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Abstract

Despite the success of the standard cosmological model that consistently explains the ob-

servation of the cosmic microwave background and large scale structure traced by galaxies,

cosmology still faces several fundamental problems. One such problem is the origin of late-

time cosmic acceleration. To clarify this, in precision cosmology era, a gigantic data will

be obtained from upcoming surveys, and measurement of statistical quantities will be made

very precisely. Toward future cosmological analysis, improving the accuracy of theoretical

template is rather essential for robust constraint and/or parameter estimation.

So far, the cosmological constraints on gravity and/or dark energy, obtained from large-

scale structure observations, has been mainly made with the theory and measurement of

the two-point statistics. However, the large-scale galaxy distribution in the late-time uni-

verse exhibits gravity-induced non-Gaussianity, and the bispectrum, three-point cumulant

is expected to contain significant cosmological informations together with power spectrum.

In particular, the measurement of the bispectrum helps to tighten the constraints on dark

energy and modified gravity through the redshift-space distortions (RSD). In this thesis,

extending the work by Taruya, Nishimichi & Saito (2010, Phys.Rev.D 82, 063522), we

present a perturbation theory (PT) based model of redshift-space bispectrum that can keep

the non-perturbative damping effect under control. Characterizing this non-perturbative

damping by a univariate function with single free parameter, the PT model of the redshift-

space bispectrum is tested against a large set of cosmological N-body simulations, finding

that the predicted monopole and quadrupole moments are in a good agreement with simu-

lations at the scales of baryon acoustic oscillations (well beyond the range of agreement of

standard PT). The validity of the univariate ansatz of the damping effect is also examined

in the case of matter bispectrum, and with the PT calculation at next-to-leading order, the

fitted values of the free parameter is shown to consistently match those obtained from the

PT model of power spectrum by Taruya, Nishimichi & Saito (2010).
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Toward a practical application of our template, we have also developed several tech-

niques suited for cosmological data analysis, i.e., fast bispectrum estimation with fast

Fourier transform and accelerated calculations for PT template. Applying these methods

to the matter and halo catalogs and employing the Markov-chain Monte Carlo technique,

we demonstrate that our improved bispectrum template reproduces the fiducial value of

the growth rate, the key parameter to probe gravity on cosmological scales, well within

3% accuracy. Combining the bispectrum data with power spectrum data, the constraint on

the growth rate is shown to be tightened, compared to the cases with power spectrum or

bispectrum alone.
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Chapter 1 Introduction

Long time ago, clarifying the nature and history of the Universe has been limited to an

armchair speculation. Over the last decade, observational cosmology as a physical sci-

ence has been rapidly progressed thanks to the development of technology and improve-

ment of the observational skills. One important milestone has been the establishment of

the standard cosmological model that emerged very recently. The so-called Lambda cold

dark matter (ΛCDM) model describes both the expansion history and structure formation

of the Universe consistently only with 6 parameters. Now, with the improved measure-

ment of cosmic microwave background anisotropies by Planck, the cosmological model

parameters are tightly constrained, and the modern picture of the Universe has been further

reinforced. The observations of large-scale structure through the galaxy redshift surveys

such as Baryon Oscillation Spectroscopic Survey (BOSS) of Sloan Digital Sky Survey-III

(SDSS-III) also provide a consistent result with prediction by ΛCDM model.

Despite the considerable successes of ΛCDM model, there nevertheless remain several

fundamental problems. One such issue is the origin and nature of late-time cosmic acceler-

ation, which has been first discovered by observations of distant type Ia supernovae. In the

ΛCDM model, the cosmic acceleration is explained by the presence of mysterious energy

component called dark energy. However, the nature of the dark energy has not yet been

clarified. Alternatively, cosmic acceleration may be realized via the modification of grav-

ity from General relativity (GR) on cosmological scales. The theory of gravity have been

constrained at the scales from solar system [1] to cluster [2], and the constraints are consis-

tent with GR in high precision. However, these constraints are still limited to small scale

and constraints get weaker on large scales. In this respect, there still remains a wide range

of parameter space for modified gravity models that are observationally viable. Further

precision observation is thus essential to tightly constrain the possible deviation of gravity.

With the advent of precision cosmology era, ongoing and upcoming galaxy redshift sur-

veys aim at measuring statistical quantities such as power spectrum and correlation function

with unprecedented precision, which provide a way to perform a more severe test of gravity.

In such a situation, of particular importance toward a robust cosmological data analysis is to

1



2 Chapter 1. Introduction

develop theoretical tools to accurately predict statistical quantities of large-scale structure,

keeping any systematics and small uncertainties under control. Among various sources of

systematics, nonlinear gravitational evolution is the most dominant physical effect in the

large-scale structure observations, and the effect becomes significant as decreasing red-

shifts. This severely restricts the applicable range of the established linear theory of struc-

ture formation. On large scales accessible with on-goring and upcoming surveys, however,

gravity evolution becomes mild, and an accurate theoretical model is made possible with

analytic treatment with perturbation theory.

So far, the two-point statistics of galaxy clustering, i.e. power spectrum or two point

correlation function, has been the major statistical quantities to constrain the cosmology

with LSS observations. However, it is widely known that the nonlinearity of gravity gener-

ically incorporates the non-Gaussian statistical nature into the large-scale structures, and a

part of the cosmological information initially encoded in the two-point statistics is leaked

to the higher-order statistics. In this respect, the combination of the tree-point statistics, i.e.

bispectrum or three point correlation function, with two-point statistics in the cosmological

data analysis is a natural next step to efficiently extract the cosmological information from

the large-scale structures.

Toward practical application of three-point statistics to the test of gravity, one has to

develop theoretical template taking account of not only the nonlinear gravity but also the

redshift-space distortions (RSD). Indeed, the cosmological test of gravity has been demon-

strated by measuring the anisotropies of galaxy clustering induced by RSD. The RSD arises

from the contamination of redshift measurement for each galaxy by the peculiar velocity of

galaxies via Doppler effect. The RSD (e.g., Refs. [3, 4, 5, 6, 7]) manifestly, break the statis-

tical isotropy, and make the statistical quantities anisotropic. While the RSD complicates

the interpretation of the galaxy clustering data, it now attracts much attention as a probe of

gravity on cosmological scales. This is because, on large scales, the effect is accounted by

the linear theory, and the size of the anisotropies is related to the growth of structure (e.g.,

Refs. [4, 5]). Combining the RSD with the measurement of baryon acoustic oscillations

(BAO), which is the characteristic pattern imprinted on galaxy clustering (e.g., [8, 9, 10]),

we can simultaneously constrain both the geometric distances and growth of structure (e.g.,

[11, 12, 13, 14]), from which we are able to scrutinize the theory of gravity that accounts

for cosmic expansion and structure formation (e.g., Refs. [15, 16, 17, 18, 19]).

Theoretically, RSD is described by the non-linear mapping formula from real to redshift
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spaces. While the formula is simple, it involves the cross talk between small and large

scales. Hence, modeling the RSD on the statistical quantities needs a careful investigation.

In fact, writing the expression of redshift-space power spectrum in terms of real-space

quantities, we will find a rather intricate statistical relation for which a naive perturbative

calculation becomes inapplicable even at large scales. Hence, a sophisticated treatment of

bispectrum is needed for a reliable theoretical template even in the weakly nonlinear regime

[11, 20, 21, 22, 23, 24, 25, 26]. Although modeling the bispectrum with RSD effect has

been already investigated based on fitting formula [27, 28] and halo model (e.g., Refs. [29,

30]), analytical treatment would be certainly powerful in characterizing the anisotropies of

the bispectrum (see e.g., [31] for discussion on resummed purtavative treatment).

Primary goal of this thesis is to develop on improved bispectrum model based on the

perturbative calculation at the next-to-leading order, called one-loop. Extending the work

by Taruya, Nishimichi & Saito (2010) [11] on power spectrum we consistently incorporate

the effect of small-scale virial motion into bispectrum. Albeit its limitation, the perturba-

tive modeling deserves further consideration, and we present, for the first time, monopole

and quadrupole moments of the redshift-space bispectrum at one-loop order, which agree

well with N-body simulations at BAO scales. We qualitatively study the validity of our

treatment on small-scale virial motion. Then, toward practical application of our improved

PT template to further surveys, we develop a fast estimation method for redshift-space bis-

pectrum and study how well one can accurately estimate the growth of structure using our

improved model through mock catalog of matter and halo catalogs constructed with N-

body simulations. Finally, we demonstrate the impact of combining power spectrum and

bispectrum for constraining the gravity.

