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Abstract

The ’t Hooft anomaly, an obstruction to promoting global symmetries to local gauge symmetries,
is one of the most powerful tools to study the infrared properties of the quantum field theories.
The UV/IR anomaly matching condition claims that, provided the global symmetry has an ’t Hooft
anomaly in the ultraviolet theory, the infrared theory reached via renormalization group flow must
reproduces the same ’t Hooft anomaly, and particularly, the realization of the symmetric gapped
state without topological order is strictly forbidden in the infrared theory. Thus, the existence of
’t Hooft anomalies, combined with the anomaly matching condition, imposes strong constraints on
the low-energy effective theories.

This dissertation presents ’t Hooft anomalies and global inconsistencies, the latter of which are
other type of obstructions to gauging the global symmetry, involving discrete symmetries and higher-
form symmetries. Consequences of the ’t Hooft anomaly and global inconsistency are discussed in
detail via the UV/IR anomaly matching argument. Several examples are given in increasing dif-
ficulty but desirability for the purpose of extracting nonperturbative data of infrared structure of
quantum chromodynamics (QCD). To be specific, we deal with quantum mechanical models, the
pure Yang-Mills and bifundamental gauge theories with the theta angles, and QCD and QCD-like
theories at finite temperatures. The various quantum mechanical models serve as pedagogical illus-
trations of ’t Hooft anomalies, global inconsistencies, and their UV/IR matching arguments. Their
consequences manifest themselves as level degeneracies in energy spectra, that are protected from
symmetry-preserving perturbations. While the pure Yang-Mills and bifundamental gauge theories
with topological terms share a lot of features in common with the quantum mechanical models,
additional concepts are introduced with a tricky global symmetry: the center symmetry, which is
nowadays understood as a discrete one-form symmetry. To derive the ’t Hooft anomaly and global
inconsistency involving the center symmetry, we describe the generalized global symmetry along
with certain types of topological quantum field theories in a separated chapter. Combining all these
ingredients together, we finally attack the ’t Hooft anomaly in QCD. Also, massless QCD with
twisted boundary conditions at finite temperatures T and chemical potentials µ is discussed, in
which, despite the appearance of ’t Hooft anomalies in the vacuum, its existence at finite temper-
atures is totally nontrivial because of the circle compactification in the imaginary-time direction.
The outcome is quite remarkable: the symmetric gapped phase is strictly excluded in so called
massless ZN -QCD at any temperature and chemical potential, i.e., the persistent order is realized
for this theory at finite (T, µ). Furthermore, it turns out that an ’t Hooft anomaly and a global
inconsistency for certain global symmetry are responsible for the Roberge-Weiss transition at finite
imaginary chemical potential.
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Chapter 1

Introduction to quantum anomaly

Quantum field theory (QFT) provides a powerful tool unifying the relativity and quantum mechanics
in high energy physics as well as the long-range description of many-body physics. Universality of
QFT sometimes exhibits common aspects in seemingly quite different systems and allows us to treat
them in an analogous fashion [4]. While perturbative aspects of QFTs are very well understood,
and it gives an approximate result successfully when QFTs are weakly coupled, many examples of
our interest are described by strongly-coupled QFTs, and a tremendous amount of effort has been
made with various nonperturbative techniques to extract clues to clarify its properties. However,
unraveling nonperturbative nature of the quantum field theory (QFT) is extremely challenging in
general. A typical example is the quantum chromodynamic (QCD), whose infrared properties as
well as phase structure are still far from complete understanding. Solution of strongly-coupled QFT
is generically unknown unless it is in a special situation, such as in low dimensions, with strong-weak
dualities, with certain supersymmetries, etc. It is therefore of great importance to give a rigorous
statement on QFTs that applies even when they are strongly coupled.

A key clue is global symmetry of QFT. One cornerstone of traditional many-body physics is
Landau’s characterization of phases [5, 6]: different phases realize different symmetries. At generic
values of coupling constants, the free energy is an analytic function, but some singularities must
appear when symmetry breaking pattern changes. Another interesting consequence of spontaneous
symmetry breaking is the existence of massless bosons called Nambu-Goldstone bosons when a
continuous symmetry is spontaneously broken [7, 8]. As we see in these two famous examples, we can
give rigorous statements about strongly-coupled field theories by assuming patterns of spontaneous
breaking of global symmetries. This is already surprising, but it requires other nonperturbative data
to answer the question about whether the symmetry is spontaneously broken or not.

Throughout this dissertation, we attempt to understand the properties of quantum anomaly to
answer these questions to some extent. Among several types of anomalies, the ’t Hooft anomaly [9]
plays a key role to extract the nonperturbative data as we will discuss in detail. The ’t Hooft anomaly,
defined as an obstruction to promoting the global symmetry to local gauge symmetry, imposes strong
constraint on the infrared theory via UV/IR anomaly matching argument [9–11]. The constraints
involving various symmetries such as discrete symmetries [12–14] and higher-form symmetries [15–
17] in addition to conventional continuous symmetries shed new light on the nonperturbative aspects
of QFTs from condensed matter physics to high energy physics (see e.g. [2, 3, 18–28]).

We here give an organization of the dissertation. After a brief exposition to several types of
quantum anomalies in this chapter, we give a rather abstract account of the ’t Hooft anomaly and
global inconsistency in Chapter 2. The global inconsistency, originally proposed in [21], is described
in general context in [1, 2] with a certain refinement on the UV/IR matching condition. In Chapter 3,
we elucidate ’t Hooft anomalies and global inconsistencies in simple quantum mechanical models
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following [1] for the purpose of capturing the central idea of their UV/IR matching argument. We
then switch gears from Chapter 4 to start exploring ’t Hooft anomalies and global inconsistencies
in QFTs. As preliminaries, the generalized global symmetry, some aspects of topological quantum
field theories, and some related concepts are covered, which will be indispensable tools to investigate
’t Hooft anomalies and global inconsistencies involving the “center symmetry” in the following three
chapters. In Chapter 5, we start exploration of QFTs with reviewing an ’t Hooft anomaly and a
global inconsistency in the SU(N) pure Yang-Mills theory with the θ term mostly following [21].
Although the constraints due to the ’t Hooft anomaly and global inconsistency look quite similar in
the pure Yang-Mills theory, we find in Chapter 6 that some difference appears in SU(N)× SU(N)
gauge theory with Dirac fermions in bifundamental representation [2]. Finally, we try to unravel
certain aspects of infrared structure of quantum chromodynamics (QCD) by means of ’t Hooft
anomalies and global inconsistencies [3]. An obvious difficulty compared with the previous two
examples is lack of the center symmetry because of dynamical quarks. Nevertheless, we can detect
an ’t Hooft anomaly involving an “emergent” center symmetry. Furthermore, ’t Hooft anomalies are
used to constrain the possible phase diagram of QCD-like theory at finite temperatures and (real
and imaginary) chemical potential. We briefly summarize the dissertation in Chapter 8.

Before jumping into the discussion on the ’t Hooft anomaly, we first look at the other types
of anomalies carefully, that would help us to set up necessary terminologies and avoid possible
confusions one may encounter in the following chapters.

The anomaly was originally discovered as a solution to a puzzle: The dominant decay process
of the neutral pion, π0 → 2γ, could not be explained by low energy effective theory describing
the pion as a Nambu-Goldstone boson associated with spontaneous broken flavor SU(2) × SU(2)
symmetry. It turned out that the chiral symmetry of QCD is explicitly broken by the quantization
process [29, 30]. The absence of chiral symmetry in massless quantum electrodynamics (QED) or in
massless QCD due to this mechanism is called the Adler-Bell-Jackiw (ABJ) anomaly. Generally, we
often encounter the infinities in QFTs as a result of quantum corrections and they require certain
regularizations, which does not preserve the symmetry of classical action of the QFT. Then, this
regularizing procedure might result in the symmetry violation at the end of the computation.1 This
violation is called quantum anomaly and the anomaly sometimes breaks global symmetries and
sometimes breaks gauge symmetries. In the latter case, the theory itself is inconsistent and could
be used as a nonperturbative data to impose constraints on consistent gauge theory. Here, we see
classic examples of different types: perturbative anomaly and global anomaly.

1.1 Perturbative anomaly

The ABJ anomaly is the most famous example of so called perturbative anomaly, which yields sym-
metry violation due to an weak gauge fields. The computation of the anomaly can be done by either
diagramatic computation or the Fujikawa’s method [31, 32] dealing with the path-integral measure
under the gauge transformation. “Perturbative” sounds somewhat misleading because the anomaly
is one-loop exact, and hence, provides the nonperturbative data of QFTs. The “perturbative” is
actually put to emphasize the anomaly resulted under weak gauge/gravitational background fields
as opposed to the global anomaly, which is absent in those circumstances as discussed in the next
section. We take a brief look at the computation of the ABJ anomaly for the four dimensional

1The symmetry-violating regularization is not the only source of anomalies as we will see in the quantum mechanical
examples in Chapter 3, where divergences do not appear but still anomalies show up.
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massless Dirac fermions under U(1) background fields by using the Fujikawa’s method, which makes
the nonperturbative nature becomes clear. The partition function is give by

Z[A] =

∫
DψDψ̄ e−S , (1.1)

with the Euclidean action
S =

∫
d4xψ̄ /Dψ, /D ≡ γµ(∂µ + iAµ). (1.2)

We consider a local chiral transformation:

ψ(x)→ eiγ5θ(x)ψ(x), ψ̄(x)→ ψ̄(x)eiγ5θ(x), (1.3)

which is just a redefinition of integration variables. The key observation is that the path-integral
measure transforms in nontrivial way:

DψDψ̄ → exp

{
−2i

∫
d4x θ(x)tr[γ5]δ4(x− x)

}
DψDψ̄

≡ exp

{∫
d4x θ(x)A(x)

}
DψDψ̄. (1.4)

As a result of an infinitesimal chiral transformation δψ = iγ5θ(x)ψ, we obtain

0 = δ

∫
DψDψ̄ e−S =

∫
DψDψ̄

∫
d4x (θ(x)A(x) + Jµ5 ∂µθ(x))e−S (1.5)

which leads to a violation of local conservation law, i.e., the ABJ anomaly,

〈∂µJµ5 〉 = A(x). (1.6)

At first sight, the prefactor in (1.4) seems to be trivial due to tr[γ5], which is however divergent
and requires a certain regularization. The standard procedure is to introduce a gauge invariant
convergence factor limΛ→∞ e− /D

2
/Λ2 inside the trace and calculated to be,

lim
Λ→∞

lim
x→y

tr[γ5e− /D
2
/Λ2

]δ4(x− y)

= lim
Λ→∞

lim
x→y

∫
d4k

(2π)4
e−ikµy

µ
tr[γ5e− /D

2
/Λ2

]eikµx
µ

= lim
Λ→∞

∫
d4k

(2π)4
tr

[
γ5 exp

(
(D + ik)2 + [γµ, γν ]Fµν/4

Λ2

)]
= lim

Λ→∞

∫
d4k

(2π)4
e−k

2/Λ2
tr

[
1

32Λ4
γ5[γµ, γν ][γρ, γσ]FµνFρσ

]
= − 1

32π2
iεµνρσtr[FµνFρσ], (1.7)

where we have used tr(γ5[γµ, γν ][γρ, γσ]) = −16iεµνρσ in the last step.

1.2 Global anomaly

The global anomaly involves the gauge transformations2 which is not continuously connected to
identity. In this section, we shall discuss the Witten’s SU(2) global anomaly by the traditional

2diffeomorphisms if we discuss the gravitational anomaly but we consider only in flat spacetime
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spectral flow argument [33, 34]. Let us consider single Weyl fermion coupled with background SU(2)
gauge field in four dimensional Euclidean space. A gauge transformation g which vanishes at spatial
infinity is classified by the homotopy group π4(SU(2)) = Z2, meaning that the gauge transformations
of nontrivial element of the homotopy group is not continuously connected to identity. The partition
function is given by

Z[A] =

∫
Dψ̄Dψe−

∫
d4xψ̄i /Dψ = Pf[i /D] (1.8)

where Pf denotes the Pfaffian. This expression is invariant under the infinitesimal gauge transfor-
mation, corresponding to a trivial element of the homotopy group. The Pf[i /D] is formally expressed
by a product of i /D,

Pf[i /D] =
∏
i

λi. (1.9)

The problem is that the sign of the partition function cannot be determined in gauge invariant way
due to the infinite product of negative eigenvalues.

Let us take a closer look at the indefinite sign from the viewpoint of spectral flow of the eigen-
values. More specifically, we see the spectral flow along a smooth variation of background gauge
field A → Ag. g is a topologically nontrivial gauge transformation under which A transforms into
Ag. We parametrize the smooth variation of A by

At = (1− t)A+ tAg, 0 ≤ t ≤ 1. (1.10)

It would be problematic if the partition function Z[A] changes the sign odd times along the variation
of t from 0 to 1 because the gauge invariance requires

Z[A] = Z[Ag] = |Z[A]|(−1)I, (1.11)

for some integer I. In other words, such a spectral flow contradicts to the gauge invariance. This
is a typical spectral flow argument for the global anomaly, that is, the global aspect of gauge fields
encoded in the spectral flow results in the ambiguity of the partition function and gauge theory itself
is inconsistent.

Now, what we need to know is the integer I, which is given by the index of the Dirac operator
on the five dimensional manifold X = M4 × R. The manifold M4 is the original four dimensional
one parametrized by x, and the fifth direction R is parametrized by −∞ < τ < ∞. The gauge
configuration is given by A at τ → −∞ and by Ag at τ → ∞, between which A and Ag are
adiabatically connected by A(x, τ).3 The five dimensional Dirac operator is concretely given by

/DX = γτ∂t +

4∑
µ=1

γµDµ. (1.12)

Under the adiabatic limit, ∂tDµ ≈ 0, the solution of Dirac equation /DXΨ=0 can be expanded in
terms of the eigenfunction of γτ /D,

Ψ(x, τ) =
∑
λ

fλ(τ)φλ(x). (1.13)

fλ(τ) satisfies
d

dτ
fλ(τ) = −λ(τ)fλ(τ), (1.14)

3The index I may be equally calculated by the index of the Dirac operator on the mapping torus. It is constructed
by identifying the fifth direction as t in (1.10) and glueing the ends of the cylinder, t = 0 and t = 1.
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which is solved by

fλ(τ) = fλ(0) exp

(∫ τ

0
dτλ(τ)

)
(1.15)

Therefore, the number of normalizable zero modes of five dimensional Dirac operator is equal to the
number of zero crossings of eigenvalues from negative to positive. In other words, the five dimensional
Dirac index is equivalent to the sign change of the partition function. We will repeat almost the
same argument in Section 1.4 to introduce the Atiyah-Patodi-Singer’s (APS) index theorem. If we
take M4 as S4 for instance, the index can be readily calculated to be odd, i.e., I = 1 (mod 2) by
the APS index theorem. Therefore, the partition function is not invariant under the topologically
nontrivial gauge transformation. Hence, the theory of single four dimensional Weyl fermion coupled
to SU(2) background gauge field is inconsistent.

1.3 Parity anomaly

We shall discuss the parity anomaly [12–14] by closely following [18]. Although the spectral flow of
the Dirac operator exhibits similar behavior to that in the last section, further analysis is required
to draw a precise and even more interesting conclusion.

Let ψ be a three dimensional massless Dirac fermion with action

S =

∫
d3xψ̄i /Dψ, (1.16)

which is time reversal (T) invariant and finite mass of Dirac fermion would violate T invariance.
The partition function in Minkowski space is formally calculated to be

Z[A] =

∫
Dψ̄DψeiS = det i /D (1.17)

Since the Dirac operator is hermitian, the eigenvalues λi is real. Thus, the partition function is also
real and given by

det i /D =
∏
i

λi. (1.18)

It is noted that {λi} again contains infinitely many negative eigenvalues, which leads to indefinite
sign of the partition function. This is a symptom of the global anomaly that we saw in the last
section.

The spectral flow argument developed around (1.10) can be equally applied to result in ambiguity
in the sign of the partition function. The sign is indeed calculated by introducing a Dirac operator
on a four dimensional cylinder or a mapping torus. But it is too early to conclude that this theory
is inconsistent even if the index is odd or equivalently the sign is minus. The question is whether
it is still possible to draw a physically sensible answer out of the seemingly pathological partition
function.

One of the crucial conditions which was implicitly assumed in the above discussion is the reality
of the partition function, i.e., T invariance of the theory. Indeed we can obtain a consistent theory
by discarding the T symmetry, leading to the parity anomaly [12–14]. We introduce Pauli-Villars
regulator with a large mass M , which explicitly breaks T invariance,

Z = lim
M→∞

∏
i

λi
λi + iM

= |Z| exp

(
− iπ

2

∑
i

sign(λi)

)
. (1.19)
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We note that |λi| � M does not contribute to the sign of Z thanks to the regularization. With a
proper regularization we obtain

Z = |Z| exp
(
−iπ

η

2

)
, (1.20)

where η is defined by [35–37],

η ≡ lim
s→0

∑
i

sign(λi)

|λi|s
. (1.21)

The resultant partition function is gauge invariant due to the regularization at the cost of T invari-
ance, which is broken by an imaginary part controlled by η. As we noted, the classical action for
the massless Dirac fermion has T symmetry, which is however broken on the quantum level. This is
the parity anomaly.

In this model, the relation between the global anomaly and the parity anomaly is summarized as
follows. If we try to preserve the T invariance, or equivalently the reality of the partition function,
the theory becomes inconsistent because the gauge invariance is lost according to the spectral flow
argument. Although this appears to be the global gauge anomaly, it is not quite correct in this case
because we do not have to keep the reality of the partition function at the cost of gauge invariance.
Indeed the gauge invariance can be maintained by giving up the T invariance, which makes more
sense because the violation of gauge invariance invalidate the theory itself while the theory with
broken T symmetry is still acceptable. The regularization which preserves gauge invariance results
in the T broken partition function, i.e., the parity anomaly manifest itself via its imaginary part.

1.4 Index theorem, boundary, and anomaly inflow

In the last section, we had to give up T invariance in order to obtain gauge invariant theory for
massless Dirac fermion in three dimension. But it is well known that three dimensional massless Dirac
fermion exists with T symmetry without violating U(1) gauge invariance, that is, the boundary state
of the T invariant topological insulator. We see what is going on in this system from the viewpoint
of the anomaly inflow.

1.4.1 Index theorem

Before getting into the physical setup realized in the topological insulator, we recall the index
theorem.

The Atiyah-Singer’s (AS) index theorem [38–44] states that, given a Dirac operator on a closed
four-manifold X, the Dirac index I, which is defined to be a difference between the number of the
Dirac zero modes with positive and negative chirality I = n+ − n−, and the instanton number are
tied together via the following relation:

I =

∫
X

trF ∧ F
8π2

, (1.22)

where F is a field strength of gauge group G and the right-hand side yields an integer on a closed
four-manifold X.

The situation relevant to the topological insulator is described on a four-manifold X with a
boundary three-manifold Y . A subtle issue arises on the boundary, where the topological nature
of the right hand-side in eq. (1.22) is invalidated, and so is the AS index. This invalidation of
the index can also be attributed to the absence of the local boundary condition which preserves
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chirality. Indeed, the most general local boundary condition maintaining the rotational symmetry
on the boundary Y is given by

n · γψ = ±ψ, (1.23)

where n is a unit vector normal to Y . But it does not preserve the chirality because γµ anticommutes
with γ5 = 1

4!ε
ijklγiγjγkγl. The Atiyah-Patodi-Singer’s (APS) index theorem [35–37] provides a

sensible formula for I even on a manifold with boundaries by introducing nonlocal and chirality-
conserving boundary condition:

I =

∫
X

trF ∧ F
8π2

− η(DY )

2
, (1.24)

where DY is the Dirac operator on Y and η(DY ) is an associated η-invariant, which measures the
spectral asymmetry of DY .

Instead of following the original derivation [35], we present the derivation in a simplified setup
considered in [45] (see also [12, 46]), which allows us to understand the connection between four-
dimensional Dirac index and three dimensional spectral flow. We consider the Dirac operator,

DX ≡ i /D = i(γt∂t +
3∑
i=1

γiDi) = iτ1 ⊗ 12×2∂t + τ2 ⊗DY (1.25)

on a Euclidean four-manifold X = Y ×R with −∞ < t <∞ parametrizing R, and boundaries exist
at the ends t = {−∞,∞}. DY = i

∑
i=1,2,3 σiDi is the Dirac operator on Y and we took At = 0

gauge. The relations between γ matrices and Pauli matrices are given in chiral representation by

γt =

(
0 12×2

12×2 0

)
= τ1 ⊗ 12×2, γi=1,2,3 =

(
0 −iσi

iσi 0

)
= τ2 ⊗ σi,

γ5 = γtγ1γ2γ3 =

(
−12×2 0

0 12×2

)
= −τ3 ⊗ 12×2, (1.26)

We compute the index of the Dirac operator (1.25) in the adiabatic limit, where DY changes
slowly with t. The idea is the following: The index of DX is given by the spectral flow of DY .
The spectral flow of DY is the signed sum of the zero crossing of the eigenvalues {λ(t)} along t
running from −∞ to ∞, which is related to the η invariant. The function η(DY ) smoothly evolves
except at those points where eigenvalues of DY pass through zero. At those points η(DY ) jumps
discontinuously by ±2. Therefore, the spectral flow of DY is half the discontinuous change in η(DY )
as t runs from −∞ to ∞.

In the adiabatic limit, one can construct the zero modes of D by using an eigenspinor ψY of DY

with an eigenvalue λ(y) and a two-component spinor f(y) such that

(iτ1∂t + τ2 ⊗DY )ψY ⊗ f(t) ≈ 0, (1.27)

which leads to (∂t + τ3λ)f(t) = 0. Hence,

f(t) = e−
∫ t τ3λχ, (1.28)

where χ is a constant two-component spinor. To obtain normalizable solutions we require boundary
conditions at the ends of cylinder, that is, τ3λ > 0 (< 0) at t = ∞ (−∞). Therefore, there exists
one normalizable zero mode for each eigenspinor χ of τ3 whose eigenvalue is +(−) with the positive
(negative) zero crossing of λ(t). Noting that the chirality is given by −τ3 ⊗ 12×2 we see that the
index of D corresponds to the spectral flow of DY .

