fig.2.3.1).

Using the eigenvector after diagonalization, we can calculate Bloch functions according
to Eq.2.3.7 and momentum distributions

|⟨k|q, n⟩|2 =
∑

m=0,±1,···

∣∣A(q,n)
m

∣∣2 δk,q+mK . (2.3.11)

Figure 2.3.2 shows the amplitude of the Bloch functions and the momentum distributions
for some band indices and quasimomenta.

Extension to 3D monochromatic lattice

Since the 3D monochromatic lattice can be separated into 1D case (H = Hx +Hy +Hz),
3D dispersion is given by the sum of 1D dispersions, and its eigenvector becomes multiple
of that of the 1D case:

ϵ(nx,ny ,nz)
q = ϵ(nx)

qx + ϵ(ny)
qy + ϵ(nz)

qz , (2.3.12)

ψ(nx,ny ,nz)
q (x) = ψ(nx)

qx (x)ψ(ny)
qy (y)ψ(nz)

qz (z). (2.3.13)

11
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(a) (b)Bloch function Momentum distribution

Figure 2.3.2: (a)Bloch functions and (b) momentum distributions in the monochromatic
lattices. The lattice depth is set to s = 3 for (a) and s = 10 for (b).

2.3.2 1D superlattice

Band structure of 1-dimensional optical superlattice can be calculated in the same way
for a monochromatic lattice. We represent the optical potential in Fourier components:

V (x) = −Vlongcos2 (kLx)− Vshortcos
2 (2kLx+ ϕ)

= −Vlong + Vshort
2

− Vlong
4

(
ei2kLx + e−i2kLx

)
− Vshort

4

(
ei(4kLx+ϕ) + e−i(4kLx+ϕ)

)
.

(2.3.14)

Then, the submatrix is

H
(q)
ll′ = Elong

R ×



(
q
kL

+ 2l
)2

− slong+slong
2

l = l′

− slong
4

|l − l′| = 1

− sshorte
iϕ

4
l − l′ = 2

− sshorte
−iϕ

4
l − l′ = −2

0 otherwise,

(2.3.15)

where

Elong
R =

ℏ2klongL

2

2M
, klongL =

2π

λlong
, K = 2klongL (2.3.16)

si = Vi/E
long
R (i = short, long). (2.3.17)

Figure 2.3.3 summarizes typical numerical calculation results in 1D superlattice with two
characteristic relative phases ϕ = π/2, 0.

12



SECTION 2.3 BAND STRUCTURE BY OPTICAL LATTICE

2.3.3 Lieb lattice

When calculating the band structure of an optical Leib lattice, we can not separately
consider the Hamiltonians of x and y due to existence of the diagonal lattice as in the
Eq.2.2.4. To represent the Hamiltonian in a matrix form, the momentum bases {(kx, ky)}
should be nested such as

{(kx, ky)} =
2π

L
{(−Nsite,−Nsite) , (−(Nsite − 1),−Nsite) , · · · , ((Nsite − 1),−Nsite)|

(−Nsite,−(Nsite − 1)) , · · · , ((Nsite − 1),−(Nsite − 1))|
...

(−Nsite, (Nsite − 1)) , · · · , ((Nsite − 1), (Nsite − 1))} . (2.3.18)

For the Lieb lattice potential in the Eq.2.2.4, the submatrix H (q) has the form such as

H (q)

ll′ = ⟨qx + lxK, qy + lyK|

(
ℏ2k̂

2

2M
+ V (x̂)

)
|qx + l′x, qy + l′y⟩

= Elong
R ×



(
qx
kL

+ 2lx

)2
+
(

qy
kL

+ 2ly

)2
+ sshort + slong + sdiag/2 l = l′

−slong/4 l− l′ = ±exor± ey

−sshort/4 l− l′ = ±2exor± 2ey

−sdiag/4× eiπ/2 l− l′ = ex − ey

−sdiag/4× e−iπ/2 l− l′ = −(ex − ey)

0 otherwise.

(2.3.19)

Here,

si = Vi/E
long
R (i = short, long, diag). (2.3.20)

To show the band dispersion ϵ(n)
q , we diagonalize (Nsite×Nsite) pieces of (2lmax+1)2 dimen-

sional submatrices H (q) and plot the eigenenergy as a function of q (See Fig.2.3.4). We
have to take special care for lattice potential depth (Vshort, Vlong, Vdiagonal) in order to pro-
duce a flat band and Dirac cones. Recalling the section 2.1, the tight-binding model of a
Lieb lattice includes only the nearest-neighbor hopping, which results in the energy spec-
trum in Fig.2.1.2. If there are residual hoppings like the next-nearest-neighbor hopping
in addition to the nearest-neighbor hopping, the actual band structure is distorted from
that of the Hubbard model. For example, a shallow lattice allows such residual hoppings.
Conversely, the deeper a lattice potential is, the better the system well approximates the
Hubbard model as can be seen in Tab.2.3.1.
The potential depth ratio between Vdiagonal and Vlong is important as well. If Vdiagonal =
Vlong, the potential depth of A-site is equal to that of B, C-site, but numerically calculated
band structure could not produce a flat-band and Dirac cones. If Vdiagonal is slightly larger
than Vlong, a flat-band and Dirac cones appear like Fig.2.3.4. Inferring from the fact,
we need to make Vdiagonal deeper in order to suppress the next-nearest-neighbor hopping
between B-site and C-site.
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Table 2.3.1: Band width of optical Lieb lattice. Left end column shows lattice depths
used in Fig.2.3.4. ∆Ei (i = 1st, 2nd, 3rd) means the width of each band, and ∆Etotal the
band width from top of 3rd band to bottom of 1st band, which is proportional to the
nearest neighbor tunneling as can be seen from Eq.2.1.4. ∆E2nd/∆Etotal indicates the
ratio of the residual tunnelings between next nearest neighbors and the nearest neighbor
tunneling.

(sshort, slong, sdiag) ∆E1st [ER] ∆E2nd [ER] ∆E3rd [ER] ∆Etotal [ER] ∆E2nd/∆Etotal

(13, 13, 15.5) 0.925 0.310 1.37 2.53 0.122

(20, 20, 23) 0.636 0.104 0.862 1.63 0.0638

(34, 34, 37.4) 0.350 0.0446 0.317 0.723 0.0616

In the Fig.2.3.5, we plot the Bloch functions

ψ(n)
qx,qz(x, z) = ⟨x, z|qx, qz, n⟩ =

1√
LxLz

∑
mx,mz=0,±1,···

A
n,(qx,qz)
(mx,mz)

ei(qx+mxK)xei(qz+mzK)z

(2.3.21)
and the momentum distributions

| ⟨kx, kz|qx, qz, n⟩ |2 =
∑

mx,mz=0,±1,···

∣∣∣An,(qx,qz)
(mx,mz)

∣∣∣2 δkx,qx+mxKδkz ,qz+mzK . (2.3.22)

In 1st band and 3rd band, the Bloch functions spread over all the sublattices, while A-
sublattice is not occupied in the 2nd band due to destructive interference of tunnelings
from B,C-sublattice. Momentum distribution in 2nd band has no amplitude at (kx, kz) =
(0, 0).
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Potential
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)=(40,10)
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Potential
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Figure 2.3.3: Typical numerical calculation results in the 1D superlattice. We show the
optical potential and Bloch wave function (left column), momentum distributions (center
column), and band structure (right column) up to 2nd band. (a) With the relative phase
of ϕ = π/2, the potential is dimerized. Bloch functions of 1st and 2nd band consist of
superposition of wave-packets localized at each sublattice. Since the periodicity of the
wave function is the same for the short lattice, the separation of the momentum peaks
becomes 4π/d. In dimerized lattice. The 1st-2nd band gap represents the intra-dimer
tunneling. Therefore, the deeper the short lattice is, the smaller the 1st-2nd band gap
becomes. (b)With relative phase of ϕ = 0, the staggered potential is created. Bloch
functions of 1st and 2nd band localize at each sublattice. Since the periodicity of the
wave function is the same for the long lattice, the separation of the momentum peaks
becomes 2π/d. In the staggered lattice, the 1st-2nd band gap represents the energy
difference between sublattices.

15



CHAPTER 2 BASIC THEORY FOR AN OPTICAL SUPERLATTICE

(a) (s
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Figure 2.3.4: Band structure of optical Lieb lattice. {(sshort, slong, sdiag)} denotes the
potential depths scaled by recoil energy ER. Upper figures show the band structure up to
3rd band. Lower figures show density plot of 2nd band.

Figure 2.3.5: Bloch function (upper row) and momentum distribution (lower row) in an
optical Lieb lattice of (sshort, slong, sdiag) = (20, 20, 23). The band index differs in each
column.
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(a) (b) (c)

Figure 2.4.1: Wannier functions |w(n)
i (x)|2 for the lowest three energy bands at the lattice

depth of s = 10.

2.4 Hubbard parameters in optical lattice

2.4.1 Simple cubic lattice

Wannier state

The eigenstate obtained by diagonalizing H(q) is Bloch state, which spreads all over the
lattice. By superimposing the Bloch states, the Wannier state can be constructed:

|i, n⟩ = 1√
N

∑
q

e−iqxi |q, n⟩ (2.4.1)

which localizes at a certain site xi with exponential decay. Figure 2.4.1 shows square of
Wannier functions |w(n)

i (x)|2 = | ⟨x|i, n⟩ |2 with n = 1, 2, 3 and i = 0. Wannier state is
defined as superposition of Bloch states. Since Bloch state has phase degree of freedom,
Wannier state is not uniquely determined. We usually optimize the phase of Bloch states
so that the resulting Wannier function w

(n)
i (x) is maximally localized at a site i. In

the following, the method to get such a Wannier function is described especially for a
monochromatic lattice. Bloch vectors are given as eigenvectors of Hamiltonian H(q).
Since the element of eigenvector is real number, the phase degree of freedom is only
plus or minus. After numerical diagonalization of Hamiltonian for each quasimomentum
q, the sign in front of the eigenvector is random. Then, we choose the sign so that
the eigenvector smoothly changes according to q. For example, starting from q = −π,
we calculate ||v(n)

q + v
(n)
q+∆q|| and ||v(n)

q − v
(n)
q+∆q|| using the eigenvectors v

(n)
q ,v

(n)
q+∆q, and

change the sign of v
(n)
q+∆q according to the magnitude relation:

v
(n)
q+∆q =

 v
(n)
q+∆q if ||v(n)

q + v
(n)
q+∆q|| > ||v(n)

q − v
(n)
q+∆q||

−v
(n)
q+∆q if ||v(n)

q + v
(n)
q+∆q|| ≤ ||v(n)

q − v
(n)
q+∆q||.

(2.4.2)

We repeat the above operation to determine the phase for all the quasimomenta. Figure
2.4.2 shows the norm of the normalized Bloch vectors and the resulting Wannier functions
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(a) (b)

Figure 2.4.2: (a) Norm of the normalized Bloch vector of 2nd band (left) without optimiza-
tion and (right) with optimization of the phase degree of freedom. After the optimization,
the norm is smoothed. (b) Wannier functions of 2nd band at lattice depth of s = 10 with
and without the optimization.

of 2nd band at the lattice depth s = 10. After the above optimization, a well-localized
Wannier function is achieved.

Hubbard parameters: tunneling amplitude and on-site interaction

The tunneling between lattice sites t
(n)
ij is defined as a matrix element of the Hamiltonian

in Wannier basis. With the Eq.2.4.1

t
(n)
ij = ⟨i, n|H |j, n⟩ = 1

N

∑
q

∑
p

eiqxie−ipxj ⟨q, n|H |p, n⟩

=
1

N

∑
q

eiq(xi−xj)ϵ(n)q , (2.4.3)

The last line in Eq.2.4.3 means that the hopping matrix element is Fourier transformation
of the energy dispersion. Figure 2.4.3 shows the calculated tunneling matrix elements for
(n, xi − xj) = (1, d), (1, 2d), (2, d).

The on-site interaction (extended to 3D lattice case ) is also defined by the Wannier
function such as

U =
4πℏ2as
m

∫
d3x |⟨x|i, 1⟩|4 (2.4.4)

where as is s-wave scattering length. In the Fig.2.4.4, we plot the on-site interaction in
3D monochromatic lattice with d = 266nm, as = 10.55nm.

2.4.2 Dimerized lattice

As mentioned in the section 2.4.1, since Wannier state is defined by superposition of Bloch
states and depends on the phase of Bloch state like |q, n⟩ → eiϕ(q,n) |q, n⟩, the Wannier
state is not determined uniquely. It is appropriate to select the phase and band mixing
so that the resulting Wannier state is well localized at a site. In this section, we describe
the determination method especially for 1D dimerized lattice.
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Figure 2.4.3: Tunneling matrix elements versus lattice depth. Tunneling to the nearest
neighbors in the lowest band (solid line), to the next nearest neighbors in the lowest
band (dashed line), and to the nearest neighbors in the 1st-excited band (dotted line) are
shown.

Figure 2.4.4: On-site interaction in 3D monochromatic lattice versus lattice depth. Here,
lattice constant is d = 266nm, and s-wave scattering length is as = 10.55nm.
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Figure 2.4.5: Extended tight-binding model in 1D dimerized lattice. We consider up to
the next-nearest-neighbor tunneling.

Extended tight-binding model

We start with the tight-binding model in 1D dimerized lattice. Since there exists not
only the nearest-neighbor tunneling but also the next-nearest-neighbor tunneling in the
realistic system, we consider the extended tight-binding model as

HETB = HTB +HS (2.4.5)

HTB = −td
∑
i

(
a†ibi +H.c.

)
− t
∑
i

(
a†ibi−1 +H.c.

)
(2.4.6)

HS =
∑
s=a,b

∑
i

[
−t′
(
s†isi−1 +H.c.

)
+ ϵs†isi

]
, (2.4.7)

where ϵ is offset energy, and t′ the next-nearest-neighbor tunneling as can be seen in
Fig.2.4.5. Substitute Fourier transformation for the creation and annihilation operators

ci =
1√
N

∑
k

eikxi,Sck c = {a, b} , S = {A,B} , (2.4.8)

where N represents the site number, i the index of unit cell, S the index of sublattice
within unit cell. For instance, the 1st term in Eq.2.4.6 becomes∑

i

a†ibi =
∑
i

(
1√
N

∑
k

e−ikxi,Aa†k

)(
1√
N

∑
k′

eik
′xi,Bbk′

)
(2.4.9)

=
1

N

∑
k,k′

∑
i

eik
′d/2e−i(k−k′)xi,Aa†kbk′ (2.4.10)

=
∑
k

eikd/2a†kbk. (2.4.11)

We used the xi,B = xi,A + d/2 from 1st line to 2nd line, and
∑

i e
−i(k−k′)xi,A = δk,k′ from

2nd line to 3rd line. Similarly calculating the other terms, Hamiltonian is diagonalized in
terms of quasimomentum k:

HETB =
∑
k

(
a†k b†k

)
T
(
ak
bk

)
(2.4.12)

T =

(
ϵ− t′cos (kd) −tdeikd/2 − teikd/2

−tde−ikd/2 − teikd/2 ϵ− t′cos (kd)

)
. (2.4.13)
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Determination method of Hubbard parameters

By diagonalizing the matrix T for every quasimomentum, we get the energy spectrum

ϵ
(n)
k and eigenvectors u

(n)
k =t

(
u
(n)
k,A u

(n)
k,B

)
. Parameters in T should be numerically opti-

mized so that the resulting energy spectrum would reproduce that calculated from optical
potential. Thus, tunneling parameters and energy offset can be determined. In addition,
appropriate band-mixing is also settled at the same time.
Eigenvectors have the phase degree of freedom: an eigenvector multiplied by undecided
phase ϕ(k, n) returns the same eigenvalue for the former eigenstate. Remaining problem
is to decide the phase ϕ(k, n) so that correct Wannier function is obtained. There are sev-
eral determination methods [76, 77]. Here, we adopt the method in [77]. The basic idea is
as follows. Each Bloch wave needs to be summed up in-phase at each site xi,S (S = A,B)
so that Wannier state could be well localized at the site. First, we choose the phase such
as

ϕ(k, n) = arg
[
e−ikxi,Su

(n)
k,Sψ

(n)
k (xi,S)

]
. (2.4.14)

Then, the resulting Wannier function

wi,S(x) =
∑
k

e−ikxi,S

2∑
n=1

u
(n)
k,Se

−iϕ(k,n)ψ
(n)
k (xi,S) (2.4.15)

would be well localized at the site xi,S. When calculating ϕ(k, n) at each k, n, we have to
choose a sublattice S. We calculate the amplitude

A
(i,S)
k,n =

∣∣∣eikxi,Su
(n)
k,Sψ

(n)
k (xi,S)

∣∣∣ (2.4.16)

for all the sublattices (A,B), and decide the phase ϕ(k, n) base on the sublattice which

maximizes A
(i,S)
k,n :

ϕ(k, n) = arg
[
e−ikxi,Smaxu

(n)
k,Smax

ψ
(n)
k (xi,Smax)

]
, (2.4.17)

where Smax is a sublattice (A or B) which maximizes the amplitude A
(i,S)
k,n .

Calculation result

Matrix T in Eq.2.4.13 is diagonalized with the same grid for band calculation from optical
potential, and we numerically optimize tunneling parameters and energy offset so that
summation of the square error of band-dispersion difference

E =
∑
k,n

(
ϵ
(n)
k (Real band)− ϵ

(n)
k (TB model)

)2
(2.4.18)

is minimized.
Figure 2.4.6 compares the band structure of dimerized lattice calculated from the optical
potential and extended tight-binding model. We can see that the band structure is well
reproduced. For the lattice depth of (sshort, slong) = (20, 15), the tunneling parameters
and energy offset become
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Figure 2.4.6: Band structure in dimerized lattice of (sshort, slong) = (20, 15) (solid line)
and the extended tight-binding model after fitting (dashed line).

Figure 2.4.7: Wannier function in dimerized lattice of (sshort, slong) = (20, 15).

• td = 0.8003 Elong
R

• t = 0.06369 Elong
R

• t′ = −0.009444 Elong
R

• ϵ = 14.34 Elong
R .

Figure 2.4.7 shows the Wannier function in dimerized lattice. Wannier functions obtained
through above procedures seem to be well localized at each sublattice.

Finally, we can calculate the on-site interaction. Our optical superlattice with d =
532nm is created along x-axis, while optical square lattice with d = 266 nm exists in yz
plane. Since these optical lattice are independent, on-site interaction can be obtained by
separately calculating the Wannier functions and multiplying them:

U =
4πℏ2as
m

∫
dx |wdimer(x)|4

∫
dy |w1D(y)|4

∫
dz |w1D(z)|4 . (2.4.19)

2.4.3 Lieb lattice

In this section, we introduce the Hubbard parameters for an optical Lieb lattice. Basically,
the method is the same for dimerized lattice which is described in the section 2.4.2.
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C

A B

(i,j) (i+1,j)

(i,j-1)tAA

tBB

tCC
tAC

tAB

tBC

d = 532nm
tBC

z

x

Figure 2.4.8: Extended tight-binding model in Lieb lattice.

As illustrated in the Fig. 2.4.8, the extended tight-binding model in our optical Lieb
lattice is

HETB = HTB +HBC +HS (2.4.20)

HTB =
∑
(i,j)

[
−tAB

(
a†(i,j)b(i,j) + a†(i,j)b

†
(i−1,j)

)
−tAC

(
a†(i,j)c(i,j) + a†(i,j)c(i+1,j−1)

)]
+H.c. (2.4.21)

HBC =
∑
(i,j)

[
−t↖↘BC

(
b†(i,j)c(i,j) + b†(i,j)c(i+1,j−1)

)
−t↙↗BC

(
b†(i,j)c(i+1,j) + b†(i,j)c(i,j−1)

)]
+H.c. (2.4.22)

HS =
∑
(i,j)

[
−tAA

(
a†(i,j)a(i+1,j) + a†(i,j)a(i,j+1) +H.c.

)
+ ϵAa

†
(i,j)a(i,j)

−tBB

(
b†(i,j)b(i+1,j) +H.c.

)
+ ϵBb

†
(i,j)b(i,j)

−tCC

(
c†(i,j)c(i,j−1) +H.c.

)
+ ϵCb

†
(i,j)c(i,j)

]
, (2.4.23)

where (i, j) denotes the index of unit cell, s†, s (s = a, b, c) creation and annihilation
operator at each sublattice, ϵS (S = A,B,C) energy offset. After Fourier transformation

s(i,j) =
1√
N

∑
k

eik·x(i,j),Ssk, (2.4.24)
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Hamiltonian is diagonalized for quasimomentum k = (kx, kz):

HETB =
∑
k

(
a†k b†k c†k

)
T


ak

bk

ck

 , T = TTB + TBC + TS (2.4.25)

TTB =


0 −2tABcos (kxd/2) −2tACcos (kzd/2)

−2tABcos (kxd/2) 0 0

−2tACcos (kzd/2) 0 0

 (2.4.26)

TBC =
∑

D=↖↘(−),↙↗(+)


0 0 0

0 0 −2tDBCcos (kxd/2± kzd/2)

0 −2tDBCcos (kxd/2± kzd/2) 0


(2.4.27)

TS =


ϵA − tAA [cos (kxd) + cos (kzd)] 0 0

0 ϵB − tBBcos (kxd) 0

0 0 ϵC − tCCcos (kzd)

 .

(2.4.28)

We diagonalize the matrix T for every quasimomentum, and numerically optimize each
parameter so that the resulting eigenvalues reproduce the band structure by optical po-
tential. When fitting, we assume tAB = tAC, tBB = tCC, ϵB = ϵC for isotropic Lieb lattice,
and neglect the diagonal tunneling along the diagonal lattice t↖↘BC since it must be much
smaller than others. Figure 2.4.9 shows the fitted tight-binding model for the optical Lieb
lattice of (sshort, slong, sdiag) = (20, 20, 23). The fitted parameters are

• tAB = 0.2823Elong
R

• t↙↗BC = 0.0223Elong
R

• tAA = −0.0256Elong
R

• tBB = −0.0056Elong
R

• ϵA = 38.14Elong
R

• ϵB = 37.95Elong
R .

Then, using the eigenvectors u
(n)
k,S and the phase such as

ϕ(k, n) = arg
[
e−ik·x(i,j),Smaxu

(n)
k,Smax

ψ
(n)
k (x(i,j),Smax)

]
, (2.4.29)

we calculate the Wannier function

w(i,j),S(x) =
∑
k

e−ik·x(i,j),S

3∑
n=1

u
(n)
k,Se

−iϕ(k,n)ψ
(n)
k

(
x(i,j),S

)
. (2.4.30)
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Figure 2.4.9: Band structure in the optical Lieb lattice of (sshort, slong, sdiag) = (20, 20, 23)
(solid lines) and the extended tight-binding model after fitting (dashed lines).

In the Fig.2.4.10, we plot the Wannier functions. As can be seen from Fig.2.4.10(b),
Wannier function of B-sublattice is more localized than that of A-sublattice even though
there is no large difference of energy offsets. This is because the harmonic confinement
for B-sublattice is tighter than for A-sublattice: B-sublattice consists of V z

long and Vdiag,
while A-sublattice consists of V x

long and V z
long. Since the lattice spacing of diagonal lattice

is shorter than that of long lattice, diagonal lattice creates tighter confinement than long
lattice at the same lattice depth.
At last, we calculate the on-site interaction. Our Lieb lattice is created in x-z plane,
while the confinement potential along y axis is made by monochromatic lattice with
lattice spacing d = 266 nm. Since these Wannier functions are independent on each
other, on-site interaction can be written as

US =
4πℏ2as
m

∫
dxdz

∣∣wLieb
S (x, z)

∣∣4 ∫ dy |w1D(y)|4 , (2.4.31)

where S = A,B,C.
Figure 2.4.11 shows the on-site interactions in an optical Lieb lattice. B-sublattice has
larger on-site interaction than A-sublattice due to difference of the Wannier functions.
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(a)

(b)

Figure 2.4.10: (a) Wannier Functions of each sublattice in an optical Lieb lattice of
(sshort, slong, sdiag) = (20, 20, 23). (b) Cross section of the Wannier functions along the x
axis at z = 0.