This thesis is organized as follows. In Chap. 2, we begin by reviewing the standard

cosmological model and growth of structure in linear theory. we also describe the rela-

tion between real and redshift spaces, and derive the linear formula of power spectrum in

redshift space. Then, in Chap. 3, we describe the treatment to deal with non-linear evolu-

tion of large scale structure, namely, N-body simulation and standard perturbation theory.

Based on the standard perturbation theory, the expressions for redshift-space bispectrum

at one-loop order are also presented. In Chap. 4, we present an improved PT model of

redshift-space bispectrum. Writing down the exact formulas in terms of the cumulants, we

follow the approach by Ref. [11], and develop the improved model of redshift-space bis-

pectrum based on perturbation theory, which consistently includes both the one-loop order
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perturbative corrections and non-perturbative damping effect coming from the small-scale

virial motion. Our improved model is quantitatively tested against a large set of cosmologi-

cal N-body simulations, and the validity of the assumption is checked in detail. In Chap. 5,

toward future practical application of the improved model of redshift-space bispectrum de-

veloped in previous chapter to real galaxy surveys, we study how well we can get a robust

and tight constraint on the growth rate parameter both from the power spectrum and bispec-

trum. We also present a fast estimation method for bispectrum. Finally, Chap. 6 is devoted

to discussion and conclusion on our important findings.

Throughout the thesis, the speed of light is set to unity, c = 1.



Chapter 2 A primer on standard
cosmological model and
observational effect

In this chapter, we describe standard cosmological model and evolution of large scale struc-

ture (LSS) based on linear perturbation theory. We first review the background history and

basic equations of the expanding universe. Then, we consider the linear evolution of matter

fluctuation driven by gravity. As important observational systematics, we consider redshift-

space distortions, which are crucial to interpret LSS data.

2.1 Basics of the expanding universe
2.1.1 Basic equations
In the theory of general relativity, space-time itself has the dynamical degree of freedom,

and coevolve with energy components, such as dark-matter or radiation. Here we introduce

basic equations to describe the homogeneous-isotropic universe. Space-time metric of the

homogeneous-isotropic universe is given by the Robertson-Walker metric:

ds2 = −dt2 + a2(t)
[

dr2

1 − Kr2 + r2dΩ2
]
. (1)

Here, a and K represent the scale factor of the universe and spatial curvature, respectively.

We define the comoving radial distance χ as follow:

dχ ≡ dr
√

1 − Kr2
, (2)

and then metric is rewritten with

ds2 = −dt2 + a2(t)
[
dχ2 + S 2

K(χ)2(dθ2 + sin2θdϕ2)
]

(3)

S K(χ) =


sinh(

√
−Kχ)√
−K

(K < 0)

χ (K = 0)
sin(
√

Kχ)√
K

(K > 0).

(4)

5



6 Chapter 2. A primer on standard cosmological model and observational effect

Below, we normalize the scale factor a to unity at present time a(t0) = 1, and consider the

flat universe, i.e. K = 0. Then, the radial coordinate defined by
∫ t0

t
dt/a(t) is equal to a

comoving distance χ.

The evolution of space-time metric is described by Einstein equation:

Gµν + Λδ
µ
ν = 8πGT µν. (5)

Left- and right-hand side of the equation describe the geometric structure of the space-time

and energy-momentum components, respectively. Λ is the cosmological constant which

can be regarded as a specific dark energy. In the homogeneous-isotropic universe, energy-

momentum must have the form of perfect fluid:

T µν =


−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p,


(6)

where, ρ is energy density and p is pressure. The property of the fluid including dark energy

is characterized by its equation of state:

p = wρ. (7)

For non-relativistic matter components (i.e., cold dark matter and baryon), we have w = 0,

and for relativistic components (i.e., radiation), we have w = 1/3. On the other hand,

cosmological constant is equivalent to the fluid with w = −1. Substituting the Robertson-

Walker metric Eq.(1) and energy-momentum tensor of perfect fluid Eq.(6) into Einstein

equation Eq.(5), we obtain (
1
a

da
dt

)2

=
8πG

3
ρ +
Λ

3
, (8)

1
a

d2a
dt2 =

4πG
3

(ρ + 3p) +
Λ

3
. (9)

Eq.(8) is called the Friedmann equation. On the other hand, from the conservation law of

energy momentum tensor, T µν;µ = 0, we obtain,

∂ρ

∂t
= −3

1
a

da
dt

(ρ + p), (10)

which is compatible with Eqs.(8) and (9).
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Eqs.(8),(9) and (10) imply that time evolution of scale factor is determined by the fea-

ture of energy density ρ. These equations are the basic equations for the homogeneous-

isotropic universe which we want to explain in this section.

For the rest of this section, we introduce several useful parameters to describe the uni-

verse. To characterize the expansion rate of the universe, we introduce the Hubble param-

eter:

H ≡ 1
a

da
dt
. (11)

Hubble parameter gives the characteristic scale of the causally connected regions, i.e., the

Hubble horizon. It is defined by

dH(t) ≡ 1
H
. (12)

The Hubble horizon gives the natural boundary above which the general relativistic treat-

ment becomes important in describing evolution of matter fluctuations.

From Eq.(8), the total energy density of the present universe is described by

ρcr0 =
3H2

0

8πG
, (13)

where ρcr0 is the critical energy density and H0 is the Hubble parameter at present time. A

dimensionless parameter h (H0 = 100 h km s−1 Mpc−1) is also used.

In terms of Hubble parameter, the Friedmann equation for the flat Universe composed

of radiation, matter and cosmological constant is rewritten as,

H(z) = H0

√
a4Ωr0 + a−3Ωm0 + ΩΛ0, (14)

where Ωi0 is the density parameter at present time is defined by:

Ωr0 ≡
8πGρr0

3H2
0

, Ωm0 ≡
8πGρm0

3H2
0

, ΩΛ0 ≡
Λ

3H2
0

. (15)

which are respectively the density parameter of radiation, matter and cosmological con-

stant. Note that the subscript 0 means the quantity at present time, and density parameter

without the subscript 0 in general depends on time.

The time dependance of the energy density is determined from the conservation law

and equation of state parameter w:

ρr ∝ a−4 (16)

ρm ∝ a−3 (17)

ρΛ ∝ constant (18)
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Therefore, the dominant energy component of the universe changes in time. In standard

cosmological model, the radiation component was dominant in the early time, but the radi-

ation component decreases faster than other components. After the radiation-matter equal-

ity time, the matter component becomes dominant. At sufficiently late time, cosmological

constant becomes dominant, and the universe eventually undergoes accelerated expansion.

More generally, accelerated expansion is realized if the universe is filled with the energy

component whose energy density and pressure satisfy ρ + 3p < 0. This energy component

is called dark energy, and the cosmological constant is one of the dark energy. Currently,

the origin and nature of dark energy are not yet clarified, and we just parametrize its energy

density and equation-of-state similarly to a perfect fluid as follows:

ΩDE(t) ≡ ρDE(t)
ρc(t)

, (19)

wDE(t) ≡ pDE(t)
ρDE(t)

. (20)

From the Friedmann equation, the time dependance of scale factor is determined, and

we obtain:

Radiation dominant : a(t) ∝ t1/2, (21)

Matter dominant : a(t) ∝ t2/3, (22)

Dark energy dominant : a(t) ∝ exp (Ht). (23)

2.1.2 ΛCDM model
The precision measurements of temperature anisotropies of cosmic microwave background

(CMB), as well as large-scale structure, strongly support the ΛCDM model as the con-

cordant cosmological model which consistently describe both the cosmic expansion and

structure formation.