13



Assuming that zero-crossings occur at points {t1, · · · , tk}, the index I and η(DY ) are related as

−I =
∑
{ti}

sgn(zero crossing) =
1

2

k∑
i=1

[
η(DY )|t+i − η(DY )|t−i

]
=

1

2

[
η(DY )|t=+∞ − η(DY )|t=−∞

]
− 1

2

k∑
i=0

[
η(DY )|t−i+1

− η(DY )|t+i
]

=
1

2

[
η(DY )|t=+∞ − η(DY )|t=−∞

]
− 1

2

k∑
i=0

∫ t−i+1

t+i

dt
d

dt
η(DY ). (1.29)

where we have defined t0 = −∞ and tk+1 = +∞.
We shall show that the second term corresponds to the four-dimensional index density. It is

useful to introduce the following integral:

η(s) = − 2

Γ( s+1
2 )

∫ ∞
0

duusTr[DY e−u
2D2

Y ], (1.30)

where η(DY ) = η(0). Then dη(DY )/dt is calculated to be

dη(DY )

dt
= − lim

s→0

2

Γ( s+1
2 )

∫ ∞
0

duusTr

[(
∂DY

∂t
− 2u2D2

Y

∂DY

∂t

)
e−u

2D2
Y

]
= − lim

s→0

2

Γ( s+1
2 )

∫ ∞
0

duus
∂

∂u
Tr

[
u
∂DY

∂t
e−u

2D2
Y

]
=

2√
π

lim
u→0

Tr

[
u
∂DY

∂t
e−u

2D2
Y

]
. (1.31)

This expression is indeed shown to be identical to the index density of D as follows. From (1.25),
its square is given by

D2
X = −∂2

t +D2
Y − τ3∂tDY . (1.32)

The index density is

lim
Λ→∞

∫
Y

tr[τ3e−D
2/Λ2

]

= lim
Λ→∞

∫ ∞
−∞

dω

2π
Tr τ3e[(iω+∂t)2−D2

Y +τ3∂tDY ]/Λ2

= lim
Λ→∞

∫ ∞
−∞

dω

2π
e−ω

2/Λ2
Tr τ3

(
τ3
∂tDY

Λ2

)
e−D

2
Y /Λ

2

=
1√
π

lim
Λ→∞

Tr
1

Λ2

∂DY

∂t
e−D

2
Y /Λ

2

=
1

2

dη(DY )

dt
. (1.33)

Since we already showed in Section 1.1,

lim
Λ→∞

∫
R

dt

∫
Y

d3y tr[σ3e−D
2/Λ2

] =

∫
Y×R

trF ∧ F
8π2

, (1.34)
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we finally obtain,

I =

∫
Y×R

trF ∧ F
8π2

− 1

2

[
η(DY )|y=+∞ − η(DY )|y=−∞

]
. (1.35)

The APS index theorem can be generalized to more complicated manifold X with a boundary
Y as discussed in [35–37]. Then, the η in (1.35) is simply replaced by that on the corresponding
boundary Y 4:

I =

∫
X

trF ∧ F
8π2

− 1

2
η(DY ). (1.37)

1.4.2 Anomaly inflow

After getting a necessary tool, the APS index formula (1.37), let us go back to our original problem.
Single massless Dirac fermion coupled to U(1) background gauge field suffers from the Parity anomaly
as we saw in Section 1.3, and the corresponding partition function takes the form,

Z = |Z| exp
(
−iπ

η

2

)
. (1.38)

Now, the bulk of the topological insulator plays an pivotal role. Letting the bulk manifold X and
its boundary manifold Y , we suppose the three dimensional theory is realized on a boundary state
of the bulk theory which provides

Zbulk = exp

(
iπ

∫
X

trF ∧ F
8π2

)
. (1.39)

Then, by combining (1.38) and (1.39) together and employing the APS formula (1.37),

ZZbulk = |Z| exp

(
iπ

∫
X

trF ∧ F
8π2

− iπ
η

2

)
= |Z|(−1)I. (1.40)

Now, we have got a satisfactory answer in the sense that both gauge and T invariances are main-
tained. The anomaly on the boundary Y is compensated by that in the bulk X, which leads to the
anomaly-free state as a whole system. This anomaly cancellation is called anomaly inflow mecha-
nism [47]. Due to the parity anomaly, the massless Dirac fermion cannot exist on three manifold by
itself, but it can be realized as a boundary state of certain bulk theory. Hence, it is a manifestation
of the bulk-boundary correspondence.

4More generally, the APS index theorem is given by

I =

∫
X

Â(R)ch(F )− 1

2

[
η(DY )|y=+∞ − η(DY )|y=−∞

]
. (1.36)

on a curved even-dimensional space X with a boundary Y .
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Chapter 2

’t Hooft anomaly, global inconsistency,
and UV/IR matching

An ’t Hooft anomaly is defined as an obstruction to promoting the global symmetry to local gauge
symmetry [9–11, 48, 49]. The anomalies that we discussed in the last Chapter are not of this type.
What is the difference? Let us start with clarifying their difference.

• Gauge anomaly :
Gauge invariance is violated on the quantum level. Hence, the theory is inconsistent. For
instance, four dimensional massless Dirac fermion with UV (1) × UA(1) gauge symmetry has
gauge anomaly.

• ABJ-type anomaly :
Global symmetry is violated on the quantum level. Four dimensional massless Dirac fermion
with UV (1) gauge symmetry and classical UA(1) global symmetry is an example. The UA(1)
global symmetry of the classical action is explicitly broken due to the quantization. This is
the ABJ anomaly discussed in Section 1.1.

• ’t Hooft anomaly1 :
There exists an obstruction when one try to promote the global symmetry of the theory to
local gauge symmetry. It is noted that the theory has nothing wrong on the quantum level in
contrast to above two types of anomalies in the sense that the theory is perfectly consistent and
no global symmetry is broken in the quantum theory. An example is four dimensional massless
Dirac fermion with UV (1) × UA(1) global symmetry. The theory is consistent and its global
symmetry is exact. An inconsistency shows up only if you try to gauge the UV (1) × UA(1)
symmetry or couple to its background gauge field.

We should emphasize that, although the existence of an ’t Hooft anomaly itself does not mean
breaking of symmetries without coupling to background gauge fields, it provides important non-
perturbative data of QFTs as it imposes nontrivial constraints on low energy dynamics of theories
because of the anomaly matching condition. More specifically, the anomaly matching condition
states that the low-energy effective field theory of the QFT T must also follow the same transforma-
tion law (2.1) under the background G-gauge field A and the G-gauge transformation A 7→ A+ dα.
We have more to say on this argument later in this chapter.

1Although the concept of the ’t Hooft anomaly and anomaly matching condition were introduced by ’t Hooft in
1979 [9], the anomaly was named ’t Hooft anomaly only recently by Kapustin and Thorngren in 2014 [10] to distinguish
it from anomalies of the other two types mentioned above.

16



One of the questions we would like to address in this and following chapters is whether we can
derive a nontrivial result even when the ’t Hooft anomaly is absent. In Ref. [21], a new condition, so
called the global inconsistency of gauging symmetries, is proposed in order to claim the nontrivial
consequence similar to the ’t Hooft anomaly. They considered about the four dimensional SU(N)
Yang Mills theory at θ = π, and the mixed ’t Hooft anomaly is found for the center symmetry and
time reversal symmetry when N is even. This derives the spontaneous breaking of time reversal
symmetry at θ = π under a certain assumption (see [50–63] for early related discussions). But it
turns out that the ’t Hooft anomaly does not exists when N is odd. Nevertheless they found a similar
obstruction to gauging the symmetry by pointing out that the local counter terms for gauging the
center symmetry at θ = 0 and θ = π must be different in order to be compatible with time reversal
symmetry at those points, and this global inconsistency is claimed to lead to the same consequence
as the ’t Hooft anomaly either at θ = 0 and θ = π: If the phase of one side (say, θ = 0) is trivial, then
the phase of the other side (θ = π) must be nontrivial. In Refs. [1, 2], we suggested a new possibility
that is compatible with the global inconsistency: The global inconsistency can be saturated in IR by
the phase transition separating those time reversal symmetric points when the vacua at those points
are trivially gapped. The phase structure of the SU(N)×SU(N) bifundamental gauge theory with
finite topological angles is determined under some assumptions with this proposal. In this situation,
it would be nice to discuss various solvable models with the global inconsistency to check what kinds
of possibility can be realized.

All these discussions will be described in a lot more detail in the following sections from various
perspectives. The purpose of this chapter is to give a review of ’t Hooft anomalies followed by an
introduction of the global inconsistency for gauging symmetries, which will be fully utilized to unravel
the infrared behavior of quantum theories briefly mentioned above in the forthcoming chapters.

2.1 ’t Hooft anomaly and anomaly matching argument

An ’t Hooft anomaly is defined as an obstruction to promoting the global symmetry to local gauge
symmetry [9, 10]. We consider a QFT T with a global symmetry G, and let Z[A] be the partition
function of T under the background G-gauge field A. We say that G has an ’t Hooft anomaly if the
partition function Z follows the nontrivial transformation law2,

Z[A+ dα] = Z[A] exp (iA[α,A]) , (2.1)

under the G-gauge transformation A 7→ A + dα and A[α,A] cannot be canceled by local counter
terms. Especially when G = G1 × G2, G1 and G2 is said to have a mixed ’t Hooft anomaly if G1

and G2 themselves have no ’t Hooft anomaly but G1 ×G2 has an ’t Hooft anomaly.
Let us have a look at an example raised above, a four dimensional massless Dirac fermion with the

global symmetry G = UV (1)×UA(1). To confirm the existence of the ’t Hooft anomaly we consider
the theory under the background G-gauge field with a partition function Z[AV , AA], where AV and
AA are background gauge fields for symmetry group UV (1) and UA(1), respectively. Z[AV , AA]
transforms

Z[AA + dαA] = Z[A] exp

[
i

8π2

∫
αA

(
FV ∧ FV +

1

3
FA ∧ FA

)]
, (2.2)

2Other obstructions to gauging the symmetry exist as shown in Ref. [11] when the symmetry is discrete, but we do
not consider such subtle obstructions in this paper. The anomaly inflow for ’t Hooft anomaly not of Dijkgraaf–Witten
type is discussed in Ref. [64].
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under UV (1) local gauge transformations.3 Indeed, the gauge invariance is violated by a nontrivial
phase. Hence, it is forbidden to promote the global symmetry group G to gauge group, meaning
that the global G symmetry has an ’t Hooft anomaly.

2.1.1 UV/IR anomaly matching

The ’t Hooft UV/IR anomaly matching states that the low-energy effective field theory of the QFT
T must also follow the same transformation law (2.1) under the background G-gauge field A and
the G-gauge transformation A 7→ A + dα. Original proof of this statement is given, when G is
the continuous chiral symmetry, by introducing the spectator chiral fermions canceling the ’t Hooft
anomaly and by making the G-gauge field A dynamical. Since the coupling of T to the G-gauge field
A can be made arbitrarily small, the low-energy effective theory of T is unaffected by the presence of
A and should produce the same phase A[α,A] under the G-gauge transformation in order to cancel
the G-gauge anomaly from the spectator fermions [9] (See also [65, 66] for review).

Another proof is given by the important observation that the phase functional A[α,A] can be
written as the boundary term of the gauge transformation of a topological G-gauge theory in one-
higher dimension. This is proven when G is the continuous chiral symmetry in even dimension [67,
68], and it is true in many examples with discrete global symmetries [10, 11, 69]. When this is true,
we can put the theory T on the boundary manifold of the topological G-gauge theory, and then the
low-energy effective theory must be able to lie on the same boundary manifold. As a result, the
anomaly inflow [47] derives the anomaly matching. Latest developments on the understanding of
topological materials lead to discoveries of new ’t Hooft anomalies that include discrete syemmetries
[12–14] or higher-form symmetries [15–17] in the context of high energy and condensed matter
physics, and they derive nontrivial consequences of low-energy effective theories [2, 18–28].

What kind of constraints can be obtained for infrared theories provided G has an ’t Hooft
anomaly? There are three possible candidates which satisfy the anomaly matching condition:

• G is unbroken and the theory contains massless excitation,

• G is unbroken, the vacuum (or vacua) is gapped, and the theory possesses topological degrees
of freedom,

• G is spontaneously broken.

These realizations of vacua are referred to as “nontrivial”. In other words, the existence of ’t Hooft
anomaly rules out the realization of the “trivial” vacuum.

Here, we give an example to illustrate in more detail how the anomaly matching argument works.
The classic example of ’t Hooft anomaly is the flavor symmetry G = SU(Nf)L × SU(Nf)R × U(1)V

of massless QCD [9]. The anomalous phase factor of the ’t Hooft G-anomaly is characterized by
the anomaly index dαβγ = tr[{Tα, Tβ}, Tγ ], with the flavor symmetry generators Tα, Tβ, Tγ , which is
the obstruction to gauging the G-symmetry. As outlined above we introduce the spectator fermions
which generate the anomaly index −dαβγ to cancel the obstruction to gauging. “Spectator” indicates
a property that it is singlet under the color gauge group and hence does not participate in the strong
dynamics. The existence of spectator allows us to safely promote the globalG-symmetry group to the
local gauge group. Now, we look at the corresponding infrared theory, which is described by a certain
low energy effective theory. Since the strong dynamics does not affect the spectator, its anomaly
should not change in the ultraviolet and infrared theories. Therefore, the ’t Hooft anomaly for the

3The transformation given in (2.2) corresponds to the consistent anomaly, which satisfies the Wess-Zumino consis-
tency condition, as opposed to the covariant anomaly, whose local current is covariant by adding a local counter term
at the cost of the consistency condition.
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G-symmetry of the original theory dαβγ should also be unchanged because the gauge invariance of
the whole theory including spectator is always maintained. The consequence is as follows: If there is
no massless fermionic degrees of freedom to reproduce the required anomaly in infrared theory, the
global symmetry has to be spontaneously broken in infrared, where the anomaly is indeed saturated
by the Wess-Zumino term.

To see this argument more explicitly, let us derive the anomaly constraint for the massless QCD
with the gauge group SU(Nc) and the flavor group G = SU(Nf)L × SU(Nf)R × U(1)V [9, 65].
The constraints come from the ’t Hooft anomaly associated to SU(Nf)L-SU(Nf)L-SU(Nf)L (and
SU(Nf)R-SU(Nf)R-SU(Nf)R) current triplet and SU(Nf)L-SU(Nf)L-U(1) (and SU(Nf)R-SU(Nf)R-
U(1)) current triplet. The former yields the anomaly index,

dαβγ = Nctr[{tα, tβ}, tγ ], (2.3)

with the SU(Nf) generators tα, tβ, tγ satisfying tr[tα, tβ] = δαβ/2. The anomaly for the latter is

dαβ ≡ Nctr[{tα, tβ}] = Ncδαβ, (2.4)

where the U(1) charge is taken to be unity.
Next, we look at the low-energy effective theory assuming that the flavor symmetry is unbroken.

The assumption requires that the anomaly indices should be matched. In other words, the flavor
symmetry must be spontaneously broken if there is no way to match the anomaly. We suppose that
a color-singlet fermionic bound state emerging in the infrared theory is composed of Nc massless
elementary quarks, i.e.,

mL +mR = Nc, (2.5)

where mL and mR are numbers of left- and right-handed quarks in the bound state. Letting (r, s)
be the irreducible representation of SU(Nf)L × SU(Nf)R and `(r, s) be the number of times the
irreducible representation (r, s) appears in the bound state, the anomaly matching conditions read

dαβγ = Nctr[{tα, tβ}, tγ ] =
∑
r,s

`(r, s)dstr[{trα, trβ}, trγ ], (2.6)

dαβ = Ncδαβ =
∑
r,s

`(r, s)dsNctr[{trα, trβ}], (2.7)

where trr and trα, trβ, t
r
γ are the trace and generators in the irreducible representation r of SU(Nf)L.

ds is the dimension of representation s of SU(Nf)R. Useful relations to reduce the above constraints
are

tr[{trα, trβ}, trγ ] = Crtr[{tα, tβ}, tγ ], (2.8)

tr[{trα, trβ}] = Krtr[{trα, trβ}]. (2.9)
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The constraint (2.5) with Nc = 3 allows the following representations

representation ` ds Kr Cr

L L L `a 1 (Nf+3)(Nf+6)
2

(Nf+2)(Nf+3)
2

L
L
L

`b 1 (Nf−3)(Nf−6)
2

(Nf−2)(Nf−3)
2

L L
L

`c 1 N2
f − 9 N2

f − 3

L L ⊗ R `d Nf Nf + 4 Nf + 2

L
L
⊗ R `e Nf Nf − 4 Nf − 2

L ⊗ R R `f
Nf(Nf+1)

2 1 1

L ⊗ R
R

`g
Nf(Nf−1)

2 1 1

R R R `h
Nf(Nf+1)(Nf+2)

6 0 0

R
R
R

`i
Nf(Nf−1)(Nf−2)

6 0 0

R R
R

`j
Nf(N

2
f −1)

3 0 0

(2.10)

with parameters needed in evaluation of (2.8) and (2.9). SU(Nf)L-SU(Nf)L-SU(Nf)L anomaly (2.8)
leads to the constraint,

`a
(Nf + 3)(Nf + 6)

2
+ `b

(Nf − 3)(Nf − 6)

2
+ `c(N

2
f − 9)

+ `dNf(Nf + 4) + `eNf(Nf − 4) + `f
Nf(Nf + 1)

2
+ `g

Nf(Nf − 1)

2
= 3. (2.11)

SU(Nf)L-SU(Nf)L-U(1) anomaly (2.9) leads to the constraint,

`a
(Nf + 2)(Nf + 3)

2
+ `b

(Nf − 2)(Nf − 3)

2
+ `c(N

2
f − 3)

+ `dNf(Nf + 2) + `eNf(Nf − 2) + `f
Nf(Nf + 1)

2
+ `g

Nf(Nf − 1)

2
= 1. (2.12)

The latter cannot have a solution if Nf is an integer multiple of three as the left-hand side is
always an integer multiple of three but the right-hand side is clearly not. Therefore, the flavor
symmetry SU(Nf)L × SU(Nf)R × U(1)V must be spontaneously broken for Nc = Nf = 3, for
instance. Furthermore, since vector-like symmetries are protected in the vacuum [70], we conclude
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that the chiral symmetry is always broken. These constraints are also applied to the finite density
except that the vector-like symmetry are not protected anymore. This anomaly matching argument
is consistent with the prediction of the color-superconductivity phase at high quark number density
region of the QCD phase diagram [71, 72]. We will have a lot to say on anomaly constraints at finite
temperature in Section 7.2.

2.2 Global inconsistency

In this section, we define the global inconsistency, that is proposed in [21] and refined in our work [1]
in general context of QFT.

Let T be a QFT parametrized by continuous parameters ~g = (g1, g2, · · · ) such as mass param-
eters, coupling constants, theta angles, and so on, which is described by a partition function Z~g.
At generic values of ~g, the QFT T (~g) has the global symmetry G, and we assume that G has no ’t
Hooft anomaly. By this assumption, we can couple the theory T (~g) to the background G-gauge field
without breaking the invariance under the G-gauge transformation. In this process, the topological
G-gauge theory on the same dimension is introduced, and the parameter space is extended by new
couplings ~k of the topological G-gauge theory (see Chapter 4 for a detailed discussion on topological
quantum field theories). Some of them might be continuous but the other of them will be quantized
to ensure the G-gauge invariance, and we assume, for simplicity, that all the new couplings ~k is
quantized to discrete values4. We denote the partition function under the background G-gauge field
A as Z

~g,~k
[A], and it satisfies

Z
~g,~k

[A+ dα] = Z
~g,~k

[A] (2.13)

under the G-gauge transformation A 7→ A+ dα. When making the G-gauge field A dynamical, we
call the obtained theory as (T (~g)/G)~k, and the global symmetry disappears at generic point of ~g.

Although the symmetry of the theory T (~g) is G for generic ~g, it may be enhanced to other group
at special points. Let ~g1 and ~g2 be such special points, where the symmetry is enhanced to G×H
by the group H, and we shall refer to these points ~g1 and ~g2 as high symmetry points. We restrict
our attention to the case where G×H has no ’t Hooft anomaly both at ~g1 and ~g2. In this setting,
the global inconsistency is defined as follows: There exists no ~k such that Z

~g,~k
[A] is compatible with

the H-gauge invariance both at ~g1 and ~g2.
Let us take a closer look at the global inconsistency. Since there is no ’t Hooft anomaly for G×H

at ~gi (i = 1, 2), there exists ~ki such that

Z
~gi,~ki

[h ·A] = Z
~gi,~ki

[A], (2.14)

where h · A is the transformation of G-gauge field A by h ∈ H. The condition for the global
inconsistency states that ~k1 6= ~k2. When ~k = ~k1 is chosen, the symmetry H at ~g2 is explicitly broken
as

Z
~g2,~k1

[h ·A] = Z
~g2,~k1

[A] exp
(

iA
~g2,~k1

[h,A]
)

(2.15)

for some phase functional A
~g2,~k1

. Therefore, (T (~g1)/G)~k1 has the symmetry H, but (T (~g)/G)~k1 has
no symmetry including ~g = ~g2. The similar equation

Z
~g1,~k2

[h ·A] = Z
~g1,~k2

[A] exp
(

iA
~g1,~k2

[h,A]
)
, (2.16)

is true at ~g1 when ~k = ~k2 is chosen: (T (~g2)/G)~k2 has the symmetry H, but (T (~g)/G)~k2 has no
symmetry including ~g = ~g1. It should be noted that ~k cannot be chosen individually at each point

4An example of the discrete parameter ~k is the level of the Chern-Simons theory.
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Figure 2.1: The schematic figure illustrating the global inconsistency in the space of coupling con-
stants ~g. In the original theory T , symmetry G exists at generic couplings ~g and is enhanced by
H at ~g1 and ~g2. To gauge the symmetry G, T is coupled to the topological G-gauge theory with
the discrete parameter ~k. In (T /G)~k1 , the symmetry is absent except at ~g = ~g1. In (T /G)~k2 , the
symmetry is absent except at ~g = ~g2. This figure is taken from Ref. [1] with a slight modification.

because the two points are continuously connected in the parameter space and ~k, being a discrete
parameter, does not change discontinuously on the path connecting the points5. This situation is
schematically shown in Fig. 2.1.

It should be emphasized that the inconsistent points have to be connected continuously in pa-
rameter space. When there is the global inconsistency between ~g1 and ~g2, we claim that

• The vacuum either of T (~g1) or of T (~g2) is nontrivial, or

• ~g1 and ~g2 are separated by the phase transition.

This is the consequence of UV/IR matching condition for the global inconsistency. When the first
statement is realized, the global inconsistency shows the existence of the nontrivial phase at one
of the high symmetry points. Meanwhile, the second statement, whose possibility was pointed out
and carefully examined in some models in our work [1, 2], suggests that the global inconsistency is
automatically satisfied if there is a phase transition separating the high symmetry points where the
discrete parameter k may jump. This aspect makes the global inconsistency a milder obstruction
than the ’t Hooft anomaly and an important corollary is that the existence of global inconsistency
does not necessarily lead to nontrivial infrared theory at high symmetry points.

5If ~k contains continuous parameters, the corresponding condition is replaced as follows: The global inconsistency
exists if there is no connected component of the ~k space that respects full symmetries at both ~g1 and ~g2.
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Chapter 3

Quantum mechanics with topological
terms

The purpose of this chapter is to elucidate significance of global inconsistency as well as mixed
’t Hooft anomaly in rather simple quantum mechanical models mostly following our work [1]. One
of the model is reminiscent of SU(N) Yang Mills theory, which possesses ’t Hooft anomaly for even
N and global inconsistency for odd N [21] as we will carefully study in Chapter 5. The similarity
was emphasized in Ref. [23] in terms of two- and three-dimensional Abelian-Higgs models. The other
is similar to SU(N) × SU(N) bifundamental gauge theory, and they also share several properties
in common in view of symmetries and anomalies, which we will cover in full detail in Chapter 6.
We analyze these models in two ways: the operator formalism and the path integral formalism. In
the former method, we find the central extension of representations of symmetry groups. In the
latter method, we see inconsistency in the local counter term when promoting global symmetries to
local gauge redundancies. Although these two methods do not necessarily give the same information
about anomalies, we shall see their connection by explicit computation in our models. Since energy
spectra and corresponding states are calculable, we can clarify consequences of global inconsistency
and ’t Hooft anomaly explicitly.

Since this chapter is slightly longer than the others, we give an organization of this Chapter:
In Section 3.1, we discuss a particle moving around a circle with a periodic potential. We see how
to detect ’t Hooft anomaly and global inconsistency in the system and discuss consequences on the
energy spectrum. In Section 3.2, we add another variable to the model discussed in Section 3.1 to
mimic the SU(N)×SU(N) bifundamental gauge theory at finite θ angles. The global inconsistency
plays an even more important role in this model and we present the resultant energy spectrum and
its interpretations. We give a short summary of this chapter in Section 3.4.

3.1 Quantum mechanics of a particle on S1

We consider the quantum mechanics on a circle S1 = R/2πZ with the topological θ term, describing
a particle with unit mass moving on a ring of unit radius. θ term arises due to the flux threading
the ring. The Euclidean classical action is

S[q] =

∫
dτ

[
1

2
q̇2 + V (Nq)

]
− iθ

2π

∫
dq. (3.1)
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Figure 3.1: A particle on a ring with fluxes.