Figure 2.4.11: On-site interaction in an optical Lieb lattice of (sshort, slong, sdiag) =
(20, 20, 23) versus lattice depth of confinement potential along the y axis. The s-wave
scattering length is set to as = 5.6nm.
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2.5 Bogoliubov theory

2.5.1 Gross-Pitaevskii equation

The properties of a BEC are described by the Gross-Pitaevskii equation (GPE) [78]:

iℏ
∂Ψ(x, t)

∂t
=

(
− ℏ2

2m
∇2 + V (x) + g|Ψ(x, t)|2

)
Ψ(x, t) (2.5.1)

where V (x) is the external potential, g = 4πℏ2a/m, a(= 5.53 nm) is the s-wave scattering
length between the 1S0 ground states of 174Yb atoms, and m is the mass of 174Yb atom.
We consider the solution Ψ(x, t) = e−iµt/ℏψ(x) where µ is the chemical potential and
ψ(x) satisfies (

− ℏ2

2m
∇2 + V (x) + g|ψ(x)|2

)
ψ(x) = µψ(x). (2.5.2)

To apply the GPE to an optical lattice system, we consider the periodic optical lattice
potential for the external potential V (x). Here, we simplify the calculation by starting
with the tight-binding approximation [79]. We expand the wave-function of a BEC ψ(x)
in terms of the Wannier function wi(x):

ψ(x) =
∑
i

ψiwi(x) (2.5.3)

where i is the index of lattice sites. Substitute the ansatz(2.5.3) for the GPE(2.5.2) and
leave the overlap integral between the neighboring sites, the discrete GPE

µψi = −
∑
j ̸=i

Jijψj + ϵiψi + Ui|ψi|2ψi (2.5.4)

is obtained. Each parameter is defined as

Jij = −
∫

d3x w∗
i (x)

(
− ℏ2

2m
∇2 + V (x)

)
wj(x) (2.5.5)

ϵi =

∫
d3x w∗

i (x)

(
− ℏ2

2m
∇2 + V (x)

)
wi(x) (2.5.6)

Ui = g

∫
d3x |wi(x)|4, (2.5.7)

where Jij is the tunneling amplitude, ϵi is the enegy offset, and Ui is the on-site interaction,
which can be calculated from the optical lattice potential.

To apply the Eq.(2.5.4) to a Lieb lattice, we split the amplitude of the wave function
into three sublattices. In the case of an ideal Lieb lattice, the time-independent GPE is
written as

−J(ψ(i−1,j),B + ψ(i,j),B + ψ(i,j),C + ψ(i,j−1),C) + U |ψ(i,j),A|2ψ(i,j),A = µψ(i,j),A

−J(ψ(i,j),A + ψ(i+1,j),A) + U |ψ(i,j),B|2ψ(i,j),B = µψ(i,j),B

−J(ψ(i,j),A + ψ(i,j+1),A) + U |ψ(i,j),C |2ψ(i,j),C = µψ(i,j),C .

(2.5.8)
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where (i, j) is the index of unit cells, and A,B,C are the index of sublattices in a unit
cell. The energy offset terms are omitted for simplicity. Since the GPE(2.5.8) has a lot
of solutions, we should choose the Bloch solutions:

ψ(i,j),S =
√
neik·xi,Sϕk,S (2.5.9)

where n = N/Ncell is the particle number in a unit cell, and S = A,B,C. Due to
normalization condition for the wave function of a BEC, ϕk,S should satisfy∑

S

|ϕk,S|2 = 1. (2.5.10)

The GPE in the tight-binding approximation is given as

H(nU, ϕk)ϕk = µϕk, (2.5.11)

where

ϕk = (ϕk,A, ϕk,B, ϕk,C)
T, (2.5.12)

H(nU, ϕk) =


nU |ϕk,A|2 −2Jcos(kxd/2) −2Jcos(kzd/2)

−2Jcos(kxd/2) nU |ϕk,B|2 0

−2Jcos(kzd/2) 0 nU |ϕk,C |2

 . (2.5.13)

ϕk,S and µ are determined by numerically solving the Eq.(2.5.10) and Eq.(2.5.13) simulta-
neously. Though ϕk,S could be complex number in general, we may consider only solutions
of the real number except for uncertainty of the whole phase: at least for the lowest band,
the wave functions at each sublattice must be summed up in-phase.

The energy per particle is given as

E

N
= ϕ†

kH

(
1

2
nU, ϕk

)
ϕk. (2.5.14)

We can easily extend this model to a realistic Lieb lattice by taking into account the
following terms.

• Tunneling between B-sublattice and C-sublattice: −2JBCcos(kxd/2 + kzd/2)

• Inter-unit-cell tunneling: −2JAA[cos(kxd)+cos(kzd)],−2JBBcos(kxd),−2JCCcos(kzd)

• Sublattice-dependent on-site interaction: U → UA, UB, UC

• Energy offset: ϵA, ϵB, ϵC

For the lattice depth of (slong, sshort, sdiag) = (13, 13, 15.5) in the Lieb lattice configuration,
the tunneling, on-site interaction, and energy offset are J = 0.433, JBC = 0.0590, JAA =
−0.0674, JBB = JCC = −0.0218, UA = 0.198, UB = UC = 0.246, ϵA = 27.2, ϵB = ϵC = 27.1
in unit of ER.
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2.5.2 Bogoliubov-de Genne equation

The energy spectrum of the GPE corresponds to the case where the whole BEC occupies
a single band at a single wave number k. To calculate the excitation spectrum when
the BEC experiences a perturbation, we should solve the Bogoliubov-de Gennes equation
(BdGE). Here, the perturbation is taken into account in the time-dependent GPE [78].

We start with a general theory. We consider a wave function such that the wave
function of the GPE is perturbed by u(x), v(x):

e−iµt/ℏ [ψ(x) + u(x)e−iωt + v∗(x)eiωt
]
. (2.5.15)

Substituting Eq.(2.5.15) for Ψ(x, t) in the time-dependent GPE(2.5.1), and taking the 1st
order of u(x), v(x), we obtain the BdGE:

(
− ℏ2

2m
∇2 + V (x)− µ+ 2g|ψ(x)|2

)
u(x) + gψ(x)2v(x) = ℏωu(x)(

− ℏ2
2m

∇2 + V (x)− µ+ 2g|ψ(x)|2
)
v(x) + gψ∗(x)2u(x) = −ℏωv(x).

(2.5.16)

The eigenvalue ℏω gives the Bogoliubov excitation spectrum.

The BdGE has twice as large dimensions as the original GPE. Therefore, half of the
solutions do not have physical meanings. We select the eigenvalues so that the corre-
sponding eigenvectors have a positive norm, which is defined as∫

d3x (|u(x)|2 − |v(x)|2). (2.5.17)

In the same way as the GPE, we expand u(x), v(x) in terms of plane waves to apply the
BdGE to a lattice system. First, we consider the solution of the time-independent GPE
with a quasimomentum k:

ψk(x) =
√
n
∑
S

ϕk,S

∑
(i,j)

eik·x(i,j)w(i,j),S(x). (2.5.18)

u(x), v(x) have a quasimomentum shifted by q:

u(x) =
√
n
∑
S

uq,S
∑
(i,j)

ei(k+q)·x(i,j),Sw(i,j),S(x) (2.5.19)

v∗(x) =
√
n
∑
S

v∗q,S
∑
(i,j)

ei(k−q)·k−q(i,j),Sw(i,j),S(x). (2.5.20)

Substituting Eq.(2.5.18), (2.5.19), (2.5.20) for the BdGE(2.5.16), we obtain the matrix
form such as Hk+q(2nU, ϕk)− µI G(nU, ϕk)

−G∗(nU, ϕk) −Hk−q(2nU, ϕk) + µI


 uq

vq

 = ℏωq

 uq

vq

 (2.5.21)
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where uq = (uq,A, uq,B, uq,C)
T, vq = (vq,A, vq,B, vq,C)

T, I is the identity matrix and

Hk±q(2nU, ϕk) =
2nU |ϕk,A|2 −2J cos ((kx ± qx)d/2) −2J cos ((kz ± qz)d/2)

−2J cos ((kx ± qx)d/2) 2nU |ϕk,B|2 0

−2J cos ((kz ± qz)d/2) 0 2nU |ϕk,C |2

 ,

(2.5.22)

G(nU, ϕk) =


nUϕ2

k,A 0 0

0 nUϕ2
k,B 0

0 0 nUϕ2
k,C

 . (2.5.23)

After numerically solving the Hamiltonian, we select the solution in which the norm∑
S

(
|uq,S|2 − |vq,S|2

)
(2.5.24)

is positive.
Figure 2.5.1 (a) shows the numerical calculation result of GPE(2.5.11) and BdGE(2.5.21)

with (nUA/J, nUB/J) = (1.5, 1.86) and (0, 0) in the realistic Lieb lattice of (slong, sshort, sdiag) =
(13, 13, 15.5). We use the GPE for the lowest band, and the BdGE with q = 0 for the
higher bands. Around X point, the 2nd band is strongly distorted by the mean-field in-
teraction. Once the interaction strength exceeds the band gap, the excitation energy to
the 2nd band gets zero (Fig. 2.5.1 (b)) and the wave function of the ground state at X
point starts to spread over C-sublattice (Fig. 2.5.1 (c)).

2.5.3 Density distribution in lattice

Using the GPE(Eq.2.5.11), we can know one-to-one correspondence between µ and n.
Assuming a local density approximation, the density distribution is written as

n(µ0,x) = n(µ0 − Vext(x)) (2.5.25)

where µ0 is the chemical potential at the trap center, and Vext(x) is the external potential.
Vext(x) has a quadratic form such as V (x) = v|x|2 = 1

2
mω̄2d2|x|2, where ω̄ = 3

√
ωxωyωz is

the geometric mean of the trap frequencies and d is the lattice constant. µ0 is determined
so as to reproduce the total atom number Ntot, which is given as Ntot =

∫
dx n(µ0,x).

Since the atoms are distributed in a 2D array of 1D tubes in our experiments described
in the main text, we assume that the density distribution is nearly uniform along the y
direction perpendicular to the Lieb lattice plane (x-z) and gets to zero where µ0 = Vext(x)
is satisfied. We take the volume element of the integral as a thin cylinder with the radius
r =

√
x2 + z2 in the x-z plane and height 2

√
µ0/v − r2 along the y direction:

Ntot =

∫ √
µ0/v

0

dr 4πr

√
µ0

v
− r2 n(µ0 − vr2). (2.5.26)
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(a) (b)

(c)

(nUA/J,nUB/J)

=(1.5,1.86)

(nUA/J,nUB/J)

=(0,0)

1st-3rd band gap

1st-2nd band gap

A

B

C

qX

qZ

Figure 2.5.1: (a) Numerical calculation for the band energies of the realistic Lieb lattice
for (nUA/J, nUB/J) = (0, 0) (black dashed line) and (1.5, 1.86) (green solid line). The
inset shows the first BZ. (b) Interaction dependence of the gap at X point. Red line and
blue line show the 1st-3rd band gap and 1st-2nd band gap, respectively. (c) Interaction
dependence of the sublattice population at X point of the lowest band. Green, red, and
blue line show the A-, B-, and C-sublattice, respectively.
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In the optical Lieb lattice of (slong, sshort, sdiag) = (13, 13, 15.5) with Ntot = 2.1× 104 and
ω̄ = 2π × 96 Hz, the resulting chemical potential is µ0 = 65.0 nK, the Thomas-Fermi
radii are (rx, ry, rz) = (3.07, 8.58, 2.62) µm, and the mean-field interaction (nUA, nUB)
amounts to (3.48, 4.33) kHz at the trap center.
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SECTION 2.6 ATOMIC LIMIT CALCULATION OF THE FERMI-HUBBARD
MODEL

2.6 Atomic limit calculation of the Fermi-Hubbard

model

Series expansions are a possible approach for evaluating the thermodynamics and observ-
ables for generic lattice models. Depending on the lattice system and parameter regime of
interest, a various methods exist. In this section, we introduce the partition function and
grand potential for a Fermi-Hubbard model on a dimerized lattice in a high-temperature
series expansion up to 0-th order, that is, an atomic limit.

2.6.1 SU(2) Fermi-Hubbard model

We start with the 2-spin Fermions. Hamiltonian of the Fermi-Hubbard model for 2-spin
Fermions in a dimerized lattice is given by

ĤFH = Ĥ0 + Ĥt, (2.6.1)

Ĥ0 = −td
∑
⟨i,j⟩-

∑
σ=↑,↓

(
ĉ†i,σ ĉj,σ +H.c.

)
+ U

∑
i

n̂i↑n̂i↓ − µ
∑
i

(n̂i↑ + n̂i↓) , (2.6.2)

Ĥt = −tyz
∑
⟨i,j⟩−

∑
σ=↑,↓

(
ĉ†i,σ ĉj,σ +H.c.

)
− tw

∑
⟨i,j⟩···

∑
σ=↑,↓

(
ĉ†i,σ ĉj,σ +H.c.

)
, (2.6.3)

where td, tyz, tw mean the tunneling amplitude between nearest neighbors ⟨i, j⟩- , ⟨i, j⟩− ,
and ⟨i, j⟩···, respectively (see Fig.2.6.1). The on-site interaction energy is given by U ,

x

y

z

td

Figure 2.6.1: Fermi-Hubbard model for SU(2) spins on a dimerized lattice. The tunnelings
along the x-axis are dimerized with a strong tunneling td and a much weaker coupling tw.
The tunneling matrix elements along y- and z-axes are denoted with tyz. Two particles
with opposite spins feel an on-site interaction U , while two particles with the same spin
can never occupy the same site due to Pauli’s principle.
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and the chemical potential is denoted with µ. For most parameter regimes considered
in this paper, the intra-dimer tunneling td is much stronger than all other tunnelings:
td ≫ tyz, tw. Therefore, the coupling between neighboring dimers can be treated as a
perturbation. The series expansion is expected to converge in the parameter regime

tyz, tw ≪ kBT ≪ U, td. (2.6.4)

Thermodynamic quantities

Thermodynamic quantities are obtained by evaluating the grand canonical potential
−βΩ = logZ from the partition function

Z = Tr
{
e−βĤ

}
= Z0 + Z0

∞∑
n=1

(−1)n
∫ β

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτn

⟨
Ĥ ′

c(τ1)Ĥ
′
c(τ2) · · · Ĥ ′

c(τn)
⟩
0
.

(2.6.5)

Here Z0 denotes the unperturbed function and we express the inter-dimer tunneling op-
erators in the interaction representation:

Z0 = Tr
{
e−βĤ0

}
, (2.6.6)

Ĥ ′
t(τ) = eτĤ0Ĥte

τĤ0 . (2.6.7)

The average ⟨· · · ⟩0 means evaluation in the unperturbed Hamiltonian⟨
Ĥ ′

t(τ1)Ĥ
′
t(τ2) · · · Ĥ ′

t(τn)
⟩
0
= Tr

{
e−βĤ0Ĥ ′

t(τ1)Ĥ
′
t(τ2) · · · Ĥ ′

t(τn)
}
/Z0. (2.6.8)

Several thermodynamic quantities such as the density n, entropy per site s and double
occupancy d can be obtained from derivatives of the grand canonical potential per site
Ωs = Ω/l, where l is the number of sites in the system:

n = −∂Ω
s

∂µ
, (2.6.9)

s = −∂Ω
s

∂T
, (2.6.10)

d =
∂Ωs

∂U
. (2.6.11)

The sum in Eq.2.6.5 is evaluated by determining the contribution of every order n sepa-
rately.

Lowest order: atomic limit

The evaluation of the grand potential per dimer Ωd to lowest order (atomic limit) merely
requires the calculation of the isolated dimer Hamiltonian Ĥd defined on two sites

−βΩd = logzd0 , (2.6.12)

zd0 = Tr
{
e−β(Ĥd−µN̂d)

}
, (2.6.13)

Ĥd = −td
∑
σ

(
ĉ†l,σ ĉr,σ +H.c.

)
+ U

∑
i=l,r

∑
σ ̸=σ′

n̂i,σn̂i,σ′ . (2.6.14)
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For SU(2) case, the trace is evaluated in the eigenenergy basis containing 16 states

Tr
{
e−β(Ĥd−µN̂d)

}
=

16∑
i=1

⟨Ψd
i |e−β(Ĥd−µN̂d)|Ψd

i ⟩

=
16∑
i=1

e−β(Ed
i −µNd

i ) (2.6.15)

The corresponding eigenstates |Ψd
i ⟩, eigenvalues Ed

i and particle number Nd
i obtained

after diagonalization are given in Tab.2.6.1, where |Ψsinglet⟩ and |Ψdoublon mix⟩ are given as

|Ψsinglet⟩ =

(
u+

√
1 + u2

)
(|↑, ↓⟩ − |↓, ↑⟩) + |↑↓, 0⟩+ |0, ↑↓⟩

2
√
u2 + 1 + u

√
1 + u2

, (2.6.16)

|Ψdoublon mix⟩ =

(
u−

√
1 + u2

)
(|↑, ↓⟩ − |↓, ↑⟩)− |↑↓, 0⟩ − |0, ↑↓⟩

2
√
u2 + 1− u

√
1 + u2

. (2.6.17)

Observable evaluation

The evaluation of observables Ô on a dimer such as the singlet and triplet probabilities
or the double occupancy per site is done by determining the expression

⟨
Ô
⟩
=

Tr
{
Ôe−β(Ĥd−µN̂d)

}
Tr
{
e−β(Ĥd−µN̂d)

} . (2.6.18)

If the observable Ô commutes with the dimer Hamiltonian Ĥd and N̂d, the evaluation
becomes particularly simple since only the relevant eigenstates |Ψd

i ⟩ have to be counted
and weighted with the value of the observable. This is the case for the singlet and triplet
probabilities. The evaluation of the double occupancy is a little more complicated because
the measurement operator n̂i,σn̂i,σ′ on site i does not commute with the Hamiltonian Ĥd

and N̂d. In this case, we diagonalize the observable Ô with the localized-spin basis
{
|Φd

i ⟩
}

which is defined as

|Φd
i ⟩ = |Φl

m⟩ ⊗ |Φr
n⟩ (2.6.19)

m,n = 1, 2, 3, 4 i = 4(m− 1) + n{
Φl(r)

m

}
= {|0⟩ , |↑⟩ , |↓⟩ , |↑↓⟩} .

In this notation, |Φ8⟩ = |↑⟩ ⊗ |↑↓⟩ = |↑, ↑↓⟩ for example. Projection of the observable
onto

{
|Φd

i ⟩
}
can be formally written as

Tr
{
Ôe−βĤd

}
=

16∑
i=1

⟨Ψd
i |Ôe−β(Ĥd−µN̂d)|Ψd

i ⟩

=
16∑
i=1

16∑
j=1

16∑
k=1

⟨Ψd
i |Φd

j ⟩ ⟨Φd
j |Ô|Φd

k⟩ ⟨Φd
k|Ψd

i ⟩ (2.6.20)
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Table 2.6.1: Eigenvalues and eigenstates of the Hamiltonian for SU(2) spins in dimer.
Here, u = U/4td, and |Ψsinglet⟩ , |Ψdoublon mix⟩ are defined in Eq.2.6.16 and 2.6.17, respec-
tively.

Eigenvalue Ed
i [td] Eigenstate |Ψd

i ⟩ Spin number Nd
i

0 |0, 0⟩ 0

-1 (|↑, 0⟩+ |0, ↑⟩) /
√
2 1

-1 (|↓, 0⟩+ |0, ↓⟩) /
√
2 1

1 (|↑, 0⟩ − |0, ↑⟩) /
√
2 1

1 (|↓, 0⟩ − |0, ↓⟩) /
√
2 1

0 |↑, ↑⟩ 2

0 |↓, ↓⟩ 2

2
(
u−

√
u2 + 1

)
|Ψsinglet⟩ 2

0 (|↑, ↓⟩+ |↓, ↑⟩) /
√
2 2

4u (|↑↓, 0⟩ − |0, ↑↓⟩) /
√
2 2

2
(
u+

√
u2 + 1

)
|Ψdoublon mix⟩ 2

4u− 1 (|↑↓, ↑⟩ − |↑, ↑↓⟩) /
√
2 3

4u+ 1 (|↑↓, ↑⟩+ |↑, ↑↓⟩) /
√
2 3

4u− 1 (|↑↓, ↓⟩ − |↓, ↑↓⟩) /
√
2 3

4u+ 1 (|↑↓, ↓⟩+ |↓, ↑↓⟩) /
√
2 3

8u |↑↓, ↑↓⟩ 4
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(a) (b)

(c) (d)

Figure 2.6.2: Atomic limit calculation in the homogeneous dimerized lattice for three
different temperatures. (a) Density as a function of chemical potential. The chemical
potential at half filling is denoted with µhalf . (b), (c), (d) show entropy per site, singlet
probability, and triplet probability versus density, respectively. The interaction energy is
set to U/td = 0.5, and kB = 1.

If the observable is double occupancy, the measurement operator Ô =
∑

i,σ ̸=σ′ n̂i,σn̂i,σ′

works as

Ô |Φd
j ⟩ =


|Φd

j ⟩ for j = 4, 8, 12, 13, 14, 15

2 |Φd
j ⟩ for j = 16

0 otherwise

(2.6.21)

for example.

Figure 2.6.2 shows the result of atomic limit calculation in the homogeneous dimerized
lattice. At low temperature compared with intra-dimer tunneling td, the half-filled system
forms a Mott-plateau with one particle per site, as can be seen from Fig.2.6.2(a). As the
energy splitting between the singlet state and triplet state becomes larger than the temper-
ature, the number of available states reduces from initial four, say |↑, ↑⟩ , |↓, ↓⟩ , (|↑, ↓⟩ +
|↓, ↑⟩)/

√
2, |Ψsinglet⟩, to only the singlet configuration at half filling, accompanied by a

strong reduction of the entropy per site (See Fig.2.6.2(b),(c),(d) ). Away from half-filling,
the entropy increases again since more configurations become available.
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2.6.2 The harmonic trap and local density approximation

The effect of the harmonic trap can be included in a local density approximation, where
we assume that the density of the atoms in an optical lattice smoothly changes. The
harmonic confinement leads to a quadratically varying chemical potential

µ→ µ(r) = µ0 −
1

2
mω̄2

(
λ

2

)2

r2, (2.6.22)

where ω̄ is the geometric mean of the trapping frequencies, µ0 is the chemical potential
in the center of the trap and r is the normalized distance from the trap center to a site.
The trap frequencies in our experimental setup are summarized in the appendix A.
Averaged observable Otrap can be obtained by integrating the contributions per site
OLDA(µ(r)):

Otrap =

∫ ∞

0

4πr2OLDA(µ(r))dr. (2.6.23)

In the experiment, the atom number N and entropy per particle s/N in the entire trapped
system are accessible quantities. From these numbers, we can determine the system
temperature T and chemical potential at the trap center µ0 by numerically solving the
following simultaneous equations:

N =

∫ ∞

0

4πr2n(µ(r), T )dr (2.6.24)

S =

∫ ∞

0

4πr2s(µ(r), T )dr. (2.6.25)

Figure 2.6.3 shows the distribution of the density (a), entropy (b), and singlet proba-
bility (c) for the dimerized lattice with harmonic confinement. The harmonic confinement
leads to a coexistence of serveral different phases within the trap (for example, metallic,
Mott-insulating, and band-insulating phase). Those phases are located at different radial
distances from the trap center, and determine the entropy distribution over the density
distribution. For a given fixed total entropy per particle S/N in the entire system, the
entropy is stored in the outer region of the density distribution, while very low entropies
are achieved around the trap center, where almost all of the particle reduces to the singlet
state.

2.6.3 Extension to the SU(N > 2) system

We begin with the SU(N) Fermi-Hubbard Hamiltonian in the dimerized lattice such as

ĤFH = Ĥ0 + Ĥt, (2.6.26)

Ĥ0 = −td
∑
⟨i,j⟩-

∑
σ

(
ĉ†i,σ ĉj,σ +H.c.

)
+
U

2

∑
i

∑
σ ̸=σ′

n̂i,σn̂i,σ′ − µ
∑
i

∑
σ

n̂i,σ,(2.6.27)

Ĥt = −tyz
∑
⟨i,j⟩−

∑
σ

(
ĉ†i,σ ĉj,σ +H.c.

)
− tw

∑
⟨i,j⟩···

∑
σ

(
ĉ†i,σ ĉj,σ +H.c.

)
. (2.6.28)

For SU(N > 2) system, the calculation is in principle analogous to the strategy in SU(2)
case, with one important differences: the number of relevant states is explosively increased
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(a)

(b)

(c)

Figure 2.6.3: Atomic limit calculation with the harmonic trap and local density approx-
imation. The horizontal axis is the lattice site in the unit of d = 266 nm. Total atom
number and entropy are set to N = 2 × 104, S/NkB = 1 with a geometric mean of trap
frequency ω̄ = 2π × 80 Hz, which gives one particle per site around the trap center. We
assume the atomic mass of Yb, and the lattice parameters for the dimerized lattice are
U/h = 1× 103, td/h = 1× 103 Hz.
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(a) (b)

(c) (d)

Figure 2.6.4: Atomic limit calculation for SU(4) Fermi-Hubbard model in the homoge-
neous dimerized lattice. The interaction energy is set to U/td = 1, and kB = 1.

from 16 per dimer to 22N per dimer. Due to this difference, it take much more time to
numerically diagonalize the Hamiltonian and to evaluate the thermodynamic quantities
and observables.

Figure 2.6.4 shows the result of atomic limit calculation for the SU(4) Fermi-Hubbard
model in a homogeneous dimerized lattice. Due to the Pauli’s principle, the particle
number per site is allowed to increase up to 4. At the filling of n = 1, the lowest-lying
singlet state in dimer get more occupied as the temperature decreases, while the entropy
does not decrease so much compared with the case of SU(2) in Fig.2.6.2(b). This is due to
larger spin degree of freedom; in the SU(4) Fermi-Hubbard model, the number of singlet
configuration is increased from 2C2 = 1 to 4C2 = 6, compared with the SU(2) case.
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Chapter 3

Experimental setup

In this chapter, we describe the experimental setup and procedure for producing quantum
degenerate gases of ytterbium in optical lattices. First, general properties of Yb atoms are
introduced, followed by cooling processes. As for probing, we use the absorption imaging
as described in section 3.3. Theory of thermometry is explained in section 3.4. In section
3.5, details of optical lattices including an optical Lieb lattice are presented.