In the ΛCDM model, late-time cosmic acceleration is explained by the cosmological

constant, and the baryon and cold dark matter (CDM) are the main constitution of the

matter components:

ρm = ρb + ρc (24)

Ωb0 ≡
8πGρb0

3H2
0

, Ωc0 ≡
8πGρc0

3H2
0

, (25)
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parameters

Ωbh2 0.02230 ± 0.00014
Ωch2 0.1188 ± 0.0010
H0 67.74 ± 0.46
ΩΛ 0.6911 ± 0.0062
Ωm 0.3089 ± 0.0062
ns 0.9667 ± 0.0040

Table 1: Best fit values of the ΛCDM model obtained from Planck CMB power spectra, in
combination with lensing reconstruction and external data (Type Ia supernovae and BAO)
[32]. The error indicates the statistical uncertainty at 68% confidence limits.

where, we define Ωb0 and Ωc0 by the energy density of baryon ρb and CDM ρc in the flat

universe. We consider the neutrino is massless and not included in matter component,

because the neutrino mass is small enough and still undetected.

We summarize the current constraint on the cosmological parameters. Here, ns is the

spectrum index of initial power spectrum, which will be later introduced in Chap.2.2.

Fig. 1 shows the current constraint on the parameters of dark energy obtained from

Planck, in combination with observation of type Ia supernovae and BAO [32]. The result

of this figure assumes the time-dependent equation of state parameter for dark energy, given

by

wDE = w0 + (1 − a)wa. (26)

Current constraints on dark energy are consistent with cosmological constant ( i.e.,

wDE = −1), as we already mentioned. The cosmological constant gives a simple solution to

explain the late-time cosmic acceleration, however, we do not clearly know the reason why

the cosmological constant is ridiculously so small, compared to the Planck energy. Rather,

we may have to consider the possibility that the cosmic acceleration is not driven by the

dark energy like cosmological constant, and the general relativity as underlying gravity

theory does not hold on cosmological scales.

2.2 Linear theory for large scale structure formation
In this section, we discuss the basic properties of large-scale structure based on the linear

theory of structure formation.
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−2 −1 0 1

w0

−3

−2

−1

0

1

2

w
a

Planck TT+lowP+ext

Planck TT+lowP+WL
Planck TT+lowP+WL+H0

Figure 1: Current constraint on the dark energy equation of state parameters. This figure is
taken from Ref. [32].

2.2.1 Generation and evolution of perturbations

The observation of CMB by Planck strongly supports that the universe had experienced

accelerated expansion driven by the scalar field in the very early universe. This accelerated

expansion is called inflation. The important point of the cosmic inflation is that during

the accelerated expansion, a tiny density fluctuation as the seed of LSS is thought to be

generated quantum mechanically.

Mechanism of Inflation and generation of perturbation

The scalar field which drives inflation is especially called inflaton. The simplest model of

inflaton is given by the single-component real scaler field, ϕ(x). In this case, Lagrangian

is given by [33]:

L =
∫ √−gd4x

[
−1

2
gµν∂µϕ∂νϕ − V(ϕ)

]
, (27)
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where V(ϕ) is the potential. If we consider the homogeneous-isotropic universe as back-

ground space-time, Euler-Lagrange equation for scalar field becomes

∂2ϕ

∂t2 + 3H
∂ϕ

∂t
+ V ′(ϕ) = 0. (28)

Here, ( ′) is the derivative with respect to ϕ. The energy-momentum tensor of inflaton is

derived from Lagrangian Eq.(27) [33]:

T µν = gµα
∂ϕ

∂xα
∂ϕ

∂xν
− gµν

[
1
2

gαβ
∂ϕ

∂xα
∂ϕ

∂xβ
+ V(ϕ)

]
. (29)

The form of this energy-momentum tensor is identified with that of perfect fluid, T µν =

(ρ + p)uµuν + pδµν, where the energy density and pressure correspond to

ρϕ =
1
2

(
∂ϕ

∂t

)2

+ V(ϕ), (30)

pϕ =
1
2

(
∂ϕ

∂t

)2

− V(ϕ). (31)

When the kinetic term is neglected, we obtain ρϕ ≃ −pϕ. In this case, the potential energy

of scalar field acts as cosmological constant, and Hubble parameter becomes constant from

Eqs.(8) and (9):

d
dt

H =
(
1
a

da
dt

)2

− 1
a

d2a
dt2 = 0, (32)

then accelerated expansion is realized.

During the inflation, the quantum fluctuations of scalar field, coupled with the metric

perturbation, were continuously generated at small scales. Because the comoving Hubble,

1/(aH), exponentially decreases, the microscopic fluctuation with wavenumber k eventu-

ally becomes super-horizon scale, i.e., k/(aH) ≪ 1, and it can be regarded as a macroscopic

classical fluctuation.

Perturbations after Inflation

After the inflation, the dominant energy component of the universe becomes radiation com-

ponent, and the expansion rate of the universe is slowdown as shown in Eq.(21). On the

other hand, the horizon becomes increased, 1/H(t) ∝ t, and thus the metric perturbation of

mode-k generated during inflation re-enters into the horizon at late time, i.e., k ≳ aH. After

the horizon re-entry, the density perturbation coupled with metric perturbation can grow in
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the presence of CDM. However, at the radiation-dominant era, the growth of perturbations

at sub-horizon scales is suppressed due to the strong radiation pressure. Therefore, growth

of perturbations starts at the matter-dominant era, when the suppression by pressure is no

longer effective.

Baryon acoustic oscillation

In ΛCDM model, the major part of matter component is CDM, but baryon is still important

to understand the structure formation followed galaxy formation, and baryon fluctuation

imprinted on LSS plays a crucial role in probing late-time cosmic expansion history. Com-

pared to the CDM, the evolution of baryon density perturbation is complicated due to the

coupling with radiation part. Before recombination, the universe is filled with the free

electrons and protons. The free electrons are tightly coupled with photons by Thomson

and Coulomb scatterings. Therefore, baryon and photon act as the single fluid, and baryon

density perturbation can not grow in the presence of strong pressure by photon. This sup-

pression continues until the decoupling of baryon and photon. The baryon-photon fluid

exhibits acoustic modes, and the waves propagate inside the gravitational potential made

by CDM. The time of the decoupling (z ≃ 1100) then comes after the radiation-matter

equality (z ≃ 2.4 × 104Ωm0h2). After the decoupling, baryon density perturbation starts to

grow in the presence of the CDM density perturbation, and subsequent evolution of baryon

and CDM fluctuations finally results in observed LSS. One important consequence of the

early-stage evolution is that the acoustic signature of the baryon-photon fluctuations re-

mains imprinted on LSS even after the decoupling, and its characteristic scales determined

by the sound horizon at decoupling time typically gives ∼ 100h−1 Mpc, which can be used

as a robust standard ruler. The so-called baryon acoustic oscillations can be a powerful tool

to pin down the late-time cosmic expansion history, and thus the measurement of BAOs is

now one of the important target in galaxy redshift surveys.

2.2.2 Gravitational evolution of the perturbations

As we already mentioned in previous section, the density perturbations basically start to

grow at matter domination era. In this section, we will introduce the basic equation describ-

ing the dynamical evolution of density perturbations in matter or dark energy dominant era,

and then show the analytic solution of the equations in linear regime.
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Basic equations

First, we define matter density perturbation by the sum of density perturbation of CDM and

baryon:

δm(x, t) ≡ ρm(x, t) − ρ̄m(t)
ρ̄m(t)

, (33)

where, ρ̄m is the mean energy density of matter component. We also define the peculiar

velocity field v as the derivative of comoving coordinate x with respect to the conformal

time τ (adτ ≡ dt):

v ≡ ẋ, (34)

where, (˙) stands for the derivative with respect to the conformal time. Note that with this

peculiar velocity, momentum is defined as p ≡ amv.