The potential V (x) is an arbitrary 2π periodic smooth function, V (x + 2π) = V (x), and it can be
represented as the Fourier series,

V (x) =
∑
`≥1

λ` cos(`x+ α`). (3.2)

Each q is the map q : S1
β → R/2πZ, where S1

β is the circle with the circumference β, q̇i = dqi/dτ ,
and N ≥ 2 is an integer. The set of parameters is ~g = (θ, λ1, . . . , α1, . . .), and we often denote only θ
instead of ~g since the most important parameter in our discussion is θ. The parameter θ is identified
with θ + 2π because

∫
dq ∈ 2πZ. The partition function Zθ is defined by the path integral,

Zθ =

∫
Dq exp (−S[q]) . (3.3)

In the operator formalism, the Hamiltonian of this system is given by

Ĥ(p̂, q̂) =
1

2

(
p̂− θ

2π

)2

+ V (Nq̂), (3.4)

where [q̂, p̂] = i and the Hilbert space H is the set of 2π-periodic L2-functions; the partition function
is Zθ = trH[exp(−βĤ)].

The goal of this section is to figure out the consequences of ’t Hooft anomaly and global incon-
sistency in this model. The aspect of the ’t Hooft anomaly for this model is already discussed in
detail when N = 2 and α` = 0 in Appendix of Ref. [21]. We would like to start with this model
since it is the simplest case where the global inconsistency shows up when N is odd. We will indeed
see that (non-accidental) level crossings appearing in the energy spectrum can be explained in terms
not only of ’t Hooft anomalies but also of global inconsistency.

3.1.1 Symmetries, central extension, and global inconsistency

The system (3.1) has the ZN symmetry, generated by

U : q(τ) 7→ q(τ) +
2π

N
. (3.5)

Since q(τ) and q(τ) + 2π is identified on the circle, UN = 1. Quantum mechanically, the symmetry
operator U can be realized as

U = exp

(
i
2π

N
p̂

)
, (3.6)

and it is easy to check that UĤU−1 = Ĥ for any θ. We take this convention for U in the following.
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The symmetry of the system is ZN for generic θ, but there are additional symmetry at θ = 0, π.
These two points are the high symmetry points of (3.1), where we have the time reversal symmetry
T,

T : q(τ) 7→ q(−τ), q̇(τ) 7→ −q̇(−τ). (3.7)

At θ = 0, the action S is quadratic in q̇, and this symmetry exists trivially. At generic θ, the
topological term is linear in q̇ and the time reversal symmetry is absent. At θ = π, if we perform
this transformation, the topological term changes as

− i

2

∫
dq 7→ i

2

∫
dq = − i

2

∫
dq + i

∫
dq. (3.8)

Since
∫

dq ∈ 2πZ, the path-integral weight exp(−S) does not change under T. Therefore, the time
reversal is the symmetry also at θ = π.

Let us study the commutation relation of U and T [21]. Two requirements, TĤT−1 = Ĥ and
TiT−1 = −i, are satisfied by

Tq̂T−1 = q̂, Tp̂T−1 =

{
−p̂ (θ = 0),
−p̂+ 1 (θ = π).

(3.9)

If we choose the coordinate basis (i.e. q̂ = q and p̂ = −i∂q), we can realize T as T = K at θ = 0,
and T = exp(iq)K at θ = π, where K is the complex conjugation. Using the expression (3.6) and
the above commutation relation for T, we find that

TUT−1 =

{
U, (θ = 0),

e−2πi/NU, (θ = π).
(3.10)

We have several remarks on the central extension of symmetry group based on the commutation
relations (3.10). At θ = 0, the ZN transformation and time reversal (Z2) transformation commute
as we expected from the enhanced symmetry ZN × Z2. However, at θ = π we have an additional
phase factor, which may or may not be absorbed by properly redefining the operator. The symmetry
group ZN × Z2 is said to be centrally extended when there is no proper redefinition to absorb the
phase factor, which is the central element. Let us redefine the operator by U′ ≡ e−

2πik
N U for some

integer k. Substituting U′ back into the second commutation relation (3.10), we obtain

TU′T−1 = exp

(
2πi

N
(2k − 1)

)
U′. (3.11)

Hence the phase factor can be absorbed when the following condition is satisfied:

2k − 1 = 0 (mod N). (3.12)

Since there is no solution for k to be an integer when N ∈ 2Z, the symmetry group is centrally
extended. If we try to redefine the operator with a solution of (3.12), which is a half integer for
even N , the redefined operator U′ satisfies (U′)N = −1 unlike UN = 1. This means that we get a
double cover of the original symmetry group ZN × Z2. We shall see in the next section that this is
the consequence of the ’t Hooft anomaly between ZN and the time-reversal symmetry [21]. When
N ∈ 2Z + 1, we can redefine the operator U′ by choosing k = (N + 1)/2, which is an integer. Since
we succeeded in defining U′ with maintaining (U′)N = 1, there is no central extension for odd N .
This is not the end of story. Although there is no central extension at θ = 0 and π separately for
odd integer N , we cannot avoid the central extension at θ = 0 and π simultaneously by choosing a
common operator U (or U′). This fact implies the global inconsistency.
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Let us discuss how the above argument constraints the energy spectrum. First let us consider
the case when N ∈ 2Z. Let us ask whether there exists a simultaneous eigenstate of U and T at
θ = π. We assume for contradiction that such a state exists and denote it by |ψ〉. By assumption,
we can set

U|ψ〉 = e2πik/N |ψ〉, T|ψ〉 = η|ψ〉. (3.13)

Here k ∈ Z, because UN = 1 on H. Using the commutation relation (3.10), we obtain

exp

(
2πi

N
k

)
= exp

(
2πi

N
(1− k)

)
. (3.14)

This can be rewritten as (3.12). When N is even, this does not have any integer solutions: The
simultaneous eigenstate of U and T cannot exist at θ = π, and all the energy eigenvalues is two-fold
degenerate.

Next, let us consider the case when N ∈ 2Z + 1. In this case, we shall find no ’t Hooft anomaly,
and thus the simultaneous eigenstate can exist at θ = π. Indeed, we obtain the same condition (3.14)
for the simultaneous eigenstates of U and T at θ = π, and the possible ZN charge is determined as
k = (N + 1)/2 modulo N when N is an odd integer. Even in this situation, the global inconsistency
between θ = 0 and π can derive a nontrivial result: No states can be singlet both at θ = 0 and
θ = π. Let |ψ0〉 be a simultaneous eigenstate of U and T at θ = 0, then the similar computation
shows that

U|ψ0〉 = |ψ0〉. (3.15)

Let |ψπ〉 be a simultaneous eigenstate of U and T at θ = π, then the above argument has shown that

U|ψπ〉 = exp

(
2πi

N

N + 1

2

)
|ψπ〉. (3.16)

Since |ψ0〉 and |ψπ〉 have different ZN charge, those states cannot be continuously connected by
changing the parameter θ of the theory. In other words, the T-invariant states at θ = 0 break T at
θ = π, and vice versa.

To make the above arguments more convincing, let us compute the energy spectrum explicitly
for a potential,

V (Nq) = λ cos(Nq). (3.17)

Figure 3.2 shows the energy spectra for the cases N = 4 and N = 3 that are computed numerically
by diagonalizing the Hamiltonian.

As we can see in Fig. 3.2a, no state can be singlet at θ = π when N = 4 and this is expected
because of the nontrivial commutation relation between U and T. When N = 3, there are singlet
states at θ = π as shown in Fig. 3.2b, and this is allowed from the commutation relation. The
point is that a singlet state at θ = 0 and a singlet state at θ = π are not connected continuously
by changing θ from 0 to π. Since there is no level crossing between 0 and π in this example, this
condition suggests that the ground state at θ = π is two-fold degenerate and the time reversal
symmetry is spontaneously broken, and this is realized in Fig. 3.2b.

3.1.2 Gauging ZN symmetry, ’t Hooft anomaly, and global inconsistency

In order to make the connection between the general discussion in Sec. 2.2 and the computation in
Sec. 3.1.1, we rewrite everything using the path integral formalism of this model. We discuss the ’t
Hooft anomaly and global inconsistency of the quantum mechanics (3.1) in this subsection, and the
connection between them will be established in the next subsection.
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(a) n = 4 (b) n = 3

Figure 3.2: Energy levels as functions of θ with λ = 0.5 in (3.17) for Z4 and Z3 symmetric cases,
respectively. Each color corresponds to different ZN charge. (a) Every state forms a pair at θ =
π, 3π, 5π, which is a consequence of the t’ Hooft anomaly. (b) Not every state forms a pair at
θ = π, 3π, 5π. But, a singlet state at θ = 0 are not continuously connected to a singlet state at
θ = π, which is a consequence of the global inconsistency. This figure is taken from Ref. [1].

To analyze the ’t Hooft anomaly or global inconsistency, we promote the global ZN symmetry of
(3.1) to the local gauge symmetry, and it can be done by coupling the theory (3.1) to a ZN topological
gauge theory [16]. First, let us write down the continuum description of the ZN topological gauge
theory,

Stop,k = i

∫
F ∧ (dB −NA) + ik

∫
A. (3.18)

Here, A = A0dτ is the U(1) one-form gauge field, B is the U(1) scalar gauge field, and F is the scalar
auxiliary field introduced as the Lagrange multiplier. The second term is the one-dimensional Chern-
Simons term, and the level k must be an integer for invariance under the U(1) gauge transformation,

A 7→ A+ dλ, B 7→ B +Nλ, F 7→ F. (3.19)

The level k is identified with k +N because the equation of motion of F gives

NA = dB, (3.20)

and thus N
∫
A =

∫
dB ∈ 2πZ. We can regard this pair (A,B) as the ZN gauge field. Let us briefly

describe why they can be seen as ZN gauge field. We notice that, since A is flat dA = 0, it is solely
characterized by the holonomy exp

[
i
∫
S1 A

]
, which is a gauge-invariant observable of the theory.

Because the constraint implies(
exp

[
i

∫
S1

A

])N
= exp

(
i

∫
S1

dB

)
= 1, (3.21)

the holonomy takes values e2πin/N for n ∈ ZN , which indeed agrees with those in ZN gauge theory.
Therefore, we claim that A becomes a ZN gauge field under the constraint (3.20). We will have a lot
more to say on gauging discrete symmetry and the topological quantum field theory in Chapter 4.

In order to make the following discussion simpler, we integrate out F : The topological action
becomes

Stop,k[A,B] = ik

∫
A, (3.22)
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and B dependence appears implicitly through the constraints (3.20). Next, we couple (3.1) to the
topological ZN -gauge theory (3.22) by postulating the following transformation of q under the U(1)
guage transformation (3.19),

q 7→ q − λ. (3.23)

The gauge-invariant combinations are dq + A and Nq + B, and thus the gauge-invariant action
becomes

S[q, A,B] =

∫
dτ

[
1

2
(q̇ +A0)2 + V (Nq +B)

]
− iθ

2π

∫
(dq +A) + Stop,k. (3.24)

We can readily get the partition function Zθ,k[(A,B)] under the background ZN gauge field (A,B)
as

Zθ,k[(A,B)] =

∫
Dq exp(−S[q,A,B]), (3.25)

and the set of couplings is extended by the Chern-Simons level k ∈ ZN .
The time reversal operation T of the Euclidean path integral is chosen as follows:

q(τ) 7→ q(−τ), A0(τ) 7→ −A0(−τ), B(τ) 7→ B(−τ). (3.26)

The transformation of the dynamical variable q is same as the original one (3.7), and the transfor-
mation of background fields are chosen in such a way that the equation of motion is unchanged.
That is, the covariant derivative (q̇ + A0) is changed to −(q̇ + A0), and nA = dB is unchanged
under this time reversal transformation. Under this transformation, let us check the property of the
partition function under the background gauge field at θ = 0, π.

The original theory is time reversal invariant at θ = 0 and π. At θ = 0, the topological θ term
is absent, and thus the T transformation only flips the sign of the Chern-Simons term:

ik

∫
A 7→ −ik

∫
A = ik

∫
A− 2ik

∫
A. (3.27)

Therefore, the transformation law of the partition function at θ = 0 is

Z0,k[T · (A,B)] = Z0,k[(A,B)] exp

(
2ik

∫
A

)
. (3.28)

We can eliminate the additional phase of (3.28) by choosing appropriate k, i.e.,

2k = 0 (mod N). (3.29)

When N is even, we have two solutions, k = 0, N/2 (mod N), and when N(≥ 3) is odd, we have
the unique solution, k = 0 (mod N). It should be noted that these values of k are identical with the
ZN charges for singlet states at θ = 0 that are calculated in Sec. 3.1.1.

At θ = π, a nontrivial thing happens because the topological θ term also flips its sign under time
reversal T. To see it, let us apply the T transformation to the θ term at θ = π:

− iπ

2π

∫
(dq +A) 7→ iπ

2π

∫
(dq +A)

= − iπ

2π

∫
(dq +A) + i

∫
dq + i

∫
A. (3.30)

Two additional terms appear after the T transformation of the θ term;
∫

dq and
∫
A.
∫

dq does not
play any role in the path integral, because i

∫
dq ∈ 2πiZ. Additional

∫
A shifts the Chern-Simons
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level by 1. Combined with the flip of the Chern-Simons term, the T transformation of the partition
function at θ = π is obtained as

Zπ,k[T · (A,B)] = Zπ,k[(A,B)] exp

(
i(2k − 1)

∫
A

)
. (3.31)

In order to preserve the time reversal symmetry under background the ZN -gauge field, we must
choose k, such that

2k − 1 = 0, (mod N). (3.32)

For even N , the condition has no solution. The phase factor of (3.31) cannot be eliminated by local
counter terms, and thus there is the mixed ’t Hooft anomaly between ZN and the time reversal
symmetry. The anomaly matching claims that the ground state must be degenerate at θ = π when
N is even. For odd N(≥ 3), this has the solution k = (N+1)/2 modulo N , and no ’t Hooft anomaly
exists. It should again be noticed that this is same with the ZN charge of the singlet state at θ = π
as computed in Sec. 3.1.1.

For odd N ≥ 3, there is a global inconsistency between θ = 0 and θ = π. To eliminate phases at
θ = 0 and θ = π, the Chern-Simons level k should be chosen as

k0 = 0, kπ =
N + 1

2
, (3.33)

respectively. We cannot choose simultaneous k eliminating phases because k0 6= kπ and k is the
discrete parameter. To circumvent it, we need the 2-dimensional bulk Σ with ∂Σ = S1

β as in the
case of the anomaly inflow, and then the bulk topological field theory,

S2d,Σ[A] = iθ
N + 1

2π

∫
Σ

dA, (3.34)

can simultaneously eliminate the phases at θ = 0, π [23]. At θ = 0, π, this topological action is
independent of the choice of Σ unlike the case of ’t Hooft anomaly, but it is not true for generic
0 < θ < π and the information of the bulk Σ is necessary in order to connect θ = 0, π.

3.1.3 Relation between two formalisms

The central extension in operator formalism and local counter terms resulted from gauging global
symmetry in path integral formalism seemingly give same information about mixed anomaly and
global inconsistency. Here, we show the connection by an explicit computation. We start with the
path integral formalism (one can go the other way around) with the action (3.24). We fix a gauge
by requiring B = 0 (mod 2π), and the equation of motion dB = NA is solved by

B =
∑
i

2π`iΘ(τ − τi), A =
∑
i

2π`i
N

δ(τ − τi)dτ, (3.35)
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where Θ(τ) is the step function and δ(τ) is the delta function, for τi ∈ R and `i ∈ Z. Let us calculate
the partition function under this background ZN gauge field,

Zθ,k[(A,B)]

=

∫
DqDp exp

[∫
dτ

(
ip(q̇ +A0)− 1

2

(
p− θ

2

)2

− V (Nq +B)− ikA0

)]

=

∫
DqDp exp

[∫
dτ
(

ipq̇ −H(p, q)
)]

exp

[∑
i

2πi`i
N

(p(τi)− k)

]

=

〈∏
i

(
e−2πik/NU(τi)

)`i〉
. (3.36)

It can now be explicitly shown the relation between the commutation relation (3.10) and the phases
in (3.28) and (3.31). Using the commutation relation, we get

T
(

e−2πik/NU
)
T−1 =

 e2πi(2k)/N
(
e−2πik/NU

)
, (θ = 0),

e2πi(2k−1)/N
(
e−2πik/NU

)
, (θ = π).

(3.37)

The T transformation acting on the right hand side of (3.36) gives the correct additional phases: At
θ = 0, we get ∏

i

(
e2πi(2k)/N

)`i
= exp

(
2ik

∫
A

)
, (3.38)

and, at θ = π, we get ∏
i

(
e2πi(2k−1)/N

)`i
= exp

(
i(2k − 1)

∫
A

)
. (3.39)

We should emphasize that the phase factors which come from the local counter term are precisely
same as those appear as a central extension.

3.2 Quantum mechanics of two particles on S1

We consider the quantum mechanics with the target space U(1)×U(1) corresponding to two distin-
guishable particles moving on a ring with flux threading. We shall go through the parallel argument
as we have done in the last section, but this model exhibits new ingredients and the global inconsis-
tency plays a particularly important role. The Euclidean classical action is

S[q1, q2] =

∫
dτ

[
1

2
(m1q̇

2
1 +m2q̇

2
2) + V (q1 − q2)

]
− iθ1

2π

∫
dq1 −

iθ2

2π

∫
dq2, (3.40)

wherem1 andm2 are distinct mass parameters for each particle and the potential V (x) is represented
as the Fourier series (3.2), which is a smooth 2π periodic function. Each qi (i = 1, 2) is the map
qi : S1

β → R/2πZ. The theta parameters θi are 2π periodic variables.
With use of the path integral the partition function is expressed as

Z(θ1,θ2) =

∫
Dq1Dq2 exp(−S[q1, q2]). (3.41)
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Figure 3.3: Two particles on a ring with fluxes.

In the operator formalism, the partition function is expressed as Z(θ1,θ2) = trH[exp(−βĤ)] with
the hamiltonian given by

Ĥ(p̂1, q̂1, p̂2, q̂2) =
1

2m1

(
p̂1 −

θ1

2π

)2

+
1

2m2

(
p̂2 −

θ2

2π

)2

+ V (q̂1 − q̂2). (3.42)

where [q̂i, p̂j ] = iδij .

3.2.1 Symmetries, central extension, and global inconsistency

The action (3.40) possesses U(1) symmetry generated by

Uα : qi(τ) 7→ qi(τ) + α, (3.43)

where i = 1, 2 and α is a 2π periodic constant, i.e., U2π = 1. The corresponding generator is
given by Uα = eiα(p̂1+p̂2) and satisfies a commutation relation UαĤU−α = Ĥ. The time reversal
transformation

T : qi(τ) 7→ qi(−τ), q̇i(τ) 7→ −q̇i(−τ), (3.44)

becomes an additional symmetry at (θ1, θ2) = (0, 0), (0, π), (π, 0), (π, π), which are the high symme-
try points of the model.

We analyze commutation relations of Uα and T to study the ’t Hooft anomaly and global in-
consistency. Let the high symmetry points be denoted by (θ1, θ2) = (j1π, j2π) with j1, j2 ∈ Z. The
condition for the time-reversal symmetry, TĤT−1 = Ĥ, combined with anti-unitarity TiT = −i
requires Tq̂iT−1 = q̂i (i = 1, 2) and

Tp̂1T
−1 = −p̂1 + j1, Tp̂2T

−1 = −p̂2 + j2, (θ1, θ2) = (j1π, j2π). (3.45)

Therefore, the commutation relations between U and T are,

TUαT
−1 = ei(j1+j2)αUα, (θ1, θ2) = (j1π, j2π). (3.46)

At (θ1, θ2) = (0, 0), we obtained expected relation from U(1) × Z2 symmetry. At (θ1, θ2) = (0, π)
and (π, 0), we have additional phase factor eiα. We again try to absorb it by redefining the operator
U′α ≡ e−iα/2Uα. But U′α forces the periodicity of α to be extended to 4π. Thus, avoiding the central
extension necessarily yields the double cover of U(1)×Z2 and this is a symptom of a mixed ’t Hooft
anomaly. Although similar issue seems to appear at (θ1, θ2) = (π, π) this is not true because the
phase factor e2iα can be absorbed by a redefinition U′′α ≡ e−iαÔα without extending periodicity
of α. It is again noted that, although there is no central extension at (θ1, θ2) = (0, 0) and (π, π)
respectively, we cannot choose common operator Uα (or U′′α). This is the global inconsistency. So
far, we found similar observations as those we saw in the last section.
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An interesting thing happens at (θ1, θ2) = (π,−π); Tp̂1T
−1 = −p̂1 + 1 and Tp̂2T

−1 = −p̂2 − 1
lead to a commutation relation

TUαT
−1 = Uα. (3.47)

Hence, there is not a mixed ’t Hooft anomaly and also a global inconsistency does not exist between
(0, 0) and (π,−π). A global inconsistency however exists between (0, 0) and (π, π). It is noted that
the theory at (π,−π) must show the same property as one at (θ1, θ2) = (π, π) because θ2 is 2π
periodic parameter.1 This observation is not a contradiction and yields an important constraint on
the energy spectrum as we will see momentarily.

We explore the implication of the above argument to energy spectrum and phase diagram.
The same argument as we gave in the last section results in the existence of degenerate state at
(θ1, θ2) = (0, π), (π, 0) and we do not repeat here. Instead, we restrict our attention to (θ1, θ2) =
(0, 0), (π, π), (π,−π). The simultaneous eigenstate of Uα and T would satisfy

Uα|ψ〉 = eiαk|ψ〉, T|ψ〉 = η|ψ〉, (3.48)

where k ∈ Z because U2π = 1. Then, by using the commutation relations (3.46) and (3.47), the
parallel discussion given in Sec. 3.1.1 leads to the following U(1) transformation law of states,

Uα|ψ(0,0)〉 = |ψ(0,0)〉, Uα|ψ(π,π)〉 = eiα|ψ(π,π)〉, Uα|ψ(π,−π)〉 = |ψ(π,−π)〉, (3.49)

at (θ1, θ2) = (0, 0), (π, π), (π,−π), respectively. Since |ψ(π,π)〉 has different U(1) charge from |ψ(0,0)〉
and |ψ(π,−π)〉, |ψ(π,π)〉 cannot be continuously connected to the other two states at high symmetry
points. In addition, (π, π) and (π,−π) must be identified because θ2 is a 2π periodic parameter
as we mentioned before. The compatible consequence is that (π, π) and (π,−π) are separated by
a phase transition as shown in Fig. 3.5. Otherwise, T-invariant state at (π, π) would be connected
to T-broken state at (π,−π) without a level crossing, which contradicts to the fact that (π, π) and
(π,−π) must have identical energy spectra.

The above arguments are indeed checked by a explicit computation of the energy spectra with a
specific potential

V (q1 − q2) = λ cos(q1 − q2). (3.50)

As shown in Fig. 3.4a, all the states at (θ1, θ2) = (π, 0) form pairs and the time reversal symmetry
is spontaneously broken.

Fig. 3.4b shows the energy spectra as function of θ1 = θ2 = θ. If a nondegenerate state exists
at θ = 0, it is continuously connected to a degenerate state at θ = 0 (see the lowest blue curve in
Fig. 3.4b, for instance) and vice versa (the lowest brown curve). Interestingly, the vacuum (lowest-
energy) states are singlet both at θ = 0 and θ = π, which is allowed because the level crossing (phase
transition) separates these high symmetry points. The U(1) charge of the lowest-energy state can
jump at the crossing point since the points are not continuously connected by changing θ. This is
the new ingredient which we did not see in the last section. Namely, the global inconsistency does
not necessarily lead to the existence of degenerate vacuum at high symmetry points. Therefore, This
result does not contradict to the fact that there is a global inconsistency between (θ1, θ2) = (0, 0)
and (π, π).