3.1 Properties of Ytterbium (Yb)

3.1.1 Isotopes and s-wave scattering lengths

There are seven stable isotopes of Yb: five bosons (168Yb,170Yb,172Yb,174Yb,176Yb) and
two fermions (171Yb,173Yb). In the electronic ground state, all the boson are spinless and
fermions have nuclear spin degree of freedom (I = 1/2 for 171Yb and (I = 5/2 for 173Yb).
So far, quantum degeneracy has been achieved for all the isotope of Yb ([44, 49, 43, 80, 81])
except for 172Yb. In addition, various kinds of quantum gas mixtures of Yb isotopes have
been realized [45, 28], which open up new quantum phases.

In ultracold regime, interaction between the neutral atoms is characterized by s-wave
scattering length. Table 3.1.2 shows experimentally determined s-wave scattering lengths
of Yb [51]. Yb has different s-wave scattering lengths between the isotopes. This fact
is important for experiments using Yb because magnetic Feshbach resonances are not
available for the electronic ground state of Yb.

3.1.2 Energy level

Because Yb has two valence electrons, the structure of energy levels is similar to that
of alkaline-earth metals. Fig 3.1.1 is a diagram of low-lying energy levels of Yb used for
experiments in this thesis. The electronic ground state of Yb is spin singlet (6s2)1S0. The
1S0 ↔1P1 transition has natural linewidth of 29 MHz, which enables high photon scat-
tering rate. This is used for Zeeman slowing (section 3.2.1), absorption imaging (section
3.3). Transitions to the triplet states have much narrower linewidth. The 1S0 ↔3P1 is
used for a magneto-optical trap (MOT) in section 3.2.2 , optical gradient in section 4,
and photo-association in section 7.3.
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Table 3.1.1: Stable isotope of Yb atom

Isotope Mass [a.u.] Abundance ratio [%] Nuclear spin [ℏ] Boson or Fermion

168Yb 167.933894 0.13 0 Boson

170Yb 169.934759 3.05 0 Boson

171Yb 170.936323 14.3 1/2 Fermion

172Yb 171.936378 21.9 0 Boson

173Yb 172.938208 16.1 5/2 Fermion

174Yb 173.938859 31.8 0 Boson

176Yb 175.942564 12.7 0 Boson

Table 3.1.2: s-wave scattering lengths for combination of Yb isotopes in [nm] unit [51]

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb

168Yb 13.33 6.19 4.72 3.44 2.04 0.13 -19.0

170Yb 3.38 1.93 -0.11 -4.30 -27.4 11.08

171Yb −0.15 -4.46 -30.6 22.7 7.49

172Yb −31.7 22.1 10.61 5.62

173Yb 10.55 7.34 4.22

174Yb 5.55 2.88

176Yb −1.28

Table 3.1.3 shows isotope shifts of two cooling transitions, 1S0 ↔ 1P1 and 1S0 ↔ 3P1.
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Figure 3.1.1: Low-lying energy level of Yb and its major aaplications

Table 3.1.3: Isotope shifts of the 1S0 ↔ 1P1 transition [82] and the 1S0 ↔ 3P1 transition
[83]

1S0 ↔ 1P1 Shift [MHz]

176Yb -509.3

173Yb(F ′ = 5/2) -253.4

174Yb 0

173Yb(F ′ = 3/2) 516.0

172Yb 533.3

173Yb(F ′ = 7/2) 588.0

171Yb(F ′ = 3/2) 832.4

171Yb(F ′ = 1/2) 1153.7

170Yb 1192.4

168Yb 1887.4

1S0 ↔ 3P1 Shift [MHz]

173Yb(F ′ = 7/2) -2386.7

171Yb(F ′ = 1/2) -2132.1

176Yb -954.8

174Yb 0

172Yb 1000.0

170Yb 2286.4

173Yb(F ′ = 5/2) 2311.4

168Yb 3655.1

171Yb(F ′ = 3/2) 3804.6

173Yb(F ′ = 3/2) 3807.3
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3.2 Cooling processes

At room temperature, Yb is solid and very stable. We heat the Yb oven up to about 400
◦C to vaporize Yb during experiments. To achieve quantum degeneracy of atomic gases,
Yb atoms should be cooled down to a few tens of nK. This is achieved by the all-optical
method as explained below.

3.2.1 Zeeman slower

To slow down atoms emitted from the Yb oven at about 400 ◦C, Zeeman slower is used.
Basically, the resonance frequency of atoms in an atomic beam is shifted due to the
Doppler effect depending on the atomic velocity. In a Zeeman slower system, such fre-
quency shifts are compensated by gradually varied external magnetic field. We adopted
a so called “increasing field type” Zeeman slower in which the magnetic field becomes
stronger as the deceleration proceeds. The 1S0 ↔1P1 transition is used with wavelength
of 399 nm for the Zeeman slowing. The slowing laser is obtained by frequency doubling of
a Tisappire laser of 798 nm(MBR-110, Coherent Inc). A ring cavity with a BBO crystal
is used for the second harmonic generation with an output power of 100 ∼ 150 mW.
The laser frequency is locked to a transfer cavity (RG-91T, Burleigh Instruments Inc)
stabilized by 556 nm light which is locked to a stable ULE cavity.

3.2.2 Magneto-Optical Trap (MOT)

Atoms slowed by the Zeeman slower system are trapped in a magneto-optical trap (MOT).
The MOT consists of three pairs of two circularly polarized counterpropagating lasers and
the quadrupole magnetic field. We use the narrow 1S0 ↔3P1 transition for a MOT with
wavelength of 556 nm, whose Doppler cooling limit is TD = 4.4 µK. There are two laser
systems for a MOT. Each system has a fiber laser at 1111 nm (Boostik Y10-PM, Koheras
or Orange one, Menlosystem), a ULE cavity for frequency stabilization and a ring cavity
with a LBO crystal for frequency doubling. In order to load atoms into a far-off resonant
trap, the atomic density is increased by a compressed MOT scheme, where the B-field
gradient is ramped up. Subsequently, the intensity and the detuning of the laser light is
decreased for cooling. Typically, 4× 106 of 174Yb are captured at the loading time of 8 s,
for example.

3.2.3 Far-Off Resonance Trap (FORT)

For further cooling to quantum denegeracy, atoms are transferred to a far-off resonant
trap (FORT). This is formed by crossing two laser beams with the wavelength of 532 nm
(Veri-V18/V10, Coherent Inc) at their focusing points. Polarization of the electric fields
are the same for two laser beams.

Evaporative cooling is performed by gradually decreasing the intensity of two laser
beams. This method enables to selectively evacuate high velocity atoms, which results in
achieving lower temperature of the remaining atoms. Through above processes, we obtain
quantum degenerate gases of Yb.
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Figure 3.2.1: Schematic view of the laser configuration for the MOT and Zeeman slowing.

3.3 Imaging system

3.3.1 Absorption imaging

Absorption imaging is the most important detection technique in cold atom experiments.
Figure 3.3.1 shows schematic of the absorption imaging after a ballistic expansion from
a trap. We irradiate a resonant laser light onto an atomic cloud. The cloud absorbs the
laser light and its shadow is projected onto a CCD camera. The intensity distribution of
a probe laser immediately after passing through the cloud is given by

I(x, y) = I0(x, y) exp [−σresn(x, y)] (3.3.1)

where I0 is the intensity distribution without atoms, σres = 3λprobe/(2π) is the resonant
cross section for scattering between atoms and probe laser light, and n(x, y) =

∫
dzn(x)

is the column density of the cloud accumulated along the direction of the probe laser.
This intensity distribution is projected on the CCD surface with a certain magnification
ratio A:

Ĩ(x, y) = A−2I0

( x
A
,
y

A

)
exp

[
−σresn(

x

A
,
y

A
)
]

(3.3.2)

The effect of I0 can be removed by measuring the intensity Ĩ0 = A−2I0
(
x
A
, y
A

)
without

atoms, and dividing Ĩ by Ĩ0. Therefore, n(x, y) is given by

Ĩ(x, y)

Ĩ0(x, y)
= exp

[
−σresn

( x
A
,
y

A

)]
=⇒ n

( x
A
,
y

A

)
=

1

σres
In

(
Ĩ(x, y)

Ĩ0(x, y)

)
(3.3.3)

In actual images, the obtained position (x, y) is discretized by CCD pixels like (xi, yj),
where (i, j) is the index to label a CCD pixel. In addition, we take three kinds of images:
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One is the image Pxi,yj with an atomic cloud and a probe light, other is the flat field Fxi,yj

with the probe light but the atomic cloud, and the other is the dark frame Dxi,yj without
both of the atomic cloud and probe light. Generally speaking, Dxi,yj is not zero due to
a stray light, dark current from a CCD pixel, thermal noise, and so on. For each CCD
pixel, n

(
xi

A
,
yj
A

)
is given by

n
(xi
A
,
yj
A

)
=

1

σres
In

(
Ĩ0(xi, yj)

Ĩ(xi, yj)

)

=
1

σres
In

(
Pxi,yj −Dxi,yj

Txi,yj −Dxi,yj

)
(3.3.4)

In experiment, this density distribution is used for thermometry of an atomic cloud as
described in section 3.4.

The total atom number N can be calculated out by accumulating n
(
xi

A
,
yj
A

)
all over

the CCD pixel:

N = − ∆s

A2σres

m∑
i=1

n∑
j=1

In

(
Pxi,yj −Dxi,yj

Txi,yj −Dxi,yj

)
(3.3.5)

Here, (m,n) is the number of CCD pixels in horizontal and vertical direction respectively,
∆s is the CCD pixel size.

We use an external cavity laser diode (ECLD) with a wavelength λ = 798 nm as a laser
source for absorption imaging. The output is amplified by a tapered amplifier, followed by
a wave-guide SHG. The imaging systems are constructed on each axis of optical lattices
as can be seen in Fig.3.5.2 and 3.5.3.

3.4 Thermometry for trapped atoms

Temperature of an atomic gas can be derived from measurement of the density distribu-
tion of a gas after a ballistic expansion from a trap. In this section, the thermometric
techniques for thermal and degenerate gases are briefly described.

We assume that the initial density distribution can approximate a delta function. The
ballistic expansion with the time duration of t transfers atoms with a position r0 and
momentum ℏk0 to the position r = r0 + ℏk0t/m. The density distribution after the
expansion is thus given by

n(r, t) =

∫
d3r0

∫
d3k0
(2π)3

F (r0,k0)δ

(
r − r0 −

ℏk0

m
t

)
, (3.4.1)

where F is the phase space distribution function at t = 0.

Scaling law

Now, we derive a scaling law for the time evolution of the density distribution in a ballistic
expansion. For simplicity, we consider the case of one-dimension. Maxwell-Bolzmann and
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Figure 3.3.1: Schematic of time-of-flight and absorption imaging. After we immediately
turn off the trap potential, the atomic cloud released from the trap starts to fall according
to the gravitational force, and expands according to the momentum distribution in trap.
Then, we shine the probe light, whose wavelength is 399 nm in our experiment, and take
an image of the absorbed probe light (the shadow of atomic cloud) by a CCD camera.

Thomas-Fermi distributions for a gas in a harmonic trap have the form

F (x, k) = F

(
ℏ2k2

2m
+

1

2
mω2x2

)
. (3.4.2)

Substituting Eq.3.4.2 for Eq.3.4.1, the time evolution of the density distribution can be
calculated as

n(x, t) =

∫ ∞

−∞
dx0

∫ ∞

−∞

dk0
2π

F (x0, k0)δ

(
x− x0 −

ℏk0
m
t

)
=

∫ ∞

−∞

dk0
2π

F

(
ℏ2

2m
(1 + ω2t)

(
k0 −

mω2xt

ℏ(1 + ω2t2)

)2

+
1

2
m

ω2

1 + ω2t2
x2
)
. (3.4.3)

Since any translation in k0-space does not change the integral, we have a scaling law
(extended to three-dimensional case)

n(r, t) =
1

λx(t)λy(t)λz(t)
n

[(
x

λx(t)
,

y

λy(t)
,

z

λz(t)

)
, t = 0

]
(3.4.4)

with the scaling factor

λi(t) =
√

1 + ω2
i t

2 (i = x, y, z). (3.4.5)
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3.4.1 Thermal gas

Far above the Fermi temperature or the critical temperature for Bose-Einstein condensa-
tion, atomic gases obey the Maxwell-Boltzmann distribution:

fMB(r,k) = N

(
ℏω̄
kBT

)3

exp

[
−β
∑
i

(
ℏk2i
2m

+
1

2
mω2

i x
2
i

)]
. (3.4.6)

Applying the scaling law Eq.3.4.4 to this distribution, the time evolution is given by

nMB(r, t) =
N

λ1(t)λ2(t)λ3(t)

(
mω̄2

2πkBT

)3/2

exp

(
−β

3∑
i=1

1

2
mω2

i

x2i
λi(t)2

)
. (3.4.7)

The density distribution obtained from absorption images is the column density which is
integrated along the imaging axis. Integrating the Eq.3.4.7 along the z axis, we can get

nMB(x, y, t) =
N

2πσx(t)σy(t)
exp

(
−

2∑
i=1

x2i
σi(t)2

)
, (3.4.8)

where

σi(t) =

√
kBT

mω2
i

λi(t) (3.4.9)

is the width of the atomic cloud. Therefore, the temperature of the gas can be determined
by fitting with the Eq.3.4.8 to the density profile measured by time-of-flight(TOF). If
the TOF time is sufficiently long (ωi

2t2 ≫ 1), the temperature can be determined by
simpler relation kBT = mσ2/t2. Twice-integrated density distribution is also used for
thermometry:

nMB(x, t) =
N√

2πσx(t)
exp

(
− x2

2σx(t)2

)
. (3.4.10)

3.4.2 Degenerate Fermi gas

Trapped Fermi gases in the degenerate regime is well described by the Thomas-Fermi
distribution function, which obeys the same scaling law in Eq.3.4.4:

n(r, t) = − 1

λx(t)λy(t)λz(t)

N
λ3th

Li3/2

[
−z exp

(
−β

3∑
i=1

1

2
mω2

i

x2i
λi(t)2

)]
. (3.4.11)

Integrating by using the formula
∫∞
−∞ dx Liα(ze

−x2
) =

√
πLiα+1/2(z), we obtain the fol-

lowing 2D and 1D densities:

n(x, y, t) =
n2

Li2(−z)
Li2

[
−z exp

(
−

2∑
i=1

x2i
2σi(t)2

)]
, (3.4.12)

n(x, t) =
n1

Li5/2(−z)
Li5/2

[
−z exp

(
− x2

2σx(t)2

)]
, (3.4.13)
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(b)(a)

Gaussian fit

TF fit

Figure 3.4.1: (a) Absorption image of a degenerate Fermi gas of 2 component 173Y b. (b)
Azimuthal average of optical density of the absorption image. Black and red line mean
the Gaussian fit and TF fit, respectively. According to the TF fit, T/TF = 0.20.

where n2 and n1 denote the maximum of column and linear density, respectively. The one-
dimensional fitting to the integrated optical density may give inaccurate results because
the TF distribution has only slight deviation from the Gaussian distribution. Therefore,
one-dimensional fitting to the azimuthally average density profile or full two-dimensional
fitting is recommended. Note that it is only when the density profile is isotropic that the
one-dimensional fitting to the azimuthally averaged density profile is valid. In this case,
the fitting function can be transformed from the Eq.3.4.12 as

n(r, t) =
n2

Li2(−z)
Li2

[
−z exp

(
− r2

2σ2(t)

)]
, (3.4.14)

where σ(t) = σx(t) = σy(t). Integrating Eq.3.4.12 and 3.4.13 over spatial coordinates, the
number of atoms can be obtained:

N = 2πn2σx(t)σy(t)
Li3(−z)
Li2(−z)

=
√
2πn1σx(t)

Li3(−z)
Li5/2(−z)

. (3.4.15)

The temperature T can be obtained from measured σi(t) with using Eq.3.4.9. On the
other hand, TF is determined from a trap frequencies and the number of atoms. Thus,
T/TF is given by

T

TF
=

mω2
i σ

2
i

(6N/N )1/3ℏω̄(1 + ω2
i t

2)
. (3.4.16)

Figure 3.4.1(a) shows typical absorption image of a degenerate Fermi gas of 173Yb and
fig 3.4.1 is the results of TF fitting to the azimuthally averaged density. The density
distribution shows clear deviation from the Gaussian function, which indicates that it is
in quantum degenerate regime.
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3.4.3 Bose-Einstein condensation

The density distribution of a BEC released from a harmonic trap can be derived from the
time-independent GP equation such as[

− ℏ2

2m
∇2 + Vtrap(r) + U0 |Φ(r)|2

]
Φ(r) = µΦ(r), (3.4.17)

where U0 = 4πℏ2a/m, a is s-wave scattering length, and µ is chemical potential of a
BEC. If the number of particles N is so large that mean-field energy is much larger
than kinetic energy, we can neglect the kinetic energy term in Eq.3.4.17 (Thomas-Fermi
approximation): [

Vtrap + U0 |Φ(r)|2
]
Φ(r) = µΦ(r). (3.4.18)

Since this equation must be satisfied for all the r where Φ(r) has non-zero value,

Vtrap + U0 |Φ(r)|2 = µ. (3.4.19)

Thus, the density distribution of a BEC under TF approximation nTF(r) can be written
as

nTF(r) = |Φ(r)|2 = max

[
µ− Vtrap(r)

U0

, 0

]
. (3.4.20)

Below, we assume anisotropic three-dimensional harmonic trap

Vtrap(r) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (3.4.21)

From Eq.3.4.18 and 3.4.21, µ becomes

µ =
1

2
ℏω̄

(
15Na

√
mω̄

ℏ

)2/5

, (3.4.22)

where ω̄ ≡ (ωxωyωz)
1/3.

Using the scaling law in Eq.3.4.4, the density distribution of a BEC after t time ballistic
expansion can be represented as

nTF(r, t) =
1

λx(t)λy(t)λz(t)
n

[(
x

λx(t)
,

y

λy(t)
,

z

λz(t)

)
, t = 0

]
=

µ

U0

[
1−

(
x2

d2x(t)
+

y2

d2y(t)
+

y2

d2y(t)

)]
, (3.4.23)

where

dν(t) = λν(t)

√
2µ

mω2
ν

, ν = x, y, z. (3.4.24)

With the number of coherent atoms NBEC, Eq.3.4.23 is transformed as

nTF(r, t) =
15NBEC

8πdxdydz

[
max

[
1−

(
x2

d2x(t)
+

y2

d2y(t)
+

y2

d2y(t)

)
, 0

]]
(3.4.25)
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(a) (b)

Figure 3.4.2: (a) Absorption image of 174Yb BEC taken after 14 ms ballistic expansion.
(b) Integrated optical density. Bimodal fitting is made. In this case, almost all of the
atoms is BEC, and the fitting result is NBEC = 2.0× 103.

Integration and twice-integration give the following 2D and 1D densities

nTF(x, y, t) =
5NBEC

2πdxdy

[
max

[
1−

(
x2

d2x(t)
+

y2

d2y(t)

)
, 0

]]3/2
, (3.4.26)

nTF(x, t) =
15NBEC

16dx(t)

[
max

[
1− x2

d2x
, 0

]]2
. (3.4.27)

Figure 3.4.2(a) shows a typical absorption image of a BEC of 174Yb and Fig.3.4.2 (b)
is the result of bimodal fitting to the 1D optical density.

3.5 Optical lattice

In this section, we describe our experimental setup of optical lattices, including an optical
Lieb lattice. Figure 3.5.1, 3.5.2, and 3.5.3 illustrate the optics setup for optical lattices.

3.5.1 Monochromatic lattice

We have three kinds of monochromatic lattices with different lattice spacing (266 nm, 532
nm,

√
2 × 266 nm). We call them 532 nm lattice, 1064 nm lattice, and diagonal lattice,

respectively. Below, we explain the experimental setup of each lattice.

532 nm lattice

Our 532 nm lattices exist in x, y, z-axis. The 532 nm lattice in each axis is created by
interference of incident laser beam and its retroreflection. As in the Fig.3.5.1(a), the 0th-
order diffracted light from the AOM for intensity control of the horizontal FORT is divided
to three beams, and used for 532 nm lattices. Each beam is diffracted by AOMs (Crystal
Technology) for intensity stabilization and ±1st-order beam are coupled to the optical
fibers. We put pinholes for mode-cleaning before fiber couplers not to cause the serious
damage to the fibers. The laser intensity is stabilized by monitoring the laser power by
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Figure 3.5.1: Optics for optical lattices before the optical fibers.
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photodiodes after the fibers (See Fig.3.5.2, 3.5.3) and sending the feedback signal to the
AOMs.

To achieve enough lattice depth and avoid displacement of an atomic cloud, we have to
well-align incident lattice beam and its retroreflection. The procedure is as follows. First,
we align an incident lattice beam. Using a CCD camera on the same axis for an optical
lattice, we record the position of atomic cloud trapped in the crossed FORT. A pulse of
the incident lattice beam is shed onto the atomic cloud immediately after switching off
the trapping potential. If center position of the beam is not well-aligned, atoms feel force
by the field gradient of the pulse. This acceleration can be observed by measuring the
position of atoms after some time-of-flight and comparing it to the case without the pulse.
Typically, the pulse power is set to as high as possible and its duration is 2ms, and the
time-of-flight is 14ms. Second, we align the retroreflection. We adjust the retroreflection
mirror so that the retroreflected beam maximally couples to the optical fiber from which
the incident lattice beam is emitted. The coupled laser light returns up to an optical
isolator and is reflected by the PBS therein. The reflection is monitored by a photodiode
for optimization (See Fig.3.5.1(a)).

1064 nm lattice

Our 1064 nm lattice exists in x, z-axis. 1064 nm lattice in each axis is created by in-
terference of incident laser beam and its retroreflection. As in the Fig.3.5.1(b), output
from a fiber amplifier (Nufern) is divided to two beams and used for 1064 nm lattices.
Each beam is diffracted by AOMs (Crystal Technology) for intensity stabilization and
±1st-order beam are coupled to the optical fibers. A double-pass AOM is used for z-axis
1064 nm lattice to adjust the difference of the relative phase of superlattices between x
and z-axes (See the section 3.5.3 for details).

When we align 1064 nm lattices, we assume that x- and z-axis 532 nm lattices are
already aligned. An incident beam of 1064 nm lattice and its retroreflection need fine-
tuning . However, because the retroreflection mirror is already optimized for 532 nm
lattice, it should not be tuned for 1064 nm lattice. Alternatively, we use two mirrors
right after the fiber coupler from which the incident lattice beam is emitted and before
overlapping onto 532 nm lattice (See Fig.3.5.2 and 3.5.3). The procedure is as follows.
We use a video mode in a CCD camera on the same axis for a 1064 nm lattice and confirm
center positions of 1064 nm lattice beam and 532 nm lattice beam. Then, we align one of
the two mirrors so that these centers are overlapped. As for the retroreflection of 1064 nm
lattice, we align the other mirror so that the retroreflective beam couples to the optical
fiber from which the incident beam of 1064 nm lattice is emitted. We repeat the above
procedure until the center position and coupling efficiency converge. Note that when
aligning the input beam seeing the center on a CCD camera, its power should be as low
as possible for better accuracy, on the other hand, when coupling the retroreflection to
the optical fiber, its power should be as high as possible for better S/N.

Diagonal lattice

Our diagonal lattice has a lattice distance of
√
2×266 nm because it is formed by inter-

ference of orthogonally propagating waves with wavelength 532 nm. Experimental setup
before optical fiber is basically the same for 532 nm lattice as in Fig.3.5.1(a). After the

55



CHAPTER 3 EXPERIMENTAL SETUP

optical fiber, 532 nm beam is divided to x and z-axis and overlapped onto 532 nm lattices
by a plate-type PBS (See Fig.3.5.2 and 3.5.3). The phase of diagonal lattice is locked and
controlled by Michelson’s interferometer using 507 nm laser beams, the detail of which is
descried in the section 3.5.3.

When we align the diagonal lattice, we assume again that x- and z-axis 532 nm lattices
are aligned. We have to overlap 532 nm laser beams constructing the diagonal lattice onto
532 nm lattice. The 532 nm laser beams of diagonal lattice come into a chamber after
reflected at a PBS in front of a retroreflection mirror. At the PBS, 532 nm lattice beams
are also reflected by a few percents. The reflection goes against 532 nm laser beams of
diagonal lattice. If the reflection maximally couples to the optical fiber from which 532
nm laser beam of diagonal lattice is emitted, it follows that the diagonal lattice is well-
aligned because the 532 nm laser beams of it propagate along the same path as 532 nm
lattice.