For our interest of the observed large-scale structure, the Newtonian treatment is suf-

ficient to describe the late-time (nonlinear) evolution. This is basically true as long as we

consider the subhorizon evolution. On cosmological scales, where hydrodynamic and ra-

diative processes are irrelevant, the CDM and baryon are simply described as a collisionless

self-gravitating system, whose governing equation is given by the Vlasov (or collisionless

Boltzmann) equation coupled with Poisson equation. The one-particle distribution function

by f (x, p, τ), the Vlasov equation is written as:

d f
dτ
=
∂ f
∂τ
+

p
am
· ∇ f − am∇Φ · ∇p f = 0. (35)

The zeroth and first order moment of the function f (x, p, τ), are related to the spatial

density and peculiar velocity fields:∫
d3 p f (x, p, τ) = ρm(x, τ), (36)∫

d3 p
p

am
f (x, p, τ) = ρm(x, τ)v(x, τ). (37)

The solution of the Vlasov equation generally yields a non-vanishing second- order moment

of the distribution function, which is divided into two pieces:∫
d3 p

pi p j

a2m2 f (x, p, τ) = ρm(x, τ)vi(x, τ)v j(x, τ) + σi j(x, τ). (38)

where σi j includes the anisotropic components of velocity dispersions. The CDM as well

as baryon after the decoupling were initially cold with a virtually null local velocity dis-

persion, and follow the single-stream flow. Assuming this property also hold at late- time
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evolution, we may set σi j = 0. Then, the zeroth and first order-moment equations gives a

closed set of evolution eqs:

δ̇m(x, τ) + ∇ · [(1 + δm(x, τ))v(x, τ)] = 0, (39)

v̇ +
ȧ
a

v + (v · ∇)v = −∇Φ, (40)

supplemented with Poisson equation:

∇2Φ = 4πGa2ρ̄mδm. (41)

Eqs.(39) and (40) are respectively referred to as the equation of continuity and Euler equa-

tion. In the above, density field δm and velocity field v are the quantities to be solved,

but in the absence of vector metric perturbations, vorticity is irrelevant and we can impose

irrotational velocity flow:

∇ × v = 0. (42)

This assumption is valid in the linear regime, because rotation mode of velocity field only

has decaying mode. Therefore, velocity field is characterized only with its divergence:

Θ ≡ ∇ · v.

linear-order solution

Linearizing the Eqs.(39) and (40) in Fourier space, we obtain:

δ̇L(k, t) + ΘL(k, t) = 0, (43)

Θ̇L(k, t) +
ȧ
a
ΘL(k, t) +

6
τ2 δL(k, t) = 0. (44)

In the flat universe filled with matter and dark energy satisfying the equation of state, p =

wρ, the exact solution for linear perturbations is known. In this case, these equations are

rewritten with [34]:

9(w + 1)2(1 + y)y2δ′′L + 3
[
7
2
+ y

(
5 − 3m

2

)]
yδ′L −

3
2
δL = 0, (45)

y ≡
(

a
ad

)−3w

, ad ≡ a0

(
Ωm0

ΩΛ0

)−1/3w

. (46)

Here, (′) denotes the derivative with respect to the parameter y. The solution of this equation

can be expressed by hypergeometric function, F(a, b, c, d), and its growing mode is written
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by [34]:

D ∝ y1/3F
(
− 1

3w
,−3(1 − y)

6w
,−5 − 6w

6w
,−y

)
. (47)

On the other hand, the linear velocity perturbation is also obtained from Eq.(43):

ΘL(k) = −aH f δL(k). (48)

Here, we define linear growth rate f (a) as:

f (a) ≡ d ln D(a)
d ln a

. (49)

2.2.3 Transfer function
In linear theory, density perturbation can evolve independently for individual mode k. In

this respect, the shape of power spectrum remains unchanged in linear stage. However,

this is true only after the mode re-enters the horizon. Indeed, the amplitude of density

perturbation can be different depending on the time when the mode re-enters the Hubble

horizon. This is because the fluctuations cannot grow inside the horizon during the radiation

dominant epoch. As a result, the power spectrum deep inside the Hubble horizon at matter

dominant epoch has a characteristic scale-dependence. To describe the scale-dependent

nature of density fluctuations, it is convenient to introduce the transfer function, defined

by:

T (k, t) ≡ D(tf)
D(t)

δL(k, t)
δini(k)

, (50)

where δini(k) is the primordial density perturbations and δL(k, t) is the density perturbations

calculated by linear theory. The linear growth factor D represent the time dependence of

density perturbations at matter/dark energy dominant epoch in linear regime. As shown in

Fig. 2 the transfer function asymptotically scales as k−2 below keq ≃ 0.01(Ωm0h2/0.13)[hMpc−1],

which is determined by the horizon of radiation-matter equality.

Using transfer function, we can express the amplitude of late-time density perturbation

linear density perturbation δL:

δL (k) = −M (k)Φinit (k) , (51)

M (k) =
2
3

D (z)
k2T (k)
H2

0Ωm0
, (52)
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where, Φinit is the primordial curvature perturbation. Here, we consider the adiabatic initial

condition, consistent with simple inflationary scenario. Here and in what follows, D(t) is

normalized to unity at current time.

Given the linear density field, we can compute the matter power spectrum defined by

(2π)3δD(k + k′)P(k) ≡ ⟨δm(k)δm(k′)⟩, (53)

From Eq.(51), linear matter power spectrum is expressed as follows:

PL(k) = M2(k)PΦ(k). (54)

Here, PΦ(k) is the primordial power spectrum, defined by:

⟨Φinit(k)Φinit(k′)⟩ = (2π)3δ(3)
D (k + k′)PΦ(k). (55)

The shape of primordial power spectrum is depend on the model of the perturbation gener-

ation. In usual, PΦ(k) is assumed to be single power law,

PΦ(k) ∝ kns−4. (56)

Here, ns ≡ d ln PΦ(k)
d ln k + 4 is called the spectral index, and current constraint is summarized in

Table 2.1.2. Note that, in the case of the simplest model of inflation, i.e. slow roll inflation,

the predicted spectrum index is close to ns ≃ 1.

2.3 Redshift-space distortions
The redshift-space distortions are apparent anisotropies of large scale structure observed

via spectroscopic measurement of galaxies. The effect is originated from the redshift mea-

surement of each galaxy, and due to the Doppler effect induced by the peculiar velocity of

galaxies, the galaxy clustering observed in redshift space appears distorted along the line-

of-sight. Although RSD complicates the interpretation of LSS data, this effect is essential

to test gravity on cosmological scales. In this section, we will describe the redshift-space

distortions at cosmological scales, and derive the formula for power spectrum in linear

regime.

2.3.1 Redshift-space and real space
In the spectroscopic measurement of galaxies, the distance along the line-of-sight is mea-

sured by the redshift z:

1 + z ≡ 1
a(t)
. (57)
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Figure 2: The scale dependence of transfer function based on ΛCDM model with Ωm0 =

0.279, Ωb0 = 0.0462, Ωr0 = 8.48 × 10−5 and h = 0.7. The matter radiation equality
correspond to k ∼ 10−2hMpc−1.

When we observe the light emitted at t from the emitter at rest in the comoving coordinate

system, the wavelength of the light is redshifted by a factor of 1 + z due to the cosmic

expansion. In the absence of gravitational lensing, the light trajectory is straight, and we

have dΩ = 0. Thus, the comoving distance between the observer and the object at redshift

z is written by:

χ =

∫ t0

t

dt
a(t)
=

∫ 1

a

da
a2H

=

∫ z

0

dz
H
. (58)

Galaxy redshift surveys provides a three-dimensional view of galaxy distribution by

measuring the angular position of each galaxy over the sky and redshift along the ob-

server’s line-of-sight direction. While the spectroscopic measurement determines the red-

shift, zobs, for each galaxy, the actual value does not properly reflects the cosmological

redshift. Through the Doppler effect, the measured redshift is distorted by the peculiar

velocity of galaxies:

1 + zobs ≃ (1 + z)
(
1 − v∥(r)

)−1 , (59)

where zobs is the observed redshift of the galaxies, v∥ is the line-of-site component of the

peculiar velocity, and we assume v∥ ≪ c. With this relation, the observed space called

redshift space generally differs from the actual space (real space). Substituting zobs into
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Eq.(58), the relation between (comoving) redshift and real spaces is given by

s = r +
(1 + z)v∥(r)

H(z)
r̂, (60)

Eq.(60) implies that even if the real space is isotropic, the observed galaxy clustering in

redshift space become anisotropic in the presence of the second term of Eq.(60). Based

on linear theory, a typical size of the second term is estimated to be O(1)h−1Mpc at χ(z =

0.5) ≃ 1.32h−1Gpc.