Finally, we see that the vacuum is nondegenerate for θ1 = −θ2 = θ′ (Fig. 3.4c), which is
consistent with the discussion in the last section that there is neither an ’t Hooft anomaly nor global
inconsistency at θ1 = −θ2 = π.

A phase diagram on (θ1, θ2)-plane (Fig. 3.5) follows the energy spectrum and level crossing
computed above. As expected from the ’t Hooft anomaly, Level crossing lines pass at (0,±π) and

1Of course the same is true at (θ1, θ2) = (−π, π) by using 2π periodicity of θ1.
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Figure 3.4: Energy spectra as functions of θ with m1 = 1, m2 = 1/2 and λ = 1. Color of lines
indicates the U(1) charge of states. (a) All the levels are degenerate at (θ1, θ2) = (π, 0) due to the
’t Hooft anomaly. (b) A singlet state at (θ1, θ2) = (0, 0) must be connected to a degenerate state at
(θ1, θ2) = (π, π) and vice versa due to the global inconsistency. (c) Singlet states at (θ1, θ2) = (0, 0)
are connected to singlet states at (θ1, θ2) = (π,−π). These figures are taken from Ref. [1].

(±π, 0). High symmetry points (θ1, θ2) = (0, 0) and (π,−π) are connected without level crossing
while (0, 0) and (π, π) are separated by a level crossing line, which agrees with our consideration
based on the global inconsistency.

Based on the constraints from the global inconsistency, we could come up with a little more
exotic phase diagram which we did not find here. The other possibility we could draw from the global
inconsistency between (0, 0) and (π, π) is that the nondegenerate vacuum at (0, 0) is connected to the
degenerate vacua at (π, π) without level crossing. Then, there exists the degenerate vacua at (π,−π)
as well due to the 2π periodicity of θ2. Therefore, the points (0, 0) and (π,−π) must be separated
by another level crossing line because the singlet state at (0, 0) cannot be connected to the T-broken
state at (π,−π) due to the absence of global inconsistency between these two points. See Chapter 6
for detailed discussion on SU(N) × SU(N) bifundamental gauge theory with two θ parameters
corresponding to two gauge groups. In the theory, the almost same conditions are obtained by using
global inconsistency and ’t Hooft anomaly and two possible diagrams are proposed, and our phase
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Figure 3.5: Phase diagram on (θ1, θ2)-plane with λ = 0.2. Each line represents a level crossing
(phase transition). The phase structure is 2π periodic along θ1 and θ2 axises. This figure is taken
from Ref. [1]

diagram Fig. 3.5 actually fits to one of the proposal made in [2] as we will discuss in Chapter 6.

3.2.2 Gauging U(1) symmetry, ’t Hooft anomaly, and global inconsistency

We promote the global U(1) symmetry to the local gauge symmetry by coupling to the background
U(1) gauge field A in order to study the ’t Hooft anomaly and global inconsistency for U(1) × Z2

symmetry. To this end, we study the model (3.40) in the path integral formalism (3.41) as we have
done in Sec. 3.1. The topological U(1) gauge theory we need to couple here is

Stop,k[A] = ik

∫
A, (3.51)

which is U(1) level-k Chern-Simons term in one dimension. The invariance under U(1) gauge
transformation

A 7→ A+ dλ (3.52)

requires the level to be an integer, k ∈ Z. By postulating U(1) gauge transformation,

q1 7→ q1 + λ, q2 7→ q2 + λ, (3.53)

we obtain the gauge invariant action coupled to the topological gauge theory,

S[q1, q2, A] =

∫
dτ
[m1

2
(q̇1 +A0)2 +

m2

2
(q̇2 +A0)2 + V (q1 − q2)

]
− iθ1

2π

∫
(dq1 +A)− iθ2

2π

∫
(dq2 +A) + Stop,k[A]. (3.54)

Therefore, the partition function coupled to the background U(1) gauge field is given by

Z(θ1,θ2),k[A] =

∫
Dq1Dq2 exp (−S[q1, q2, A]) (3.55)
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We will see how the partition function at high symmetry points transforms under time reversal
operation,

q1(τ) 7→ q1(−τ), q2(τ) 7→ q2(−τ), A0(τ) 7→ −A0(−τ). (3.56)

At (θ1, θ2) = (0, 0), the partition function transforms as

Z(0,0),k[T ·A] = Z(0,0),k[A] exp

(
2ik

∫
A

)
. (3.57)

The time reversal invariance requires k = 0. Notice that the same transformation law holds at
(θ1, θ2) = (π,−π), which also results in k = 0.

As we saw in the last section, the transformation of the partition function at (θ1, θ2) = (0, π)

Z(π,0),k[T ·A] = Z(π,0),k[A] exp

(
i(2k − 1)

∫
A

)
, (3.58)

leads to a nontrivial consequence. The time reversal invariance requires 2k − 1 = 0. Since this
condition cannot be satisfied with integer k, the time reversal invariance cannot be preserved after
gauging the U(1) symmetry. Hence, an ’t Hooft anomaly exists at (θ1, θ2) = (0, π). Clearly, the
same is true at (θ1, θ2) = (π, 0).

Finally, at (θ1, θ2) = (π, π), the partition function transforms as

Z(π,π),k[T ·A] = Z(π,π),k[A] exp

(
i(2k − 2)

∫
A

)
. (3.59)

In this case, the time reversal invariance is unbroken by choosing k = 1, meaning that there exists
no mixed ’t Hooft anomaly. By observing the resulting Chern-Simons levels at (0, 0), (π,−π), (π, π)

k(0,0) = 0 = k(π,−π), k(π,π) = 1, (3.60)

we conclude that there are global inconsistencies between (0, 0) and (π, π), and between (π,−π) and
(π, π), respectively.

It is impossible to eliminate the phases coming out of ’t Hooft anomalies and global inconsistencies
by the local counter term, and we need the 2-dimensional bulk Σ with ∂Σ = S1

β to do it keeping the
gauge invariance. The 2-dimensional topological action,

S2d,Σ[A] = i
(θ1 + θ2)

2π

∫
Σ

dA, (3.61)

cancel additional phases of the partition function. At (θ1, θ2) = (π, 0), (0, π), this topological action
depends on the topology of Σ, and this detects the mixed ’t Hooft anomaly. At (θ1, θ2) = (π, π),
this does not depend on the choice of Σ, but the information of the bulk is necessary to connect it
with (θ1, θ2) = (0, 0), and this is the signal for the global inconsistency.

3.3 More on ZN × Z2 mixed anomaly

Finally, we briefly look at the model (3.40) with one-particle potentials V (Nq1) and V (Nq2) in
addition to the inter-particle potential V (q1− q2), which are represented as Fourier series (3.2) with
different sets of parameters. V (Nq1) and V (Nq2) explicitly break U(1) symmetry down to ZN
symmetry, which is generated by

U : q1 7→ q1 +
2π

N
, q2 7→ q2(τ) +

2π

N
. (3.62)
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The potentials V (Nq1), V (Nq2) change the conditions for the ’t Hooft anomaly and global inconsis-
tency at high symmetry points. Here, we do not repeat the operator formalism but present only the
path integral formalism. To this end, we promote the global ZN symmetry by following the proce-
dure employed in Sec. 3.1. The topological gauge theory we need to couple is (3.22) by introducing
ZN one-form A and U(1) zero-form gauge fields B with the constraint NA = dB. The ZN gauge
transformation is given by (3.19) and

q1 7→ q1 − λ, q2 7→ q2 − λ. (3.63)

The action invariant under the gauge transformation takes the following form,

S(θ1,θ2),k[q1, q2, A,B]

=

∫
dτ
[m1

2
(q̇1 +A0)2 +

m2

2
(q̇2 +A0)2 + V (q1 − q2) + V (Nq1 +B) + V (Nq2 +B)

]
− iθ1

2π

∫
(dq1 +A)− iθ2

2π

∫
(dq2 +A) + Stop,k[A], (3.64)

Here, we list the condition for the discrete parameter k at each high symmetry points required
by invariance under the time reversal symmetry:

k = −k, (θ1, θ2) = (0, 0), (π,−π)
k = −k + 1, (θ1, θ2) = (π, 0), (0, π),
k = −k + 2, (θ1, θ2) = (π, π).

(mod N) (3.65)

These restrictions result in the following consequences: For odd N ≥ 3, an ’t Hooft anomaly does not
exist at any high symmetry point. In this case, global inconsistencies exists among (0, 0), (π, 0), (0, π)
and (π, π) because

k(0,0) = 0, k(π,0) =
N + 1

2
= k(0,π), k(π,π) = 1, (3.66)

which take different values.
For even N ≥ 4, ’t Hooft anomalies appear at (θ1, θ2) = (π, 0), (0, π) because there is no integer

solution for k, i.e., the gauge invariance cannot be maintained. Although there is no mixed anomaly
at (θ1, θ2) = (0, 0), (π, π), (π,−π), a global inconsistency exists between (0, 0) and (π, π) and between
(π,−π) and (π, π) because

k(0,0) = 0 = k(π,−π), k(π,π) = 1. (3.67)

In N = 2 case, the first and third conditions in (3.65) are equivalent mod N . Hence, there is no
global inconsistency although we still have ’t Hooft anomalies at (θ1, θ2) = (π, 0), (0, π).

3.4 Summary

We have illustrated the nature of the global inconsistency as well as the ’t Hooft anomaly and their
implication on energy spectra by looking at quantum mechanical models. Let us recall the ’t Hooft
anomaly and global inconsistency once again. The ’t Hooft anomaly shows up as an obstruction
to gauging a global G symmetry of the system and inevitably leads to nontrivial infrared theories.
The global inconsistency has similar nature in that it also appears as an obstruction to gauging
symmetry and imposes constraints on the low-energy theory. The global inconsistency, however,
plays a role in more restricted situations, where there exist high symmetry points connected each
other by continuous parameters of the theory. The constraints obtained from the global inconsistency
is milder than those from the ’t Hooft anomaly due to the fact that it does not necessarily rule out
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the realization of trivial vacuum at high symmetry points. When there is a global inconsistency
between two high symmetry points, one can draw a constraint that the vacuum is nontrivial at
either of the points, or that those two points are separated by a phase transition.

We carefully analyzed quantum mechanical models which exhibits ’t Hooft anomalies and global
inconsistencies at high symmetry points of the parameter space spanned by theta parameters. We
studied them by the operator formalism and path-integral formalism. In the operator formalism, by
studying central extensions of the symmetry group, one can tell how (non-accidental) level crossings
appears in energy spectrum. In the path-integral formalism, ’t Hooft anomalies and global inconsis-
tencies are detected by gauging a global symmetry as we discussed in Sec. 2.2. We then established
a precise connection between these two formalisms in the quantum mechanical models, which allows
us to predict the level crossing in energy spectra by studying ’t Hooft anomalies and global inconsis-
tency. It is noted that the ’t Hooft anomaly matching argument constraints only vacuum property
of the QFT because of the assumption on locality of low-energy effective theories. However, they
becomes more restrictive in quantum mechanics and one can extract the information on excited
states as well by combining the observations drawn from the central extension of symmetry groups.

More specifically, we analyzed the following quantum mechanical models in detail: In the model
describing a particle on a ring, the symmetry group is ZN × Z2 at high symmetry points θ = 0
and π. There is a mixed anomaly at θ = π for even N , and a global inconsistency between θ = 0
and π for odd N . This model is a reminiscent of SU(N) pure Yang-Mills model at θ = π with
ZN one-form center symmetry and time reversal symmetry. The second model with two particles
is a reminiscent of SU(N) × SU(N) gauge theory with bifundamental matters. There are mixed
anomalies at (θ1, θ2) = (0, π), (π, 0). The global inconsistency appears between (θ1, θ2) = (0, 0) and
(π, π) but not between (θ1, θ2) = (0, 0) and (π,−π) which indeed agrees with the phase diagram
for this model in (θ1, θ2) plane. The interesting observation which was absent in the first model is
that the global inconsistency does not imply the existence of degenerate vacua at (θ1, θ2) = (π, π).
Instead the high symmetry points, (θ1, θ2) = (0, 0) and (π, π), are separated by a level crossing line
in the (θ1, θ2) space.
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Chapter 4

Generalized global symmetry

As we have already illustrated in simple quantum mechanical models in the last chapter, for the
purpose of detecting an ’t Hooft anomaly and global inconsistency we need to specify the global sym-
metry and then gauge it. The procedure is more or less the same in the QFTs that we will encounter
in the rest of this dissertation except that involved symmetries and its gauging are gradually getting
complicated. This chapter serves as preliminaries to deal with those symmetries. We pay a primarily
attention to so called the generalized global symmetry or higher form symmetry, that acts on gauge
invariant extended objects as opposed to the conventional symmetry acting on point-like objects
[15–17]. As we will see in the following chapters, the higher form symmetry that we are interested in
is the center symmetry and happens to be a discrete symmetry as well. Gauging such symmetries re-
quires some technicalities involving the topological quantum field theory. After reviewing necessary
ingredients in nonabelian gauge theories, we introduce the generalized global symmetry followed by
demonstrating how to gauge discrete symmetries by making use of the topological quantum field
theory.

4.1 Electric and magnetic charge in nonabelian theories

Spectra of particles with electric or/and magnetic charges are constrained by the locality of QFT.
In case of nonabelian gauge theories, the spectrum of charged objects are closely related to its gauge
group, and sometimes it is crucial to specify the global symmetry group. Some basic facts about
the electric and magnetic charges in gauge theories are reviewed in this section.

4.1.1 Dirac quantization condition

Let us start with the U(1) Maxwell theory, in which electrons carry conserved electric charge. More
generally, one may think of a particle carrying magnetic charge or both electric and magnetic charge,
namely, monopole and dyon, respectively. The Dirac quantization condition states that, given two
dyons with electric and magnetic charges given by (e1, g1) and (e2, g2), they satisfy the “mutual
locality” in the quantum theory if

e1g2 − e2g1 ∈ 2πZ, (4.1)

which is called the Dirac quantization condition [73–76]. The mutual locality means that there is
no correlation between two particles which are infinitely separated. In the topological quantum field
theory, since there is no local excitation, two separated objects do not correlate if they are mutually
local.
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Let us take an electron of charge (e, 0) and a magnetic monopole of charge (0, g). Then, the
Dirac quantization condition requires eg ∈ 2πZ, which also holds for an electron and a dyon. Now,
suppose the minimum of magnetic charge is 2π/e due to the existence of electron of charge e, and
think about two dyons of charge (e1, 2π/e) and (e2, 2π/e). According to the Dirac quantization
condition, (e1 − e2)/e ∈ Z is required. If we additionally require the time reversal symmetry (or
equivalently CP), their electric charges are restricted to e1 = −e2, leading to 2e1/e ∈ Z. Hence, the
dyon charge has to be quantized by integer or half-integer.

On the other hand, if the time reversal symmetry is broken by finite θ angle described by the
action

Sθ =
iθ

8π2

∫
F ∧ F, (4.2)

in four dimensional spacetime, the electric charge of a dyon of charge (e, g) takes the value q =
e− θe/2π, which is not necessarily quantized. This is called Witten effect [77].

4.1.2 su(N) gauge theory

We discuss all the possible electric and magnetic charges especially for the gauge group G = SU(N)
and G = SU(N)/ZN following [78]. To this end, we need to elaborate the representations of each
group and algebra. For slightly more general settings, let Ĝ = SU(N) be the universal cover of the
gauge group, and the gauge group is given by G = Ĝ/H with a center subgroup H ⊂ ZN . We will
give a physical interpretation after a rather abstract description.

The group G determines what kinds of matter fields are allowed to exists, namely, they may
exist if they are in the representations of G. While not all dynamical matters in these represen-
tations necessarily exist, all the Wilson line operators are required to exist corresponding to the
representations of the group. They are labeled by the weight lattice of G modulo the Weyl group,
Λw/W . Therefore, the line operator spectra specify the theory in terms of gauge groups.1 Now,
we loosely identify these points on Λw/W with “electric charges” of matter fields or the Wilson line
operators. We may define the “magnetic charge” in the same way by means of the GNO dual gauge
group G∨ [79], whose universal cover Ĝ∨ has the same center group as the original group Ĝ. The
magnetic charge is labeled by the magnetic weight lattice of g∨, that is GNO dual Lie algebra of
g, modulo the Weyl group Λmw /W . Generically, one can consider dyonic matters or line operators
carrying both electric and magnetic charge, which are labeled by (Λw ×Λmw )/W . Finally, as we will
physically explain momentarily it is useful to organize these matter fields or line operators in terms
of the pair of lattices (Λw × Λmw )/W modulo the root lattices of g × g∨, which is the center of the
universal cover group. They are labeled by (ze, zm) and we actually call them electric and magnetic
charge in nonabelian G gauge theory in the following.

How does this charge assignment physically make sense? Let us consider in G = SU(N) gauge
theory. Classically, all the electric charges belong to representations of the Lie algebra su(N), i.e.,
elements of the weight lattice with the identification under the Weyl group. After quantization,
each electric charge can emit and absorb gluons that are in the adjoint representation and thus the
electric charge ze is labeled only by classical electric charge modulo N , i.e., ze ∈ ZN , which is the
center group of SU(N). That is why we identified the weight lattice under the root lattices which
represent gluons. The same is true for the magnetic charge. Hence, the dyonic charge is labeled by

(ze, zm) ∈ ZN × ZN . (4.3)
1It turns out that theories of same gauge group can have different line operator spectra, which further distinguish

those theories [78].
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Now, the difference between abelian and nonabelian theories are rather clear. In the Maxwell
theory, the photons do not carry U(1) electric charge and radiative corrections do not affect the
charge of electrons. On the other hand, gluons carry color charge, which may be attributed to
the nonlinearity of the nonaberian theory, and hence the quarks of charge 0 and N cannot be
distinguished.

What is the physical meaning of the gauge group G = SU(N)/H? When the gauge group is
G = SU(N)/H, the dynamical matters as well as the Wilson line operators must be invariant under
H ⊂ ZN and only such ze ∈ ZN are allowed. When G = SU(N), the allowed electric charges are
ze = 0, 1, . . . , N − 1. For G = SU(N)/ZN , the only allowed electric charge is ze = 0 because the
particle of charge k ∈ ZN acquires a phase eik/N under the ZN transformation,2 meaning that such
particle is not invariant under H = ZN unless k = 0.

Finally, as we discussed earlier, for particles being genuine point-like objects, the set of allowed
charges must satisfy Dirac quantization condition: For (ze, zm) and (z′e, z

′
m), they must satisfy

(zez
′
m − z′ezm) = 0 mod N. (4.4)

When G = SU(N), the only allowed magnetic charge is zm = 0. For G = SU(N)/ZN , the allowed
magnetic charges are zm = 0, . . . , N − 1.

All these discussions combined together specify allowed electric and magnetic charges. In par-
ticular, all the line operators allowed by the discussions based on the group representations and the
Dirac quantization conditions must exist, whose spectra in turn characterize distinct gauge theories.

4.1.3 Genuine line operators

So far in this section we have seen the spectra of line operators are highly constrained by the
Dirac quantization condition, which requires the mutual locality among line operators. We call the
operators that satisfy the condition the genuine line operators. On the other hand, the violation of
the mutual locality can be attributed to the existence of surfaces attached to those lines and they
still provide important information as we will see later. Those surfaces pick up a nontrivial phase
when two line operators which are not mutually local link each other [16]. To distinguish those line
operators it is useful to introduce the following three classes [16, 78]:

1. A line operator which bounds a surface operator. We need to specify the location of both line
and surface.

2. A line operator which bounds a surface operator as well as the previous case, but correlation
functions only depends on the topological class of the surface.

3. A line operator with no surface need to be attatched, which are called genuine line operators.

The generalization to higher dimensional operators is similarly done.

4.2 Higher form global symmetry

Let us start with recalling the basic properties of ordinary global symmetries in d dimensional
spacetime, which faithfully act on the Hilbert space [17] (see also section 2 of [80]).3

2We will elaborate the precise meaning of the ZN transformation after introducing the one-form symmetry
3We do not see the gauge symmetry as symmetry because it “trivially” acts on Hilbert space, which is, roughly

specking, spanned by gauge invariant operators.
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(a) Zero form symmetry in d-dimensional
spacetime.

(b) One form symmetry in 3-dimensional
spacetime.

Figure 4.1: Schematic figures describing charge operators and charged objects associated to zero-form
and one-form symmetry. (a) Vp on the blue point is a point-like object charged under the ordinary
(zero-form) symmetry. The charge operator Q(Md−1) represented by the black solid line, that is
(d−1)-dimensional surface in d-dimensional spacetime, measures the charge inside the surfaceMd−1.
The dashed line also represents the charge operator Q(M̃d−1). Since the measured charge does not
depend on the choice of surface unless it crosses the charged objects, the surface is topological. (b)
The blue line V (C1) is a line-object charged under the one-form symmetry. The charge operator
Q(M1) represented by the black solid line, that is 1-dimensional cycle in 3-dimensional spacetime,
measures the charge of the line operator V (C1) linking with M1.

For a continuous symmetry group G the Noether’s theorem provides a conserved charge by the
spatial integral of a conserved current,

Q(Md−1) =

∫
Md−1

j (4.5)

where the current j is given by (d− 1)-form. Then, the generator of the symmetry transformation
is obtained by exponentiating the charge,

Ug(M
d−1) = eiαQ(Md−1), (4.6)

where g ∈ G and α is a transformation parameter. The generator acts on operators V (p) charged
under the symmetry in the following way,

Ug(M
d−1)Vi(p)(Ug(M

d−1))−1 = RijVj(p), (4.7)

with p ∈ Md−1 and the right-hand side is proportional to the intersection number between p and
Md−1. More generally, this action can be expressed as

Ug(S
d−1)Vi(p) = RijVj(p), (4.8)

where Sd−1 is a sphere surrounding the point p (see Figure 4.1a). This is understood as follows: The
product of operators should be regarded as the time-ordered product with some choice of a time-slice
as a result of canonical quantization. Thus, the product in (4.7) can be understood by taking the
time slices of Ug(Md−1) and (Ug(M

d−1))−1 at t = tp + ε and t = tp − ε respectively where tp is the
time of the point p and ε is a infinitesimal constant. Then, we obtain the sphere surrounding p by
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deforming two surfaces Md−1, which leads to (4.8). The description of global symmetry based on
the action of generator on charged objects (4.8) holds for discrete symmetry groups, too.