As for alignment of the 507 nm laser beam, which is used for a Michelson’s interferom-
eter lock, it should be overlapped onto 532 nm laser beam of the diagonal lattice because
the interferometer stabilizes and controls an optical path length of the diagonal lattice.
We superimpose the 532 nm laser beam of the diagonal lattice onto the 507 nm laser
beam. Retroreflective mirrors of 507 nm laser beams are tuned so that the interference
amplitude by the retroreflection is maximized.

Calibration of the optical lattice depth

There are two ways to calibrate a lattice potential depth. One is a pulsed lattice [84], the
other is parametric heating [85]. We adopt the pulsed lattice calibration using diffraction
of a BEC of 174Yb. Below, the principle of this method is summarized.

The initial state of an atom should be |Ψ(t = 0)⟩ = |k = 0⟩ since the momentum
distribution of a BEC has a very sharp peak at k = 0. A BEC suddenly loaded into a
lattice can be described as a superposition of Bloch states |q, n⟩:

|Ψ(t = 0)⟩ =
∞∑
n=0

|q, n⟩ ⟨q, n|k = 0⟩ . (3.5.1)

From Eq. 2.3.6, ⟨q, n|k = 0⟩ = (Aq,n
m=0)

∗. Then, while the BEC wavepacket is held in the
lattice, it evolves in time according to

|Ψ(t)⟩ =
∞∑
n=0

(Aq,n
m=0)

∗ exp

(
−iEq,n

ℏ
t

)
|q, n⟩ . (3.5.2)

If the state in Eq. 3.5.2 is projected onto the plane-wave basis, we obtain the coefficients
Bq

m of each |q +mK⟩ in the lattice frame:

Bq
m(t) =

∞∑
n=0

(Aq,n
m=0)

∗Aq,n
m exp

(
−iEq,n

ℏ
t

)
. (3.5.3)

The interference of the exponential factors produces oscillations in the populations of
the plane-wave components as a function of t or Eq,n. Figure 3.5.4(a) shows simulated
time evolution of a 174Yb BEC under pulsed exposure of 532 nm lattice potential. The
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(a) (b)23.4μs

Figure 3.5.4: (a) Simulated time evolutions of a BEC in a pulsed optical lattice with the
depth of 15 E532

R and lattice constant of 266 nm. (b) Lattice depth versus population of
each momentum component in a pulsed optical lattice with lattice constant of 266 nm
after t = 23.4 µs time evolution.

oscillations are almost sinusoidal, and the period is about 23.4 µs. For 1064 nm lattice
and diagonal lattice, the periods become 4× 23.4 µs and 2× 23.4 µs respectively because
Eq,n is scaled by recoil energy ER = ℏ2k2

2m
, which depends on wavelength of lasers creating

the optical lattice.
In practice, we fix the pulse duration at 23.4 µs for 532 nm lattice (4 × 23.4 µs for

1064 nm lattice, 2 × 23.4 µs for diagonal lattice, respectively), and scan the power of
the lattice beam as in Fig. 3.5.4. The power where the 1st-order diffraction peaks first
disappear corresponds to 15 ER. Note that we irradiate the pulse of z-axis 1064 nm
lattice before turning off FORT potential; otherwise gravitational force seriously distorts
the momentum distribution of a BEC in the lattice during the pulse time.

3.5.2 Optical superlattice

Optical superlattice is formed by superimposing two optical lattices with different lattice
spacing. One dimensional optical superlattice potential is written as

V (x) = Vlongsin
2(klongx) + Vshortsin

2(2klongx+ ϕ) (3.5.4)

where ϕ is relative phase between long-lattice and short-lattice. ϕ changes the lattice
configuration dynamically. Therefore, the momentum distribution also strongly depends
on the relative phase. Figure 2.3.3 shows ϕ-dependence of each order diffraction peak
of a BEC in the lattice. At ϕ = π/2, 1st order diffraction peak disappears because the
period of the lattice approximates the half of ϕ = 0 case. This dependence can be used
to determine the relative phase.

Lock and control of relative phase

First of all, we introduce the concrete form of relative phase ϕ in our experimental setup.
We rewrite 1D optical superlattice as

Ṽ (x) = V1064sin
2(k1064x) + V532sin

2(k532x) (3.5.5)
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Figure 3.5.5: Schematics of relative phase of superlattice with retroreflection mirror. The
relative phase is represented as ϕ = 2πL∆fbeat/c, where L is the optical path length from
the mirror to the atomic cloud.

Note that 2k1064 ̸= k532 in general since the laser sources of 532 nm lattice and 1064 nm
lattice are different. We introduce beat frequency fbeat such as

fbeat = f532 − 2f1064 (3.5.6)

where f532 =
c
2π
k532, f1064 =

c
2π
k1064. Then, Ṽ (x) can be transformed as

Ṽ (x) = V1064sin
2(k1064x) + V532sin

2(2k1064x+
2π

c
fbeatx) (3.5.7)

If we take the origin of x at the surface of retroreflective mirror, where 532 nm lattice and
1064 nm lattice are in-phase (See Fig.3.5.5), the relative phase can be written as

ϕ =
2π

c
fbeatL (3.5.8)

where L is the distance from the surface of a retroreflective mirror to an atomic cloud.
The relative phase depends on L and fbeat. Assuming L is passively stable, we control
the relative phase ϕ by fbeat.

To generate a beat signal, we pick up laser lights used for 532 nm lattice and 1064
nm lattice. Laser beam of 532 nm lattice is divided by a PBS in front of an isolator
(See Fig.3.5.1). After diffracted by an AOM for intensity stabilization, the signal is
transported by an optical fiber to other anti-vibration table as in Fig.3.5.6, where the
light source of 1064 nm lattice exists. The laser beam of 1064 nm lattice is divided by
a PBS, and its frequency is doubled by a PPLN (Periodically Poled Lithium Niobate)
crystal. This is the reason why there is factor 2 in front of f1064 in Eq.3.5.6. The SHG
light is overlapped onto the sampled light of 532 nm lattice. For perfect overlap, both
lights are coupled to a optical fiber, and we take a beat signal by a photo diode. The beat
signal is sent to a beat lock system shown in Fig.3.5.7. First, we combine the beat signal
and a signal from VCO (Voltage Controlled Oscillator) by a mixer, whose frequency is
defined as fVCO. Since output from the mixer has two frequency components fbeat±fVCO,
we extract the component with fbeat − fVCO by low pass filter. We rewrite this signal as
flow = fbeat − fVCO just for convenience. After amplified, the signal is divided to two
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Figure 3.5.7: Schematic of the system for locking and controlling the beat signal.

signals by a power splitter. One signal propagates in a delay line, where we assume that
it takes T extra time. Since inputs into a mixer are cos (2πflowt) and cos (2πflow(t+ T )),
the output becomes cos(2πflowT ) + cos (2πflow(2t+ T )). We remove the AC component
cos (2πflow(2t+ T )) by low pass filter. By using the DC signal VDC ∝ cos(2πflowT ), the
offset-lock circuit feedbacks a fast signal to a short-PZT and slow signal to long-PZT in
18W Verdi via piezo drivers so that VDC = 0;

flow = f532 − 2f1064 − fVCO = Constant. (3.5.9)

Thus, beat frequency fbeat is stabilized by the feedback, and controlled by fVCO. In
practice, the beat frequency is roughly adjusted by changing a lock point, and precisely
adjusted by control voltage to VCO.

By TOF measurement, we observe at least two nearest fbeat where ±1st order diffrac-
tion peak of a BEC in an optical superlattice disappears, and determine correspondence
between relative phase ϕ and beat frequency fbeat.

3.5.3 Optical Lieb lattice

Our optical Lieb lattice is constructed by overlapping square long-lattice, square short-
lattice and diagonal lattice with their phases controlled, as in Fig.3.5.8. First, we consider
making 2D superlattice by overlapping square long-lattice and square short-lattice. The
2D optical superlattice potential can be written as

V (x, z) = V x
longsin

2(k1064x) + V x
shortsin

2(2k1064x+ ϕx)

V z
longsin

2(k1064z) + V z
shortsin

2(2k1064z + ϕz).
(3.5.10)

where ϕx = 2πLxfbeat/c, ϕz = 2πLzfbeat/c. To realize optical Lieb lattice, relative phases
ϕx, ϕz must be zero at a certain beat frequency fbeat. However, generally speaking, ϕx ̸= ϕz

since Lx ̸= Lz; distances from the surfarce of retroflection mirror are different for the x
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+ =+

Square long-lattice Square short-lattice Diagonal lattice Lieb lattice

Figure 3.5.8: Construction method of our optical Lieb lattice.

and z-axis. Therefore, we compensate difference of the relative phases by adjusting RF
to a double-pass AOM in z-axis 1064 nm lattice (See Fig.3.5.1(b)) so that ϕx = ϕz = 0 is
satisfied.

Next, we consider superimposing a diagonal lattice onto the 2D superlattice. We have
to control the relative phase between them. Since the phase of the diagonal lattice is
locked by a Michelson’s interferometer as described in the latter paragraph, a frequency
drift of 1064 nm lattice affects the relative phase. We use a transfer cavity to stabilize
the frequency of a seed light for the 1064 nm lattice (See Fig.3.5.6). 532 nm light of
Mephist after SHG is coupled to a transfer cavity. The length of the cavity is stabilized
by 556 nm light, frequency of which is narrow and stable since locked into a ULE cavity.
The frequency of Mephist is locked to the stabilized transfer cavity. We adopt the PDH
(Pound-Drever-Hall) method [86] for stabilization of the transfer cavity and Mephist.

Michelson’s interferometer

Our diagonal lattice is created by interference of orthogonally propagating laser beams.
Supposing that each laser beam propagates the optical path length l1, l2, and has electric-
field E1,E1, laser frequency ω, and wave number k, the optical potential of diagonal
lattice becomes

V (x, z) ∝ |E1cos(ωt+ kl1) +E2cos(ωt+ kl2)|2

= |E1cos(ωt+ kl1)|2 + |E2cos(ωt+ kl2)|2 + 2E1 ·E2cos(ωt+ kl1) cos(ωt+ kl2)

=
|E1|2 + |E2|2

2
+E1 ·E2cos (k (l1 − l2)) . (3.5.11)

(3.5.12)

Thus, the phase of diagonal lattice depends on the difference of optical path lengths
l1 − l2. Fluctuation of the optical path length might be caused by air flow, temperature
dependence of the refractive index, mechanical instability such as vibration, and so on.
Therefore, we have to stabilize the optical path length.

We construct a Michelson’s interferometer by overlapping the off-resonant laser beam
(507 nm light) onto 532 nm laser beam used for the diagonal lattice. Figure 3.5.9 shows the
schematic of a Michelson’s interferometer lock system. l1, l2, l1lock, l2lock, l

′
1lock, l

′
2lock are the

optical path length represented by each arrow. According to Eq.3.5.11, the interference
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signal at PD becomes

V 507
Int ∝ |E507

1 |2 + |E507
2 |2

2
+E507

1 ·E507
2 cos (2k507((l1lock + l′1lock)− (l2lock + l′2lock))) .

(3.5.13)

We feedback to the PZT, which can change l2lock, so as to satisfy V 507
Int = 0 by using an

offset lock circuit;
l1lock − l2lock = −(l′1lock − l′2lock) + Const.. (3.5.14)

Then, the diagonal lattice potential at an atomic cloud becomes

Vdiag(x, z) ∝ E532
1 ·E532

2 cos (k532/2(x− z) + k532/2 ((l1lock + l1)− (l2lock + l2))) . (3.5.15)

Here, we omit the constant term for simplicity. Substituting Eq.3.5.14, we get

Vdiag(x, z) ∝ E532
1 ·E532

2 cos2 (k532/2(x− z) + k532/2 ((l1 − l2)− (l′1lock − l′2lock) + Const.)) .
(3.5.16)

The phase of diagonal lattice depends on l′1lock, which can be controlled by a PZT.
Hysteresis of a PZT length against control voltage will happen when we repeatedly

wiggle the length back and forth. We adopt a PZT with strain gauge to improve repeata-
bility of phase of diagonal lattice. Strain gauge detects length of PZT therein by using
Wheatstone bridge as in Fig.3.5.10(a). We use AC voltage to drive the strain gauge,
amplify the readout voltage by preamplifier in Fig.3.5.10(b), and detect its peak-to-peak
voltage by lock-in amplifier. We feedback the PZT by offset lock circuit so that differ-
ence between output voltage from lock-in amp. and control voltage becomes zero (See
Fig.3.5.10(c)).

Calibration of diagonal phase

Through all the above process, the optical lattice potential made by superimposing square
long-lattice, square short-lattice and diagonal lattice can be written as

V (x, y) = −Vlong(cos2(kLx) + cos2(kLy))

−Vshort(cos2(2kLx) + cos2(2kLy))

−Vdiagcos2(kL(x− y) + ψ) (3.5.17)

where ψ is relative phase of diagonal lattice. We call it diagonal phase below. In our
experiment, ψ is the last parameter that remains to be determined. We sweep the diagonal
phase and find where Lieb lattice configuration is realized. In the case of bosonic isotopes,
such a diagonal phase is determined by observing multi matter-wave interference patterns
as in Fig.3.5.11). Because of larger hopping at a Lieb lattice configuration, the visibility
gets better compared with that of the adverse phase where lattice spacing is 532 nm.
As for fermionic isotopes, band mapping technique is used. In addition to the fact that
the band structure in Lieb lattice has narrow total band width up to 3rd band, finite
temperature and Pauli principle enforce the fermionic atoms to occupy higher bands.
Therefore, higher Brillouin zones are most occupied when Lieb lattice configuration is
realized.
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Figure 3.5.9: Schematics of a system to lock and control the relative phase of diagonal
lattice. Difference of the optical path length of 507 nm light (l1lock+ l

′
1lock)− (l2lock+ l

′
2lock)

is locked by Michelson interferometer. Relative phase of the diagonal lattice is controlled
by the retroreflection mirror with PZT. Note that actual setup is illustrated in Fig.3.5.2
and 3.5.3.
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Fig. 1.1 Strain Gauge Amplifier Circuit Diagram

See Fig. 1.2 for connection details, where necessary:

V0 = Output voltage of full bridge
VEX = Excitation voltage
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Figure 3.5.10: (a) Schematic of strain gauge. Wheatstone bridge connection is used to
detect the change of resistance. (b) Preamplifier to amplify the signal from strain gauge.
Figure (a) and (b) are cited from Thorlabs webpage. (c) Wiring diagram to drive the
strain gauge on a PZT with feedback control.
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Figure 3.5.11: (a) Diagonal lattice phase versus peak intensity of interference pattern of
174Yb BEC in the lattice potential 3.5.17. The horizontal axis is control voltage to a
PZT. The lattice depths are (sshort, slong, sdiag) = (8, 8, 9.5). Error bar means standard
deviation of three-independent scan. (b), (c) Absorption image of interference pattern
with VCTRL = 0 V and 4.5 V.
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Chapter 4

Coherent driving and freezing of
bosonic matter wave in an optical
Lieb lattice

4.1 Loading a BEC into a flat band by phase imprint-

ing

In special lattice structures such as kagome, sawtooth and Lieb lattices, the destructive
interference of the tunneling induces frustration of kinetic energy and results in a flat band.
For bosonic systems, a fascinating question has been considered of whether condensation
is stable in a flat band (see Fig.4.1.1). It is theoretically investigated in a kagome lattice

(a)

E

k

(b)

E

k

Cosine band

BEC

Flat band

BEC?

Figure 4.1.1: (a) A BEC in a typical consine band. A BEC populates at the lowest energy
point of the consine band. (b) In a case of a flat band, it is not obvious where a BEC
populates or whether the condensation is possible.

that an interaction makes the energy at the K point, which corresponds to the corner of
the hexagonal first Brillouin zone, lowest in a flat band [87]. Yet, experimental study is
hampered by the fact that the flat band in the kagome lattice exists in an excited state.

Even in a Lieb lattice, a flat band exists in the first excited band; hence, a BEC loaded
adiabatically into an optical Lieb lattice is not populated in the flat band. However,
our highly-tunable Lieb lattice enables us to coherently transfer the population in the
lowest band into the flat band by engineering a phase between sublattices. This scheme
is understood by considering tight-binding wave functions in each band (See Eq.2.1.7).
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Figure 4.1.2: Sequence to coherently transfer a BEC to a flat band.

At zero quasimomentum and in the equal-offset condition EA = EB = EC , a simple
calculation gives

|1st⟩ ∝ |A⟩+ (|B⟩+ |C⟩) /
√
2 (4.1.1)

|2nd⟩ ∝ |B⟩ − |C⟩ (4.1.2)

|3rd⟩ ∝ |A⟩ − (|B⟩+ |C⟩) /
√
2 (4.1.3)

from the 1st to the 3rd band. We can smoothly modify these eigenstates owing to con-
trollability in our lattice potential. With sufficiently large Vdiag, which is equivalent to
large EA −EB,C , the lowest Bloch state has essentially no amplitude in the A sublattice,
and therefore |B⟩ + |C⟩ state is realized. Next, we apply sudden change in one of the

long lattice, say V
(z)
long. This creates energy difference between the B and C sublattices,

and the relative phase of the condensate wave function starts to evolve with a period
2πℏ/(EC − EB). On the basis of the initial band structure, this time evolution means a
coherent oscillation between |1st⟩ and |2nd⟩ (See Fig.4.1.2).

The detailed procedure of loading and detecting a condensate in the flat band is as
follows. We adiabatically load a pure BEC of 2 × 104 174Yb atoms into the Lieb lattice
with (slong, sshort, sdiag) = (8, 8, 20) and apply sudden increase of s

(z)
long to 26.4 for variable

duration. At the same time, we ramp sshort up to 20 to prevent tunneling during the
band transfer. After this sequence, we return the lattice depths to the initial values and
perform adiabatic turning off of the lattice potential in order to map quasimomentum to
free-particle; band mapping [88, 89].

Figure 4.1.3 shows the fraction of atoms in higher bands during phase imprinting in
the absence of lattice confinement along the y axis. Inset shows the absorption images
taken after 14 ms TOF, which reveal the inter-band dynamics of a condensate. At zero
quasimomentum, atoms in the 2nd and 3rd band are mapped to the same point of the
Brillouin zone. In addition, the finite spread of the condensate (quantum depletion) causes
a mix of the population in the 2nd band with other neighboring zones. Therefore, instead
of plotting the population in the 2nd Brillouin zone, we count atoms in the 1st Brillouin
zone and show the fraction of atoms in other higher bands. We fit the data with the
empirical function in the form

f(t) = a exp (−t/τ) F (t) + b (1− exp (−t/τ)) , (4.1.4)

where F (t) is the numerical solution of the single-particle Schrödinger equation. In fitting

the data, we adopt s
(z)
long during the phase imprinting as a free parameter and obtain the
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0µs 20µs 40µs

Figure 4.1.3: Inter-band oscillation during phase imprinting. Inset shows the absorption
images after band mapping, along with the three Brillouin zones displayed by black, green,
and red lines, respectively. Solid lines are the fit results using the single-particle solution
of the Schrödinger equations. Error bars mean SD of three independent scans.

best fit with s
(z)
long = 25.5, which is close to the expected value of 26.4. Although the

inter-band oscillations involve non-negligible contributions from the bands higher than
2nd band, at the half period of the first cycle, we expect that more than 75 % of atoms
are transferred to the 2nd band.

4.2 Relaxation dynamics from a flat band

We measure the lifetime of atoms in the 2nd band of the optical Lieb lattice. After
transferring to the 2nd band by phase imprinting, we change the diagonal lattice depth
sdiag to control the gap energy between the 1st band 2nd bands. As well as the band
gap [75], the lifetime of a quantum gas in an excited band strongly depends on the wave-
function overlap with the state in the lowest bands [90]. As we increase sdiag, the average
gap between the 1st and 2nd bands becomes smaller and, their density profiles become
more similar to each other. In the opposite limit of shallow sdiag, the band gap increases
and the density overlap gets smaller, because the state of the lowest band mostly populates
at the A sublattice. We take a variable hold time in the final lattice, followed by band
mapping to count the atom number in the excited bands.

Figure 4.2.1(a) shows the decay curves, along with the typical absorption images. The
lifetime of higher bands increases with large 1st-2nd band gap, as expected. In addition,
increasing the gap clearly reveals that there are two processes of the decay dynamics:
decay of the condensate within the 2nd band (left absorption image in (a)) and decay of
atoms into the lowest band (right absorption image in (b)). We find that the curve is well
fitted by a double exponential such as

f(t) = a1 exp(−t/τslow) + a2 exp(−t/τfast) + b. (4.2.1)
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Figure 4.2.1: (a) Decay of the flat band for various 1st-2nd band gap at zero quasimo-
mentum. Solid lines are the fit results with double-exponential curves. Error bars denote
the SD of three independent scans. Inset shows the absorption images with two different
hold times at the band gap of 5.5 kHz, taken after 14 ms TOF. The three Brillouin zones
are indicated by the black dashed lines. The red square regions are used to evaluate the
lifetime of a condensate (τBEC). (b) Measured lifetime of atoms in the flat band. τslow,fast

are the slow and fast decay time obtained from the data shown in (a), respectively. τBEC

is the e−1 lifetime of a condensate. Error bar represent fitting error.

As in Fig.4.2.1(b), the fast decay component τfast shows only weak dependence on the
band gap, whereas the slow decay component τslow shows more than 20-fold changes from
the largest to the smallest band gap. We also extract the lifetime of the condensate in
the 2nd band by counting atoms on the corner of the 2nd Brillouin zone (τBEC), and find
similar behavior with τfast. This implies that the initial fast decay is related to the decay
of the condensate.

4.3 Observation of a localized state in a flat band

The most intriguing property of a flat band is the localization of the wave function at
certain sublattice sites. In the case of the Lieb lattice, the wave function of the flat band
vanishes on the A sublattice. Here, we reveal this property by observing the tunneling
dynamics of a Bose gas initially condensed at the |B⟩ − |C⟩ state, and compare it to the
dynamics of the state with opposite relative phase, |B⟩+ |C⟩ (See Fig.4.3.1). To observe
real-space dynamics of the system, we perform projection measurement of the occupation
number in each sublattice, which we call sublattice mapping. In this method, we first

suddenly change the lattice potential to
[(
s
(x)
long, s

(z)
long

)
, sshort, sdiag

]
= [(8, 14) , 20, 0]. In
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Figure 4.3.1: Difference between |B⟩+ |C⟩ and |B⟩− |C⟩ states in a Lieb lattice. In |B⟩+
|C⟩ state, tunneling to A sublattice is allowed, whereas the tunneling is prohibited due to
destructive interference of wave function at A sublattice, which leads to the localization
of the wave function at B,C sublattice and gives rise to the flat band.
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Figure 4.3.2: Demonstrating the measurement of sublattice occupancy. Sublattice

mapping technique is applied to atoms loaded into (left)
[(
s
(x)
long, s

(z)
long

)
, sshort, sdiag

]
=

[(8, 8) , 8, 0], (middle) [(2, 8) , 8, 19], and (right) [(8, 2) , 8, 19], corresponding to atoms in
A, B, and C sites, respectively.

this configuration, all three sublattices are energetically well separated from each other
and the lowest three bands consist of the A,B and C sublattice, respectively. This
maps sublattice occupations to band occupations, which can then be measured by band
mapping technique. Figure 4.3.2 shows the demonstration of this method, in cases where
atoms occupy only one of the sublattices. Note that the population in the B and C
sublattices are mapped to the 2nd Brillouin zones for the 1D lattice along the x and z
axis, respectively. This is because the turning off the diagonal lattice decouples these two
directions and the fundamental bands are labeled by the combination of band indices of
1D lattices.

We prepare the initial state |B⟩ + |C⟩ by simply loading a BEC into the Lieb lattice
with deep diagonal lattice. |B⟩−|C⟩ state is prepared by phase imprinting method. After
manipulating the lattice depths to the equal-offset condition EA = EB = EC , dynamics of
these initial states is measured by the sublattice mapping technique. Figure 4.3.3 show the
measured tunneling dynamics. This measurement reveals qualitatively different behaviors
of these two states: the |B⟩−|C⟩ state shows a significant suppression of the A-sublattice
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B     C

B  + C

Figure 4.3.3: Measured tunneling dynamics of |B⟩+ |C⟩ and |B⟩−|C⟩ initial states in the
Lieb lattice of (slong, sshort, sdiag) = (8, 8, 9.5). Solid lines are the fits to the experimental
data with damped sinusoidal oscillation for |B⟩+|C⟩ and double exponentials for |B⟩−|C⟩.
Error bars denote SD of three independent scans.

occupancy, indicating the freezing of the tunneling dynamics to the A sublattice. Note
that a slowly increasing population to the A sublattice is cause by the decay of the atoms
to the lowest band. |B⟩+ |C⟩ state exhibits coherent oscillations between the A and BC
sublattices. This is because the state |B⟩+ |C⟩ is superposition of 1st and 3rd band such
as |1st⟩ − |3rd⟩ in the Bloch basis. This time evolution is driven by the 1st-3rd band gap
∆E1−3, which equals 4

√
2J in the tight-binding model. after a half-period πℏ/∆E1−3,

the state evolves to |A⟩ ∝ |1st⟩+ |3rd⟩, leading to coherent tunneling to the A sublattice.
Similarly, it is possible to arrange the initial lattice depths so that the lowest Bloch
state has the maximum overlap with a certain superposition of |1st⟩ and |2nd⟩, where
coherent oscillation between the B and C sublattice is driven. We use this technique to
systematically measure the band structure of the optical Lieb lattice in the latter section
5.2.