Now, let us consider how the density field in redshift is related to that in real space. De-

noting respectively the density perturbations in real and redshift spaces by δ(r) and δ(s)(s),

the mass conservation implies {1 + δ(s)(s)}d3s = {1 + δ(r)}d3r, which leads to

δ(s)(s) =
∣∣∣∣∣∂s∂r

∣∣∣∣∣−1

{1 + δ(r)} − 1. (61)

Once we obtain Jacobian (J ≡ |∂r/∂s|), the density perturbations in redshift space is calcu-

lated from that in real space. From Eq.(60), Jacobian is calculated as:

J =
r2dr
s2ds

=

{
1 − (1 + z)v∥

H(z)r

}−2 {
1 − (1 + z)

H(z)
∂v∥
∂r

}−1

. (62)

In what follows, we adopt the distant-observer and plane-parallel approximation to simplify

the calculation. This approximation is reasonable and makes sense when the typical size of

survey L is enough larger than the scale of interest, ∼ 1/k, and sufficiently high redshift. In

that region, the velocity term in the first bracket in Eq.(62) can be ignored by comparing to

the velocity term in second bracket:
v∥
L
≪ kv∥. (63)

In addition, we can neglect the curvature of celestial sphere, and fix the line of sight direc-

tion to the specific ẑ axis:

k̂ · x̂ ≃ k̂ · ẑ. (64)

As a result, Jacobian is approximated to be:

J ≃
{

1 − (1 + z)
H(z)

∂vz

∂r

}−1

. (65)

Using Eq.(65), Fourier transform of the density field is given by

δ(s)(k) =
∫

dr3
{
δ(r) − ∇zvz(r)

aH(z)

}
ei(kµvz/aH+k·r), (66)

where the variable µ is the directional cosine of the angle between the line-of-sight ẑ and

wave vector k, and vz is line-of-sight component of the velocity field, v∥ ≃ vz ≡ v · ẑ.
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2.3.2 Kaiser effect
In this section, we derive the formula for the redshift-space power spectrum in liner regime.

Similarly to the real-space power spectrum, redshift-space power spectrum is defined by:

(2π)3δD(k + k′)P(s)(k) ≡ ⟨δ(s)(k)δ(s)(k′)⟩, (67)

On the other hand, linearizing Eq.(66), we use the linear relation Eq.(48) written by:

δ(s)
L (k) = (1 + fµ2)δL(k), (68)

where f is linear growth rate defined at Eq.(49). Substituting the linear density perturbation

into Eq.(67), we obtain:

P(s)
L (k, µ) = (1 + fµ2)2PL(k). (69)

This is known as the Kaiser formula [4], and it indicates that on large scales, bulk flows

falling toward overdense regions enhance the clustering of galaxies along the line-of-sight

in redshift space. The strength of the anisotropy of Kaiser effect is proportional to the

growth rate f . Its value and time dependence are basically determined by the theory of

gravity on cosmological scales. In this respect, estimating observationally the growth rate

offers an interesting opportunity to test gravity, and the measurement of RSD is now one of

the main science goals in galaxy redshift surveys.



Chapter 3 Non-linear theory of the evolution
of large scale structure

In this chapter, we describe the treatment of non-linear gravitational evolution of LSS based

on both numerical simulation and analytic calculation. We first introduce the method of N-

body simulation, which provides a non-perturbative way to trace the evolution of LSS.

Then we describe the standard perturbative calculation of density perturbation in real space

and redshift space.

3.1 N-body simulation
While the perturbation theory (PT) describes the non-linearity by perturbative expansion

and is valid in weakly non-linear regime, the cosmological N-body simulation is powerful

to investigate the cosmological structure formation deep inside fully non-linear regime. In

the N-body simulation, we describe the gravitational evolution of LSS with N collisionless

particles as the sample of particular realization of the phase-space distribution, f (x, v, z), in

a comoving periodic box.

To run the N-body simulation, we should provide the position and velocity data for

each particle at a sufficiently early time where perturbation is tiny. Then we calculate the

gravitational force of each particle and advance the positions and velocities according to

Newton’s equation of motion. We here describe the representative public codes, 2LPT and

Gadget2, which we will use in Chap.5. Note that there are variety of methods to generate

the initial condition from input linear power spectrum and to compute gravitational force.

For example, RAMSES code [35] is the representative code for the Particle Mesh scheme

on an adaptively refined grid (AMR), and MPGRAFIC [36] is used as the initial condition

generator of RAMSES. The output results obtained from these codes will be also used in

Chap.4.

3.1.1 Initial conditions

To generate initial condition of N-body simulation, we follow several steps described be-

low. First, we place N-particles onto grids imposing periodic boundary condition. This

20
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particle distribution is mostly uniform at the scales larger than the inter-particle distance.

In reality, particle distribution should have characteristic inhomogeneities according to lin-

ear theory of structure formation. To create large-scale random inhomogeneities, we use

the Lagrangian perturbation theory.

Historically, the Zel’dovich approximation as the first order Lagrangian perturbation

has been frequently used as initial condition generator at an early development of N-body

simulations, but to increase the prediction as well as to eliminate the initial transients, the

second-order Lagrangian perturbation theory gets popular, and is used as the standard initial

condition generator [37, 38].

The Lagrangian PT provides a way to describe the motion of mass elements in terms of

the Lagrangian coordinate. The Lagrangian coordinate q and the Eulerian coordinate x of

a particle at time t is related through:

x(q, t) = q + ξ(q, t), (70)

where, ξ(q, t) is the displacement vector and we set x(q, t = 0) = q. In the Lagrangian

coordinate, the mass density is defined to be uniform. Then, the conservation of mass

implies

ρm(x)d3x = ρ̄md3q, (71)

where, ρ̄m is mean value of matter density. Using this relation, the perturbative displace-

ment field is expressed in terms of the linear density field. To derive the explicit expres-

sions, we rewrite the above equation with

1 + δm(x) =
∣∣∣∣∣dx
dq

∣∣∣∣∣−1

=

∫
d3qδ3

D(x − q − ξ(q)). (72)

Then, δm is expressed as:

δm(k) =
∫

d3xe−ik·x
∫

d3qδ(3)
D (x − q − ξ(q)) − (2π)3δ(3)

D (k)

=

∫
d3qe−ik·(q+ξ(q)) − (2π)3δ(3)

D (k). (73)

Substituting the expressions:

e−ik·ξ(q) =

∞∑
m=0

1
m!

(−ik · ξ(q))m, (74)

ξ(q) =
∫

d3k
(2π)3 eik·qξ̃(k), (75)
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into Eq.(73), we obtain,

δm(k) =
∞∑

n≥1

(−i)n

n!

∫
d3k1

(2π)3 · · ·
d3kn

(2π)3 (2π)3δ(3)
D (k1···n − k)

[
k · ξ̃(k1)

]
· · ·

[
k · ξ̃(kn)

]
. (76)

In the Lagrangian perturbation theory, ξ̃ is expanded in powers of δL:

ξ̃(k) =
∞∑

n=1

1
n!

∫
d3k1

(2π)3 · · ·
d3kn

(2π)3 (2π)3δ(3)
D (k1···n − k)Ln(k1, · · · , kn)δL(k1) · · · δL(kn), (77)

where k12···n ≡ k1 + k2 + · · · + kn. The explicit expressions for the Lagrangian kernels

Ln(k1, · · · , kn) up to the second order are given by

L1(k) =
k
k2 , (78)

L2(k1, k2) =
3
7

k12

k2

[
1 −

(
k1 · k2

k1k2

)]
, (79)

which can be derived easily using the expressions for standard PT kernels [see Eqs.(96),(97)

and (100)]. Provided the expression displacement field, now, we can calculate the velocity

field

v(x, t) =
dξ(q, t)

dt
. (80)

Finally, we summarize the prossedure of generating initial condition by second order

Lagrangian theory (hereafter 2LPT) [37, 38]. First, we create the random initial density

field on the grids, following the cosmological model which we want to simulate. Second,

using the Fourier transformed quantity of Eq.(77), we calculate the displacement vector on

each grid. With this vector, we displace the particle initially placed on each grid, and assign

the velocity given by Eq.(80) to each particle.