Next, we generalize the discussion to the symmetry associated with the generator acting on
q-dimensional charged object, that is so called q-form global symmetry [15, 17]. The necessary
ingredients to discuss q-form symmetry are the following: The transformation parameter α is given
by a closed q-form, i.e., dα = 0. The conserved charge is defined by an integration of (d − q −
1)-form current, Q(Md−q−1) =

∫
Md−q−1 j for continuous symmetries. The generator is given by

Ug(M
d−q−1) supported on a manifold Md−q−1 and it acts on q-dimensional charged objects V (Cq)

(see Figure 4.1b). With a manifold Sd−q−1 linking Cq the action of generator is expressed as

Ug(S
d−q−1)V (Cq) = RV (Cq). (4.9)

One-form symmetries in Maxwell theory

Let us take a look at the four-dimensional Maxwell theory as an example possessing one-form
symmetries, whose action is S =

∫
F ∧ ∗F . The equation of motion and the Bianchi identity are

respectively
d ∗ F = 0, dF = 0, (4.10)

without matter fields. Thus, ∗F and F may be regarded as two-form conserved currents, to which
we associate symmetry generators,4

Ue(M
2) = exp

(
i
αe

2π

∫
M2

∗F
)
, Um(M2) = exp

(
i
αm

2π

∫
M2

F

)
. (4.13)

The charged objects under the symmetry generated by Ue(M
2) are the Wilson loops

W (C1) = exp

(
i
n

2π

∫
C1

A

)
, (4.14)

with charge n, satisfying the equal-time commutator

Ue(S
2)W (C1) = eiαen`W (C1), (4.15)

where ` is a linking number between S2 and C1. Physically, the generator measures the electric
flux carried by the Wilson loop. Hence, the symmetry is called electric one-form symmetry. It is
explicitly broken if charged matter fields exist. For the same reason, the symmetry generated by
Um(M2) is called magnetic one-form symmetry and its charged objects are the ’t Hooft loops

T (C1) = exp

(
i
m

2π

∫
C1

Â

)
, (4.16)

with a magnetic charge m and magnetic gauge potential Â locally satisfying dÂ = ∗F .
4Provided an open surface M2 bounded by ∂M2, does the generator Um(M2) become a genuine Wilson line

operator? If so it would be expressed as

Um(M2) = Ue(∂M
2) = exp

(
i
αm

2π

∮
∂M2

∗A
)
. (4.11)

However, the answer is NO because it is not invariant under the gauge transformation A→ A+ dλ,

Ue(∂M
2)→ Ue(∂M

2) exp (iαmk) , (4.12)

where we used
∮
dλ ∈ 2πk with k ∈ Z. Thus, the surface bounding the loop is needed. The same is true for Ue(M

2),
which cannot be a genuine ’t Hooft line operator.
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4.3 Topological quantum theory

When we discuss gapped topological states, there is no local excitation in the infrared spectrum.
Such systems are described by means of topological quantum field theories (TQFT), which is roughly
defined by the QFT independent of geometry, i.e., it does not depend on metrics and hence the
energy-momentum tensor vanishes. Even though there is no local degrees of freedom, such states
are distinguished from trivially gapped states by the existence of nonlocal operators such as line or
higher dimensional surface operators and their nontrivial statistics. In this section, we will briefly
review the abelian Chern-Simons theory and the BF theory from the viewpoint of global symmetries.
The BF theory plays an important role for gauging discrete symmetries as we will discuss in the
next section.

4.3.1 Abelian Chern-Simons theory

The 3d Chern-Simons theory might be the most familiar TQFT for physicists. We restrict ourselves
to the U(1) Chern-Simons theory for the sake of simplicity. The action is

SCS =
ik

4π

∫
A ∧ dA. (4.17)

It is noted that there is no metric in this action.5 Under the gauge transformation A → A + dα6,
the action changes as

∆SCS =
ik

2π

∫
dα ∧ dA ∈ 2πikZ. (4.18)

Therefore, the level k must be an integer, leading to the invariance of the partition function. This can
be explicitly checked on a spin manifold S1×S2. Another way to understand the level quantization
is to define the Chern-Simons action

SCS =
k

4π

∫
M4

F ∧ F, (4.19)

by choosing an extension to a bounding four-manifold M4. Suppose we define the Chern-Simons
action on M3 by extending to M4 and M̃4 whose boundary is M3, the level quantization is derived
by requiring that the definition does not depend on the extension,

k

4π

∫
M4

F ∧ F − k

4π

∫
M̃4

F ∧ F ∈ 2πZ. (4.20)

The difference can be rewritten as

k

4π

∫
M4−M̃4

F ∧ F ∈ 2πkZ, (4.21)

whereM4−M̃4 is a closed four manifold and we used the index theorem 1
8π2

∫
F ∧F ∈ 2πZ, which is

valid on spin manifolds. Hence, k ∈ Z allow us to define the Chern-Simons action without referring
to four manifolds.

The theory is invariant under the transformation

A→ A+
λ

k
, (4.22)

5There is a subtle geometric dependence through the framing anomaly, but we do not get into detail.
6This is a large gauge transformation with the gauge parameter α satisfying

∮
dα ∈ 2πZ.
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with a U(1) gauge field λ satisfying dλ = 0, i.e., λ is flat, and this is a one-form Zk transformation.
By repeating it k times we get the 0-form gauge transformation (4.17). The Zk one-form global
symmetry is generated by the Wilson loops

Wm(M1) = exp

(
im

∮
M1

A

)
, (4.23)

which are charged objects, too.

Wm(M1)Wn(N1) = exp
(

2πi
mn

k

)
Wn(N1), (4.24)

for the linked loops M1 and N1.

4.3.2 BF theory

The 4d BF theory is described by the action

SBF =
iN

2π

∫
B ∧ dA, (4.25)

where B is a two-form gauge field and A is a one-form gauge field. With k being an integer, the
action is invariant mod 2π under the 0-form gauge transformation A → A+ dα0 and the one-form
gauge transformation B → B+dα1. Accordingly, the theory possesses one-form and two-form global
ZN symmetries generated by

Tm1(M2) = exp

(
im1

∮
M2

B

)
, (4.26)

Wm2(M1) = exp

(
im2

∮
M1

A

)
, (4.27)

by which the fields7 are transformed as

A→ A+
1

N
λ1, (4.28)

B → B +
1

N
λ2, (4.29)

respectively, with properly normalized flat one-form gauge field λ1 and two-form gauge field λ2.
One may add extra topological term to the BF action (4.25),

SpBF =
iN

2π

∫
B ∧ dA+

iNp

4π

∫
B ∧B, (4.30)

with an additional parameter p. Since the added term plays an important role in the discussion of
the ’t Hooft anomaly in the following chapters, we here see the property of p and gauge symmetry
of the theory. If we set p ∈ Z, the action is invariant under one-form gauge transformation,

B → B + dα1, A→ A− pα1. (4.31)
7Corresponding gauge invariant charged objects are Wn1(N

1) and Tn2(N
2), resepectively.
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We can dualize the field A by introducing a Lagrange multiplier Â in the action (4.30),

SpBF ∼
i

2π

∫
(NB + dÂ) ∧ F +

iNp

4π

∫
B ∧B

=
i

2π

∫
(NB + dÂ) ∧ F +

ip

4πN

∫
dÂ ∧ dÂ. (4.32)

Here “ ∼′′ means that, we get dF = 0 by integrating out Â, leading to F = dA, and end up with
the original form. Now, the dualized action is invariant under the one-form gauge transformation

B → B + dα1, Â→ Â−Nα1 F → F − pdα1. (4.33)

From the last term of the action it is clear that p ∼ p+N because 1
4π

∫
dÂ∧ dÂ ∈ 2πZ. Therefore,

the added parameter is set to be p ∈ ZN .
The symmetry and line operator spectrum of this theory are carefully analyzed in the next

chapter.

4.4 Gauging ZN symmetry

In the last chapter, we encountered the situation where we need to gauge the ZN symmetry to study
the ’t Hooft anomaly. In the next chapter, we will again face to the similar problem in SU(N)
Yang-Mills theory, i.e., gauging the center symmetry, which is ZN one-form symmetry. We develop
the technique to gauge those discrete symmetries in this section. We consider the discrete symmetry
which can be embedded in a continuous symmetry.

One way to gauge the ZN symmetry of the theory with an action S is to enforce a U(1) gauge
symmetry and then break it to the Zp subgroup by the Higgs mechanism [81, 82]. More specifically,
we first enlarge the ZN symmetry to the U(1) symmetry, which is possible in the cases we are
interested in, and gauge the symmetry by introducing U(1) gauge field A. Then, we couple to the
theory that contains the Higgs field H enabling us to break U(1) to ZN gauge group. The total
ZN -gauged action is

Stotal = S[A] + SHiggs[A,H]. (4.34)

As we will see below, SHiggs[A,H] is described by the BF theory if we take low energy limit.
Let us consider a U(1) gauge theory with a gauge field A and a Higgs field H carrying charge

N under U(1) gauge group. Then, the U(1) gauge transformation of the charge N Higgs field is
realized by φ→ eiNαφ with a gauge parameter α. After condensing the Higgs field, the nonvanishing
vacuum expectation value 〈H〉 6= 0 breaks the gauge group U(1) to ZN whose elements are given by
g = e2πik/N (k = 0, · · · , N − 1).

The Lagrangian describing the Higgs mechanism for U(1) gauge theory is given by

L = t2(dφ−NA) ∧ ∗(dφ−NA) +
1

2e2
dA ∧ ∗dA. (4.35)

with the phase φ of the Higgs field H = |H|eiφ. φ is a 2π periodic scalar, φ ∼ φ + 2π. We will see
that the low energy limit of the theory realized by t → ∞ is topological ZN gauge theory. To this
end, we dualize the scalar φ. We view C = dφ as independent field by introducing a two-form B,
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which plays a role of Lagrange multiplier,

t2(C −NA) ∧ ∗(C − pA) +
i

2π
C ∧ dB +

1

2e2
dA ∧ ∗dA

= t2(C −NA− i

4πt2
∗ dB) ∧ ∗(C −NA+

i

4πt2
∗ dB)

+
iN

2π
B ∧ dA+

1

(4πt)2
dB ∧ ∗dB +

1

2e2
dA ∧ ∗dA. (4.36)

By integrating out C, we obtain

iN

2π
B ∧ dA+

1

(4πt)2
dB ∧ ∗dB +

1

2e2
dA ∧ ∗dA. (4.37)

In the t→∞ limit, the second term is gone, the equation of motion locally leads to a flat connection
dA = 0, and thus we obtain the BF theory,

LBF =
iN

2π
B ∧ dA, (4.38)

which is a topological ZN gauge theory. In fact, the equations of motion dA = 0 = dB mean that
there exists no local degree of freedom.

While the Higgs Lagrangian (4.35) allows us to understand the origin of the 0-form ZN gauge
symmetry, it does not explain the one-form ZN gauge symmetry, that shows up in the BF theory
as well as the 0-form symmetry according to the discussion in the last section. To figure this out,
we dualize A in (4.37) by introducing an independent field F and a Lagrange multiplier V ,

iN

2π
B ∧ F +

1

(4πt)2
dB ∧ ∗dB +

1

2e2
F ∧ ∗F +

i

2π
dV ∧ F

=
1

(4πt)2
dB ∧ ∗dB +

e2

8π2
(dV +NB) ∧ ∗ (dV +NB)

+
1

2e2

(
∗F +

ie2

2π
dV +

ie2N

2π
B

)
∧ ∗
(
∗F +

ie2

2π
dV +

ie2N

2π
B

)
. (4.39)

Integrating out F we obtain

1

(4πt)2
dB ∧ ∗dB +

e2

8π2
(dV +NB) ∧ ∗ (dV +NB) . (4.40)

The matter field is given by one-form (vector), which has charge N under one-form gauge group with
two-form gauge field B. Therefore, this dual Lagrangian describes the Higgs mechanism breaking
U(1) one-form gauge group down to ZN one-form gauge group. The BF theory can be understood
to emerge as a low energy limit of the Higgs Langrangians (4.35) and (4.40).

It is noted that the BF Lagrangian can be further dualized. Dualizing B results in

− iN

2π
H ∧A+

i

2π
H ∧ dϕ =

i

2π
H ∧ (dϕ−NA), (4.41)

with only 0-form gauge symmetry is remained. This is of course directly obtained from the original
Higgs Lagrangian (4.35) by taking the low energy limit t → ∞, which forces dφ − NA = 0. This
is precisely reproduced by integrating out H and identifying ϕ with φ (4.41). On the other hand,
dualizing A results in

iN

2π
B ∧ F +

i

2π
dÂ ∧ F =

i

2π
(NB + dÂ) ∧ F. (4.42)

46



with one-form gauge symmetry is remained. We notice that there is also an emergent 0-form U(1)
gauge invariance under Â→ Â+ dα̂0.

Finally, in order to convince ourselves that the one-form ZN symmetry is indeed gauged by
coupling a target theory to the BF theory, we have a look at the coupled partition function,

Ztotal[B] =

∫
DA exp

[
iN

2π

∫
M
B ∧ dA

]
Z[B]. (4.43)

The target theory is described by the partition function Z[B] and we assume that it has a one-form
U(1) gauge symmetry with a background two-form gauge field B. The closed two-form dA/2π ∈
H2[M,Z] is decomposed as

dA = dα+
∑
i

miωi, (4.44)

with a one-form α, integers mi, and harmonic two-forms ωi.8 By substituting this expression, we
obtain the partition function,

Ztotal[B]

=

∫
DA exp

[
iN

2π

∫
M
B ∧ dα

]
exp

[∑
i

iNmi

2π

∫
M
B ∧ ωi

]
Z[B]

=

∫
Dα exp

[
− iN

2π

∫
M

dB ∧ α
]∏

i

exp

[∑
mi

iNmi

2π

∫
P[ωi]

B

]
Z[B]. (4.45)

where P[ωi] is a two-cycle that is Poincare dual to a harmonic two-form ωi. The integration over α
leads to NdB = 0, and sums over mi result in the constraint on the holonomy

∫
P[ωi]

B ∈ (2π/N)Z.
Consequently, the two-form gauge fields B is restricted to a flat ZN gauge field, i.e., NB/2π ∈
H2[M,ZN ]. Actually, this result is immediately obtained from (4.42) by integrating out F , which
yields NB = −dÂ, and hence the properties stated above are quite obvious. Gauging 0-form ZN
symmetry is similarly done by integrating out two-form gauge field B instead of A in (4.43).

Another way to check whether the discrete symmetry is gauged is by comparing the line operator
spectrum before and after gauging, which will be done in the next chapter.

8A is generally not a globally defined one-form on M , but dA is a globally defined closed two-form, which is not
exact if A is not globally defined one-form. α appearing in the decomposition is a globally defined one-form.
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Chapter 5

’t Hooft anomaly and global
inconsistency in SU(N) pure Yang-Mills
theory

Dynamics of non-Abelian gauge theories depends not only on the gauge coupling constant but also
on the topological θ angle. Since its discovery, the dependence of vacua and excitations on the
parameter θ has been a key issue to understand the topological nature of gauge theories [83–88].
The strongly interacting sector in the Standard Model of particle physics is the SU(3) vector-like
gauge theory, and thus all the interactions preserve CP invariance (or equivalently time-reversal
invariance due to the CPT theorem) except for this topological term. It is widely believed that the
θ angle of QCD is quite small because CP symmetry in the strong sector is well maintained in our
universe according to the experiment on neutron’s electric dipole moment [89].

For four-dimensional SU(N) Yang-Mills theory, the angle θ is periodic in 2π, and thus the
requirement of time reversal invariance of theory raises two candidates: θ = 0 and θ = π. Under-
standings on the vacuum structure at θ = π are of particular importance, and many studies have
been devoted to it using various techniques, including large N limit, effective models, and chiral
perturbation [51–63, 90–92]. In certain limits (for example large N), one can show that SU(N)
Yang-Mills theory possesses the first-order phase transition at θ = π and breaks time reversal sym-
metry spontaneously. This tells us that physics at θ = π is dramatically different from that at θ = 0,
and it is not known what would happen in generic cases. Recently, in Ref. [21], a new technique has
been developed for SU(N) pure Yang-Mills theory and also for SU(N) Yang-Mills theory with ad-
joint matter fields, which gives a rigorous constraint on the vacuum structure at θ = π by discussing
the ’t Hooft anomaly matching. More interestingly, it reveals under reasonable assumptions that the
first-order phase transition at θ = π survives at finite temperatures at least until the deconfinement
transition happens.

In this chapter, we give a review on four-dimensional Yang-Mills theory with the gauge Lie
algebra su(N) based on the preparation made in Chapter 4. We focus on the case where the gauge
group is SU(N) or PSU(N) = SU(N)/ZN . We mainly follow our paper [2], where the subject
presented in this chapter is given as a review of Ref. [21]. For more details of this subject, see e.g.
Refs. [16, 17, 78, 93].
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5.1 SU(N) Yang-Mills theory and its genuine line operators

The four-dimensional SU(N) pure Yang-Mills theory is described by,

S = − 1

2g2

∫
Tr(G ∧ ∗G) +

iθ

8π2

∫
Tr(G ∧G), (5.1)

where G is the field strength of the SU(N) gauge field a:

G = da+ ia ∧ a. (5.2)

a = aiµT
idxµ is locally an n × n Hermitian matrix-valued one-form, and Tr(T iT j) = 1

2δ
ij . The

theory is invariant under the SU(N) gauge transformation

a 7→ ag = gag−1 − igdg−1, (5.3)

and the physical observables must respect the gauge invariance.
Let us recall the center symmetry in SU(N) Yang-Mills theory, which plays an central role in

the following discussion. Since all the fields in the theory are invariant under the center ZN of the
gauge group SU(N), the gauge transformation is determined only up to elements of ZN [94].1 Given
a nontrivial cycle C parametrized by an angle θ with 0 ≤ θ < π, g ∈ SU(N) is not single-valued
but may satisfy

g(2π) = e2πi/Ng(0). (5.4)

This has an interesting consequence on line operators: The Wilson line in the fundamental repre-
sentation along a closed line C is a gauge invariant object,

W (C) = Tr

[
P exp

(
i

∮
C
a

)]
. (5.5)

It transforms under the gauge transformation (5.3) satisfying (5.4) as

W g(C) = Tr

[
P exp

(
i

∮
C
ag
)]

= Tr

[
N−1∏
i=0

exp

(
i

∫ xi+1

xi

ag
)]

= Tr

[
N−1∏
i=0

(1 + i∆xag +O(∆x2))

]

= Tr

[
N−1∏
i=0

g(1 + i∆xa)(g−1 + ∆xdg−1) +O(∆x2)

]

= Tr

[
N−1∏
i=0

g(xi) exp

(
i

∫ xi+1

xi

a

)
g−1(xi+1)

]

= Tr

[
g(x0)P exp

(
i

∮
C
a

)
g−1(xN )

]
= e−2πi/NW (C), (5.6)

where ∆x = xi+1 − xi and xN = x0. We have used (5.4) in the last equality. Hence, this transfor-
mation acts on the Wilson line by the center ZN and is called the center transformation. It should

1This is certainly not true if fermions in the fundamental representations exist. But the same argument works out
in the case with fermions in the adjoint representation because they are invariant under ZN ⊂ SU(N). The theories
with fundamental fermions will be discussed in Chapter 6 and 7.
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be emphasized that the center symmetry associated to this transformation is a global symmetry
because it acts on the Wilson loops, which are gauge invariant. Since this symmetry transformation
acts on line objects, it can be interpreted as a one-form symmetry associated to the transformation
of a fundamental field

a 7→ a+
1

N
ε, (5.7)

with U(1) one-form gauge field ε satisfying
∮
ε ∈ 2πZ [17]. One can measure the electric charge

ze of the Wilson line by introducing a topological surface operator [17, 95]. In this sense, SU(N)
Yang-Mills theory has a global center symmetry that is called electric ZN one-form symmetry (see
Chapter 4).

Since theory has fundamental Wilson lines in the spectrum of genuine line operators as mentioned
above, there is no magnetic line operator as a genuine line object. Indeed, let (ze, zm) be a charge
of the line operator, then the Dirac quantization condition with the fundamental Wilson line with
charge (1, 0) claims

zm = 0 mod N. (5.8)

Thus, there is no magnetic or dyonic genuine line. The genuine line operators with different electric
charges are given by W (C)k with ze = k = 0, 1, . . . , N − 1.

5.2 SU(N)/ZN Yang-Mills theory

Let us next consider the SU(N)/ZN gauge theory, and the general argument on the electric charge
shows that the purely electric line operators must be invariant under ZN , such as W (C)N . Since
the Dirac quantization condition with allowed electric particles does not give any constraint on zm,
the genuine line with zm = 1 is possible. Let us assume that we have a theory with a magnetic or
dyonic line with charge (ze, zm) = (−p, 1) with some p = 0, 1, . . . , N − 1. The Dirac quantization
says that the charge (z′e, z

′
m) of other genuine line operators must satisfy

z′e = −pz′m mod N. (5.9)

Therefore, the electric charge of line operators with zm = 1 is fixed to −p once the line with
(ze, zm) = (−p, 1) exists. p is a new parameter of SU(N)/ZN gauge theories, which is called the
discrete theta angle [16, 17, 78, 93], and it specifies the spectrum of genuine line operators.

We can construct SU(N)/ZN Yang-Mills theory by coupling SU(N) Yang-Mills theory (5.1) to
the following ZN topological field theory [16],

STFT =
i

2π

∫
F ∧ (dA+NB) +

iNp

4π

∫
B ∧B. (5.10)

This topological field theory is a low-energy effective description of the spontaneous (one-form) gauge
symmetry breaking U(1) → ZN when the fields with charge N are condensed [82]. Here, A and
B are one-form and two-form U(1) gauge fields, respectively, and F is a two-form auxiliary field
(see Chapter 4 for gauging the center symmetry). We require that the action is invariant under the
one-form U(1) gauge transformation,

A 7→ A−Nλ, B 7→ B + dλ, F 7→ F − pdλ, (5.11)

and then p must be an integer due to the gauge invariance2.
2We implicitly assume that we consider field theories only on spin manifolds
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In order to couple SU(N) Yang-Mills theory to ZN topological field theory (5.10), we first extend
the gauge group from SU(N) to U(N) = (SU(N) × U(1))/ZN , and identify this U(1) factor with
that of the U(1) gauge field A in (5.10). Correspondingly, the SU(N) gauge field a is replaced by
the U(N) gauge field,

A = a+
1

N
A1N , (5.12)

and the gauge field strength becomes

G = dA+ iA ∧A. (5.13)

Under the U(1) one-form gauge transformation, G is transformed as

G 7→ G − dλ1N . (5.14)

In order to obtain the SU(N)/ZN gauge theory instead of U(N) gauge theory, we postulate the
invariance under the U(1) one-form gauge transformation, and then the gauge invariant combination
is given by G +B1N (for notational simplicity, the identity matrix 1N will be omitted below). As a
result, the classical action for the SU(N)/ZN Yang-Mills theory is given by

S = − 1

2g2

∫
Tr((G +B) ∧ ∗(G +B)) +

iθ

8π2

∫
Tr((G +B) ∧ (G +B))

+
i

2π

∫
F ∧ (dA+NB) +

iNp

4π

∫
B ∧B. (5.15)

Locally, we obtain B = − 1
N dA by integrating out F , and its substitution recovers the original

SU(N) Yang-Mills action but this operation is ill-defined globally. Spectrum of local operators
on topologically trivial manifolds is unchanged by this gauging procedure, but there is a crucial
difference on nontrivial topologies or with non-local operators as we shall see below.

If one tries to define the Wilson line by (5.5), it is not gauge invariant under the U(N) gauge
transformation. We can define two kinds of gauge-invariant line operators with (ze, zm) = (1, 0) and
(0, 1) but they need a topological surface (∂Σ = C) in general in order to maintain the U(N) 0-form
and U(1) 1-form gauge invariance:

W (C,Σ) = Tr

[
P exp

(
i

∮
C
a

)]
exp

[
i

N

∮
C
A+ i

∫
Σ
B

]
, (5.16)

H(C,Σ) = exp

[
i

∫
Σ

(F + pB)

]
. (5.17)

We now claim that the action (5.15) indeed describes the Yang-Mills theory of gauge group SU(N)/ZN
with the discrete theta angle p. Indeed, let us considerH(C,Σ)W (C,Σ)−p that has charge (ze, zm) =
(−p, 1):

H(C,Σ)W (C,Σ)−p = exp

(
i

∫
Σ
F

)(
Tr

[
P exp

(
i

∮
C
a

)]
exp

[
i

N

∮
C
A

])−p
. (5.18)

Superficially, it depends on the surface Σ, but the equation of motion of A claims that 1
2πF ∈

H2(X,Z), and thus exp(
∫

Σ F ) does not depend on the choice of surfaces Σ satisfying ∂Σ = C.
Therefore, the theory (5.15) have the dyonic genuine line operator with charge (ze, zm) = (−p, 1),
which is concretely given by H(C,Σ)W (C,Σ)−p. This is precisely the spectrum of genuine line
operators in the SU(N)/ZN gauge theory.
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Let us also explain why p is called the discrete theta angle. For this purpose, we consider the
shift θ 7→ θ + 2π. The change of the action (5.15) under this shift is given by

∆S =
i

4π

∫
Tr((G +B) ∧ (G +B)) =

i

4π

∫
Tr(G ∧ G)− in

4π

∫
B ∧B. (5.19)

The first term is in 2πiZ on spin four-manifolds due to the index theorem, and thus the 2π shift of
θ changes p to p − 1 (mod N). This is a consequence of the fact that the electric charge of dyons
is shifted by θ/2π because of the θ angle, i.e., the Witten effect [77]. As a result, the periodicity
of θ is extended to 2πN from 2π. Since N different choices of p for the SU(N)/ZN gauge theory
is related by 2π shifts of θ, p is called the discrete theta angle, although this is not always true for
other gauge groups [78].