4.4 Conclusion and outlook

Here, we have successfully realized the Lieb lattice for ultracold ytterbium gases and
observed the characteristic dynamics of a condensate, including the freeze of the motion
in the flat band. Relatively short lifetime of atoms in the flat band was observed, although
it can be made longer by increasing the band gap to the lowest band.
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Chapter 5

Interaction-Driven Shift and
Distortion of a Flat Band in an
Optical Lieb Lattice

In ultracold atom experiments, a band structure of an optical lattice can be measured
in momentum-resolved manner by Bragg spectroscopy [91] and a combination of Bloch
oscillation and Stückelberg interferometry [92]. The former method requires a continuous
change of the angle between the driving laser beams. In the latter method, only the gap
between the 1st band and 2nd band can be measured. In this chapter, we report on the
momentum-resolved measurement of the lowest three Bloch bands for an interacting array
of BEC trapped in an optical Lieb lattice as in Fig.5.0.1. To investigate the dispersion
relation, a BEC in the lattice transported to various quasimomenta by applying a constant
force [93]. The dispersion of the lowest band is acquired by integrating group velocity
measured from matter-wave interference patterns. For the higher bands, we measure the
gap from the lowest band. High controllability of the optical lattice enables us to prepare
the precise superposition of band eigenstates [61]. Once such a state is introduced into
the Lieb lattice, the sublattice population starts oscillation, whose frequency corresponds
to the band gap. Our experiment investigates the important role of the interaction in
significantly modifying the Bloch band, including a flat band in the Lieb lattice.

5.1 Group-velocity measurement

We begin with describing our experimental method. to move the atoms in the reciprocal
space, we utilize two kinds of external forces. One is a gravitational force acting in
Γ(qx = 0, qz = 0) to X(qx = kBZ, qz = 0) direction, which can be applied by turning off
the FORT potential as in Fig.5.1.1(a). The other is a dipole force due to the potential
gradient of a Gaussian beam as in Fig.5.1.1(b) with the beam waist of about 50 µm and
about 1 GHz red detuning from the resonance of the 1S0 - 3P1 transition (λ = 556 nm)
acting in Γ to M(qx = kBZ, qz = kBZ) direction.

In the presence of a constant external force F , which is weak enough not to induce
interband transitions, a given band eigenstate |q(0), n⟩ evolves to |q(t), n⟩ according to
q(t) = q(0) + F t/ℏ after a time t [93]. The group velocity in |q(t), n⟩ is related to the

72



SECTION 5.1 GROUP-VELOCITY MEASUREMENT
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Figure 5.0.1: Schematic of the Lieb lattice. In our system. the atoms are weakly trapped
along the y direction, and distribute like tubes as shown in gray in the figure. The lattice
constant is d = 532 nm.
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Figure 5.1.1: Schematic of external forces used in the experiment. (a) Gravitational force
is applied by turning off the horizontal and vertical FORT potential. Trapping potential
of optical lattices along z direction is negligibly weak with lattice depths used in the
experiment. (b) Atoms are located at the shoulder of a Gaussian beam (r = w0/2), where
the atoms feel the steepest potential gradient.

band eigenenergy En(q(t)) as [94]

⟨v⟩n (q(t)) =
1

ℏ
dEn (q(t))

dq
. (5.1.1)

Note that the anomalous velocity term generally appears in the mean velocity formula
under the constant force (See the appendix B), but such term is exactly zero in the Lieb

73



CHAPTER 5 INTERACTION-DRIVEN SHIFT AND DISTORTION OF A FLAT
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lattice since it is a topologically trivial system and the berry curvature is zero for the
entire Brillouin zone (See the appendix C).

In the following, we reconstruct the dispersion of the lowest band by integrating
the group velocities detected via time-of-filight (TOF) measurements [95, 2]. From a
TOF image, we can observe the velocity distribution of atomic cloud n(vx, vz), which
is once integrated in the direction perpendicular to the Lieb lattice plane. Using the
velocity distribution, the group velocity is given as ⟨v⟩ =

∫
dvxdvz vn(vx, vz). When

extracting the group velocity from TOF images, we reduce the influence of the back-
ground noise in the region where the atoms are not populated by restricting the re-
gion of integration into the squares as in Fig.5.1.2(a), (b), whose centers correspond to
ℏ(qx(t), qz(t)), ℏ(qx(t)± 2kL, qz(t)± 2kL), ℏ(qx(t), qz(t)± 4kL), ℏ(qx(t)± 4kL, qz(t)) and the
width is ≃ ℏkL/3. Measured group velocity at each quasimomentum is integrated in a
trapezoidal approximation:

E(q)/ℏ =

∫ q

0

dq′ · ⟨v⟩ (q′)

∼
q′(i)=q∑
i=0

dq′
⟨v⟩ (i+ 1) + ⟨v⟩ (i)

2
. (5.1.2)

When a BEC in the lowest band experiences a weak external force, the whole conden-
sate occupies a single band at a single wave number. We compare the experimental data
with Gross-Ptaievskii equation (GPE) in a tight-binding approximation, whose detail is
explained in the section 2.5.

Figure 5.1.2(c) shows the dispersion of the lowest band for the lattice depth of (slong, sshort, sdiag) =
(13, 13, 15.5). At this lattice depth, the atoms are in a superfluid state and not in a Mott-
insulating state. In our system, an atom density has spatial dependence due to a weak
harmonic confinement by laser beams. The trap frequencies of FORT and optical lattice
are (ωx, ωy, ωz)/2π = (129, 46.2, 151) Hz. Assuming a local density approximation, we can
calculate the density distribution of atoms n(µ, r) in the optical lattice by determining
chemical potential µ from the total atom number, which is N = 2.1(1) × 104 (See the
section 2.5.3). At the trap center, the mean-field interaction amounts to nUA/J = 8.06,
where UA is the interaction strength on the A-sublattice. In Fig. 5.1.2(c), band calcula-
tions for the maximum density and half of it are plotted in addition to a single-particle
theory. Note that the 1st band energy at Γ (EΓ

1st) of each interaction strength is sub-
tracted to adjust the energy offset. The experimental data are in excellent agreement
with the theoretical analysis. While the band dispersion along the Γ-M is robust against
interaction, the band energy is slightly shifted up around the X point compared with the
non-interacting case. This can be accounted by the concentration of the wave function
on the A- and B-sites at this point.

5.2 Band-gap measurement

Next, we describe the band gap measurement. Initially, a BEC is prepared as a super-
position of eigenstates for the optical Lieb lattice of (slong, sshort, sdiag) = (13, 13, 15.5).
The overlap fraction is a parameter when measuring the band gap. Figure 5.2.1 shows
the measured band gaps as a function of the overlap between the prepared initial state
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nUA=0kHz

nUA=1.74kHz

nUA=3.48kHz

(a) (qx, qz)=(0,0)

(b) (qx, qz)=(0.5,0.5)kBZ

(c)

4
L

qx

qz

Figure 5.1.2: (a), (b) Absorption images at quasimomentum (qx, qz) = (0, 0) and
(0.5, 0.5)kBZ respectively, where kBZ corresponds to the quasimomentum at the BZ edge.
The images are taken after a TOF of 14ms. We restrict the integration region within the
white squares in which the atoms are mostly detected. (c) Dispersion of the 1st band of
optical Lieb lattice (slong, sshort, sdiag) = (13, 13, 15.5). The experimental data are denoted
as green circles. The inset shows the first BZ. Dashed black line is single-particle theory.
Dotted blue line is the calculation for half of the maximum number density. Solid yellow
line is for the maximum number density. The vertical axis shows the energy difference
from the 1st band energy at Γ for each interaction strength. Error bar means the standard
deviation of three independent scans.

and higher band, determined by numerical calculation based on a single-particle the-
ory, for the Lieb lattice of (slong, sshort, sdiag) = (13, 13, 15.5). It turns out that the
band gaps strongly depend on the overlap fraction if it exceeds 10 %, which is be-
yond our assumption of our analysis. The overlap between the initial state and the
eigenstates of higher bands is set to 10 %, which is small enough for the measured
band gap not to depend on the higher band fraction. The initial lattice depths are
((sxlong, s

z
long), sshort, sdiag) = ((12.31, 14.01), 6.84, 15.24) for the 1st-2nd band gap (E2−1)

measurement and (slong = sxlong = szlong, sshort, sdiag) = (12.49, 13.08, 17.82) for the 1st-3rd
band gap (E3−1) measurement. After changing the lattice configuration into the Lieb
lattice suddenly, we move the BEC in the reciprocal space by applying a constant force.
During the subsequent holding time, the relative phase between band eigenstates evolves
at the frequency of the band gap, resulting in oscillations of the sublattice populations. To
observe the real-space dynamics, we perform projection measurement of the occupation
number in each sublattice, which we call sublattice mapping. In this method, we change
the lattice potential to (slong, sshort, sdiag) = (8, 20, 0), where the lowest three bands consist
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q

E

(a) (b)

Figure 5.2.1: Overlap-fraction dependence of band gap at Γ point. Figure (a) and (b)
show the 1st-2nd and 1st-3rd band gaps, respectively. Error bar means the standard
deviation of three independent scans.

of the A-, B-, and C-sublattice, respectively. This maps out sublattice occupations to
band occupations, which can be measured by band mapping technique (See Fig.4.3.2).

When the superposition of the 1st and 3rd bands is prepared as an initial state, all of
the sublattice population oscillate because the wave functions of 1st and 3rd bands spread
over all the sublattices. On the other band, since the eigenstate of the 2nd band has no
amplitude on A-sublattice, only B- and C-sublattice populations oscillate in the case of
the superposition of the 1st and 2nd bands as an initial state. Therefore, we extract the
band gap E3−1 from the frequency of A-sublattice oscillation (Fig.5.2.2(a)) and E2−1 from
the mean of frequencies of B- and C-sublattice oscillations (Fig. 5.2.2(b)). Note that the
populations at B- and C-sublattices in Fig.5.2.2(a) evolve in the same way, because both
of |Γ, B⟩ and |Γ, C⟩ always have the same coefficient in the superposed state. We fit the
oscillation of sublattice population with our empirical model function

F (t) = a e−t/τ sin (2πft+ b) + c (5.2.1)

where a, b, c, f, τ are fitting parameters.
In Fig.5.2.2(c) we show the experimentally determined band energies (solid circles) in

the optical Lieb lattice. The higher band energies are obtained from the combination of
the energy gaps and the energy of the lowest band described above. The dashed lines
are the results of the calculations based on a single particle theory. It is clear that the
experimentally determined energies are significantly deviated, in particular, up-shifted and
distorted, from the calculated bands, which should be ascribed as the interaction-driven
effect. Note that a direct tunneling between B- and C-sublattices which exists in our
Lieb lattice system distorts the flat band even in the single-particle limit. Theoretically,
a Bloch state with a small fraction of higher bands is regarded as the state after the
weak excitation from the lowest band. Therefore, we use the Bogoliubov-de Gennes
equation (BdGE) to estimate the interaction effect on the energy gap (See the section
2.5.2). The dotted and solid curves show the results of the calculations with two different
interaction strengths, respectively. Our calculation shows, in particular, that the band
gaps or excitation energies around the center of BZ becomes larger as the interaction
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increases. On the contrary, the gap to the 2nd band becomes closed around the BZ
edge of X point, as the interaction increases. We interpret this behavior as follows. At
X point, cos(θX) = 0 and sin(θX) = 1, and thus the Bloch wave function of the 1st
band has no spatial overlap with that of the 2nd band. Therefore, the excited atoms
do not interact with the atoms in the lowest band, resulting in the smaller band gap
as the interaction energy increases in the lowest band. On the other hand, because the
3rd band has large spatial overlap with the 1st band, the energy necessary to excite a
particle to the 3rd band gets larger as the interaction increases. Note that along the
Γ-M direction, cos(θq) = sin(θq) = 1/

√
2, and thus the 2nd band remains flat because

the sublattice distribution does not change. The experimental data certainly indicate this
tendency. Note that due to decoherence caused possibly by the interaction, the oscillations
of sublattice populations are damped, which makes it difficult to measure the frequency
around the exact BZ edge.

5.2.1 Dependence on the mean-field interaction strength

Finally, we experimentally investigate dependence of the band gap on the interaction.
The gap energies are measured with various atom numbers. Here, we focus on E2−1 along
the Γ-X direction (see Fig.5.2.3(a)). For a uniform, weakly interacting BEC, the chemical
potential has linear dependence on the atomic density, leading to N2/5 dependence of the
central density. Therefore, we plot the observed oscillation frequency as a function of N2/5

in Fig.5.2.3(b), (c), and (d). The data are in good agreement with the calculations for the
atom density with half of the maximum value. By extrapolating the experimental data to
a small atom number limit, it is also confirmed that the band gap at each quasimomentum
approaches the prediction of a single-particle theory.

5.3 Conclusion and outlook

Here, we have studied an interaction effect on the Bloch bands for superfluids in an
optical Lieb lattice. We observed that the 2nd band, which is a flat band in a single-
particle description, is significantly shifted and distorted along the Γ-X direction by the
interaction. Further applications of our method include the study of an artificial gauge
field, which induces the modification of an energy spectrum and a topologically nontrivial
phase for fermions in a Lieb lattice [96]. In addition, our technique demonstrated for an
optical Lieb lattice should be used to create and observe an interesting interaction-driven
effect such as a swallow tail [97], in which the strong interaction compared with a band
gap induces the loop structure in the energy band.
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E3rd, nUA=1.74kHz

E3rd, nUA=3.48kHz
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E2nd, nUA=0kHz

E2nd, nUA=1.74kHz

E2nd, nUA=3.48kHz
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Figure 5.2.2: (a), (b) Oscillation of sublattice population at Γ point according to (a)E3−1

and (b) E2−1, respectively. First, we load a BEC into an optical lattice the configuration
of which is different from that of a Lieb lattice. In this way we create a superposition
of (a) the 1st and 3rd or (b) the 1st and 2nd band eigenstates of the Lieb lattice. Next,
we suddenly change the lattice configuration into the Lieb lattice, and take various hold
time. We observe the temporal change of the sublattice populations obtained by the
projection measurement described in the text. Each sublattice occupancy is normalized
by the summation over all of the sublattice occupancy. Green, blue and red circles are A-,
B-, and C-sublattice population, respectively. Error bar shows the standard deviation of
three independent scans. Solid lines are fits to the data with damped sine functions(5.2.1).
(c) The lowest three bands in the optical Lieb lattice of (slong, sshort, sdiag) = (13, 13, 15.5).
Red and blue circles are the reconstructed 2nd and 3rd band energies, respectively. Error
bars mean the fitting errors. Dashed lines are the predictions based on a single-particle
theory. Dotted and solid lines are the calculations including the interaction based on the
BdGE with the half and maximum densities, respectively.
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Figure 5.2.3: (a) Band gaps from the lowest band to the 2nd band. Dashed black line is the
prediction on the single particle theory of the Lieb lattice potential (slong, sshort, sdiag) =
(13, 13, 15.5). Solid yellow line is the calculation including the interaction based on
the BdGE. Thick red, green and blue lines respectively show the quasimomenta qz =
0.74kBZ, 0.37kBZ, and 0 at which we have investigated the density dependence of the band
gaps. (b), (c), (d) Band gap versus the atom number for qz = 0.74kBZ, 0.37kBZ, 0, respec-
tively. Solid and dotted lines show the calculations including the interaction based on the
BdGE for the maximum and half densities, respectively. Error bars indicate the fitting
errors.
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Chapter 6

Spatial Adiabatic Passage of Massive
Quantum Particles

6.1 Introduction

6.1.1 Three-level system with Λ-type transition

A three-level system is a minimal example in which quantum interference takes place.
This system is considered mainly in a context of laser coupled atomic levels, and the
Hamiltonian for a Λ-type system in a rotating frame is written in the form

H =


0 Ω1 Ω2

Ω1 δ1 0

Ω2 0 δ2

 , (6.1.1)

where Ω1(Ω2) denotes a laser-induced Rabi frequency which couples basis states |1⟩ with
|2⟩ (|2⟩ with |3⟩), and δ1(δ2) is the detuning of the corresponding laser 1 (2). A dark state
cosθ |1⟩ − cosθ |3⟩ (tanθ = Ω1/Ω2) arises as one of the eigenstate of the Hamiltonian in
Eq.6.1.1 when the Raman-resonant condition δ1 = δ2 is satisfied. By manipulating two
laser pulses in counter-intuitive order so that θ changes from 0 to π/2, the dark states
smoothly evolve from |B⟩ to |C⟩. This process is well known as STImulated Raman
Adiabatic Passage (STIRAP), and has been an important technique for robust population
transfer between atomic and molecular states.

Electromagnetically Induced Transparency (EIT) [98] is also an important process in
a three-level system. In an EIT experiment, strong optical coupling between |2⟩ and |3⟩
causes the splitting of the |1⟩ → |2⟩ transition by the Rabi frequency, known as Autler-
Townes doublet [99]. As a result, the state B becomes transparent for laser light driving
the |1⟩ → |2⟩ transition at a frequency region between the doublet.
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Figure 6.1.1: Correspondence between a Lieb lattice and three-level systems.

6.1.2 Correspondence between a three-level system and Lieb
lattice

A Lieb lattice system has a mathematical analogy to the three level system with Λ-
type transition. Figure 6.1.1 summaries the relations between two systems. Momentum-
dependent couplings play a role of Rabi couplings in a three-level system, and detunings
can be mimicked by energy offsets EA, EB and EC of each sublattice. In our optical
Lieb lattice system, these parameters can be separately controlled by changing the lattice
depth along each direction, which enables us to realize a coherent scheme to transport
atoms among these sublattices. In particular, by adiabatically changing the tunneling
amplitudes in an counter-intuitive order, we can coherently transfer atoms from one sub-
lattice to another without populating the intermediate sublattice, which can be regarded
as a spatial analogue of STIRAP. This concept, named Spatial Adiabatic Passage (SAP),
was introduced in the context of quantum dots [100, 101] and cold atoms [102], it has
continuously attracted theoretical interests and various possibilities of its application have
been discussed [103]. High controllability and flexibility of cold atoms system in optical
lattices enables the experimental demonstration of SAP and the above applications.

6.2 Spatial adiabatic passage (SAP)

In our experiment, we use fermionic 171Yb with a small scattering length of −0.14 nm to
avoid interaction effects. The use of fermions causes a complexity arising from the finite
momentum spread due to the Pauli principle. Adiabaticity of a process associated with
a certain momentum is governed by the band gaps among the corresponding eigenstates.
In the case of a Lieb lattice, adiabaticity can not be maintained on the corner of the
Brillouin zone where a Dirac cone exists. To solve this problem, we slightly distort the
band structure by shifting the phase of the diagonal lattice from an isotropic condition
ψ = π/2. The effectiveness of this scheme can be understood from the potential landscape
shown in Fig.6.2.1(b). The deformation reduces the inter-unit-cell tunneling, and therefore
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(a) (b)

z

x

Figure 6.2.1: (a) Energy band and (b) potential landscape with distortion. If we shift the
phase of the deep diagonal lattice, band gaps become large and the Dirac cone disappears.
Show is the case of ψ = (1/2 + 0.11)π and [slong, sshort, sdiag] = [8, 8, 14].

each cell becomes more like an isolated triple well. As a result the momentum dependence
of the energy dispersion is decreased, and the Dirac cone disappears. Mathematically, this
modifies the coupling term as

TAC → eiqzd/2 (JAC + δJ) + e−iqzd/2 (JAC − δJ) ,

TAB → eiqxd/2 (JAB + δJ) + e−iqxd/2 (JAB − δJ) ,

(6.2.1)

where δJ denotes the imbalance between inter- and intra-unit-cell tunnelings. For δJ =
0, TAC along the Brillouin zone boundary (qzd = π) vanishes throughout the process.
Introduction of δJ ̸= 0 can also suppress the breakdown of transport along this line.

SAP in the Lieb lattice is to transport atoms from B sublattice to C sublattice by
a counter-intuitive manipulation of tunneling amplitudes. Throughout this process, the
intermediate sublattice, say A, is not populated because the state adiabatically follows
a dark state cosθq |q, B⟩ − sinθq |q, C⟩, with tanθq = TAB(q)/TAC(q). First we load a
sample of 1.2 × 104 atoms of 171Yb at a temperature T/TF = 0.3 into the optical lattice
of s = [(27.7, 0), (0, 16), 14]. In the loading stage, the potential on a B sublattice is made
much deeper than those of the others in order to ensure that the initial state is populated
only at B. After that, we suddenly change the lattice depths to [(38.9, 3.8), (8, 8), 14] in
10 µs. This is a starting point of SAP process, where the tunneling JAB is much smaller
than JAC . To earn a high tunneling rate, entire lattice depths are set relatively shallow,
which leads to an undesired direct tunneling JBC . We suppress JBC by increasing the
diagonal lattice depth beyond the equal-offset condition, i.e. EA > EB = EC . As long as
EB = EC is satisfied, the dark state persists and SAP can be accomplished. We adiabati-
cally sweep the lattice depths toward another limiting configuration [(3.8, 38.9), (8, 8), 14],
passing through the intermediate configuration [8, 8, 14] which corresponds to the potential
shown in Fig.6.2.1(b). The time evolution during this process is measured by sublattice
mapping technique. The obtained TOF images suffer from the blurring of the Brillouin
zone boundaries due to unavoidable non-addiabaticity of the band mapping procedure
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Figure 6.2.2: Time evolution of sublattice occupancies during a SAP process. Solid lines
are the numerical calculation result with a single-particle Schrödinger equation.

and a harmonic confinement of the system. For a qualitative analysis of sublattice, pop-
ulations, we take a set of basis images in which all atoms reside on a specific sublattice
and determine sublattice occupancies by projecting images onto each basis.

Figure 6.2.2 shows the time evolution of sublattice occupancies NA, NB and NC during
the SAP process. Important features specific to SAP are well reproduced: initial popula-
tion on the B sublattice is smoothly transfered into C sublattice, but the population on
the A sublattice does not increase throughout the process. From the final population we
evaluate the efficiency of the process to be [NC(T )−NC(0)] /NB(0) = 0.95(2), where T is
the total sweep time. Furthermore, at the middle point of the SAP process, the fermionic
atoms populate only in the flat band state. Usually, occupation of a certain energy band
is accomplished by filling up all lower bands. The above SAP process provides an efficient
way to prepare a non-equilibrium many-body state in which all fermions reside on the flat
band of the Lieb lattice and the other bands are empty.
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6.3 Autler-Townes doublet

To investigate a matter-wave analogue of EIT physics, we carry out a measurement similar
to a pump-probe experiment. As before, we first prepare an initial state localized on B
sublattice (See Fig.6.3.1(a)). Then, we introduce weak tunneling coupling JAB and after
a fixed time, a fraction of atoms that tunneled into A or C sublattice is measured. Figure
6.3.1(b),(c) show the characteristic tunneling spectra. In each spectrum, we scan the “

detuning” via s
(x)
long which determines the energy difference EB − EA(= EB − EC). For

weak coupling JAC in (b), we can observe a single dip corresponding to B → A tunneling,
whereas a clear doublet structure appears for strong coupling JAC ≫ JAB in (c). The
double peaks originate from tunnelings to A+C and A−C orbitals which are separated
by the amplitude of tunneling coupling JAC . The shift of the spectrum is caused by the
change of the short lattice depth s

(z)
short. While the short lattice creates the same potential

curve for all sublattices, its effect on EA, EB and EC slightly differs depending on the
configuration of other lattices. The width of the observed resonance peaks is broadened
by the band dispersion and spatial inhomogeneity due to the harmonic trap. In a typical
EIT spectrum, a sharp dip can be observed even when the doublet splitting is smaller than
the natural linewidth. This implies occurrence of coherent population trapping (CPT)
[104] of a dark eigenstate. In the case of our system with no loss mechanism, CPT does
not occur and hence a sharp EIT dip does not appear. Yet, the observed behavior exactly
corresponds to a pump-probe detection of Autler-Townes doublet which is commonly
observed in atom-filed systems.