In the N-body simulation of Chap.5, we employ 2LPT [37, 38] to generate initial con-

ditions.

3.1.2 Solving the Poisson Equation

To evolve the density field represented by N particles, we employ a Tree-Particle-Mesh

(Tree-PM) solver, Gadget2[39, 40]. The Tree-PM is a hybrid method combining two differ-

ential algorithms called Particle-Mesh (PM) algorithm and tree algorithm. In this section,

we review the basic idea of these algorithms.



Section 3.1. N-body simulation 23

The straightforward treatment to evolve N particles is to compute gravitational forces

for N(N − 1)/2 pairs of particles directly. The force exerted on i-th particle is expressed as:

∆Φ(xi) = −
G
a

∑
j,i

m j
x j − xi

|xi|3
. (81)

The algorithm which solves this equation directly is called Particle-Particle (PP) algorithm.

However, this algorithm takes ∼ O(N2) operations at each time step, and in the case of

cosmological simulation, huge amount of time is consumed due to the large N (e.g. we

simulate N = 10243 particles in this thesis).

To overcome this problem, PM algorithm which uses fast Fourier transform (FFT) has

been developed. In the PM algorithm, we firstly divide the space into grids and calculate

density field at every grid point. Then, using FFT, we go to Fourier space to obtain the so-

lution of potential. Because the number of operation of FFT is O(Nmesh log Nmesh), the total

number of operation of PM algorithm is O(N) +O(Nmesh log Nmesh), which is much smaller

than that of PP algorithm. If the distance between two particles becomes comparable to or

smaller than mesh size, force calculation with PM algorithm becomes inaccurate, and we

need to increase Nmesh to guarantee the accuracy.

Another method to reduce the number of operation is called tree algorithm. In this

algorithm, we iteratively divide the simulation box into 8 small cells until each cell has one

or zero particle. This hierarchy structure of cells is called tree. To reduce the computational

cost, in computing the force, we treat particles in a distant cells as a single large particle if

the cell satisfies the following condition:

d >
s
θ
+ δ, (82)

where, θ is a control parameter, d is the distance from the particle to the center of mass of

the cell, s is the size of the cell and δ is the distance from the center of mass to the geometric

center of the cell. We can improve the accuracy by increasing the value of θ. This treatment

is reasonable because the contribution to the gravitational force from distant objects is

smaller than that from the nearby objects. Approximating the gravitational force from long

distance, we can reduce the number of operation to O(N log N). The disadvantage of this

algorithm is requirement of large memory size to store not only the position and velocity

of particles but also the structure of tree. In addition, when the density fluctuation is small,

the accuracy of the algorithm become worse.
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In the Tree-PM solver implemented in Gadget2, the code decomposes the gravitational

potential into long-range and short-range parts in Fourier space [39]

Φ(k) = Φlong(k) + Φshort(k), (83)

and then compute long-range part by PM and short-range part by tree algorithm. The long-

range part is described by

Φlong(k) = Φ(k) exp(−k2x2
s ), (84)

with the spacial scale of force split xs, which is sufficiently smaller than the box size xs ≪ L.

On the other hand, short-range part is given by

Φshort(k) = −GΦ(k)
∑

i

mi

x′i
erfc(−k2x2

s ), (85)

where x′i is the smallest distance of projection of particle i to the point x, i.e. x′i = min(|x −
xi − nL|).

3.2 Standard perturbation theory

At large scales (∼ 100Mpc) non-linearity of gravitational evolution is rather mild, and

the perturbation theory technique is quite powerful to understand the density and velocity

perturbations. In this section, we describing the standard method to perturbatively solve

the basic equations Eqs.(39)-(41) in real space. This perturbative treatment is referred to

as the standard perturbation theory (SPT). Then we extend this SPT calculation to describe

the density fields in redshift space.

3.2.1 SPT in real space

Let us first recall that the rotation mode of velocity fields can be neglected at an early phase

of the structure formation. The velocity follows the potential flow, and the dynamics of

perturbations is described by the density field and velocity-divergence field defined by:

u(r) = −v(r)/{ f aH (z)}, (86)

θ ≡ ∇ · u. (87)
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Using θ, Fourier transform of Eqs.(39)-(41) leads to

δ̇m(k, τ) − θ(k, τ) =
∫

d3k1

(2π)3

∫
d3k2

(2π)3 (2π)3δ(3)
D (k1 + k2 − k)

k · k1

k2
1

θ(k1, τ)δm(k2, τ), (88)

θ̇(k, τ) +
(
3
2
Ωm

f 2 − 1
)
θ(k, τ) − 3

2
Ωm

f 2 δm(k, τ)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3 δ
(3)
D (k1 + k2 − k)

k2(k1 · k2)
2k2

1k2
2

θ(k1, τ)θ(k2, τ). (89)

The right-hand side of these equations represent non-linear coupling originated from ad-

vection terms of the fluid equations, which are neglected in previous section 2.2.2. These

equations can be solved order by order, and the solutions are formally expressed as:

δm =
∑
n=1

δn(k, τ), θ =
∑
n=1

θn(k, τ); (90)

δn(k, τ) =
∫

d3 p1

(2π)3 · · ·
d3 pn

(2π)3 (2π)3δ(3)
D (p1···n − k)Fn(p1, · · · , pn, τ)δL(p1, τ) · · · δL(pn, τ),

(91)

θn(k, τ) =
∫

d3 p1

(2π)3 · · ·
d3 pn

(2π)3 (2π)3δ(3)
D (p1···n − k)Gn(p1, · · · , pn, τ)δL(p1, τ) · · · δL(pn, τ).

(92)

Here, Fn and Gn are called standard PT kernels, δn and θn are the quantities at n-th order,

and δ1 = θ1 = δL from Eq.(48). To derive the explicit expression for Fn and Gn, we

substitute Eqs.(91) and (92) into Eqs.(88) and (89), and solve iteratively from lower order.

It is known that the time dependance of the term Ωm/ f 2 in Eqs.(88) and (89) is quite

weak in realistic cosmological models. Here, we assume the Einstein-de Sitter universe

(Ωm = f = 1), and focus on the fastest growing mode. In this case, we obtain Fn and Gn

analytically with time independent form (see for example [41]):

Fn(k1, · · · , kn) =
n−1∑
m=1

Gm(k1, · · · , km)
(2n + 3)(n − 1)

×
[
(1 + 2n)

q · q1

q2
1

Fn−m(km+1, · · · , kn) +
q2(q1 · q2)

q2
1q2

2

Gn−m(km+1, · · · , kn)
]
,

(93)

Gn(k1, · · · , kn) =
n−1∑
m=1

Gm(k1, · · · , km)
(2n + 3)(n − 1)

×
[
3

q · q1

q2
1

Fn−m(km+1, · · · , kn) + n
q2(q1 · q2)

q2
1q2

2

Gn−m(km+1, · · · , kn)
]
, (94)
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q1 ≡ k1 + · · · + km , q2 ≡ km+1 + · · · + kn , q ≡ q1 + q2. (95)

The expressions of the Kernels are not symmetrized about arguments, but below, we use

symmetrized Kernels about their arguments for convenience. At n < 3, Fn and Gn are

obtained by:

F1(k1) = 1, G1(k1) = 1, (96)

F2(k1, k2) =
10
7
+

(
k1

k2
+

k2

k1

)
k1 · k2

k1k2
+

4
7

(
k1 · k2

k1k2

)2

, (97)

G2(k1, k2) =
6
7
+

(
k1

k2
+

k2

k1

)
k1 · k2

k1k2
+

8
7

(
k1 · k2

k1k2

)2

. (98)

In general, the Ωm/ f 2 term is time dependent. For example, it is known from numerical

calculation that in GR case [42],

f ≃ Ω0.55
m . (99)

Therefore, the Kernels must have time dependance. However, the time dependance of the

Kernels is very weak in usual case, and we can generally approximate the PT solutions

even in the non-Einstein-de Sitter universe as follows [43, 44, 45]:

δm(k, τ) =
∑
n=1

∫
d3 p1 · · · d3 pn

(2π)3n δD(k − p1···n) Fn(p1, · · · , pn)δL(p1, τ) · · · δL(pn, τ), (100)

θ(k, τ) =
∑
n=1

∫
d3 p1 · · · d3 pn

(2π)3n δD(k − p1···n) Gn(p1, · · · , pn)δL(p1, τ) · · · δL(pn, τ). (101)

3.2.2 SPT in redshift space

The SPT treatment discussed above can be also applied to the nonlinear density field in

redshift space, let us first expand the redshift-space density field in Fourier space. The

Taylor expansion of Eq. (66) leads to:

δ(s)
i (k) =

∑
n=0

∫
d3q1

(2π)3 · · ·
∫

d3qn

(2π)3 δD(k − q1···n)

× {
δi(k) + fµ2θ(k)

} ( fµk)n

n!
µ1

q1
θ(q1) · · · µn

qn
θ(qn), (102)

where q1···n being q1 + · · · + qn, and i means m or h. Then, the real-space quantities δi

and θ are further expanded in terms of the standard PT kernels by substituting Eqs.(100)
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and (101). Plugging the above expressions into Eq. (102), reorganizing the perturbative

expansion in powers of δL leads to

δ(s)
i (k) =

∑
n=1

∫
d3q1

(2π)3 · · ·
∫

d3qn

(2π)3 δD(k − q1···n)Zn(q1, · · · , qn)δL(q1) · · · δL(qn). (103)

Here, the Zn is called redshift-space PT kernel, and these are expressed in terms of the real-

space PT kernels in a rather intricate way. We present the explicit expression for Zn up to

fourth order (e.g., [46]) bellow.

Z1(k) = b(k) + fµ2, (104)

Z2(k1, k2) = b(k)F2(k1, k2) + fµ2G2(k1, k2) +
fµk
2

[
µ1

k1
(b(k) + fµ2

2) +
µ2

k2
(b(k) + fµ2

1)
]
.

(105)

Z3(k1, k2, k3) = b(k)F3(k1, k2, k3) + fµ2G3(k1, k2, k3) + fµk
[
b(k)F2(k2, k3) + fµ2

23G2(k2, k3)
] µ1

k1

+ fµk(b(k) + fµ2
1)
µ23

k23
G2(k2, k3) +

( fµk)2

2
(b(k) + fµ2

1)
µ2

k2

µ3

k3
, (106)

Z4(k1, k2, k3, k4) = Z4a(k1, k2, k3, k4) + Z4b(k1, k2, k3, k4). (107)

Here, the fourth-order kernels Z4a and Z4b are respectively given by

Z4a(k1, k2, k3, k4) = b(k)F4(k1, k2, k3, k4) + fµ2G4(k1, k2, k3, k4)

+ fµk
[
b(k)F3(k2, k3, k4) + fµ2

234G3(k2, k3, k4)
] µ1

k1

+ fµk(b(k) + fµ2
1)
µ234

k234
G3(k2, k3, k4) +

( fµk)3

6
(b(k) + fµ2

1)
µ2

k2

µ3

k3

µ4

k4
, (108)

Z4b(k1, k2, k3, k4) = fµk
[
b(k)F2(k1, k2) + fµ2

12G2(k1, k2)
] µ34

k34
G2(k3, k4)

+
( fµk)2

2

[
b(k)F2(k1, k2) + fµ2

12G2(k1, k2)
] µ3

k3

µ4

k4

+
( fµk)2

2
µ12

k12
G2(k1, k2)

[
(b(k) + fµ2

3)
µ4

k4
+ (b(k) + fµ2

4)
µ3

k3

]
. (109)

In the above, the vector k in the n-th order kernel implies k = k1 + · · · + kn, and b(k)

is the bias function which parametrize the relation between the matter density field and

galaxy/halo number density field, described the retail at Chap. 5.6.1. The quantities µ, µi,

µi j, and µi jk are defined by:

µ ≡ k · ẑ
k
, µi ≡

ki · ẑ
ki
, µi j ≡

(ki + k j) · ẑ
|ki + k j|

, µi jk ≡
(ki + k j + kk) · ẑ
|ki + k j + kk|

. (110)
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In applying these results to the statistical calculations described in Chap. 3.3 and 4.3,

the kernels Zn have to be symmetrized under the exchange of each argument. One important

remark is that even with fully symmetrized kernels Fn and Gn, the resultant redshift-space

kernels Zn at n ≥ 3 only preserve partial symmetry. For instance, while the kernel Z3 given

at Eq. (106) is symmetric under k1 ↔ k3, the expression for Z4a preserve the symmetry of

k2 ↔ k3 ↔ k4. These kernels become fully symmetrized if we take the cyclic permuta-

tions.

3.3 The perturbative calculation of power spectrum and bispectrum
up to 1-loop level

With the PT expression of the density field in Eq. (103), the redshift-space power spectrum

and bispectrum are expanded as

P(s)(k) = Plin + P1-loop + · · · , (111)

B(s)(k1, k2, k3) = Btree + B1-loop
222 + B1-loop

321-I + B1-loop
321-II + B1-loop

411 + · · · . (112)

The power spectrum and bispectrum in real space are also expanded by same expression.

As we will mention below, one can easily obtain expressions of real space from that of

redshift space, so we focus on the expressions if redshift space in this section. Each term

at the right-hand-side of Eqs.(111) and (112) are given by

Plin(k) = {Z1(k)}2PL(k), (113)

P1-loop(k) =
∫

d3 p
(2π)3 {Z2 (p, k − p)}2PL(p)PL(|k − p|) + 2Z1(k)PL(k)

∫
d3 p

(2π)3 {Z3 (p,−p, k)} PL(p).

(114)

for the power spectrum, and

Btree(k1, k2, k3) = 2Z2(k1, k2)Z1(k1)Z1(k2)PL(k1)PL(k2) + 2 perms (k1 ↔ k2 ↔ k3),

(115)

B1-loop
222 (k1, k2, k3) =

∫
d3 p

(2π)3 Z2 (p, k1 − p) Z2 (−p, k2 + p) Z2 (−k1 + p,−k2 − p)

× PL (p) PL (|k1 − p|) PL (|k2 + p|) + 2 perms (k1 ↔ k2 ↔ k3),

(116)
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B1-loop
321-I (k1, k2, k3) = Z1 (k1) PL (k1)

∫
d3 p

(2π)3 Z2 (p, k2 − p) Z3 (−k1,−p,−k2 + p) PL (p) PL (|k2 − p|)

+ 5 perms (k1 ↔ k2 ↔ k3), (117)

B1-loop
321-II (k1, k2, k3) = Z1 (k1) Z2 (k1, k2) PL (k1) PL (k2)

∫
d3 p

(2π)3 Z3 (k2, p,−p) PL (p)

+ 5 perms (k1 ↔ k2 ↔ k3), (118)

B1-loop
411 (k1, k2, k3) = Z1 (k1) Z1 (k2) PL (k1) PL (k2)

∫
d3 p

(2π)3 Z4 (−k1,−k2, p,−p) PL (p)

+ 2 perms (k1 ↔ k2 ↔ k3). (119)

for the bispectrum. In deriving the expressions above, we assume the Gaussianity of linear

density field δL. One can easily obtain the expressions for the real-space power spectrum

and bispectrum of density field if we replace the kernels Zn with Fn. A notable point in

redshift space is that the redshift-space kernel depends on the line-of-sight direction. As

a result, the statistical isotropy of power spectrum and bispectrum is broken in each term,

and we need one and two more additional variables to characterize the redshift-space power

spectrum and bispectrum, respectively.

Another important point is that the kernels Zn at n ≥ 2 include the mode-coupling con-

tributions from the velocity fields, which basically come from the perturbative expansion

of the exponential factor in Eq. (66). This implies that the Finger-of-God damping effect

cannot be simply described in a naive standard PT treatment, and we need to resum the

infinite series of PT expansions. As it has been shown in Ref. [11], the standard PT pre-

diction in redshift space largely overestimates the power spectrum amplitude at one-loop

order, and cannot accurately describe the BAO in redshift space. The applicable range of

one-loop prediction thus becomes narrower than that of the real-space prediction. Since the

expression of bispectrum also uses the redshift PT kernels and it even includes the higher-

order, the situation must be similar or rather worse than that in the power spectrum case.