5.3 Spontaneous time reversal symmetry breaking at θ = π of SU(N)
Yang-Mills theory

We see how one can claim the spontaneous breaking of time reversal symmetry T at θ = π following
the procedure with use of an ’t Hooft anomaly, which was recently developed in Ref. [21]. We
assume that SU(N) Yang-Mills theory at θ = 0 is trivially gapped with unbroken T, and also that
the first-order phase transition does not happen at any 0 < θ < π. Let us couple the theory to
background ZN two-form gauge fields B as we have done in Sec. 5.2.

Even after this coupling, T must be still unbroken by choosing appropriate p at θ = 0. If
T is broken after gauging the ZN one-form symmetry, then this means that there is a mixed ’t
Hooft anomaly between the T symmetry and ZN one-form symmetry. Since an ’t Hooft anomaly is
renormalization group invariant [9, 17], there must be a certain degree of freedom carrying the same
anomaly and surviving in the infrared limit. The assumption on the trivially gapped state claims
that there is no such degree of freedom, and thus there must be a way to couple to the ZN two-form
gauge field B without breaking T.

Note that the T transformation flips the sign of the
∫
B ∧ B term, and effectively p is mapped

to −p under the T transformation. Accordingly, the partition function changes as

Z 7→ Z exp

[
−2p

iN

4π

∫
B ∧B

]
. (5.20)

Therefore, above discussion claims that we can choose the discrete theta angle satisfying3

2p = 0 mod N (5.21)

in order not to break T at θ = 0. Since this has a solution (e.g., p = 0 mod N is always a solution),
the assumption on the gap and unbroken T at θ = 0 is consistent.

Let us discuss the fate of T symmetry at θ = π. In the SU(N) Yang-Mills theory, θ = π is
T-invariant because T flips θ = π to θ = −π and one can shift θ to θ + 2π. After considering the
coupling to the ZN two-form gauge field B, this procedure changes p to −p − 1 because T flips p
to −p and the 2π shift of θ changes −p to −p − 1 due to the Witten effect. The variation of the
partition function is given by

Z 7→ Z exp

[
(−2p− 1)

iN

4π

∫
B ∧B

]
. (5.22)

3The condition derived here is different from and weaker than that given in Ref. [21] since we only consider theories
on spin manifolds while they consider theories on non-spin manifolds as well as spin ones. Nevertheless, it does not
affect the consequence about the fate of T symmetry at θ = π.
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In order not to break T due to the coupling to B at θ = π, we must choose the discrete theta angle
satisfying

2p+ 1 = 0 mod N, (5.23)
but this is inconsistent with our choice at θ = 0. If N is even, 2p + 1 = 0 (mod N) does not have
any integer solution, and thus there is a mixed ’t Hooft anomaly and the anomalous phase factor A
is given by

A = −(2p+ 1)
N

4π

∫
B ∧B. (5.24)

This claims that T is broken because of the ZN gauge fields. For odd N , the condition 2p + 1 = 0
(mod N) can be solved by putting p = (N − 1)/2, and thus there is no ’t Hooft anomaly. We
are tempted to conclude that T invariance is preserved in this case. However, p = (N − 1)/2 is
not the T-invariant choice at θ = 0; the theory is not T-invariant at θ = π since we have assumed
that there is no first-order phase transition at 0 < θ < π. This is a consequence of the global
inconsistency, namely, there is no choice of p such that the anomalous phase factors at θ = 0 and
π are simultaneously removed. Therefore, T is broken after coupling SU(N) Yang-Mills theory at
θ = π to ZN background two-form gauge fields for any choice of the discrete theta angle p preserving
T at θ = 0.

For consistency, there must be some low-energy degrees of freedom in the SU(N) Yang-Mills
theory at θ = π that explains the T breaking after coupling it to ZN two-form gauge fields [21].
There are several possible candidates for this:

• The vacua are trivially gapped but degenerate. Each of them breaks T spontaneously.

• The vacuum is gapped with unbroken T symmetry but described by a nontrivial topological
field theory.

• The theory contains massless excitations.

If one further assumes or proves that the gap does not close at finite θ and the theory does not
show the topological phase transition, T is broken spontaneously and there is a first-order phase
transition at θ = π. This interesting discussion given in Ref. [21] does not rely on any specific
microscopic details, and thus the consequence is very general as long as the theory has the ZN one-
form symmetry (i.e., matters are in the adjoint representation) and satisfies the assumption about
the mass gap or topological excitations.

5.4 Finite temperature

A natural question one may next ask is whether the ’t Hooft anomaly and global inconsistency are
robust against thermal fluctuation. In order to answer the question we perform circle compactifica-
tion in the imaginary time direction with radius β, i.e., M4 →M3×S1 where S1 is parametrized by
τ . In this section, we consider the high temperature phase, where the inverse temperature β is much
smaller than the dynamical scale in Yang-Mills theory, and study the three dimensional theory on
M3 obtained by the dimensional reduction [21, 24, 26, 96]. After the circle compactification, the
one-form ZN symmetry on M4 splits into the one-form ZN symmetry on M3 acting on the Wilson
loops on M3 and the zero-form ZN symmetry acting on the Polyakov loops wrapping S1,

tr

[
P exp

(
i

∫
M4

a

)]
compactify−−−−−−→


tr

[
P exp

(
i

∫
M3

a

)]
,

tr

[
P exp

(
i

∫
S1

a

)]
.

(5.25)
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It is noted that from three dimensional point of view the Polyakov loops are no longer extended
objects but point-like objects, and hence, charged under the zero-form symmetry.

To study the dimensional reduction of the ’t Hooft anomaly and global inconsistency, we intro-
duce a background two-form gauge field B(2) for the one-form symmetry and background one-form
gauge field B(1) for the zero-form symmetry, neither of which depends on τ . If we regard B as the
two-form gauge field on four-dimensional manifold M3 × S1, it may be expressed in terms of gauge
fields on M3 as

B = B(2) +B(1) ∧ β−1dτ. (5.26)

Now, the anomaly term on M3 can be obtained simply by plugging (5.26) into four-dimensional
anomaly term (5.24),

− (2p+ 1)
N

4π

∫
M4

B ∧B compactify−−−−−−→ −(2p+ 1)
N

2π

∫
M3

B(2) ∧B(1). (5.27)

Hence, this term reproduce the same ’t Hooft anomaly and global inconsistency as those in four-
dimensional theory.

A crucial observation is that upon the circle compactification the Polyakov loop wrapping around
S1 is stable because it cannot be unwind without changing the topology of spacetime, which in turn
leads to the reduced zero-form center symmetry. Therefore, the anomalies involving higher-form
symmetry is unlikely to be wiped out at finite temperatures. In other words, they are robust against
thermal fluctuations. It is not generically true that an ’t Hooft anomaly or global inconsistency
for zero-form global symmetry survives after circle compactification because point-like objects are
localized on M3 if the radius of circle is much smaller than the diameter of M3 and gauge fields
cannot be introduced in the compactified direction unless it carries nontrivial topology via twisted
boundary condition.

A consequence of the ’t Hooft anomaly (5.26) is that at least one of the involved symmetries
has to be broken at any temperature [21]. Particularly, the center symmetry being broken at higher
temperature and the T symmetry being broken at lower temperature, their transition temperatures
Tdeconf and TT must satisfy the relation Tdecomf ≤ TT.

We will further discuss the anomalies and circle compactification in QCD in Chapter 7, where
the involvement of two-form gauge field plays a key role although there is no higher-form global
symmetry in the original theory.
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Chapter 6

Vacuum structure of SU(N)× SU(N)
bifundamental gauge theories

The purpose of this chapter is to extend and apply the technique developed in the last chapter
to give a rigorous constraint on the vacuum structure of SU(N) × SU(N) Yang-Mills theory with
bifundamental matter fields at finite topological angles, which was reported in our work [2]. A
detailed analysis of the symmetries and ’t Hooft anomalies in the bifundamental gauge theory will
help us understand those in QCD because SU(N) × SU(N) can be regarded as color and flavor
gauge groups upon introducing flavor background gauge field in QCD to study the ’t Hooft anomaly
involving flavor symmetry. We will discuss in full detail in Chapter 7. Since the theory has two
SU(N) gauge groups, it has two topological angles θ1 and θ2. The theory is T invariant at (θ1, θ2) =
(0, 0), (π, 0), (0, π) and (π, π), and we discuss the global consistency of ’t Hooft anomalies to see
whether the vacuum is continuously connected without breaking T at those points. We propose
phase diagrams in the (θ1, θ2) plane that are consistent with the constraints, and give its heuristic
interpretation based on the dual superconductor model of confinement. The summary for this
chapter is given in Section 6.4.

6.1 SU(N) × SU(N) bifundamental gauge theories with finite theta
angles

We consider a gauge theory with the gauge group SU(N)1 × SU(N)2 and bifundamental matter
fields. We use the convention that the gauge fields ai of SU(N)i are realized as the traceless and
Hermitian N×N matrix-valued local one-form. Our argument in the following is valid for any kinds
of the bifundamental matter fields, but, as a specific example, one can consider single bifundamental
Dirac field Ψ: Ψ belongs to the fundamental representation of SU(N)1 and to the anti-fundamental
representation of SU(N)2, and it is realized as an N × N matrix-valued four-component Dirac
fields. The SU(N)1 × SU(N)2 gauge transformation (u1, u2) acts on Ψ and ai as Ψ 7→ u1Ψu†2 and
ai 7→ uiaiu

†
i − iuidu

†
i . The classical action of the theory is given by

S = − 1

2g2
1

∫
Tr(G1 ∧ ∗G1)− 1

2g2
2

∫
Tr(G2 ∧ ∗G2) +

∫
Tr Ψ( /D +m)Ψ

+
iθ1

8π2

∫
Tr(G1 ∧G1) +

iθ2

8π2

∫
Tr(G2 ∧G2), (6.1)
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where Gi is the field strength of the SU(N)i gauge group,

Gi = dai + iai ∧ ai, (6.2)

and
/DΨ = γµ(∂µΨ + ia1µΨ− iΨa2µ). (6.3)

We assume that m > 0, and the matter part does not break time reversal symmetry explicitly.
We denote the electric and magnetic charge of the SU(N)1 × SU(N)2 gauge group as (ze1 , zm1) ⊕
(ze2 , zm2), then the bifundamental Dirac field has the charge (1, 0)⊕ (N − 1, 0) mod N . This theory
has fundamental Wilson lines

W1(C) = Tr

[
P exp

(
i

∮
C
a1

)]
, W2(C) = Tr

[
P exp

(
i

∮
C
a2

)]
, (6.4)

and they have charge (1, 0) ⊕ (0, 0) and (0, 0) ⊕ (1, 0), respectively. W1W
−1
2 has the same charge

with the dynamical fermion of this theory.
Let us describe the (0-form) symmetries of this theory. U(1)V is the phase rotation of the

fermionic field
Ψ 7→ eiφΨ,Ψ 7→ e−iφΨ, (6.5)

and this does not act on gauge fields ai. If g2
1 = g2

2 and θ1 = θ2, there is the (Z2)I symmetry, which
interchanges two gauge fields

a1 ↔ −at2 (6.6)

and acts on fermions as Ψ 7→ Ψt. Except for these internal symmetries, there exist usual charge
conjugation C, parity P, and time reversal T symmetries. When the (Z2)I symmetry and charge
conjugation is combined, the gauge fields are transformed as a1 ↔ a2.

Recall that the SU(N) pure Yang-Mills theory has the electric ZN one-form symmetry, and thus
this theory has ZN × ZN one-form symmetry when the mass m of the Dirac fermion is infinitely
large. At finite m, the bifundamental Dirac fermion becomes dynamical, and it breaks ZN × ZN
one-form symmetry to the stabilizer subgroup of W1W

−1
2 . The ZN × ZN one-form symmetry is

explicitly broken to the diagonal ZN one-form symmetry. Under this electric one-form symmetry,
W1 and W2 have the same charge.

We study the consistency on the dynamics at θ = π using a mixed ’t Hooft anomaly with this
electric one-form symmetry, and constrain structures of the phase diagram. For that purpose, we
first discuss gauging of ZN one-form symmetry. For simplicity of discussion, we assume that the
vacua are always trivially gapped, and we will study how the first-order phase transition happens
as a function of θ1 and θ2.

6.2 Coupling with the ZN two-form gauge fields

We couple the above SU(N)1 × SU(N)2 bifundamental gauge theory to ZN gauge fields in order
to obtain (SU(N)1 × SU(N)2)/(ZN )diagonal gauge theory. First, we discuss the possible charges
of genuine line operators with dynamical matter fields. Bifundamental matters have the charge
(1, 0) ⊕ (−1, 0), and thus, in order for the line with charge (ze1 , zm1) ⊕ (ze2 , zm2) to be a genuine
line, the Dirac quantization condition requires

zm1 − zm2 = 0 mod N. (6.7)

This means that two magnetic charges modulo N for SU(N)1,2 gauge groups must be the same.
Let us consider the case where the theory have a genuine line operator with the magnetic charge
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zm1 = zm2 = 1. The Dirac quantization further restricts the possible purely electric genuine lines.
To see it, let (ze1 , 0)⊕ (ze2 , 0) be a charge of the genuine line, then we get

ze1 + ze2 = 0 mod N, (6.8)

from the Dirac quantization. As a result, the purely electric lines are given by (W1W
−1
2 )k for

k = 0, 1, . . . , N − 1.1

We shall obtain such a theory by coupling the SU(N)× SU(N) bifundamental gauge theory to
a ZN topological field theory. We introduce the ZN two-form gauge field B, and its classical action
is given by the same action in (5.10):

STFT =
i

2π

∫
F ∧ (dA+NB) +

iNp

4π

∫
B ∧B. (6.9)

Here, A and B are U(1) one-form and two-form gauge fields, and the equation of motion for F
requires NB = −dA, which makes B a ZN two-form gauge field. We consider theories only on spin
manifolds since we would like to include the case where bifundamental matters are Dirac fermions,
then the parameter p must be an integer mod N : The condition on p being an integer comes from
the requirement on the U(1) one-form gauge invariance of (6.9). p is identified with p + N since
integrating out F yields

STFT = 2πi
p

N

(
1

2

∫
dA

2π
∧ dA

2π

)
, (6.10)

and difference of p by multiples of N gives the difference of STFT in 2πiZ. Hence, it does not affect
the result in quantum theories.

To couple SU(N) gauge fields a1, a2 to B, we first extend the gauge group SU(N)1 × SU(N)2

to
SU(N)1 × SU(N)2 × U(1)

ZN
, (6.11)

and replace the SU(N) gauge fields a1 and a2 by U(N) gauge fields

A1 = a1 +
1

N
A1N , A2 = a2 +

1

N
A1N . (6.12)

The U(1) gauge field A = Tr(A1) = Tr(A2) is the same with the one that appears in (6.9), and
this creates the coupling of theories that we want. This U(1) gauge field A does not couple to
bifundamental fields, and it can be easily checked by an explicit form of the covariant derivative
(6.3).

We construct the Wilson and ’t Hooft line operators, which need not be genuine but must be
gauge invariant. After that, we study the spectrum of genuine line operators to check whether
we have obtained the (SU(N)1 × SU(N)2)/ZN gauge theory. The former definitions of Wilson
lines in (6.4) are no longer gauge invariant after gauging the ZN one-form symmetry. Let Σ be a
two-dimensional surface with C = ∂Σ, and the gauge invariant Wilson loops are defined by

W1(C,Σ) = Tr

[
P exp

(
i

∮
C
a1

)]
exp

(
i

N

∮
C
A+ i

∫
Σ
B

)
, (6.13)

W2(C,Σ) = Tr

[
P exp

(
i

∮
C
a2

)]
exp

(
i

N

∮
C
A+ i

∫
Σ
B

)
. (6.14)

1In other words, with the gauge group (SU(N)1 × SU(N)2)/(ZN )diagonal, the allowed Wilson (purely electric
genuine) lines must be invariant under (ZN )diagonal and thus have the vanishing electric charge. If the gauge group
is SU(N)1 × SU(N)2 instead of (SU(N)1 × SU(N)2)/(ZN )diagonal, there is no constraint on the electric charge of
the Wilson lines. Then, the Dirac quantization between the dyonic line (ze1 , zm1) ⊕ (ze2 , zm2) and the Wilson line
(z′e1 , 0) ⊕ (z′e2 , 0) leads to z′e1zm1 + z′e2zm2 = 0 (modN) with zm1 = zm2 for an arbitrary z′e1 + z′e2 . Therefore, we
have to choose zm1 = zm2 = 0 (modN) and magnetically charged line operators are excluded from the genuine line
operator spectrum.
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The magnetic one with charge (0, 1)⊕ (0, 1) is also defined by

H(C,Σ) = exp

(
i

∫
Σ

(F + pB)

)
. (6.15)

Using Wilson lines, the genuine line operator of charge (1, 0)⊕ (−1, 0) is given by

W1(C,Σ)W2(C,Σ)−1 = Tr

[
P exp

(
i

∮
C
a1

)](
Tr

[
P exp

(
i

∮
C
a2

)])−1

. (6.16)

We can also construct a dyonic genuine line object,

H(C,Σ)W1(C,Σ)−p = exp

(
i

∫
Σ
F

)(
Tr

[
P exp i

∮
C

(
a1 +

1

N
A

)])−p
, (6.17)

which has the charge (−p, 1)⊕ (0, 1). By multiplying (W1W
−1
2 )k to it, we can generally obtain the

genuine line operator HW−p1 (W1W
−1
2 )k with the charge (−p+ k, 1)⊕ (−k, 1) mod N . The discrete

theta angle p designates the sum of electric charge for the genuine dyonic particles with the magnetic
charges 1.

Since the topological θ angle is the central issue of our discussion, we compute how it is changed
after the gauging in an explicit manner. In oder to maintain the 1-form gauge invariance, we should
replace the gauge field strength G1 and G2 by G1 + B and G2 + B, respectively, where Gi are the
U(N) field strengths of Ai; Gi = dAi + iAi ∧ Ai. As a result, the topological θ term becomes

Sθ =
∑
i=1,2

iθi
8π2

∫
Tr [(Gi +B) ∧ (Gi +B)]

=
∑
i=1,2

iθi
8π2

∫
{Tr(Gi ∧ Gi) + 2B ∧ Tr(Gi) +NB ∧B} . (6.18)

Using the equation of motion of F , Tr(Gi) = dA = −NB, we obtain

Sθ =
∑
i=1,2

iθi
8π2

∫
{Tr(Gi ∧ Gi)−NB ∧B} . (6.19)

Using the consistency of the local counter term p with the T symmetry, we will discuss the
possible phase structure of the SU(N) × SU(N) bifundamental gauge theories in the following
sections.

6.2.1 Spontaneous T breaking at (θ1, θ2) = (π, 0) and (0, π)

We first constrain the possible dynamics of bifundamental gauge theories at (θ1, θ2) = (π, 0) or
(θ1, θ2) = (0, π). We follow the same logic given in Ref. [21], and start with the assumption that
the vacuum at θ1 = θ2 = 0 is trivially gapped without breaking the T symmetry. Therefore, there
must be a way to gauge other symmetries without breaking the T symmetry at θ=0 by using the ’t
Hooft anomaly matching condition. Particularly when gauging the electric ZN symmetry, the local
counter term iNp

4π

∫
B ∧ B can be chosen to be T invariant from this argument, and such p must

satisfy
2p = 0 mod N, (6.20)

since
∫
B ∧B flips its sign under the T transformation.
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We further assume that the vacua are always trivially gapped and that there is a way to con-
tinuously connect (θ1, θ2) = (0, 0) and (θ1, θ2) = (π, 0), (0, π) without phase transitions. We will
show that there exists first-order phase transition associated with the spontaneous T breaking at
(θ1, θ2) = (π, 0) and at (θ1, θ2) = (0, π) under this assumption.

Let us discuss the T symmetry at θ1 = π with θ2 = 0 after gauging the ZN one-form symmetry.
Since T flips the orientation, p and θi change their signs and become −p and −θi, respectively. In
oder to consider the theory at θ1 = π, we must consider not only the change θ1 = π 7→ θ′1 = −π but
also the shift θ′1 = −π 7→ θ′1 + 2π = π to discuss its T invariance. Under these transformations, the
topological θ term is changed by

∆Sθ =
2πi

8π2

∫
Tr(G1 ∧ G1)− iN

4π

∫
B ∧B. (6.21)

The first term is in 2πiZ, and thus does not affect the path integral. The second term shifts the value
of p by −1. As a result, p is changed to p 7→ −p− 1 under the T transformation at (θ1, θ2) = (π, 0),
or equivalently, the partition function is changed as

Z 7→ Z exp

[
(−2p− 1)

iN

4π

∫
B ∧B

]
. (6.22)

Thus the condition for the T invariance at (θ1, θ2) = (π, 0) after gauging is given by

2p+ 1 = 0 mod N. (6.23)

For even N , there is no such integer p. Therefore, there is an ’t Hooft anomaly, and all the quasi-
vacua must form pairs under T or become gapless to saturate the anomaly. For odd N , p = (N−1)/2
satisfies this condition, but it is inconsistent with the choice of p at θ1 = θ2 = 0. Since we put an
assumption that a vacuum at (θ1, θ2) = (π, 0) is continuously connected to the T-invariant vacuum at
θ1 = θ2 = 0, consistency condition requires the existence of low-energy degrees of freedom to saturate
this inconsistency, such as degenerate vacua or massless excitations. Since we have also assumed
that the mass gap does not close, there exists the first-order phase transition at (θ1, θ2) = (π, 0) in
both cases associated with the spontaneous T breaking.

The same argument holds for (θ1, θ2) = (0, π), and we can argue the spontaneous T breaking
there.

6.2.2 Vacuum structure around θ1 = θ2 = π

Let us next discuss the consistency condition for T at θ1 = θ2 = π. This case is somewhat tricky,
since there are two topologically distinct ways that connect (θ1, θ2) = (π, π) and (θ1, θ2) = (0, 0) (See
Fig. 6.1). Since both θ1 and θ2 are 2π periodic for the gauge group SU(N)×SU(N), θ1 = θ2 = π and
θ1 = −θ2 = −π are equivalent. We will discuss whether we encounter the first-order phase transition
when changing θ1 and θ2 continuously from (θ1, θ2) = (0, 0) to (θ1, θ2) = (π, π) or (−π, π).

Let us consider the case (θ1, θ2) = (π, π). After gauging the ZN symmetry, we must use the 2π
periodicity of both θ1 and θ2 to discuss the T symmetry, and under these shifts the topological term
(6.19) is changed by

∆Sθ =
2πi

8π2

∑
i=1,2

∫
Tr(Gi ∧ Gi)−

2iN

4π

∫
B ∧B. (6.24)

On spin manifolds, the first term is in 2πiZ and does not affect the path integral. It thus changes p
to p−2. One can understand this from the spectrum of genuine line operators. Originally, spectrum
of genuine line operators are given by (−p+k, 1)⊕ (−k, 1) mod N with k = 0, . . . , N −1. Since they
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Figure 6.1: Two different paths connecting (θ1, θ2) = (0, 0) and (θ1, θ2) = (π, π) ∼ (−π, π). This
figure is taken from Ref. [2].

have the monopole charge 1, the 2π shift of θ1,2 causes the shift of charge (−p+k+1, 1)⊕(−k+1, 1)
due to the Witten effect, and they become (−p+ 2 + k′, 1)⊕ (−k′, 1) mod N with k′ = 0, . . . , N − 1
by putting k′ = k − 1. Notice that the spectrum is not changed only when N = 2, and this will
become important for our result.