6.4 Conclusion and outlook

In conclusion, we have succeeded in demonstrating coherent tunneling processes of cold
fermionic atoms in an optical Lieb lattice. The three-sublattice structure of the Lieb lattice
has remarkable analogy to Λ-type three level systems in quantum optics. By using this
analogy and dynamical controllability of tunneling amplitudes, spatial adiabatic passage
between two sublattice eigenstates was performed. We also observed an matter-wave
analogue of Autler-Townes doublet in a tunneling process form a sublattice into a strongly
coupled pair of sublattices. The demonstrated techniques are useful to prepare exotic
many body states in optical lattices. In particular, at the half point of the SAP process in
the Lieb lattice, all atoms are located on the flat band. This might be a general scheme
applicable to other lattice with flat bands. Involving higher lattice orbitals is possible
extension in connection with generation of angular momentum studied in Ref.[105]. In
addition, recent advances in fine potential engineering [106] combined with single-site-
resolved imaging of lattice gases [107] will greatly enlarge the application of SAP in cold
atomic systems.
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Figure 6.3.1: (a) Sequence of the experiment. (b), (c) Tunneling spectrum after
a hold time of 1.8 ms, at the lattice depths of

[
(40, 40), (sxlong, 8), 9.5

]
in (b) and[

(40, 7), (s
(x)
long, 8), 9.5

]
in (c). Fraction of atoms which tunnel from the B sublattice dur-

ing the hold time is shown. Filled solid lines are the theoretical curves based on the
single-particle Schrödinger equation.
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Chapter 7

Antiferromagnetic spin correlation of
SU(N ) Fermi gas in an optical
dimerized lattice

7.1 Introduction

Quantum magnetism manifests itself in quantum many-body states of spins coupled by
exchange or superexchange interactions and lies at the heart of many fundamental phe-
nomena in condensed matter physics. Spin systems often tend to show long-range order
at low temperature. However, the interplay of exchange interactions with geometry and
quantum fluctuations can lead to quantum states characterized by their short-range mag-
netic order. Examples include valence-bond crystal, spin liquids in a triangular lattice
[108], and possibly high-Tc superconductors [109]. Yet, the underlying many-body physics
is known to be theoretically and computationally intractable, even in the simple models
such as SU(2) Fermi-Hubbard model.

The controlled system of ultracold fermionic atoms in optical lattices is regarded as
a promising candidate to gain novel insights into phases driven by quantum magnetism.
This approach offers experimental access to a clean and highly flexible Fermi-Hubbard
model. Progress toward entering the regime of quantum magnetism was hampered by the
ultra-low temperatures and entropies required to observe exchange-driven spin ordering
in optical lattices. To solve this problem, cooling schemes bases on the redistribution of
entropy between different regions were demonstrated recently, and made a great deal of
progresses in realizing the quantum magnetism for the repulsively interacting SU(2) spin
systems [38, 39, 37].

In our work, we also make use of the local entropy redistribution scheme within the
lattice structure to reach the regime of quantum magnetism. The atoms are prepared in
a dimerized cubic lattice, where the exchange energy in a dimer is much larger than that
in the other links. This setup allows us to realize the short-range quantum magnetism
within th dimer at the total entropy we can currently reach. Furthermore, we introduce
large-spin degree of freedom by using a fermionic isotope 173Yb, which is characterized by
SU(N = 2I + 1) symmetric repulsive interaction for nuclear spin I = 5/2. The precise
control of the spin degree of freedom provided by optical pumping technique enables us
a straight forward comparison between the cases of SU(2) and SU(4). We investigate the
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Figure 7.1.1: Local entropy redistribution scheme. The temperature in the experiment is
above the exchange energy J for isotropic lattices and no magnetic spin correlations can
be observed. When introducing a large exchange energy Jd on links via a dimerization, the
temperature is below the large exchange energy, and magnetic spin correlations emerge
within the strong links.

large-spin influence on the quantum magnetism. This work is an important step towards
the realization of novel SU(N > 2) quantum magnetism.

7.2 Spin manipulation by the optical pumping

The experimental techniques that lead to the manipulation and detection of the nuclear
spin degree of freedom are of central importance in the context of quantum simulation
of SU(N )-symmetric models. In this section, we show how the difference nuclear spin
states of 173Yb can be separately imaged and how SU(4) spin mixtures can be prepared
by means of optical techniques. Although removal of one or more spin states is possible by
using narrow-line transitions and the Zeeman shift, associated atom losses make cooing
difficult. Instead, we can make use of optical pumping which gather atoms into particular
spin states.

7.2.1 Numerical simulation of the spin relaxation

First of all, we introduce the theory to simulate the spin relaxation during optical pump-
ing. The time evolution of spin population can be described by the following rate equa-
tions:

dNF,mF

dt
= −

∑
F ′,m′

F

ω
F ′,m′

F
F,mF

(
NF,mF

−NF ′,m′
F

)
+
∑
F ′,m′

F

Γ
F ′,m′

F
F,mF

NF ′,m′
F
, (7.2.1)

dNF ′,m′
F

dt
= −

∑
F,mF

ω
F ′,m′

F
F,mF

(
NF ′,m′

F
−NF,mF

)
− ΓNF ′,m′

F , (7.2.2)
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Table 7.2.1: Reduced dipole matrix elements (RMEs) for Yb [110].

Transition RME [atomic unit]

1S0 ↔ 1P1 4.4

1S0 ↔ 3P1 0.54

where ω
F ′,m′

F
F,mF

and Γ
F ′,m′

F
F,mF

are the transition rate to the excited state and the decay rate
to the ground state, respectively:

ω
F ′,m′

F
F,mF

=
e2Ilaser
ϵ0ℏ2c

|⟨F ′,m′
F |rq|F,mF ⟩|2

1

π

Γ/2

(ωlaser − ωF ′,m′
F
)2 + (Γ/2)2

(7.2.3)

Γ
F ′,m′

F
F,mF

= Γ
∑

q=0,±1

C [F ′(J ′(L′S ′)I ′),m′
F ; q;F (J(LS)I),mF ]

2
. (7.2.4)

⟨F ′,m′
F |rq|F,mF ⟩ is the dipole matrix element such as

⟨F ′,m′
F |rq|F,mF ⟩ = C[F ′(J ′(L′S ′)I ′),m′

F ; q;F (J(LS)I),mF ]
⟨α′J ′||r||αJ⟩√

2J ′ + 1
. (7.2.5)

Here, ⟨α′J ′||r||αJ⟩ is the reduced dipole matrix element, which is specific to the atomic
species. In the case of 1S0 ↔ 3P1 of Yb, the reduced dipole matrix element amounts to
⟨α′J ′||r||αJ⟩ = 0.54× Bohr radius as shown in Tab.7.2.1.
C[· · · ] is dependent on the quantum numbers for a given transition |F (J(LS)I),mF ⟩ ↔
|F ′(J ′(L′S ′)I ′),mF ′⟩, and is related to the Clebsh-Gordan coefficient [10]. This C [· · · ] is
given as

C[F ′(J ′(L′S ′)I ′),m′
F ; q;F (J(LS)I),mF ] = (−1)F

′+J ′+I′−m′
F+F+1δI,I′√

(2F ′ + 1)(2F + 1)(2J ′ + 1)

(
F ′ 1 F

−m′
F q mF

){
F ′ 1 F
J I ′ J ′

}
, (7.2.6)

where (· · · ), {· · · } represent Wigner’s 3j- and 6j-symbol, respectively.
Figure 7.2.1 shows the absolute square of the normalized Clebsch-Gordan coefficients

in (a) F = 5/2 → F ′ = 7/2 and (b) F = 5/2 → F ′ = 3/2 transition.

7.2.2 Loss spectroscopy of transition used for optical pumping

For optical pumping, we use the 1S0 ↔ 3P1(F
′ = 3/2, 7/2) transition. To selectively pump

the atoms in each sublevel of the ground state, we impose the B-field on them, and the
sublevels split. The Zeeman shift of a sublevel |F ′,mF ′⟩ is given by

∆EF ′,mF ′ = gF ′µBBmF ′ , (7.2.7)
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Figure 7.2.1: Squared Clebsch-Gordan coefficients in (a) F = 5/2 → F ′ = 7/2 transition
and (b) F = 5/2 → F ′ = 3/2 of 173Yb, respectively.

where g-factor is

gF ′ =
F ′(F ′ + 1) + J(J + 1)− I(I + 1)

2F ′(F ′ + 1)
gJ (7.2.8)

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (7.2.9)

Since S = 1/2, L = 1/2, J = 1, I = 5/2 for the 3P1 state of 173Yb, the g-factor for
F ′ = 3/2, 7.2 becomes

gF ′ =

 −3/5 F ′ = 3/2

7/3 F ′ = 7/2

, (7.2.10)

respectively.
We check the energy shift of sublevels in the excited state 3P1 by a loss spectroscopy.
Below, we show the experimental setup and results.

Spectrum of F ′ = 3/2

Figure 7.2.2(a) shows the schematic to selectively pump out a spin component in the
ground state by using a transition to F ′ = 3/2 in the 3P1 state. Under the high B-field,
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the sublevels in F ′ = 3/2 state spread due to the Zeeman effect. With a linearly-polarized
light, we can pump out mF = ±3/2,±1/2 to another. As a laser source for the pumping,
we use the same light as that for the MOT, where the transition to F ′ = 7/2 is used. In
order to compensate the large frequency difference between F ′ = 3/2 and F ′ = 7/2, an
EOM is used as in Fig.7.2.2(b). Figure 7.2.2(c) shows the loss spectrum of F ′ = 3/2 under
the high B-field B = Bz = 16 G. We scan the pumping light by RF to the double-pass
AOM in Fig.7.2.2(b). At the loss spectroscopy, the polarization of the pumping light is
not π, but the composition of σ+ and σ− to induce atomic loss.

Spectrum of F ′ = 7/2

Figure 7.2.3(a) shows the schematic to selectively pump out a spin component in the
ground state by using the transition to F ′ = 7/2 in the 3P1 state. Since the laser source
for the pumping is the same as for the MOT(F ′ = 7/2), where the −1st-order light of the
switching AOM with 80 MHz is used, an AOM with 350 MHz is inserted to compensate
the frequency shift by the switching AOM and the double-pass AOM as in Fig.7.2.3(b).
Figure 7.2.3(c) is the loss spectrum of F ′ = 7/2. The offset of the atom number is slowly
changing because the power of the pumping light depends on the RF to the double-pass
AOM. Since the center frequency of the AOM is 110 MHz, the atomic loss gets larger
around the frequency.

7.2.3 Optical Stern-Gerlach Experiment

The Stern-Gerlach technique is widely used in cold atom experiments with alkali atoms.
The magnetic field gradient creates a spin-dependent force on atoms, which enables to
separately observe the atoms in the different magnetic sublevels [111]. However, the same
technique is not available to Yb and other alkaline-earth-like atoms since they have no
electronic spin in their ground states. Alternatively, we utilize the optical Stern-Gerlach
(OSG) effect [112], which originates from dependence of the light shift of the ground state
on its magnetic sublevels. In this section, we describe this technique and show the result
of the demonstration with 173Yb atoms.

Calculation of light shifts

First, we calculate light shifts induced by a laser field detuned by a frequency on the order
of the hyperfine splittings in 3P1 of 173Yb. The energy shift for |F,mF ⟩ of the ground
state is given by [113]

∆EF,mF
= −e

2Ilaser
ϵ0ℏc

∑
F ′,mF ′

ωF ′,mF ′

ω2
F ′,mF ′ − ω2

laser

|⟨F ′,mF ′ |rq|F,mF ⟩|2 , (7.2.11)

where Ilaser is the intensity of laser light, ωlaser is the laser frequency, ωF ′,mF ′ is the resonant
frequency between the states |F,mF ⟩ and |F ′,mF ′⟩, the summation is taken over all
the possible F ′ and mF ′ , and ⟨F ′,mF ′ |rq|F,mF ⟩ is the dipole matrix element defined in
Eq.7.2.5. We use the 1S0 ↔ 3P1 transition for the OSG experiment. The hyperfine states
of F ′ = 3/2, 5/2, 7/2 have to be taken into consideration, whose resonant frequencies are
listed in Tab.3.1.3. Figure 7.2.4 shows the calculation results of light shifts for circular
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Figure 7.2.2: Schematics of the loss spectroscopy of the F ′ = 3/2 transition. (a)
Energy level under the external B-field. Sublevels in F ′ = 3/2 spread according to
∆E = gF ′µBBmF ′ . Since gF ′ = −3/5 for F ′ = 3/2, the splitting amounts to gF ′µB = 0.84
MHz/Gauss. (b) Experimental setup for the pumping light. We use the same laser source
as that for MOT, where the F ′ = 7/2 transition is used. The frequency of the pumping
laser is controlled by an RF to the double-pass AOM. (c) Loss spectrum under the B-field
B = Bz = 16 Gauss. The horizontal axis shows the RF to the double-pass AOM. The
right legend is the fit result with the Lorentzian function. The measured energy splitting
is about 14.9 MHz, which is close to the theoretical estimation 0.84× 16 = 13.4 MHz.
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Figure 7.2.3: Schematics of the loss spectroscopy of the F ′ = 7/2 transition. (a)
Energy level under the external B-field. Sublevels in F ′ = 7/2 spread according to
∆E = gF ′µBBmF ′ . Since gF ′ = 3/7 for F ′ = 7/2, the splitting amount to gF ′µB = 0.6
MHz/Gauss. The transition to ±7/2 is prohibited with a linearly-polarized light. (b) Ex-
perimental setup for the pumping light. We use the same laser source as that for MOT.
Frequency of the pumping laser is controlled by an RF to the double-pass AOM. (c) Loss
spectrum under the B-field B = Bz = 16 Gauss. The horizontal axis shows the RF to the
double-pass AOM. The right legend is the fit result with the Lorentzian function. The
measured energy splitting is about 10 MHz, which is close to the theoretical estimation
0.6× 16 = 9.6 MHz.
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polarization and linear polarization. With circular polarized light, each magnetic sublevel
of 173Yb is well separated at around 1 GHz detuning from F ′ = 7/2 transition. On the
other hand, the light shifts of sublevels with the same absolute values are degenerated in
the linearly polarized light.

Experimental setup and result

Figure 7.2.5 shows the schematics of the OSG experiment. We irradiate an OSG light on
an atomic cloud along the y-axis right after turning off FORT potential. The OSG light
is aligned so that the atomic cloud is located at the shoulder of the Gaussian beam, where
each nuclear spin feels the different gradient force according to the detuning of the OSG
light as in the Fig.7.2.4. During TOF, the atomic cloud expands according to its velocity
distribution, and we observe the velocity distribution of the atomic cloud by absorption
imaging. Figure 7.2.6 shows the absorption images with and without the OSG light. Each
spin population is separately observed with the OSG light. Since an atom in a sublevel
where the large light shift is earned suffers from the large heating by photo-scattering,
the width of the cloud differs depending on the sublevel.

7.2.4 Creation of balanced 4-spin mixture

Even though we can selectively pump out an arbitrary nuclear spin of 173Yb by apply-
ing a B-field and splitting sublevels of the excited state, we suffer from imbalance of
the spin population after the optical pumping. This is because of asymmetry of the
Clebsch-Gordan coefficients in Fig.7.2.1. For example, if we pump atoms in mF =
3/2 of the ground state by using |F = 5/2,mF = 3/2⟩ ↔ |F ′ = 7/2,m′

F = 3/2⟩ line,
almost all of the atoms would be transported to |F = 5/2,mF = 1/2⟩. On the con-
trary, with |F = 5/2,mF = 3/2⟩ ↔ |F ′ = 3/2,mF ′ = 3/2⟩ line, atoms are pumped into
|F = 5/2,mF = 5/2⟩ state rather than |F = 5/2,mF = 1/2⟩ state. Then, we use both of
these transition lines to compensate difference of the Clebsch-Gordan coefficients. Figure
7.2.7(a) shows the schematic of optical pumping method. We pump atoms in mF = ±3/2
to mF = ±1/2 and ±5/2 by using the 4-frequency light. To examine this scheme, we
simulate the spin population by numerically solving the rate equations 7.2.1 and 7.2.2.
Figure 7.2.7(b) shows the result of the scheme. The simulation ensures that a balanced
four-component mixture can be obtained. We also find that the result is robust against
the laser intensity imbalance between F = 5/2 → F ′ = 3/2 and F = 5/2 → F ′ = 7/2.

Figure 7.2.8 illustrates the experimental setup for the optical pumping to create a
balanced 4-spin mixture. The setup before optical fibers to the experimental chamber
in Fig.7.2.8(b) is merely combination of the Fig.7.2.2(b) and Fig.7.2.3(b). After optical
fibers, we overlap two pumping lights on a PBS, tilt the polarization directions by 45◦

at a λ/2 plate, and use the lights reflected at the second PBS. These optics provide the
two pumping lights with the same polarization. After passing through wave plates, notch
mirrors and lens, the two lights enter the metallic chamber. When we align the optical
path, we use the incident light of 532 nm y-axis lattice partially transmitted at a notch
mirror for 45◦ angle, and adjust two mirrors so that the 532 nm light couples to the optical
fibers from which the pumping lights are emitted.

Optical pumping causes some heating of atomic samples since it uses absorption and
emission of photons. This is crucial for samples in the quantum degenerate regime. There-
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Figure 7.2.4: Calculated light shift of the OSG beam as a function of frequency detuned
from the 1S0 ↔ 3P1(F

′ = 7/2) transition. We assume a Gaussian beam with w0 = 100 µm
and an incident power of 10 mW and evaluate the laser intensity at ρ = w0/2 from the
beam center.
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Figure 7.2.5: Schematics of the experimental setup for the OSG. The OSG light with a
circular polarization propagates along the y-direction. An atomic cloud is located at the
shoulder of the OSG light, where each spin feels the different gradient according to the
detuning. A weak magnetic field is applied along y-direction not to cause spin precession
by the fictitious magnetic field of the OSG light.
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Figure 7.2.6: Absorption images (a) without and (b) with the OSG light. The OSG light
is about 1 GHz blue-detuned from the resonant frequency of the 1S0 ↔ 3P1(F

′ = 7/2)
transition. The irradiation time is 0.12 ms, and incident power of the OSG light is about 40
mW. Images are taken along the y-axis after 10 ms TOF, and averaged by 5 independent
shots.
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(a)

(b)

Figure 7.2.7: (a) Schematics of the optical pumping to create a balanced 4-spin mixture
of 173Yb. (b) Numerical simulation result of the optical pumping by rate equations.
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Figure 7.2.9: Typical experimental sequence for the optical pumping and OSG.

fore, we perform optical pumping at the early stage of evaporative cooling, as shown in
Fig.7.2.9. Because the diameter of our pumping laser is smaller than the size of an atomic
cloud immediately after loading to the FORT, we shed pumping lasers 2.75 s after the
beginning of evaporative cooling. Optimization of the optical pumping is accomplished by
the following OSG technique: we adjust the polarization and intensity of optical pumping
lights to create a balanced 4-spin mixture.

Figure 7.2.10 shows the result of optical pumping to the 4 magnetic sublevels mF =
±1/2 and ±5/2 of 173Yb. Without optical pumping, all magnetic sublevels are equally
populated, as in (a). After irradiation of pumping laser, almost all atoms are pumped
into mF = ±1/2 and ±5/2. Fitting with a multi-component Gaussian function ensures
that almost balanced 4-spin mixture is achieved.

7.3 Photoassociation Experiment

Photoassociation (PA) [114, 115, 116, 117, 118] is the process in which two colliding atoms
absorb a photon to form an excited molecule [119]. If PA light is applied to atoms in a
deep optical lattice as in Fig.7.3.1, atoms on multiply occupied sites are converted into
electronically excited molecules. The molecules can immediately decay into its electronic
ground states or two free atoms. The dissociated two free atoms have large kinetic energy
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(a) OSG image without optical pumping (b) OSG image with optical pumping
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Figure 7.2.10: OSG images (a) without and (b) with the optical pumping. The lower
images plot OD integrated along the z-axis. Solid lines are the fit result with a multi-
component Gaussian function.

and escape from the optical trap [119]. Molecules in electronic ground states can not be
detected by a standard absorption imaging.

In the experiment, we use the PA resonance around the 1S0 ↔3P1 atomic transition to
measure the double occupancy in optical lattices. This resonance has sufficient PA rate,
otherwise tunneling between neighboring lattice sites or heating due to photon scattering
could occur. In this section, we describe the experiment to investigate if the PA technique
uniformly works for all two spin pairs within the 4-spin mixture of mF = ±1/2 and ±5/2.

7.3.1 Creation of arbitrary 2-spin mixture

For systematic investigation, we develop a pumping scheme to create arbitrary 2-spin
mixtures. Figure 7.3.2(a) shows the schematics. As a first step, 6-spin components are
pumped to mF = ±5/2 by irradiating a π-polarization light at the low B-field B = Bz =
0.5 Gauss, where the splitting of sublevels in F ′ = 3/2 is negligible. As a second step,
we impose the high B-field B = Bz = 16Gauss to split the sublevels in F ′ = 7/2, and
shine the 4-frequency light, which is realized by putting RFs to a double-pass AOM via
a multi-channel combiner. In the above procedure, the first step plays important role
to create 2-component mixtures including mF = 5/2 or −5/2: as can be seen from the
Fig.7.2.1(a), CGC from mF ′ = (−)3/2 to mF = (−)5/2 is as small as 1/21. Therefore, it
is not so effective to pump to mF = (−)5/2 with the F ′ = 7/2 transition. This problem
can be verified by the numerical simulation of the spin relaxation described in the section
7.2.1. To solve the problem, we pre-pump the atoms to mF = ±5/2 with the F ′ = 3/2
transition, where the CGC from mF ′ = (−)3/2 to mF = (−)5/2 is as large as 2/3. Figure
7.3.2(b) displays the results in a matrix form. The upper triangular matrix shows the
row absorption images after OSG. The lower triangular matrix shows the OD integrated
along z-axis. Almost all atoms are pumped to a desired sublevel. The atoms remaining
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Figure 7.3.1: Schematics of the PA in an optical lattice.
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Figure 7.3.2: Schematics to create arbitrary 2-component mixtures of 173Yb. The arrows
mean the excitation and decay. We show the case of the optical pumping to mF =
−1/2, 3/2.

not to be pumped may be caused by the spatial inhomogeneity due to the trap potential.
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Figure 7.3.3: Numerical simulation of the optical pumping to arbitrary 2-spin mixtures. The initial state is a 2-spin mixture of
mF = ±5/2. The beam waist of the optical pumping beam is set to w0 = 200 µm, and power of each 4-frequency light is 10 µW.
The column and row indexes correspond to the sublevel to which a particle should be pumped. Note that the lines of mF = ±s are
overlapped in the figure of pumping to mF = ±s (s = 1/2, 3/2, 5/2).
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Figure 7.3.4: OSG images with the optical pumping to arbitrary 2-spin mixtures.



CHAPTER 7 ANTIFERROMAGNETIC SPIN CORRELATION OF SU(N ) FERMI
GAS IN AN OPTICAL DIMERIZED LATTICE

After creating a certain 2-component mixture of 173Yb by the optical pumping, we
investigate the PA rate for the spin pair. First, we describe the experimental setup for
the PA (See the Fig.7.3.5). Similar to optical pumping lights, we use the 0-th order light
of the switching AOM of the MOT, and detune the light by a double pass AOM. After
an optical fiber, the PA light enters the metallic chamber along the z axis. To avoid
retroreflection, the PA light is not overlapped with the z-axis optical lattices before the
doublet lens and damped at an iris in front of the retroreflection mirror.

In the experiment, we use the PA resonance at the detuning of -812.26 MHz from
the 1S0 ↔3 P1 atomic transition. By the following experiment procedure, we investi-
gate if the resonance has a sufficient and uniform PA rate for all two-spin pairs within
mF = ±1/2 and ±5/2. The sample is prepared by optical pumping to a certain two-
spin pair and evaporatively cooling down to the degeneracy regime. Then, we load the
two-component Fermi gas of 173Yb into optical lattices with an anisotropic geometry of(
s
(x)
long, s

(y)
short, s(z)

)
= (40, 40, 15). At the same time as lattice loading, we ramp up the

horizontal FORT potential by a few % to increase the double occupancy in the lattice.

After that, we quickly ramp up the lattice depths up to
(
s
(x)
long, s

(y)
short, s(z)

)
= (100, 100, 25)

in order to freeze the atomic motion, and irradiate the PA light for variable time. Figure
7.3.6 shows the measure atom loss curves. We fit to the data with the double exponential
function as

f(t) = [a exp (−t/τ1) + b] exp (−t/τ2) , (7.3.1)

where a, b, τ1, τ2 are fitting parameters. The decay time shown in the inset is equivalent
to τ1, and double occupancy is defined as

D =
a

a+ b
. (7.3.2)

The data ensure that the PA works almost uniformly for all spin pairs and has a sufficient
PA rate not to cause one-body loss during the doublon removal, as a plateau can be seen.

7.4 Singlet-triplet oscillation in dimer

In this section, the observation of antiferromagnetic spin correlations on neighboring
sites in a dimerized lattice geometry is presented. After loading a low-temperature 2-
component or 4-component spin mixture of fermionic atoms with repulsive interactions
into the optical lattice, the spin correlations emerge as an excess number of singlets as
compared to triplets, which consist of two atoms with different spins. The dependence of
the singlet-triplet imbalance is studied over a wide range of entropies.

An overview of the preparation and detection scheme is given in the Fig.7.4.1. A
balanced two-spin mixture of mF = ±5/2 or four-spin mixture of mF = ±1/2 and ±5/2
with approximately 3.2 × 104 atoms is evaporatively cooled in the FORT to degeneracy
regime.