Let us consider whether there is a way to gauge the electric one-form symmetry without breaking
the T invariance at θ1 = θ2 = π. After gauging, we have a local counter term iNp

4π

∫
B∧B, which flips

the sign under T. It can be described effectively by the map p 7→ −p, and θ1,2 = π 7→ −π. To get
the original topological angle, we perform the 2π shift of both θ1 and θ2 that changes −p 7→ −p− 2.
As a result, the T invariance at θ1 = θ2 = π after gauging requires to choose p satisfying

p = −p− 2 mod N. (6.25)

This always has the integer solution, and thus there is an T-invariant quasi-vacuum which may or
may not be the true vacuum. Let us next discuss the global inconsistency. If θ1 = θ2 = 0 and
θ1 = θ2 = π can be continuously connected without breaking T at θ1 = θ2 = π, then the integer
solution p at θ1 = θ2 = π must also be consistent with the T-invariant regularization at θ1 = θ2 = 0;
this says that

2 = 0 mod N. (6.26)

The vacuum at θ1 = θ2 = 0 can be continuously changed to the T-invariant vacuum at θ1 = θ2 = π
without closing the mass gap only if this condition holds.

For N ≥ 3, the above global consistency relation cannot be true. One possibility is that the
vacua at θ1,2 = 0 and θ1,2 = π are separated by first-order phase transitions. Another possibility is
that the vacuum at θ1,2 = π breaks T spontaneously to saturate the inconsistency. For N = 2, we
cannot impose any constraints on the state at θ1 = θ2 = π from our argument, and basically any
possibilities are allowed2.

Next, let us consider what happens when connecting θ1 = θ2 = 0 and θ1 = −θ2 = −π. In
this case, the T transformation at (θ1, θ2) = (−π, π) is associated with the shift θ1 7→ θ1 − 2π and
θ2 7→ θ2 + 2π. The change of the topological term under these shifts is given by

∆Sθ =
i

4π

∫
Tr(−G1 ∧ G1 + G2 ∧ G2) ∈ 2πiZ. (6.27)

Therefore it does not affect the path integral at all. In this case, the T transformation changes
p 7→ −p mod N as in the case of θ1 = θ2 = 0. When connecting θ1 = θ2 = 0 and θ1 = −θ2 = −π,

2This might be because we consider theories defined only on spin manifolds. If we restrict our attention to theories
without fermions, then theories can be defined also on non-spin manifolds. We can repeat the same argument for
non-spin cases at least formally just by changing the identification of the discrete theta angle from p ∼ p + N to
p ∼ p+ 2N . The necessary condition for unbroken T given by (6.26) becomes 2 = 0 mod 2n, and then we would find
that T must be broken for all N ≥ 2.
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(a) T is unbroken at (θ1, θ2) = (π, π) (b) T is broken at (θ1, θ2) = (π, π)

Figure 6.2: Possible phase boundaries of SU(N)×SU(N) bifundamental gauge theories in the θ1-θ2

plane (N ≥ 3). These figures are taken from Ref. [2].

the global consistency holds and thus the vacua can be continuously connected without the phase
transition and T needs not be broken at θ1 = −θ2 = −π.

By combining the result and respecting the 2π periodicity of θ1,2, we obtain Fig. 6.2 as a possible
phase boundary of the first-order phase transition in the (θ1, θ2) plane when N ≥ 3. Whether
the phase boundary opens at (θ1, θ2) = (π, π) depends on details of the dynamics such as matter
contents. In Fig. 6.2a, we consider the possibility when the T symmetry is unbroken at θ1 = θ2 = π.
In this case, the first-order phase transition line must separate θ1 = θ2 = 0 and θ1 = θ2 = π,
but θ1 = θ2 = 0 and θ1 = −θ2 = π can be smoothly connected. In Fig. 6.2b, the T symmetry is
spontaneously broken at θ1 = θ2 = π, and thus there is a first-order phase transition line around
it. In this case, θ1 = θ2 = 0 and θ1 = −θ2 = π would be separated by another first-order line
because the vacuum at θ1 = θ2 = 0 is continuously connected to the T-invariant quasi-vacuum at
θ1 = −θ2 = π but not to the true T-broken vacuum according to the global consistency relation.

One may wonder whether the first-order phase transition line in Fig. 6.2 can terminate so that
one can smoothly change (θ1, θ2) from (0, 0) to (2π, 0) without phase transitions. In Fig. 6.2, this
is impossible and we claim that it is a general result for N ≥ 3. By repeating the same argument
on the T transformation after gauging the ZN symmetry, the condition for the T invariance at
(θ1, θ2) = (2π, 0) is given by p = −p − 2 mod N . Of course this has the solution, but it is
inconsistent with the T invariant choice at (θ1, θ2) = (0, 0) when N ≥ 3. This means that if we
could connect (θ1, θ2) = (0, 0) and (2π, 0) without any phase transition and without closing the mass
gap, then T must be spontaneously broken at (θ1, θ2) = (2π, 0) but this is the contradiction because
(θ1, θ2) = (0, 0) and (2π, 0) must be equivalent for SU(N) × SU(N) gauge theories. If we further
assume that the mass gap does not close at generic (θ1, θ2), then (θ1, θ2) = (0, 0) and (2π, 0) must
be separated by the first-order phase transition line when N ≥ 3. For N = 2, this is not the case.

6.3 Interpretation via the dual superconductor picture

The purpose of this section is to understand the result intuitively from the dual superconductor
model of confinement [52, 97, 98]. Let us first consider the case m → ∞ where the bifundamental
matters decouple. Then, we have two decoupled SU(N) Yang-Mills theories, so let us start with the
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(θ/2π,1)

(θ/2π-1,1)

(θ/2π-2,1)

2π 4π 6π
θ

Energy

Figure 6.3: Schematic figure on the ground state energy E(θ) of the SU(N) Yang-Mills theory
based on the dual superconductor model for N = 3. There are N different branches labeled by the
condensed charge (θ/2π − k, 1) of dyons (k = 0, 1, . . . , N − 1), and each branch is 2πN periodic.
This figure is taken from Ref. [2].

discussion for the SU(N) Yang-Mills theory.

6.3.1 SU(N) Yang-Mills theory

Following the dual superconductor model, we assume that confinement of SU(N) Yang-Mills theory
on R4 is caused by condensation of magnetic monopoles or dyons. Let us say that their charges
are given by (−k, 1) mod N with k = 0, 1, . . . , N − 1 at θ = 0. This assumes that all the Wilson
loops with nontrivial center elements obey the area law. There are N candidates of condensed
particles, and correspondingly there are N different quasi-vacua. To be specific, let us assume that
the magnetic monopole with charge (0, 1) condenses at θ = 0 in the true vacuum. Now, we turn on
the finite topological θ angle, and the Witten effect shifts charges of dyons to (−k+ θ/2π, 1). Since
the charge of each dyon goes back to its original value only after the shift of 2πN , each branch of
quasi-vacua are 2πN periodic in θ instead of 2π periodic. However, the true vacuum must be 2π
periodic in terms of θ, so there must be some jump among quasi-vacua between 0 < θ < 2π.

Let us pay attention to the charge at θ = π. Assuming that no phase transition occurs for
0 < θ < π, then the charge of condensed particles (magnetic monopole at θ = 0) becomes (θ/2π, 1)
due to the Witten effect. It is not invariant under the T transformation at θ = π although the theory
is T invariant. Under the T transformation, the charge (1/2, 1) is mapped to (−1/2, 1), and thus the
quasi-vacua with charges (±1/2, 1) must have the same energy because of the T symmetry of the
theory. Therefore, the first-order phase transition occurs at θ = π, and the true vacuum jumps from
the branch with the condensed charge (θ/2π, 1) to the another branch with the condensed charge
(−1 +θ/2π, 1) (see Fig. 6.3). This is how the T symmetry is spontaneously broken at θ = π for pure
SU(N) Yang-Mills theory in the dual superconductor scenario.

To summarize the case for the SU(N) Yang-Mills theory, let us denote E0(θ) as the energy of the
quasi-vacuum with the condensed charge (θ/2π, 1). T symmetry tells us that E0(θ) = E0(−θ), and
N -ality shows that E0(θ+2πN) = E0(θ). There are N candidates for the condensate, (−k+θ/2π, 1)
with k = 0, . . . , N − 1, and the energy of the true vacuum is

ESU(N)(θ) = min{E0(θ − 2πk) | k = 0, 1, . . . , N − 1}. (6.28)

If E0 is smooth, it is natural to have the bump for E(θ) at θ = π, at which the branch jumps from
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E0(θ) to E0(θ − 2π) with the first-order phase transition (see Fig. 6.3). In the large-N limit, it is
well established that the Yang-Mills vacuum is described by the minimum of N branches [51, 61].

Before going to the case of bifundamental gauge theories, let us deepen our understandings on the
meaning of ’t Hooft anomaly and global inconsistency. T invariance at θ = π requires that p = −p−1
mod N , and it cannot be solved for even N . In the dual superconductor picture, the condensed
particles at θ = π have charges (±1/2, 1), . . . , (±(N − 1)/2, 1) and they form N/2 T-invariant pairs.
Including quasi-vacua, no states can be invariant under T, and this is suggested by the ’t Hooft
anomaly. Next, let us consider the case of odd N , then ’t Hooft anomaly does not exist by setting
p = (N − 1)/2. The condensed charges are given by (±1/2, 1), . . . , (±(N − 2)/2, 1) and (N/2, 1).
Since the quasi-vacuum with the condensed charge (N/2, 1) is invariant under T (see Fig. 6.3), one
cannot argue the spontaneous T breaking at θ = π without putting another assumption. The point
is that the state with the charge (N/2, 1) at θ = π is not continuously connected to the vacuum
with the charge (0, 1) at θ = 0, so the absence of the first-order phase transition at 0 < θ < π can
purge this state from our consideration on vacua. In the language of the global inconsistency, this
is implied by the fact that there is no common integer p for the T invariance at θ = 0 and θ = π.

6.3.2 SU(N)× SU(N) bifundamental gauge theories

Let us now discuss SU(N) × SU(N) Yang-Mills theory. Considering the limit m → ∞ so that
bifundamental matters decouple, we just have two copies of the above argument.

We first connect θ1 = θ2 = 0 and θ1 = θ2 = π. We select the path θ1 = θ2 for instance and
denote the common angle as θ := θ1 = θ2. We now have N2 candidates for the condensed particles
with the charge (−k + θ/2π, 1) ⊕ (−` + θ/2π, 1) mod N with k, ` = 0, 1, . . . , N − 1, and thus the
ground-state energy is given by

ESU(N)×SU(N)(θ) = min{E0(θ − 2πk) + E0(θ − 2π`) | k, ` = 0, . . . , N − 1}. (6.29)

By assumption that the monopole (0, 1) condenses for the SU(N) Yang-Mills theory at θ = 0, the
quasi-vacuum with (θ/2π, 1) ⊕ (θ/2π, 1) is selected when θ is close to zero. At θ = π, T is broken
and the ground state must be at least two-fold degenerate. In our limit m → ∞, there is four-fold
degeneracy at θ = π, and the condensed charges for those four states are

(θ/2π, 1)⊕ (θ/2π, 1), (θ/2π − 1, 1)⊕ (θ/2π − 1, 1),

(θ/2π − 1, 1)⊕ (θ/2π, 1), (θ/2π, 1)⊕ (θ/2π − 1, 1). (6.30)

This is because the T symmetry is extended to Z2 × Z2 from Z2 in the limit m → ∞ as a result
of the decoupling between two SU(N) Yang-Mills theories. If we assume that E0(θ) is smooth and
monotonically increasing for 0 < θ < 2π, there is the first-order phase transition from the sate with
condensed charge (θ/2π, 1)⊕ (θ/2π, 1) to the another one with (θ/2π−1, 1)⊕ (θ/2π−1, 1) at θ = π
(see Fig. 6.4).

Let us turn on finite m and make the bifundamental matters dynamical. Then, the T symmetry
becomes Z2 and the accidental four-fold degeneracy at θ = π must be resolved. Let us first notice
that states with the charge (θ/2π, 1)⊕ (θ/2π, 1) and (θ/2π−1, 1)⊕ (θ/2π−1, 1) cannot be mixed by
dynamical bifundamental fields since the difference of their charges is different from the bifundamen-
tal charge (1, 0)⊕ (−1, 0). On the other hand, the difference of two charges (θ/2π, 1)⊕ (θ/2π− 1, 1)
and (θ/2π−1, 1)⊕(θ/2π, 1) is given by (1, 0)⊕(−1, 0), and this is nothing but the charge of dynam-
ical matter fields Ψ. These states can be mixed as a result of interacting bifundamental matters,
which leads to the non-degenerate quasi-vacuum with the mass gap.

If the energy of the mixed states of (θ1/2π, 1)⊕ (θ2/2π − 1, 1) and (θ1/2π − 1, 1)⊕ (θ2/2π, 1) is
lowered by dynamical matter fields as in Fig. 6.5a, then the mixed state is selected as the ground
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Figure 6.4: Energies of the quasi-vacua of the SU(N)×SU(N) gauge theory in the limit of m→∞
when θ = θ1 = θ2. This figure is taken from Ref. [2].
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(a) T is unbroken at θ = π

0 2π
θ

Energy

(b) T is broken at θ = π

Figure 6.5: Two possibilities of the mixing of states due to dynamical bifundamental matter fields
when θ = θ1 = θ2 are around π. These figures are taken from Ref. [2].

state around θ = π. In this case, T (and (Z2)I if exists) need not be broken, but the first-order
phase transition happens across the path connecting θ = 0 and θ = π. If the energy of the mixed
states of (θ/2π, 1) ⊕ (θ/2π − 1, 1) and (θ/2π − 1, 1) ⊕ (θ/2π, 1) is lifted as in Fig. 6.5b, then they
drop out from the consideration and there is the first order phase transition from the state with
(θ/2π, 1)⊕ (θ/2π, 1) to the one with (θ/2π − 1, 1)⊕ (θ/2π − 1, 1). In this case, T is spontaneously
broken at θ = π.

We can also understand why no phase transition is required when connecting θ1 = θ2 = 0 and
θ1 = −θ2 = −π. For instance, let us pick up a path with θ1 = −θ2, and denote θ′ = −θ1 = θ2.
By taking the limit m → ∞, we can again consider possible phases using the dual superconductor
picture. The four-fold degeneracy at θ′ = π happens at m =∞, and the condensed charges for those
four states are given by

(−θ′/2π, 1)⊕ (θ′/2π, 1), (−θ′/2π + 1, 1)⊕ (θ′/2π − 1, 1),

(−θ′/2π + 1, 1)⊕ (−θ′/2π, 1), (−θ′/2π, 1)⊕ (θ′/2π − 1, 1). (6.31)

Figure for the vacuum energy is almost the same with Fig. 6.4 just by replacing the label of charges
in a straightforward manner.

Let us turn on dynamical bifundamental fields by making m finite. In this case, the states with
charges (−θ′/2π, 1) ⊕ (θ′/2π, 1) and (−θ′/2π + 1, 1) ⊕ (θ′/2π − 1, 1) can be mixed by dynamical
matter fields, while the states with (−θ′/2π + 1, 1) ⊕ (θ′/2π, 1) and (−θ′/2π, 1) ⊕ (θ′/2π − 1, 1)
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(a) T is unbroken at θ′ = π
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(b) T is broken at θ′ = π

Figure 6.6: Two possibilities of the mixing of states due to dynamical bifundamental matter fields
when θ′ = −θ1 = θ2 are around π. Thiese figures are taken from Ref. [2].

cannot be mixed. Depending on relative energies of those states, we obtain Fig. 6.6 for quasi-vacua
of bifundamental gauge theories as a function of θ′ = −θ1 = θ2. By checking charges of condensed
particles, we can notice that Figs. 6.5a and 6.6a are connected, and T is unbroken at θ1 = θ2 = π.
Similarly, Figs. 6.5b and 6.6b are connected, and T is spontaneously broken at θ1 = θ2 = π. These
explain two possible phase boundaries shown in Figs. 6.2a and 6.2b, respectively.

We have so far explained how T is spontaneously broken at θ = π for bifundamental theories,
but our result suggests that it needs not happen if N = 2. We close this section by observing
why N = 2 can be special. Let us consider the case with θ = θ1 = θ2 for example, then above
conclusion comes from the fact that the states with condensed particles (θ/2π, 1) ⊕ (θ/2π, 1) and
(θ/2π−1, 1)⊕ (θ/2π−1, 1) mod N cannot be mixed. This is because the difference of these charges
of condensed particles is (1, 0)⊕ (1, 0) mod N , while the charge of dynamical bifundamental matters
is (1, 0) ⊕ (−1, 0) mod N . These two are different for N ≥ 3, but they are the same at N = 2.
Therefore, for N = 2, these two states can also be mixed by dynamical bifundamental fields, and
thus we need no first-order phase transition lines that separate θ = 0 and θ = π.

6.4 Summary

We have studied the phase structure for SU(N) × SU(N) bifundamental gauge theories at finite
topological angles by applying consistency for mixed ’t Hooft anomalies of T and center symmetry.
For the gauge group SU(N)×SU(N), there are two topological angles θ1 and θ2, and there are four
T invariant points, (θ1, θ2) = (0, 0), (π, 0), (0, π), and (π, π). We discuss that there must be a first-
order phase transition at (θ1, θ2) = (π, 0) and (0, π) associated with spontaneous breaking of the T
symmetry, so there is a first-order phase transition line through these points. The global consistency
is discussed at (θ1, θ2) = (π, π) but there are two different ways to connect (θ1, θ2) = (0, 0) and
(θ1, θ2) = (π, π) because the point is equivalent to (θ1, θ2) = (−π, π). We observe for N ≥ 3 that the
vacua at (θ1, θ2) = (0, 0) and (θ1, θ2) = (π, π) cannot be continuously connected without breaking the
T symmetry at (θ1, θ2) = (π, π), but also that the vacua at (θ1, θ2) = (0, 0) and (θ1, θ2) = (−π, π) can
without breaking any symmetries. We have proposed phase diagrams in the (θ1, θ2) plane that are
consistent with these constraints. To understand it better, we have given a heuristic interpretation
of the result based on the dual superconductor model of confinement and the role of dynamical
bifundamental fields is clarified.

65



Chapter 7

’t Hooft anomalies in massless QCD

Why has the quantum chromodynamics (QCD) been attracting many people and driven them to
explore its phase diagram? One of the most intriguing aspects might be its fascinating phase struc-
ture, where various symmetry breaking patterns and appearances of corresponding phases have
extensively been studied, particularly on finite-(T, µ) phase diagram, with temperature T and chem-
ical potential µ (see e.g. [99–112] for reviews). Surprisingly, most of the phases have been predicted
to be realized nontrivially in the sense that they are not symmetric and gapped phase. Is there any
accountability that excludes the trivial phase appearing in the QCD phase diagram? – The answer
is affirmative. Indeed, the absence of trivial phase may be attributed to an ’t Hooft anomaly that
we have discussed so far. The existence of an ’t Hooft anomaly at finite temperatures and chemical
potentials rules out the realization of trivially gapped phase according to the anomaly matching
argument. As a consequence, the whole (T, µ)-plane of the QCD phase diagram could be filled with
nontrivial phases. This situation is referred to the realization of “persistent order”. In this chapter,
we study the phase diagram of QCD-like theory by utilizing the anomaly constraints and show that
the persistent order is realized on the finite-(T, µ) phase diagram. After these analyses, we make
speculative comments on the real QCD phase diagram.

We first study ’t Hooft anomalies for four-dimensional QCD with massless quarks in the funda-
mental representation of the gauge group SU(Nc) and the flavor group SU(Nf), which is described
by the action

S =
2

g2

∫
trc[F ∧ ∗F ] +

∫
d4x trf [ψ̄ /Dψ], (7.1)

where F = da+ia∧a with SU(Nc) gauge field a, /D = γµ(∂µ+ia), and ψ is a massless Dirac fermion
in a bifundamental representation of SU(Nc)×SU(Nf). The traces trc and trf are understood to be
the sum over the color and flavor indices. In QCD, the SU(Nc) is a gauge group and the SU(Nf) is
a global symmetry group as opposed to the bifundamental gauge theory with the dynamical gauge
group SU(N)× SU(N) that we treated in Chapter 6.

Needless to say, QCD is strongly coupled in infrared energy scale and extracting nonperturbative
data of the theory is quite important task to unravel its vacuum structure or phase structure, say,
at finite temperature, finite density, and so on. As we have seen so far, ’t Hooft anomalies and
associated UV/IR anomaly matching arguments provide rigorous data. It is interesting to see
whether there exist ’t Hooft anomalies in addition to the one for the continuous global symmetry
SU(Nf)L × SU(Nf)R × U(1)V that ’t Hooft originally discovered (see Chapter 2 for discussion).
It turns out that there indeed are! These anomalies, in turn, lead to interesting consequences on
the QCD vacua and phase structure. We will apply the techniques that we have developed so
far, particularly in the last chapter, to explore the anomaly constraints. We will find quite similar
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arguments between the ’t Hooft anomalies in QCD and bifundamental gauge theory. The result
reported in this chapter is based on our recent work [3] and some new results from our work in
progress.

Let us start with specifying the classical global internal symmetry of the theory:

SU(Nf)L × SU(Nf)R × U(1)L × U(1)R

ZNc × ZNf
× Z2Nf

. (7.2)

The quotient by ZNc is due to the overlap between the actions by the center of SU(Nc) and U(1)q.
Concretely, the action of (Uc, e

iα) ∈ SU(Nc) × U(1)q on the fermion ψ is given by ψ 7→ eiαUcψ
contains the ZNc subgroup (ω, ω−1) ∈ SU(Nc) × U(1)q with ω = e2πi/Nc that leaves ψ unchanged.
Therefore, we need to remove the redundant symmetry so that quarks are in the faithful representa-
tion of (SU(Nc)× U(1)q)/ZNc . The same is also true for the quotient by ZNf

⊂ SU(Nf)V × U(1)q.
The quotient by Z2Nf

is slightly trickier and can be understood as follows: The transformation by
Z2Nf

subgroup of U(1)A ⊂ U(1)L × U(1)R can actually be reproduced by the center of chiral flavor
and U(1)q transformation. For instance, a 2π/Nf transformation of the center of SU(Nf)L followed
by a −π/Nf U(1)q-transformation yields a Z2Nf

axial transformation:

ψL
SU(Nf)L−−−−−→ e

i 2π
Nf ψL

U(1)q−−−→ e
i π
Nf ψL,

ψR
SU(Nf)L−−−−−→ ψR

U(1)q−−−→ e
−i π

Nf ψR,
(7.3)

where ψL/R is a left/right-handed fermion. Hence, we need to eliminate Z2Nf
subgroup to obtain

the symmetry with faithful representation.
The U(1)L × U(1)R symmetry is explicitly broken to U(1)V × (Z2Nf

)axial on the quantum level
due to the chiral anomaly caused by the SU(Nc) gauge sector as follows: Under the axial U(1)
rotation ψ 7→ eiγ5θψ, ψ̄ 7→ ψ̄eiγ5θ the partition function Z transforms as

Z 7→ Z exp

[
i
2Nfθ

8π2

∫
trcF ∧ F

]
, (7.4)

where 1
8π2

∫
trcF ∧ F ∈ Z is the instanton number. Therefore, although the axial U(1) symmetry

is broken for generic θ, Z2Nf
subgroup is unbroken, which is generated by eiθ with θ = π/Nf . Since

U(1)V symmetry leads to the quark number conservation, we will denote it U(1)q.
The symmetry on the quantum level is1

SU(Nf)L × SU(Nf)R × U(1)q × (Z2Nf
)axial

ZNc × ZNf
× Z2Nf

. (7.6)

We also notice that there is a time-reversal symmetry in addition to these global symmetry, which
plays an essential role to show the ’t Hooft anomaly with finite imaginary chemical potentials.