A,B The lattice potentials are turned on with a spline-shaped ramp in the first 100 ms
and liner ramp in the latter 50 ms to a dimerized lattice configuration. At the same
time, we linearly change the horizontal FORT potential to 2.335 V in the first 100
ms.
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Figure 7.3.5: Experimental setup for PA (a) after and (b) before optical fiber.
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GAS IN AN OPTICAL DIMERIZED LATTICE

(a)

Decay time =0.140(8) ms 

m
F
=5/2 & -5/2

Double occupancy =0.394(9) 

(b) m
F
=-5/2 & -1/2

Decay time =0.120(6) ms 

Double occupancy =0.359(9) 

m
F
=-5/2 & 1/2

Decay time =0.107(4) ms 

Double occupancy =0.371(5) 

(c)

(d) m
F
=5/2 & 1/2

Decay time =0.134(8) ms 

Double occupancy =0.37(1) 

(e) m
F
=5/2 & -1/2

Decay time =0.16(1) ms 

Double occupancy =0.36(1) 

(d) m
F
=1/2 & -1/2

Decay time =0.18(1) ms 

Double occupancy =0.32(1) 

Figure 7.3.6: Atom loss curves by the PA in optical lattices for all spin pairs within
mF = ±1/2 and ±5/2.

C,D For measurements in the dimerized lattice, the lattice is ramped up in two steps. The

lattice potentials are linearly increased over the course of 0.5 ms up to
[
s
(x)
long, s

(x)
short, s

(y)
short, s

(z)
short

]
=

[25, 20.8, 80, 100] in order to isolate each dimer. In a second linear ramp lasting 10

ms, the short x-axis lattice is increased to s
(x)
short = 100 to freeze the atomic motion

within the dimer.

E After the rapid ramp to the detection lattice, we apply the spin-dependent by the
fictitious magnetic field of light, which creates a differential bias energy ∆ for atoms
of different spins on adjacent sites and causes coherent oscillations between the
singlet |s⟩ = (|σ1, σ2⟩ − |σ2, σ1⟩) /

√
2 and the triplet |t0⟩ = (|σ1, σ2⟩+ |σ2, σ1⟩) /

√
2

state at a singlet-triplet oscillation frequency 2∆/h, where σi (i = 1, 2) denote a
spin component. If the initial amount of singlets and triplets is equal, no overall
oscillation will be visible, as |s⟩ and |t0⟩ oscillate in antiphase.

F After a certain oscillation time, we remove the gradient and merge two adjacent sites
by ramping s

(x)
short down to zero in 1 ms. Owing to the symmetry of the two-particle

wavefunction, the singlet state on neighboring sites evolves to a doubly occupied
site with both atoms in the lowest band, whereas the triplet state transforms into a
state with one atom in the lowest and the other atom in the first excited band.

G The fraction of atoms forming double occupancies in the lowest band of the merged
lattice is detected by the PA technique, while the state with one atom in the lowest
band and the other in the first excited band is note detected by the PA due to its
odd partial wave functions [119].

We adjust the atom number so that the double occupancy per site does not appear
at the stage of lattice loading, otherwise multiply occupied sites cause the overestimation
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SECTION 7.4 SINGLET-TRIPLET OSCILLATION IN DIMER

of the singlet fraction because the PA can remove them from the trap. The entire filling
over the harmonic confinement is equal to or less than one atom per site. The optimal
atom number is examined by numerical calculation using the atomic limit of the SU(N )
Fermi-Hubbard model and local density approximation, details of which are described in
the section 2.6. Note that the states with one atom per dimer also exist in outer region of
the trap system, and the oscillation between the symmetry state= (|σ1, 0⟩ + |0, σ1⟩)/

√
2

and antisymmetry state= (|σ1, 0⟩− |0, σ1⟩)/
√
2 occurs owing to the field gradient, but PA

technique does not detect such states because they leads to the single occupancy after
merging the dimer.

Figure 7.4.2 shows the typical singlet-triplet oscillation of the 4-spin mixture of 173Yb
in a strongly dimerized lattice. A clear oscillation in the atom number is visible. The
damping of the oscillation is caused by the inhomogeneity of the fictitious magnetic field
gradient and the heating due to photon scattering of the gradient light. We observe
the STO for the 2-spin mixture. This oscillation reveals an excess number of singlets,
corresponding to antiferromagnetic spin correlations on neighboring sites. We fit the data
with the damped sine functions such as

F (t) = −a exp (−t/τ) cos (2πft) + b, (7.4.1)

where a, b, τ, f are fitting parameters. Along with the data of STO, we measure the total
atom number in optical lattices without applying the PA light, N . We qualify this order
by the normalized imbalance A and singlet fraction ps

A =
2a

N
, (7.4.2)

ps = 1− b− a

N
, (7.4.3)

We note that the extracted N − b − a exactly corresponds to the actual atom number
in the triplet state for SU(2) spins, but that is not the case for SU(4) spins because a
coherent oscillation does not occur for the spin pairs of (mF = 1/2,mF = −1/2) and
(5/2,−5/2).

To analyze the effect of spin degrees of freedom on the magnetic correlations, we
measure the dependence of the singlet-triplet imbalance and singlet fraction on the entropy
in the harmonic trap. Figure 7.4.3 shows the result for SU(2) and SU(4) spin mixture

in a dimerized cubic lattice of
[
s
(x)
long, s

(x)
short, s

(y)
short, s

(z)
short

]
= [20, 20.8, 48, 48]. The Hubbard

parameters are U/h = 3.0 kHz, td/h = 1.0 kHz, t/h = 108 Hz, and tyz/t = 1.31, and the
geometric mean of the trap frequency amounts to ω̄ = 2π × 102.9 Hz. The normalized
STO amplitude and the absolute singlet fraction ps reduce for larger entropies, as triplet
states become thermally populated. A clear and striking difference between SU(4) and
SU(2) spin mixtures is visible: the antiferromagnetic spin correlation is enhanced in the
SU(4)-spin system compared to SU(2) for the same initial entropy. This behavior can
be understood as follows. In the case of SU(2) spins in a dimer, the lowest-lying singlet
state is limited to one configuration (|↑, ↓⟩ − |↓, ↑⟩)/

√
2. The entropy of this singlet state

is ln(W = 1)=0, where W denotes the number of singlet configurations in a dimer. IN
the SU(4)-spin system, the larger spin degrees of freedom increase W up to 6, which
makes the entropy per site of the singlet states ln(W = 6)/2. This means that the initial
temperature require for spins to form the singlet is significantly reduced in the SU(4)
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H. FORT

V. FORT

532nm x-lattice

1064nm x-lattice

532nm y-lattice

532nm z-lattice

Gradient beam

PA light

Time
100ms 50ms 0.5ms 10ms 0-4ms 1ms 0.5ms

2.335V

0.664V

5

5

5

fSTO~5kHz

0.3-0.4mW

15

5.2

20

25

25

20

25

Preparation Inter-dimer freeze Intra-dimer freeze STO Site merging PA

x

E

td

n = 2 in dimer

Atom with ↑or ↓spin

singlet

triplet

1st band
2nd band

1st band
2nd band

[ER
532]

[ER
1064]

[ER
532]

[ER
532]

12

12

A B C D E F G

Figure 7.4.1: Typical time-sequence to observe STO in a dimerized lattice after evapo-
rative cooling. Shown is the case of two spins (red and blue) per dimer. Depending on
the STO time, the two spins form the double occupancy in the lowest band (top), or the
state with one spin in the lowest band and the other in the first excited band (bottom)
after merging the dimer. These states are distinguished by the PA technique.
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N-b+a

2a

N

Total atom number

Fit result

Figure 7.4.2: Singlet-triplet oscillation for SU(4) spins in a strongly dimerized lattice with
U/h = 3.02 kHz, td/h = 1.02 kHz, t/h = 38.0 Hz, and tyz/t = 1.31. The red dashed line
represents the total atom number in the lattice without applying the PA. The blue solid
line is the fit result with Eq.7.4.1. The gray dotted line is the STO signal assuming no
damping. Error bars denote the standard deviation of four independent scans.
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GAS IN AN OPTICAL DIMERIZED LATTICE

system. In other words, the large spin effectively cool down the system by absorbing
entropy from motional degree of freedom, which is the same mechanism as Pomeranchuk
cooling observed in the solid 3He [120]. We note that in a trapped system, entropy is
stored in a metallic state near the edge of the atomic cloud and a singlet state at the
trap center survives for higher total entropy. This Pemeranchuk cooling method was
already demonstrated in the SU(6) fermionic Mott-insulator, but no experimental study
of this effect on the quantum magnetism was reported, which is clearly demonstrated in
this work. Here we note that the data in Fig.7.4.3 (a) and (b), especially at low initial
entropies, show the discrepancy with the theory. This indicates the existence of some
heating effect, possibly caused by non-adiabaticity of the the lattice loading.

Finally, we investigate the dependence of the normalized STO amplitude on the intra-
dimer tunneling td. Figure 7.4.4 shows the result with the SU(4) Fermi gas. The solid
line is the theoretical curve shown only for td/t = 10 and higher. Below this value
the atomic limit calculation starts to be invalid. As the dimerization gets weaker, the
excitation energy to the triplet state is lowered, and the STO amplitude decreases. Our
experimental data show such a tendency and indicate the possibility that the nearest-
neighbor antiferromagnetic correlation still remains slightly even in the isotropic cubic
lattice. In terms of the entropy, the rough criterion for the onset of the nearest-neighbor
spin correlation in the lattice is s/kB =ln(N ) [121], which amounts to ln(N = 4)= 1.38
for the SU(4) system. Even though the average entropy in our trapped system is 1.9 in
the Fig.7.4.4, the lower entropy is achieved at the trap center. The atoms around such
a region are considered to contribute to the possible nearest-neighbor spin correlation in
the isotropic lattice.

7.5 Conclusion and outlook

In conclusion, we have studied the important role of the spin degrees of freedom on the
antiferromagnetic spin correlation in a strongly dimerized lattice by comparing the SU(2)
and SU(4) systems. We observed the enhanced antiferromagnetic correlations in SU(4)
due to the Pomeranchuk effect. Further cooling can be expected for a larger spin system
such as SU(6), which 173Yb intrinsically possesses, even though more than two frequencies
arise in the STO. Another interesting direction for the experimental investigation is to
develop a cooling method by engineering the shape of the confinement [36] or dynamically
controlling the layered lattice potential [122].
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Blue: SU(4)

Red: SU(2)

Blue: SU(4)

Red: SU(2)

(a)

(b)

(c)

SU(4)

SU(2)

ln(6)/2

Figure 7.4.3: (a) Normalized STO amplitude and (b) singlet fraction of SU(2) and SU(4)
Fermi gases in the strongly dimerized lattice. The dependence on the initial entropy in
the harmonic trap is shown. The solid line is a theoretical curve that assumes adiabatic
loading into the lattice. The vertical error bars include the fitting errors in the STO
measurement and the standard deviation of the total atom number N . The horizontal
error bars include the fitting errors. (c) Calculated density (top) and entropy distribution
(bottom) at the initial entropy per particle sinit/kB = 1.5 for SU(2) and SU(4) cases. The
maximum singlet entropy per site ln(6)/2 for SU(4) is indicated by the gray dashed line.
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Figure 7.4.4: Normalized STO amplitude for the SU(4) Fermi gas versus the intra-dimer
tunneling. The horizontal axis is shown in a logarithmic scale. The black solid curve is
the prediction in the atomic limit for an entropy per particle of s/kB = 1.9 under the
assumption of the adiabatic loading into the lattice, and is shown down to td/t = 10. For
the entire data, the on-site interaction is fixed to U/h = 3.0 kHz, while t changes form
t/h = 28.0 Hz to 100 Hz, and tyz/h form 1.7 to 1.0.
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Chapter 8

Conclusion & Outlook

In this thesis, ultracold ytterbium atoms in an optical non-primitive lattice were studied.
We briefly review the achievement of the work in this thesis.

• Direct observation of a localized state in a flat band. We succeeded in developing
the phase imprinting method, which enables a coherent transportation of a BEC to
the flat band of an optical Lieb lattice. Along with the inter-band dynamics of the
BEC in the band, we observed the real-space dynamics of a BEC in the lattice by
using the site-mapping technique. This measurement clearly shows the formation
of a localized state in the flat band.

• Measuring the interaction effect on the band structure of an optical Lieb lattice. We
performed the momentum-resolved measurement of the lowest three Bloch bands
of an optical Lieb lattice for a weakly interacting BEC. Our important finding is
that the second band, which should be flat in single-particle limit, is shifted and
in particular distorted around the Brillouin zone edge as the interaction strength
increases.

• Demonstration of a spatial adiabatic passage in a Lieb lattice. We reveal that a
Lieb lattice system has a remarkable analogy to a three-level system with Λ-type
transition. By making use of analogy and dynamical controllability of our optical
Lieb lattice, we realized the spatial adiabatic passage of massive particles for the
first time. This method can be used to transfer atoms into the flat band, apart from
the phase imprinting method.

• Probing the large-spin effect on the short-range quantum magnetism of a Fermi gas
in a dimerized lattice. We invented an optical pumping technique to create a bal-
anced four-spin mixture of 173Yb. By loading the four-spin mixture in a strongly
dimerized optical lattice, we investigated the large-spin effect on the quantum mag-
netism within the dimer. Our important finding is that the antiferromagnetic order
is enhanced in SU(4) compared to SU(2) as a consequence of Pomeranchuk cooling
effect.

Outlook

Below, we present possible directions of the experiments with non-standard optical lattice.
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Lowest-lying flat band It would be theoretically interesting to investigate in which
quasimomentum a Bose gas condensate in a flat band. Although we developed methods to
transfer atoms into a flat band in a Lieb lattice, further experimental study is hampered
by a relatively short lifetime of atoms in the band. It would be convenient if a flat band
lies at the lowest band. Lattice shaking enables engineering the band structure, as it can
change the tunneling amplitude including the sign. In the kagome lattice and saw-tooth
lattice, we can prepare the lowest-lying flat band by applying the lattice shaking and
changing the sing of tunneling amplitude.

In a single-particle description, eigenstate of the flat band is localized at specific sub-
lattices. On the other hand, with a strong inter-particle interaction, the flat band is
distorted, and has a finite dispersion. As a result, a bose gas condensates in the lowest
energy point. Furthermore, in the intermediate interaction strength, it is theoretically
predicted that the novel supersolid phase, where a superfluid order and crystalline or-
der coexist, appears. Ultracold bosonic atoms in optical lattices with the lowest lying
flat band is one of the promising candidates to investigate above scenario. The super-
solid phase would show a characteristic interference pattern according the density wave
whose periodicity is longer than the lattice constant, which can be detected by TOF mea-
surement. The combination with a quantum gas microscope would enable us to draw a
precise phase diagram, as we could investigate the possibility of phase separation due to
the harmonic confinement.
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Appendix A

Trap geometry

In this appendix, the detailed trap geometry of the crossed FORT and the optical lattice
are presented.

A.1 Dipole force trap

First of all, we overview the basics of the Dipole Force Trap (DFT). For large detuning and
small intensity compared with the saturation intensity, the dipole potential and photon
scattering rate can be written as

V (r) = −3πc2

2

∑
β

Γβ

ω3
β

(
1

ωβ − ω
+

1

ωβ + ω

)
I(r) (A.1.1)

≃ 3πc2

2

∑
β

Γβ

ω3
βδβ

I(r) if |δβ| ≪ ωβ, (A.1.2)

γsc(r) =
3πc2ω3

2ℏ
∑
β

[
Γβ

ω3
β

(
1

ω − ωβ

+
1

ω + ωβ

)]2
I(r) (A.1.3)

≃ 3πc2

2ℏ
∑
β

Γ2
β

ω3
βδ

2
β

I(r) if |δβ| ≪ ωβ, (A.1.4)

respectively. Here, ω is the frequncy of the laser, β is the index for summation over
the possible transitions, Γβ and ωβ are the line width and frequency for each transition,
respectively. When estimating the dipole potential and photon scattering rate for an atom
in 1S0 state with a 532 nm or 556 nm light, we conventionally take into account the 1S0

↔ 1P1 and 1S0 ↔ 3P1 transitions.
The shape of a dipole force trap is determined by the following intensity distribution for
a Gaussian beam:

I(r) =
2P

πw(z)2
exp

(
− 2ρ2

w(z)2

)
, (A.1.5)

w(z) = w0

√
1 +

(
z

zR

)2

, (A.1.6)

zR =
πw2

0

λ
, (A.1.7)
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(a)

(b)

Figure A.1.1: Intensity distribution of (a) DFT and (b) otpical lattice with a Gaussian
shape. Here, the beam waist and wave length of the laser beam is set to w0 = 1 µm and
λ = 532 nm, respectively.

where w0 is the beam waist, λ is the wave length, P is the input power of the laser beam,
and the beam is assumed to propagate along the z-axis. zR is so-called Rayleigh length.

Optical lattice

An optical lattice is made by interference of two counter-propagating Gaussian beams.
The intensity distribution is given by

Ilattice(r) =
2P

πw(z)2
exp

(
− 2ρ2

w(z)2

)
2 [1 + cos(2kz)] , (A.1.8)

where k is the wave number k = 2π/λ. Figure A.1.1 shows the intensity distribution
calculated from Eq.A.1.5 and A.1.8.

A.2 Trap frequency

In the cold atom experiments, the inhomogeneity of the trap potential has a large influence
on the result. Therefore, the trap frequency is a particularly important parameter. In

117



CHAPTER A TRAP GEOMETRY

this section, we introduce some formulas for the trap frequency in the DFT and optical
lattice, and the experimental method to measure the trap frequency is described.

A.2.1 FORT

The trap frequencies for atoms in a single DFT can be obtained by expanding Eq.A.1.1
around the origin:

V (r) ≃ V (0)

(
1− 2ρ2

w2
0

− z2

z2R

)
= V (0) +

1

2
m(ω2

ρρ
2 + ω2

zz
2), (A.2.1)

ωρ =

√
4|V (0)|
mw2

0

(A.2.2)

ωz =

√
2|V (0)|
mz2R

. (A.2.3)

Since a typical value of the beam waist w0 is on the order of 10 µm, the axial frequency
ωρ is much smaller than the radial one as can be seen from Fig.A.1.1(a).

Trap frequency measurement in the crossed FORT

In principle, we can obtain the trap frequencies of the FORT using the Eq.A.2.2 and A.2.3
if the beam waist is known. However, the precise beam waist in the metallic chamber
is difficult to measure. In addition, the trap potential could be distorted by gravity and
possible misalignment of the crossed FORT. Therefore we should directly measure the the
trap frequencies.

As a method, we use the dipole oscillations of a BEC of 174Yb in the cross FORT.
Dipole oscillation is merely the center-of-mass oscillation of the cloud and its frequency
corresponds to the trap frequency along the direction of the oscillation. To induce the
dipole oscillation, we need to displace the atomic cloud. The method for the displacement
depends on the directions of oscillations. For the vertical direction (z-axis), we suddenly
change the depth of the horizontal FORT by a few % of the original potential. This
changes the gravitational sag of the trap center, and kicks the atoms along the vertical
direction. Since our imaging system does not have enough resolution for observing in situ
oscillations, we measure the position of the cloud 14 ms after the release from the trap.
For the horizontal directions (x, y), the procedure to induce dipole oscillations is more
complicated. We slightly shift the position of the vertical lattice beam away from the
trap center. Then we gradually ramp up the lattice beam without retroreflection, which
displaces the center-of-mass of the cloud. Finally we suddenly turn off the lattice beam,
and the cloud starts to oscillate.

Figure A.2.1 shows the summary for measured trap frequencies in the crossed FORT.
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CTRL [V] Power [mW] CTRL [V] Power [mW] H. FORT radial Error (2�) H.FORT axial Error (2�) Vertical Error (2�) Geometric mean

2.27 45.8 0.664 528.8 - - 24.631 0.351 106.582 2.676 -

2.3 46.9 0.664 528.8 149.31 0.826 24.631 0.351 112.976 3.042 74.62

2.33 48 0.664 528.8 153.961 1.024 24.631 0.351 127.94 1.449 78.578

2.36 49 0.664 528.8 154.147 0.807 24.631 0.351 137.402 1.637 80.501

2.4 50.6 0.664 528.8 160.383 0.61 24.631 0.351 155.318 0.983 84.974

2.44 52.1 0.664 528.8 162.051 0.736 24.631 0.351 170.444 0.93 87.951

2.3 46.9 0.4 329.2 148.463 1.325 18.258 0.558 112.976 3.042 67.404

2.3 46.9 0.9 715.8 156.31 2.282 29.24 0.299 112.976 3.042 80.226

H. FORT V. FORT � / 2�  [Hz]

(a)

(b)

(c)

Figure A.2.1: (a) Table of the measured trap frequency in FORT. (b) FORT power versus
control voltage. To monitor the horizontal FORT power, we use a logarithmic-response
photo-diode with which we can earn the dynamic range. Therefore, the fitting is made
with an exponential function in the case of the horizontal FORT. (c) Plots of the measured
trap frequency. The black solid line is the fitting to the data, the result of which is shown
in each figure.
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A.2.2 Optical lattice

The trap frequencies for an optical lattice can be obtained in the same way for DFT.
From Eq.A.1.8,

Vlattice(r) ≃ Vlattice(0)

[
1− 2ρ2

w2
0

−
(

1

z2R
+ k2

)
z2
]

= Vlattice(0) +
1

2
m
(
ω2
lattice,ρρ

2 + ω2
lattice,zz

2
)
, (A.2.4)

ωlattice,ρ =

√
4|Vlattice(0)|

mw2
0

(A.2.5)

ωlattice,z =

√
2k2|Vlattice(0)|

m
(A.2.6)

Lattice beam waist measurement

The beam waist of an optical lattice can be evaluated from Eq.A.2.5 if the radial trap
frequency at a certain lattice depth is known. We can measure the lattice depth by a
lattice calibration method as described in the section 3.5.1. In principle, the radial trap
frequency of an optical lattice can be measured in the same as for the crossed FORT.
However, since the beam waist of our optical lattices is as large as 100 µm to suppress
the inhomogeneity, it is difficult only with the optical lattice except the z-lattice to earn
a trap depth enough for supporting Yb atoms against the gravitational sag. Therefore,
the procedure is more complicated than for the crossed FORT.
Figure A.2.2 summarizes the procedure to measure the radial trap frequencies of optical
lattices. Below, we describe each sequence:

(a) First, we gradually ramp up the 532 nm z-lattice to support atoms. At the same
time, we ramp up the xy-lattice of interest. Finally, we suddenly turn off the crossed
FORT to displace the cloud, and observe the dipole oscillation along z-axis, where
the axial trap frequency of 532nm z-lattice is so small that the oscillation frequency
is determined by the radial trap of xy-lattice.

(b) As for the 532 nm z-lattice, we turn off the crossed FORT after ramping up the
lattice up to 20ER, which is deep enough to support atoms.

(c) Since the 1064 nm z-lattice is not able to trap the atoms only with itself, we keep
the horizontal FORT and observe the dipole oscillation along the axial direction of
the horizontal FORT in the z-axis imaging.

(d) Only with the z-beam for the diagonal lattice, it is difficult to displace the atomic
cloud. Therefore, we ramp up the 532 nm z-lattice for displacement along the axial
direction of the horizontal FORT.

Table A.2.1 shows the beam waist of our optical lattices by using the results of trap
frequency measurement and Eq.A.2.5. With this table, we can evaluate the radial trap
frequency for the arbitrary lattice depth.
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(a)

H. & V. FORT

xy-lattice

532nm z-lattice

Intensity

(b)

H. & V. FORT

532nm z-lattice

(c)

V. FORT

1064nm z-lattice

H. FORT

(d)

V. FORT

532nm z-lattice

H. FORT

Diagonal z-beam

Time

E

Position

Atom

E

Position

E

Position

Lattice
of interest

Displacement Dipole oscillationInitial state

Figure A.2.2: Experimental sequence to measure the radial trap frequency for (a)
532 nm xy-lattice, 1064 nm x-lattice, and x-beam of diagonal lattice, (b) 532 nm z-
lattice, (c) 1064 nm z-lattice, and (d) z-beam of diagonal lattice, respectively. The lowest
figures show the atom position in a trap at each stage.
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Table A.2.1: Measured beam waist of each lattice beam in the unit of µm. Note that
ωdiagonal
0,x(z) is the beam waist of one of two lasers creating the diagonal lattice.

wshort
0,x wshort

0,y wshort
0,z wlong

0,x wlong
0,z wdiagonal

0,x wdiagonal
0,z

106.4 99.3 121.5 112.3 128.1 122.4 167.5

A.2.3 Trap frequency for a combined optical trap

In the experiment, we ramp up the optical lattices on an atomic cloud in FORT. Since
Yb is heavy, the gravitational sag is large, and it is difficult to support Yb only with the
optical lattice potential. Therefore, the FORT and optical lattice coexist.
In this case, the total optical potential in the harmonic approximation is given by

Vtrap(r) =
1

2
m

[
3∑

k=1

ω2
H,k(r · eH,k)

2 +
3∑

k=1

ω2
V,k(r · eV,k)2 +

3∑
k=1

ω2
L,k(r · eL,k)2

]
, (A.2.7)

where ωX,k (X = H, V, L) is the trap frequency of the horizontal FORT (H), the vertical
FORT (V ), and the optical lattice (L). The subscript k represents the three principal
axes of each trap, whose directions are indicated by the unit vectors eX,k. For an arbitrary
basis {e}3i=1, Vtrap can be written as

Vtrap(r) =
1

2
mVijrirj, (A.2.8)

Vij = ei ·

[
3∑

k=1

ω2
H,keH,keH,k +

3∑
k=1

ω2
V,keV,keV,k +

3∑
k=1

ω2
L,keL,keL,k

]
· ej,(A.2.9)

where a · bc · d = (a · b)(c · d). By diagonalizing the matrix V = {Vij}, we can obtain
the trap frequencies {ωk} of the total potential Vtrap as the square root of the resulting
eigenvalues. Here, we choose the lattice axes {eL,k} as the basis. Since our horizontal
FORT is slanted 45◦ in xy-plane of the lattice axes, the unit vectors for the horizontal
and vertical FORT are represented as

eH,1 =
1√
2

 1
−1
0

 , eH,2 =

 0
0
1

 , (A.2.10)

eV,1 =
1√
2

 1
−1
0

 , eV,2 =
1√
2

 1
1
0

 . (A.2.11)

Here, eH,3 and eV,3 are omitted since the corresponding axial trap frequencies are negligibly
small compared to the radial ones.
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As a result, the matrix form of V becomes

V = V(H) + V(V ) + V(L), (A.2.12)

V(H) =


1
2
ω2
H,1 −1

2
ω2
H,1 0

−1
2
ω2
H,1

1
2
ω2
H,1 0

0 0 ω2
H,2

 , (A.2.13)

V(V ) =


1
2
(ω2

V,1 + ω2
V,2)

1
2
(−ω2

V,1 + ω2
V,2) 0

1
2
(−ω2

V,1 + ω2
V,2)

1
2
(ω2

V,1 + ω2
V,2) 0

0 0 0

 , (A.2.14)

V(L) = Vshort + Vlong + Vdiag, (A.2.15)

Vshort =


ω2
short,y + ω2

short,z 0 0

0 ω2
short,z + ω2

short,x 0

0 0 ω2
short,x + ω2

short,y

 , (A.2.16)

Vlong =


ω2
long,z 0 0

0 ω2
long,z + ω2

long,x 0

0 0 ω2
long,x

 , (A.2.17)

Vdiag =


ω2
diag,z 0 0

0 ω2
diag,x + ω2

diag,z 0

0 0 ω2
diag,x

 , (A.2.18)

where {ωX,i} (X = short, long, diag i = x, y, z) are the radial trap frequencies of each
lattice beam given by Eq.A.2.5 and the table A.2.1. Therefore, once the optical lattice
depth is given, the resulting radial trap frequency of the lattice can be calculated. As for
the FORT, figure A.2.1 shows the trap frequencies in the direction of the H.FORT radial,
axial, and the V.FORT. Here, they correspond to

ω2
H.FORT radial = ω2

H,1 + ω2
V,1, (A.2.19)

ω2
H.FORT axial = ω2

V,2, (A.2.20)

ω2
vertical = ω2

H,2, (A.2.21)

respectively. From the above relations, V(H) + V(V ) can be known.
For typical parameters, (ωH.FORT radial, ωH.FORT axial, ωvertial)/2π = (146, 22.5, 124) Hz and
({sshortx , sshorty , sshortz }, {slongx , slongz }, sdiag) = ({13, 13, 13}, {13, 13}, 15.5), the trap frequen-
cies amount to (ω1, ω2, ω3)/2π = (152, 130, 47.5) Hz and the geometric mean is ω̄/2π =
98.1 Hz.
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Appendix B

Mean velocity in a periodic potential

In this appendix, we introduce the expressions for the mean velocity of a particle in a
periodic potential, based on the perturbation theory. We also consider the case with the
influence of the external field except the periodic potential.

B.1 The case without external field

Here, we prove that the differential coefficient of the band dispersion corresponds to the
mean velocity of a particle [94].

The differential coefficients∂ϵn(k)
∂ki

(i = x, y, z n : band index k : momentum) can be
achieved as the 1st-order expansion coefficients of the band dispersion ϵn around k:

ϵn (k+ q) = ϵn (k) +
∑

i=x,y,z

∂ϵn (k)

∂ki
qi +O

(
q2
)
. (B.1.1)

Using a periodic function |un (k)⟩, the eigenstate of a single-particle Hamiltonian in the
periodic potential can be expressed as

|ψn (k)⟩ = eik·r |un (k)⟩ (B.1.2)

|un (k)⟩ satisfies the equation

H (k) |un (k)⟩ =

[
ℏ2

2m

(
1

i
∇+ k

)2

+ V (r)

]
|un (k)⟩

= ϵn (k) |un (k)⟩ , (B.1.3)

where V (r) is the periodic potential. From the definition of the Hamiltonian,

H (k+ q) = H (k) +
ℏ2

m
q ·
(
1

i
∇+ k

)
+

ℏ2

2m
q2. (B.1.4)

Regarding the 2nd term as perturbation, we get ∂ϵn(k)
∂k

. According to the perturbation
theory, the eigenvalue ϵn for H = H0 + H1, where H1 is the perturbation term, can be
written as

ϵn = ϵ0n + ⟨ψn|H1 |ψn⟩+ · · · , (B.1.5)
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where ϵ0n and |ψn⟩ satisfy H0 |ψn⟩ = ϵ0n |ψn⟩. Therefore, taking into consideration the 1st
order of the perturbation, the eigenvalue is

ϵn (k+ q) = ϵn (k) + ⟨un (k)|
∑
j

ℏ2

m

(
1

i
∇+ k

)
j

qj |un (k)⟩+ · · · . (B.1.6)

Comparing with the Eq.B.1.1, we get

∂ϵn (k)

∂k
= ⟨un (k)|

ℏ2

m

(
1

i
∇+ k

)
|un (k)⟩ . (B.1.7)

Since the Bloch function is |ψn (k)⟩ = eik·r |un (k)⟩, Eq.B.1.7 can be expressed as

∂ϵn (k)

∂k
=

ℏ2

m
⟨ψn (k)|

1

i
∇|ψn (k)⟩ . (B.1.8)

Since 1
m

ℏ
i
∇ is the velocity operator 1 , Eq.B.1.8 means that the band dispersion ∂ϵn(k)

∂k

corresponds to the mean velocity of a particle in an energy level n,k.

B.2 The case with external field

In this section, we consider the case where a certain parameter, a momentum for example,
is adiabatically changing due to an external field, and introduce the expression for the
mean velocity of a particle under such a circumstance.

B.2.1 Adiabatic evolution [1]

We assume that the Hamiltonian H [R (t)] is dependent on a certain parameter R (t) in
the system, and the parameter R(t) is adiabatically changing. Time evolution of the state
obeys the Schrödinger equation:

iℏ
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ . (B.2.1)

We expand the state|ψ(t)⟩ in terms of the eigenvector |n(t)⟩ of H(t):

|ψ(t)⟩ =
∑
n

exp

(
− i

ℏ

∫ t

0

dt′ En (t
′)

)
an(t) |n(t)⟩ . (B.2.2)

Since |ψ(t)⟩ satisfies the Schrödinger equation, the expansion coefficient an(t) satisfies

ȧn(t) = −
∑
l

al(t) ⟨n(t)|
d

dt
|l(t)⟩ × exp

(
− i

ℏ

∫ t

0

dt′ [El(t
′)− En(t

′)]

)
. (B.2.3)

1 The velocity operator is defined as

v = ṙ =
i

ℏ
[H, r] =

p

m
=

ℏ∇
im

. (B.1.9)
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In order to make the calculation simple, we impose the following assumption (parallel
transport) on the eigenstate |n(t)⟩ in a energy level n of the instantaneous Hamiltonian:

⟨n(t)| d
dt

|n(t)⟩ = Ṙ(t) ⟨n(t)| ∂

∂R
|n(t)⟩ = 0 for ∃n. (B.2.4)

Taking into consideration up to the 0th-order in terms of the time differentiation, namely
in the limit of Ṙ → 0,

ȧn(t) = 0 for ∀n. (B.2.5)

This means that the state keep staying in the n-th energy level if the initial state is in
the n-th energy level |n⟩, which is so-called the “Quantum Adiabatic Theorem”.

Below, we deal with up to the 1st order in terms of the time differentiation. As an
initial state, we choose an(0) = 1, am = 0 for m ̸= n. The formal integration of Eq.B.2.3
reads

an(t) = 1−
∫ t

0

dt′
∑
l

al(t
′) ⟨n(t′)| d

dt′
|l(t′)⟩

×exp

(
− i

ℏ

∫ t′

0

dt′′ [El(t
′′)− En(t

′′)]

)
(B.2.6)

am(t) = −
∫ t

0

dt′
∑
l

al(t
′) ⟨m(t′)| d

dt′
|l(t′)⟩

×exp

(
− i

ℏ

∫ t′

0

dt′′ [El(t
′′)− Em(t

′′)]

)
for m ̸= n. (B.2.7)

We successively substitute the above equations in al(t
′) appearing in the summation of

the right-hand side. First, an(t) can be written as

an(t) = 1−
∫ t

0

dt′

{∑
l ̸=n

[
−
∫ t′

0

dt′′
∑
k

ak(t
′′) ⟨l(t′′)| d

dt′′
|k(t′′)⟩

×exp

(
− i

ℏ

∫ t′′

0

dt′′′ [Ek(t
′′′)− El(t

′′)]

)]

×⟨n(t′)| d
dt′

|l(t′)⟩ × exp

(
− i

ℏ

∫ t′

0

dt′′ [El(t
′′)− En(t

′′)]

)

+

[
1−

∫ t′

0

dt′′
∑
k

ak(t
′′) ⟨n(t′′)| d

dt′′
|k(t′′)⟩

× exp

(
− i

ℏ

∫ t′′

0

dt′′′ [Ek(t
′′′)− En(t

′′′)]

)]

×⟨n(t′)| d
dt′

|n(t′)⟩

}
. (B.2.8)
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Taking up to the 1st order and using Eq.B.2.4,

an(t) ≃ 1−
∫ t

0

dt′ ⟨n(t′)| d
dt′

|n(t′)⟩ (B.2.9)

= 1. (B.2.10)

We can similarly calculate am(t) for m ̸= n:

am(t) = −
∫ t

0

dt′

{∑
l ̸=n

[
−
∫ t′

0

dt′′
∑
k

ak(t
′′) ⟨l(t′′)| d

dt′′
|k(t′′)⟩

×exp

(
− i

ℏ

∫ t′′

0

dt′′′ [Ek(t
′′′)− El(t

′′)]

)]

×⟨n(t′)| d
dt′

|l(t′)⟩ × exp

(
− i

ℏ

∫ t′

0

dt′′ [El(t
′′)− En(t

′′)]

)

+

[
1−

∫ t′

0

dt′′
∑
k

ak(t
′′) ⟨n(t′′)| d

dt′′
|k(t′′)⟩

× exp

(
− i

ℏ

∫ t′′

0

dt′′′ [Ek(t
′′′)− En(t

′′′)]

)]

×⟨m(t′)| d
dt′

|n(t′)⟩ × exp

(
− i

ℏ

∫ t′

0

dt′′ [En(t
′′)− Em(t

′′)]

)}
(B.2.11)

≃ −
∫ t

0

dt′ ⟨m(t′)| d
dt′

|n(t′)⟩

×exp

(
− i

ℏ

∫ t′

0

dt′′ [En(t
′′)− Em(t

′′)]

)
(B.2.12)

Below, we assume the adiabatic condition: if the Hamiltonian is not strongly dependent
on the time, we can neglect the time dependence of the inner product ⟨m(t)| d

dt
|n⟩ and

Em(t)− En(t). Under this assumption, we can execute the integration, and the result is

am(t) = −iℏ
⟨m(t)| d

dt
|n(t)⟩

En − Em

× exp

(
− i

ℏ

∫ t

0

dt′ [En(t
′)− Em(t

′)]

)
. (B.2.13)

Therefore, the time evolution of the state up to the 1st order can be written as

|ψ(t)⟩ = exp

(
− i

ℏ

∫ t

0

dt′ En(t
′)

)
×

[
|n(t)⟩ − iℏ

∑
l ̸=n

|l(t)⟩
⟨l(t)| d

dt
|n(t)⟩

En(t)− El(t)

]
. (B.2.14)
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B.2.2 The case where the momentum is adiabatically changing
[2]

When the momentum k is adiabatically changing due to an external field, the time evo-
lution of the state |ũn (k)⟩ except the dynamical phase factor 2 is

|ũn (k)⟩ = |un (k)⟩ − iℏ
∑
n′ ̸=n

|un′ (k)⟩ ⟨un′ (k) |u̇n (k)⟩
ϵn (k)− ϵn′ (k)

(B.2.15)

k̇ = F/ℏ. (B.2.16)

Here, ϵn (k) is the eigenenergy: H (k) |un (k)⟩ = ϵn (k) |un (k)⟩. Since the velocity operator
is defined as v = ṙ = (i/ℏ) [H, r], in the q-representation, it becomes

v (k) = e−ik·r (i/ℏ) [r, H] eik·r (B.2.17)

=
∂H (k, t)

∂ℏk
. (B.2.18)

The mean velocity is

ℏv = ⟨ũn (k)|
∂H

∂k
|ũn (k)⟩ (B.2.19)

=

[
⟨un (k)|+ iℏ

∑
n′ ̸=n

⟨u̇n (k) |un′ (k)⟩ ⟨un′ (k)|
ϵn (k)− ϵn′ (k)

]
∂H

∂k

[
|un (k)⟩ − iℏ

∑
n′ ̸=n

|un′ (k)⟩ ⟨un′ (k) |u̇n (k)⟩
ϵn (k)− ϵn′ (k)

]
(B.2.20)

≃ ⟨un (k)|
∂H

∂k
|un (k)⟩

−ℏ
∑
n′ ̸=n

[
i ⟨un (k)|

∂H

∂k
|un′ (k)⟩ ⟨un

′ (k) |u̇n (k)⟩
ϵn (k)− ϵn′ (k)

+ c.c

]
, (B.2.21)

where c.c in the square bracket means the complex conjugate of the 1st term.

2 The time-evolution including the dynamical phase factor is expressed as

|ũn (k)⟩ = exp

[
− i

ℏ

∫ t

ϵn (k (t′)) dt′
]|un (k)⟩ − iℏ

∑
n′ ̸=n

|un′ (k)⟩ ⟨un′ (k) |u̇n (k)⟩
ϵn (k)− ϵn′ (k)

 .

Since the phase factor disappears when calculating the mean velocity, we begin without considering it
for simplicity.
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Using the equations 3 4

⟨un (k)|
∂H (k)

∂k
|un (k)⟩ =

∂ϵn (k)

∂k
, (B.2.22)

⟨un′ (k)| ∂H (k)

∂k
|un (k)⟩ = (ϵn′ − ϵn) ⟨un′ (k) |∂un (k)

∂k
⟩ , (B.2.23)

⟨un(k)|
∂un(k)

∂k
⟩ = −⟨∂un (k)

∂k
|un (k)⟩ , (B.2.24)

the mean velocity becomes

ℏv ≃ ∂ϵn (k)

∂k
− iℏ

∑
n′ ̸=n

[
⟨∂un (k)

∂k
|un′ (k)⟩ ⟨un′ (k) |u̇n (k)⟩

− ⟨u̇n (k) |un′ (k)⟩ ⟨un′ (k) |∂un (k)
∂k

⟩
]

(B.2.25)

=
∂ϵn (k)

∂k
− iℏ

[∑
n′

⟨∂un (k)
∂k

|un′ (k)⟩ ⟨un′ (k) |u̇n (k)⟩

− ⟨∂un (k)
∂k

|un (k)⟩ ⟨un (k) |u̇n (k)⟩

−
∑
n′

⟨u̇n (k) |un′ (k)⟩ ⟨un′ (k) |∂un (k)
∂k

⟩

+ ⟨u̇n (k) |un (k)⟩ ⟨un (k) |
∂un (k)

∂k
⟩
]

(B.2.26)

=
∂ϵn (k)

∂k
− iℏ

[
⟨∂un (k)

∂k
|u̇n (k)⟩ − ⟨u̇n (k) |

∂un (k)

∂k
⟩
]
. (B.2.27)

3 Partially differentiating the equation H (k) |un (k)⟩ = ϵn (k) |un (k)⟩ in terms of k, we get

∂H (k)

∂k
|un (k)⟩+H (k) |∂un (k)

∂k
⟩ = ∂ϵn (k)

∂k
|un (k)⟩+ ϵn (k) |

∂un (k)

∂k
⟩ .

Applying ⟨un (k)| , ⟨un′ (k)| to the above equation, the result is

⟨un (k)|
∂H (k)

∂k
|un (k)⟩ =

∂ϵn (k)

∂k

⟨un′ (k)| ∂H (k)

∂k
|un (k)⟩ = (ϵn (k)− ϵn′ (k)) ⟨un′ (k) |∂un (k)

∂k
⟩

, respectively.
4 Partial differentiation of the normalization condition ⟨un (k) |un (k)⟩ = 1 in terms of k.
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Calculating the x component in the square bracket with |u̇n (k)⟩ =
∑

i=x,y,z
dki
dt

|∂un(k)
∂ki

⟩,

[
· · ·
]

=
∑

i=x,y,z

dki
dt

[
⟨∂un (k)

∂kx
|∂un (k)
∂ki

⟩ − ⟨∂un (k)
∂ki

|∂un (k)
∂kx

⟩
]

(B.2.28)

=
dky
dt

(
⟨∂un (k)

∂kx
|∂un (k)
∂ky

⟩ − ⟨∂un (k)
∂ky

|∂un (k)
∂kx

⟩
)

+
dkz
dt

(
⟨∂un (k)

∂kx
|∂un (k)
∂kz

⟩ − ⟨∂un (k)
∂kz

|∂un (k)
∂kx

⟩
)

(B.2.29)

=
1

i

(
dky
dt

Ωxy (k) +
dkz
dt

Ωxz (k)

)
, (B.2.30)

where Ωij (k) ≡ i
(
⟨∂un(k)

∂ki
|∂un(k)

∂kj
⟩ − ⟨∂un(k)

∂kj
|∂un(k)

∂ki
⟩
)

is the Berry curvature defined in

(ki, kj)-Brillouin zone. The y, z components can be similarly calculated. If the periodic
potential is created in xy plane and the system is uniform along z axis, Ωzi = 0 (i = x, y)

since ∂un(k)
∂kz

= 0.
Therefore,

i ⟨∂un (k)
∂k

|u̇n (k)⟩ − ⟨u̇n (k) |
∂un (k)

∂k
⟩ =

(
k̇yΩxy (k) + k̇zΩxz (k) ,

k̇xΩyx (k) + k̇zΩyz (k) ,

k̇xΩzx (k) + k̇yΩzy (k)
)

(B.2.31)

=
(
k̇yΩxy (k) , −k̇xΩxy (k) , 0

)
(B.2.32)

= k̇× ẑ Ωxy (k) , (B.2.33)

where ẑ is the unit vector along z axis.
As a result, the semi-classical equation of motion of a particle can be written as

v =
∂ϵn (k)

∂ℏk
− k̇× ẑ Ωxy (k) (B.2.34)

k̇ =
F

ℏ
. (B.2.35)
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Appendix C

Berry curvature in an optical lattice

In this appendix, the numerical calculation method of the Berry curvature in an opti-
cal lattice is described according to the Ref.[123]. We apply the method to the optical
Lieb lattice and the 1D superlattice, and calculate the Berry curvature in the discretized
Brillouin zone.

C.1 Chern number and Berry curvature

The Chern number assigned to the nth band is defined as

cn = − 1

2π

∫
T 2

d2k Ωn(k), (C.1.1)

where T 2 means the two-dimensional torus, and Ωn(k) is the Berry curvature given by

Ωn(k) = ∂1A2(k)− ∂2A1(k) (C.1.2)

Aµ = i ⟨n(k)| ∂µ |n(k)⟩ (C.1.3)

with |n(k)⟩ being a normalized wave function of the nth Bloch band such thatH(k) |n(k)⟩ =
En(k) |n(k)⟩, and Aµ(k) (µ = 1, 2) is the Berry connection. In the above expressions, the
derivative ∂µ stands for ∂/∂kµ. We assume that there is no degeneracy for the nth state.
In the context of the quantum Hall effect, the Chern number associated with the Berry
curvature plays a crucial role in characterizing the Hall conductance [124]: when the Fermi
energy lies in a gap, the Hall conductance is given by

σxy = −e
2

h

∑
n

cn. (C.1.4)

C.2 Calculation method without specifying any gauge

The Chern number and the Berry curvature are given in the two-dimensional surfaces such
as the Brillouin zone. In practical numerical calculations, we diagonalize the Hamiltonians
on a set of discrete points within the surfaces. In these calculations, a phase ambiguity of
the wave function |n(k)⟩ causes a gauge ambiguity of the Berry connection Aµ(k). As can
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CHAPTER C BERRY CURVATURE IN AN OPTICAL LATTICE

(a) Optical Lieb lattice (b) 1D superlattice

Figure C.2.1: Berry curvature in (a) optical Lieb lattice and (b) 1D superlattice in k-t
Brillouin zone. The Berry curvature is calculated using the U(1) link variable. (a) The
Berry curvature is zero over the entire Brillouin zone. (b) The Berry curvature is positive
over the entire k-t Brillouin zone, and the Chern number amounts to 1.

be seen from the Eq.C.1.2, the Berry curvature is defined by the derivative of the Berry
connection, and the local-gauge invariant. Therefore, in the straightforward calculations,
one must appropriately choose a local gauge with which the Bloch wave function |n(k)⟩
is smoothly differentiable near k. However, this direct procedure can be costly, and we
must choose the appropriate local gauge case-by-case.

To avoid such a problem, it is very convenient to introduce the U(1) link variable [123].
It is defined as

Uµ(kl) =
⟨n(kl)|n(kl + µ̂)⟩
| ⟨n(kl)|n(kl + µ̂)⟩ |

, (C.2.1)

where µ̂ = 1̂, 2̂ is a vector from kl to the neighboring points in the two-dimensional dis-
cretized Brillouin zone. The link variables are well defined as long as | ⟨n(kl)|n(kl + µ̂)⟩ | ̸=
0, which can be always assumed to be the case.
With the link variable, the Berry curvature is given by

Ω̃n(kl) = ln
[
U1(kl)U2(kl + 1̂)U1(kl + 2̂)−1U2(kl)

−1
]
, −π < Ω̃n(kl) ≤ π (C.2.2)

It is obvious that this Berry curvature is gauge invariant. This implies that we do not need
to determine which gauge is adopted: any choice of gauge gives an ideal Berry curvature.
Moreover, the Chern number

c̃n = − 1

2π

∑
l

Ω̃n(kl) (C.2.3)

is strictly an integer for arbitrary spacings of the grid. Therefore, with this method,
we can decrease the cost for the numerical calculation compared to the straightforward
method.

Figure C.2.1 shows the calculation result of the Berry curvature in the optical Lieb
lattice and 1D superlattice. For the optical Lieb lattice, the lattice depth is set to
(Vshort, Vlong, Vdiag) = (8, 8, 9.5)Elong

R . For the 1D superlattice, (Vshort, Vlong) = (4, 4)Elong
R .

In the optical Lieb lattice, the Berry curvature is zero over the entire Brillouin zone,
and the Chern number is zero. This is because the Lieb lattice is a topologically trivial
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system. In the 1D superlattice system, the Berry curvature is positive over the entire
k-t Brillouin zone, and the Chern number amounts to 1 since this system realizes the
topological pumping [125, 126] proposed by Thouless [127].
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Gratiet, I. Sagnes, S Schmidt, H. E. Türeci, Alberto Amo, and Jacqueline Bloch.
Bosonic Condensation and Disorder-Induced Localization in a Flat Band. Physical
Review Letters, 116(6):066402, feb 2016.

[71] Hideki Ozawa, Shintaro Taie, Tomohiro Ichinose, and Yoshiro Takahashi.
Interaction-Driven Shift and Distortion of a Flat Band in an Optical Lieb Lattice.
Phys. Rev. Lett., 118(17):175301, 2017.

[72] Shintaro Taie, Tomohiro Ichinose, Hideki Ozawa, and Yoshiro Takahashi. Spatial
Adiabatic Passage of Massive Quantum Particles. 8502:1–6, 2017.

[73] J R Kuklinski, U Gaubatz, F T Hioe, and K Bergmann. Adiabatic population trans-
fer in a three-level system driven by delayed laser pulses. Phys. Rev. A, 40(11):6741–
6744, 1989.

[74] U Gaubatz, P Rudecki, S Schiemann, and K Bergmann. Population transfer be-
tween molecular vibrational levels by stimulated Raman scattering with partially
overlapping laser fields. A new concept and experimental results. The Journal of
Chemical Physics, 92(9):5363–5376, 1990.

[75] K Bergmann, H Theuer, and B W Shore. Coherent population transfer among
quantum states of atoms and molecules. Rev. Mod. Phys., 70(3):1003–1025, 1998.

[76] Nicola Marzari and David Vanderbilt. Maximally localized generalized Wannier
functions for composite energy bands. Phys. Rev. B, 56(20):12847–12865, 1997.

139



BIBLIOGRAPHY
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