1Actually, it can simply be expressed as

SU(Nf)L × SU(Nf)R × U(1)q
ZNc × ZNf

. (7.5)

We intentionally write (Z2Nf )axial here to emphasize that the axial symmetry exists, which plays an pivotal role in
the following discussion.
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7.1 Color-flavor center symmetry and its ’t Hooft anomaly

We set Nf = Nc ≡ N for the sake of simplicity although we can carry out the same argument as long
as gcd(Nc, Nf) 6= 1. We explore an ’t Hoof anomaly by paying attention to the global symmetry

SU(N)f

ZN
× (Z2N )axial, (7.7)

where SU(N)f is the vector part of the flavor symmetry and ZN is the common center subgroup of
color SU(N)c and flavor SU(N)f groups. To detect the ’t Hooft anomaly involving the symmetry,
we check the fate of axial Z2N symmetry after coupling the theory to SU(N)f/ZN background gauge
field. We first introduce SU(N)f background gauge field Af by replacing the covariant derivative as

Dψ = dψ + iaψ 7→ D̃ψ = dψ + iaψ + iψAf . (7.8)

Now, one find the theory quite similar to the bifundamental gauge theory that we studied in the
last chapter, where the flavor gauge field was treated as a dynamical field. After the introduction
of flavor background gauge field, a one-form center symmetry emerges as a global symmetry even
with fundamental fermions. This symmetry transformation acts on the color and flavor Wilson lines
and called the color-flavor center symmetry [113]. We repeat the same story to couple the theory to
background two-form gauge field for the center symmetry. We first prepare (U(N)c × U(N)f)/ZN
gauge group by promoting SU(N) gauge fields to U(N) gauge fields with a U(1) gauge field C,

ã = a+
1

N
C, Ãf = Af −

1

N
C, (7.9)

and couple to the topological action
iNp

4π

∫
B ∧B. (7.10)

The two-form gauge field B satisfies a constraint NB = dC.2 Then, we obtain the partition function
Z[Af , B] coupled to background SU(N)/ZN gauge fields.

In order to detect an ’t Hooft anomaly, we see the transformation of Z[Af , B] under the (Z2N )axial

transformation. Applying (7.4) to the gauged action, we obtain

Z[Af , B] 7→ Z[Af , B] exp

[
i

1

4πN

∫
trc,f(F̃ − F̃f) ∧ (F̃ − F̃f)

]
≡ Z[Af , B]eiA[Af ,B], (7.11)

with F̃ = dã+ iã∧ ã and F̃f = dÃf + iÃf ∧ Ãf . Let us calculate the anomaly A[Af , B] to see whether
the axial symmetry is preserved.

A[Af , B] =
1

4πN

∫
trc,f(F̃ ∧ F̃ − 2F̃ ∧ F̃f + F̃f ∧ F̃f )

=
1

4π

∫
trcF̃ ∧ F̃ +

1

4πN

∫
2dC ∧ dC +

1

4π

∫
trf F̃f ∧ F̃f

=
N

2π

∫
B ∧B (mod 2π), (7.12)

2This constraint is equivalent to introducing an additional topological term (i/2π)
∫
F∧(NB−dC) with a Lagrange

multiplier two-form F as we did in (6.9).
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where we have used (1/4π)
∫

trcF̃∧F̃ ∈ 2πZ, (1/4π)
∫

trf F̃f∧F̃f ∈ 2πZ, and the constraintNB = dC
in the last equality. Since this cannot be cancelled by (7.10) for N > 2, we conclude that there is
an ’t Hooft anomaly involving SU(N)f/ZN and (Z2N )axial symmetries. For N = 2 case, the relation
2B = dC leads to

N

2π

∫
B ∧B =

1

4π

∫
dC ∧ dC ∈ 2πZ, (7.13)

which means that there is no ’t Hooft anomaly.
The anomaly matching condition is satisfied in QCD because it has nonvanishing chiral conden-

sate due to the spontaneous chiral symmetry breaking, which breaks (Z2N )axial to Z2.

7.2 Finite temperature

Next, we will pursue further consequences of the ’t Hooft anomaly by studying the phases at finite
temperature following [96]. As we will see, it is totally nontrivial whether the ’t Hooft anomaly
survives after circle compactification with small radius compared with the size of M3 (at high
temperature). After compactifying the imaginary time direction on a circle S1 with circumference
β, i.e., M4 = M3 × S1, we expect that the one-form ZN symmetry acting on the Wilson loops on
M4 splits into a one-form ZN symmetry acting on the Wilson loops on M3 and the zero-form ZN
symmetry acting on Polyakov loops Pc = trc[P exp(i

∮
S1 a)] and Pf = trf [P exp(i

∮
S1 Af)] winding S1,

and the two-form gauge fieldB becomesB = B(2)+B(1)∧β−1dτ , whereB(2) andB(1) are respectively
two- and one-form gauge fields on M3 (see Section 5.4). This is correct in the bifundamental gauge
theory where the color and flavor gauge fields are built in the original theory as dynamical fields.
However, the target theory that we want to study is three-dimensional effective theory at finite
temperatures obtained as a result of the dimensional reduction via circle compactification. To
detect the ’t Hooft anomaly of this theory, we first couple the theory to the three dimensional flavor
background Af on M3. At this point, we notice that the flavor Polyakov loops do not show up
as opposed to the color Polyakov loops. Hence under the zero-form ZN transformation, the color
Polyakov loop transforms as

Pc → e2πi/NPc. (7.14)

One could eliminate the phase by changing the boundary condition of the fermions,

ψ(τ + β) = ψ(τ)e2πi/N . (7.15)

Thus, there is no ZN zero-form symmetry in the compactified theory because the transformation
changes the boundary condition for fermions in the compactified direction, and hence, changes the
theory. In the compactified theory, B is just reduced to B(2) and the ’t Hoof anomaly vanishes as 3∫

M4

B ∧B compactify−−−−−−→
∫
M3×S1

B(2) ∧B(2) = 0. (7.16)

However, we can make the anomaly survive by introducing nontrivial flavor holonomies around
S1 or twisted boundary conditions. Here, we consider two possibilities: SU(N)f - and U(1)-twisted
boundary conditions. The massless QCD with the boundary condition twisted by flavor SU(N)f

symmetry is known as ZN -QCD [113–122]. On the other hand, inserting U(1)-twisted boundary
condition is equivalent to introducing the imaginary chemical potential. We will discuss the phase
structure of these theories from the viewpoint of ’t Hooft anomaly constraints.

3We will explain this computation in the next subsection in detail.
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7.2.1 Anomaly constraints on phase structure of massless ZN -QCD

We construct so called ZN -QCD by promoting the ZN zero-form transformation to a symmetry in
the following procedure. We introduce the SU(N)f -twisted boundary condition in the S1 direction,

ψ(τ + β) = Ωψ(τ), (7.17)

where Ω is a N ×N matrix in the flavor space. This boundary condition is changed under the ZN
zero-form transformation as Ω → ωΩ with ω = e2πi/N , which, combined with flavor rotation of the
boundary condition, can be made into a symmetry. We prepare a matrix S which acts on the flavor
space of fermions such that

SΩS−1 = ω−1Ω, (7.18)

is satisfied. Ω and S are, for instance, given by

Ω = ω−(N−1)/2


1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω3 · · · 0
...

...
...

...
0 0 0 · · · ωN−1

 , S =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
1 0 0 · · · 0

 , (7.19)

Let us see how the boundary condition for fermion (7.17) changes under the ZN zero-form trans-
formation followed by the flavor shift S. As we noted the ZN zero-form transformation induces the
boundary condition

ψ̃(τ + β) = ωΩψ̃(τ). (7.20)

After the flavor shift,
Sψ̃(τ + β) = ωSΩS−1Sψ̃(τ) = ΩSψ̃(τ + β), (7.21)

the original boundary condition is restored. Hence this is a symmetry which acts on the local
operators on M3 as

ψ 7→ Sψ, Pc 7→ ωPc, (7.22)

and referred to as the “shift symmetry” [96]. The crucial point is the introduction of the twisted
boundary condition with a proper choice of the associated shift S. Equivalently, it is realized by
introducing nontrivial flavor holonomy exp(i

∫
S1 A

τ
f ) winding S1, which will be useful for gauging

symmetry later. From the latter point of view, the ZN -QCD may be interpreted as QCD at finite
temperature with flavor dependent imaginary chemical potentials represented by the background
flavor holonomy. It is noted that the boundary condition breaks flavor symmetry SU(N)f to its
abelian subgroup U(1)N−1

f .
The twisted boundary condition changes the global symmetry from (7.7) to

(ZN )shift ×
U(1)N−1

f

ZN
× (Z2N )axial. (7.23)

This time, we need to introduce the background gauge fields for the shift symmetry and flavor
symmetry, by which the background gauge fields on M3 × S1 can be expressed as follows:

A = A
U(1)
f +B(1) +Aτf , (7.24)

B = B(2) +B(1) ∧ β−1dτ. (7.25)
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Figure 7.1: A possible finite-(T, µ) phase diagram of the massless ZN -QCD that satisfies the anomaly
constraint Tchiral ≥ Tdeconf. Symmetry breaking patterns are shown in each phase.

A and B are the one-form flavor gauge field and two-form center gauge field on M3 × S1. What
show up in the right hand side are background gauge fields on M3. AU(1)

f is for U(1)N−1
f symmetry,

Aτf arises because of the twisted boundary condition, B(2) is for the color-flavor center symmetry,
and finally, B(1) is interpreted as a background gauge fields both for the flavor shift and the center
symmetry and thus appears both in A and B. Once we identify the relations, the computation of
an ’t Hooft anomaly is completely parallel. Actually, the ’t Hooft anomaly for the symmetry (7.23)
can be obtained just by substituting B (7.25) into (7.12),

N

2π

∫
M4

B ∧B compactify−−−−−−→ N

π

∫
M3

B(2) ∧B(1), (7.26)

which is indeed nontrivial and the ’t Hooft anomaly survives thanks to the twisted boundary condi-
tion.

Possible phase structure of massless ZN -QCD

A consequence of the UV/IR matching for the ’t Hooft anomaly (7.26) is that realizable phases at
finite temperatures T and chemical potentials µ are described by either by some CFT, TQFT, or
spontaneously symmetry broken state [3].4 We will only focus on the last possibility, in which case
at least one of the symmetries among (ZN )shift, U(1)N−1

f /ZN and (Z2N )axial has to be broken. Each
symmetry is responsible for the following phase identification:

• (ZN )shift symmetry, which is originated from the color-flavor center symmetry on M4 and acts
on the color Polyakov loops on M3, distinguishes between the confinement and deconfinement
phases, in each of which the symmetry is unbroken and broken respectively.

• U(1)N−1
f /ZN symmetry is a remnant of the vector-like flavor symmetry, which can be broken

at finite density although is not allowed to be broken in vacuum [70].

• (Z2N )axial is broken to Z2 by forming chiral condensate, by which the chiral symmetry is broken
as well. Hence, (Z2N )axial can be used to distinguish between the chiral symmetry broken and
restored phases.

4The anomaly constraints are valid at finite density because the finite chemical potential does not change the
derivation of the anomaly.
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Figure 7.2: Another possible phase diagram of the massless ZN -QCD that is more similar to the
conventional QCD phase diagram. It also satisfies the anomaly constraint. (ZN )shift or (Z2N )axial is
necessarily broken in all phases. See the main text for detailed discussion.

Let us further sharpen the anomaly constraint by excluding the phases with broken U(1)N−1
f /ZN

symmetry from the circumstantial evidence. The anomaly matching condition under the assumptions
mentioned so far imposes the constraint that phases realized on finite-(T, µ) QCD phase diagram
has to spontaneously breaks (ZN )shift or (Z2N )axial symmetry at least. Since (ZN )shift is broken
at lower temperatures and (Z2N )axial is broken at higher temperatures, a consequence is that the
chiral restoration temperature Tchiral must be equal to or larger than the deconfinement temperature
Tdeconf,

Tchiral ≥ Tdeconf, (7.27)

in order to avoid the trivial phase with both symmetries restored [21, 24, 26].
Let us take a closer look at typical diagrams allowed by this constraint. Figure 7.1 shows a

relatively simple phase diagram satisfying the inequality (7.27). T = Tchiral(µ) provides the phase
boundary of the chiral symmetry broken phase, while T = Tdeconf(µ) separates the deconfined phase
from the confined phase. There is no symmetric gapped phase as required by the ’t Hooft anomaly.

Finally, we add another ingredient, global symmetry U(1)B ≡ U(1)q/ZN , and deform phase
transition lines in such a way that it looks like a conventional QCD phase diagram. The resultant
phase structure is shown in Fig. 7.2. We should emphasize that the anomaly constraint (7.27) is
still satisfied. Inclusion of U(1)B in the symmetry breaking pattern allows us to discuss the color
superconductivity, such as the color-flavor locking (CFL), 2SC, and uSC phases. The symmetry
breaking patters of each phase are shown in Fig. 7.2. It is noted that the phase structure also
satisfy the anomaly matching condition of ’t Hooft anomaly involving SU(Nf)L×SU(Nf)R×U(1)q

discussed in Section 2.1 [71, 72].
We make some speculative remarks on the N -flavor QCD phase diagram in the low temperature

limit. Since our derivation of anomaly has the four-dimensional origin, the anomaly matching argu-
ment is valid no matter how large the size β of compactification is. By taking the zero-temperature
limit β → 0, we expect that the effect of boundary condition would disappear. If the vector-like
flavor symmetry is unbroken, it is indeed conceivable that the effect of flavor-dependence in the
boundary condition disappears. Under this assumption, anomaly matching argument claims that
finite-density massless N -flavor QCD shows nontrivial phase at any quark chemical potentials in the
zero-temperature limit. We can confirm that this is indeed the case at least for small µ and also
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for sufficiently large µ in the zero-temperature limits, where the anomaly is satisfied by SSB of dis-
crete axial symmetry. At the zero temperature, anomaly matching for continuous chiral symmetry
SU(Nf)L × SU(Nf)R ×U(1)q imposes further constraints on possible dynamics in cold dense QCD.

7.2.2 Imaginary chemical potential and Roberge-Weiss transition

We first outline the same story with the U(1)-twisted boundary condition instead of the flavor
twisted one in the S1 direction,

ψ(τ + β) = eiφψ(τ), (7.28)

where a scalar constant φ is the imaginary chemical potential.5 Since this boundary condition
is changed under the ZN zero-form transformation as eiφ → ei(φ+2π/N), we may restrict φ in
[−π/N, π/N). Here, we recall that there is the time-reversal symmetry without the twisted bound-
ary condition. The boundary condition breaks the time-reversal symmetry for generic φ except for
φ = 0 and −π/N (one may notice that the situation is very similar to the Yang-Mills theory or bi-
fundamental gauge theory with the θ terms): Under the ZN zero-form transformation, the fermion
transforms as ψ 7→ ψ̃ with the boundary condition,

ψ̃(τ + β) = ei(φ+2π/N)ψ̃(τ). (7.29)

Then, the time-reversal transformation T changes the boundary condition as

Tψ̃(τ + β) = Tei(φ+2π/N)T−1Tψ̃(τ) = e−i(φ+2π/N)Tψ̃(τ). (7.30)

If φ satisfies φ = −φ− 2π/N (mod 2π), which is solved by φ = −π/N , the time-reversal combined
with ZN zero-form together forms a symmetry group (Z2)shift ⊂ ZN o ZT

2 [26]. This is the shift
symmetry in the current case. In other words, φ = −π/N (mod 2π/N) is a high-symmetry point
with an enhanced symmetry by (Z2)shift.6

The global symmetry at high symmetry points is

(Z2)shift ×
SU(N)f

ZN
× (Z2N )axial. (7.31)

However, it is normally difficult to gauge the T symmetry, which is contained in (Z2)shift in this case,
and indeed it will be easier to gauge (Z2N )axial symmetry rather than (Z2)shift as we will discuss
below.

We consider the four dimensional massless QCD and attempt to gauge (Z2N )axial. By adding
the axion term to the QCD action,

Saxion =
i

8π2

∫
a5trcF ∧ F, (7.32)

we restore the U(1)A symmetry. a5(x) is the axion field and the transformation law is given by

a5 7→ a5 − 2Nfα. (7.33)

along with ψ 7→ eiγ5αψ under the U(1)A transformation, that is designated to cancel the anomalous
U(1)A contribution. Now, we add the background gauge field A5 for the restored U(1)A symmetry,

5φ/β is usually referred to as the imaginary chemical potential.
6It is noted that φ = 0 is also a high-symmetry point because the time reversal is symmetry, but the time reversal

does not interwined with ZN transformation. Therefore, an anomaly does not appear at φ = 0.
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Figure 7.3: A possible phase diagram of the massless QCD at finite temperatures T and finite
imaginary chemical potentials φ. (Z2)shift or (Z2N )axial is always broken at high symmetry points
φ = π/N (mod 2π/N). A wavy line represents the phase boundary of the (Z2N )chiral symmetric
phase. below which the symmetry is spontaneously broken. The vertical solid lines are the first-
order phase transition lines on which the (Z2)shift symmetry is spontaneously broken. This lines are
bounded by a dotted line T = Tdeconf and the (Z2)shift is restored on vertical dashed lines.

and then require 2NfA5 = da5, so that A5 plays a role of (Z2Nf
)axial gauge field. Under the T

transformation the total partition function changes as

Z 7→ Z exp

[
− 2i

8π2

∫
a5trcF ∧ F

]
. (7.34)

Furthermore, we introduce background gauge fields Aq for U(1)q and Bc, satisfying NcBc = dCc,
for ZNc one-form symmetry, the latter of which is the color-U(1)q center symmetry. We obtain the
following anomaly

A = − 2

8π2

∫
a5trc(F̃ + dAq) ∧ (F̃ + dAq)

= − 2

8π2

∫
a5[trcF̃ ∧ F̃ + 2NcBc ∧ dAq +NcdAq ∧ dAq], (7.35)

involving the symmetry

T× U(1)q

ZNc

× (Z2Nf
)axial. (7.36)

Next, we would like to ask if this anomaly survives even after the circle compactification with
U(1)q-twisted boundary condition, or equivalently with a nontrivial U(1)q holonomy along S1, which
is included in Aq, i.e., φ ≡ exp

[
i
∫
S1 Aq

]
. Then, the resultant anomaly is given by

A =
4Nc

8π2

∫
S1

Aq

∫
M3

da5(Bc + dAq)

=
NcNf

π2
φ

∫
M3

A5(Bc + dAq). (7.37)

If we take φ = 0, then there is no anomaly. Classically, φ = −π/Nc is the other T symmetric point
and let us take a look at the anomaly,

A = −Nf

π

∫
M3

A5Bc −
1

2π

∫
M3

da5dAq. (7.38)
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The second term is in 2πZ. We need to make sure that the second term is not canceled by a local
counter term. Let us take Nc = Nf ≡ N for simplicity. Then, the following gauge invariant counter
term is allowed to add

iNp

π

∫
M3

A5Bc, (7.39)

with a parameter p ∈ ZN . Since the added counter term (7.39) is odd under the T transformation,
the total partition function is changed as

Z 7→ Z exp

[
(−2p− 1)

iN

π

∫
M3

A5Bc

]
. (7.40)

Therefore, the conditions for the anomaly to vanish are

2p+ 1 = 0 (mod N), (7.41)

which leads to the ’t Hooft anomaly for even N and the global inconsistency between φ = 0 and
−π/N for odd N . If we assume the trivial phase at φ = 0 and no phase transition between the
points, we may conclude the existence of nontrivial phase for odd N .

We extract similar constraints as those in the last subsection. Suppose neither topological order
nor CFT emerges as an infrared theory, the global symmetry (7.31) must be broken spontaneously at
the high symmetry points φ = −π/N (mod 2π/N). As a result, the chiral restoration temperature
Tchiral and “deconfinement” temperature Tdeconf has to obey the relation Tchiral ≥ Tdeconf at φ =
−π/N (mod 2π/N) unless the vector like flavor symmetry is broken. The (Z2)deconf-broken states
appear in the phase diagram 7.3 on vertical solid lines, which are the first-order phase transition lines
when crossed horizontally, known as the Roberge-Weiss transition [123]. Below Tshift the (Z2)shift
symmetry is restored. By definition, this symmetry is explicitly broken except for the high symmetry
points.

A resultant finite-(T, φ) phase structure of the massless QCD is shown in 7.3 satisfying the
anomaly constraint, where we used another input that the (Z2N )axial symmetry is spontaneously
broken below Tchiral at any φ. The phase diagram is 2π/N -periodic in φ because of the Roberge-
Weiss periodicity.
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Chapter 8

Conclusion

The ’t Hooft anomaly and the global inconsistency impose strong constraints on low-energy effective
theory via their UV/IR matching argument, which are powerful data to clarify nonperturbative
aspects of QFTs. In particular, the trivial phase is strictly forbidden if we find an ’t Hooft anomaly.
If the ’t Hooft anomaly survives after the circle compactification to obtain the finite temperature
system, the consequence of the anomaly matching condition, in turn, leads to the realization of the
persistent order, i.e., the system cannot be disordered by either quantum or thermal fluctuation.
Furthermore, the global inconsistency may provide the nonperturbative data of infrared theory
even without the ’t Hooft anomaly. It is almost equally powerful as the ’t Hooft anomaly in that
it excludes the trivial phase without any phase separation between high symmetry points in the
parameter space of theories. We applied these techniques to several quantum mechanical models,
the pure Yang-Mills theory and bifundamental gauge theory with topological terms, and massless
QCD, all of which yield nontrivial ’t Hooft anomalies and global inconsistencies.

In the quantum mechanical models that we have discussed possessed ’t Hooft anomaly and global
inconsistency due to the topological term analogous to the conventional θ term in four-dimensional
gauge theory. The UV/IR matching conditions force all the states to be degenerate in the energy
spectra at θ = 0 and π. These degeneracies can also understood by the operator formalism, which
is analogous to the Kramers degeneracy for time reversal symmetric systems with half-integer spin
fermions.

After brief introduction to the generalized global symmetry we jumped into the ’t Hooft anoma-
lies and global inconsistencies involving the center symmetry, which is a ZN one-form symmetry
in SU(N) pure Yang-Mills theory and SU(N) × SU(N) gauge theory with bifundamental Dirac
fermions. From symmetry point of view, these theories are quite similar to the quantum mechanical
models with the topological term and the analyses of anomalies and their UV/IR matching arguments
are mostly parallel. The crucial difference is that we need to introduce the two-form background
gauge field in order to detect the ’t Hooft anomaly and global inconsistency involving ZN one-form
symmetry. This leads to further interesting results: The anomalies involving higher-form symmetries
survive after circle compactification. Hence, we could also extract nontrivial constraints for systems
at finite temperatures.

Finally, we attacked QCD and its phase structure from the viewpoint of ’t Hooft anomaly.
The obvious difficulty is that the existence of fundamental fermions spoils the center symmetry.
A remarkable thing was that, even without the higher-form symmetry in the original theory, the
emergent color-flavor symmetry plays an essential role in gauging the flavor SU(N)/ZN symmetry.
This is how we derived the new anomaly in QCD. Moreover, we shed light on the massless ZN QCD
and massless QCD with imaginary chemical potential by means of anomaly constraints. The former
turned out to realize the persistent order on finite-(T, µ) phase diagram. The latter also possess the
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new ’t Hooft anomaly, which shows the robustness of RW first-order transition in phase structure
at finite imaginary chemical potentials.
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