We will see in Chap. 4.4 that without accounting the Finger-of-God damping, standard PT

prediction of bispectrum starts to deviate from simulation even at large scales. A proper

account of the damping effect is essential, and we will consider how to incorporates the

damping effect into the PT calculation in Chap. 4.3.
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3.4 Comparison between N-body simulation and SPT
Here, we compare the N-body simulation results using 2LPT and Gadget2 with SPT one-

loop results in real space to make sure the consistency of both method. The setting of

N-body simulation is described as Chap. 5.3. The results are shown at Figs. 3 and 4.

In the case of power spectrum, SPT one-loop model is correspond with the result of

N-body simulation by few % accuracy at large scale, while the linear power spectrum soon

deviate from the simulation more than 5%.

Although the consistency is worse than the case of power spectrum, bispectrum from

SPT one-loop calculation still agree with N-body result almost 5% at high redshift z = 1.

As we will see at Chap. 4.4.3, the SPT bispectrum in redshift space are soon deviate

from N-body simulation. Therefore, we need to consider improved method to include non-

linearity of RSD.
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Figure 3: Real-space power spectrum as function of wave number k at z = 3 (top), 1
(middle) and 0.35 (bottom). The left panels plot the power spectrum multiplied by k3/2,
while the right panels show the fractional difference between the N-body simulation by
Gadget-2 [40, 39] and PT predictions, (PN−body − PPT)/PN−body. In each panel, black points
with error bars indicate the results of N-body simulations. The green dashed and red solid
lines are the linear theory and the standard PT one-loop predictions.
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Figure 4: Real-space bispectrum as function of wave number k at z = 3 (top), 1 (middle)
and 0.35 (bottom). The left panels plot the bispectrum multiplied by k3, while the right
panels show the fractional difference between the N-body simulation by Gadget-2 [40, 39]
and PT predictions, (BN−body − BPT)/BN−body. The expressions of the points and lines are
similar to Fig. 3.



Chapter 4 Precision modeling of
redshift-space bispectrum

In this chapter, we begin by reviewing the current cosmological constraints through power

spectrum and bispectrum of LSS, focusing on the test of gravity with redshift-space distor-

tions. We discuss the prospect for testing gravity through future galaxy redshift surveys,

and address a crucial aspect toward a precision test of gravity. Then, we present an im-

proved theoretical model for redshift-space bispectrum, which we aim at applying to a

precision test of gravity. Comparing with N-body simulation, the validity of the improved

model is also discussed. This chapter is based on Ref. [47].

4.1 Motivation

The measurements of RSD taken from various observations now cover a wide range of red-

shifts out to z ∼ 1.4 (e.g., Refs. [48, 49, 50, 51, 52], see also Chap. 5.5 of Ref. [53]), and the

results are broadly consistent with general relativity as shown in Fig. 5. But a closer look

at the constrained values of f σ8 suggests a mild tension with the Planck ΛCDM model

[54], indicating some systematics or potentially new physics. Here, σ8 is the normalization

amplitude of the linear power spectrum smoothed over 8 h−1 Mpc. A further improvement

on the RSD measurement is thus important, mitigating both the statistical errors and sys-

tematics. This is one of the main reasons why there are various projects aiming at precisely

measuring RSD which will uncover a large cosmic volume.

With a gigantic survey volume, the next-generation galaxy redshift surveys (e.g. Eu-

clid, LSST) will therefore offer an opportunity to precisely measure the power spectrum or

correlation function at an unprecedented precision, and provided a high-precision template,

a robust and tight constraint on f σ8 will be expected. Furthermore, one promising point is

that taking advantage of a large-volume data, a high-statistical measurement of the higher-

order statistics such as bispectrum or three-point correlation function is made available,

and combining it with power spectrum measurement further helps to tighten the constraint

on f σ8.

32
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Figure 5: Current status of constraint on fσ8 as a function of redshift through power spec-
trum and two point correlation function of LSS with various galaxy surveys. The each line
shows the amplitude of fσ8 from different theories of gravity obtained by minimizing χ2.
The data points used for the χ2 minimization are denoted as the filled-symbol points while
those which are not used are denoted as the open-symbol points. This figure is taken from
Ref. [49].

There have been various studies based on the Fisher matrix analysis to quantify the

statistical impact of the bispectrum on the cosmological parameter estimation, showing that

adding the bispectrum indeed plays an important role to break parameter degeneracy (e.g.,

Refs. [55, 56, 57, 58, 59]). In particular, the impact of combining bispectrum measurement

is demonstrated for the RSD measurement by Refs. [60, 61], showing that even if we restrict

the data to the large-scale modes, the constraint on f σ8 will be improved by a factor of

two as shown in Fig. 6 [60].

However, most of these analysis has been demonstrated in a very simplified setup, as-

suming that the observed bispectrum is described by the perturbation theory (PT) at lead-

ing order [46], on top of a simple prescription for galaxy bias. While such a simplified

forecast study helps to understand the ability and/or potential of the planned galaxy sur-

veys, there are a number of remarks and cautions in a practical data analysis. One im-

portant point to be noted is the theoretical template of redshift-space bispectrum. While

the perturbative description is supposed to be adequate in real space at the weakly nonlin-

ear stage of gravitational clustering, the situation becomes more subtle in redshift space,

because the redshift space is related to the real space through nonlinear mapping. As a
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Figure 6: Upper: Expected 1σ (68% C.L.) constraint on the linear growth rate f (z), as-
suming the future spectroscopy survey DESI (Dark Energy Spectroscopy Instrument). The
results are estimated using both the power spectrum and bispectrum. Lower: The fractional
errors of f from power spectrum (dotted), bispectrum (dashed) and the combined result of
the power spectrum and bispectrum. In the combined case, taking account of the cross
covariance, is plotted as solid curve, and taking account of the diagonals only, is plotted as
dot-dashed curve. This figure is taken from Ref. [60].
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result, in terms of the real-space quantities, even the redshift-space power spectrum can-

not be simply expressed as the large-scale two-point statistics of the underlying fields, and

is significantly affected by the small-scale physics (e.g., Ref. [6]). Hence, a sophisticated

treatment is needed for a reliable theoretical template even in the weakly nonlinear regime

[11, 20, 21, 22, 23, 24, 25, 26].

On the other hand, the analysis using the redshift-space bispectrum has been already

examined in the existing galaxy surveys [62, 63], and the constraints on f σ8 is shown to

be improved by combining the power spectrum with bispectrum, as shown in Fig. 7 [62].

The improvement of the constraint is, however, rather milder than expected. One possible

reason is that they only use the monopole moment of bispectrum, ignoring the quadrupole

and higher-multipole bispectra. Since the higher-multipole bispectra naturally appear due

to the RSD, a measurement of higher-multipoles would be essential to get a tighter con-

straint [61, 64], and modeling the anisotropic components of redshift-space bispectrum is

thus rather critical.

The aim of this chapter is to address this issue, and based on the next-to-leading order

calculations, we present a perturbation-theory model of redshift-space bispectrum, which

consistently incorporates the effect coming from the small-scale virial motion. While mod-

eling the redshift-space bispectrum has been already investigated based on fitting formula

[27, 28] and halo model (e.g., Refs. [29, 30]), analytical treatment would be certainly pow-

erful in characterizing the anisotropies of the redshift-space bispectrum (see e.g., [31] for

discussion on resummed PT treatment). In particular, with perturbation theory, one can

give an accurate description for the large scales of our interest. Albeit its limitation, the

PT-based modeling therefore deserves further consideration, and we present, for the first

time, monopole and quadrupole moments of the redshift-space bispectrum at one-loop or-

der, which agree well with N-body simulations at BAO scales.

4.2 Exact formula of power spectrum and bispectrum in redshift space

In this section, prior to presenting our improved model of bispectrum, we discuss several

remarks on modeling the redshift-space power spectrum and bispectrum based on the exact

formulas. Using Eq. (66), the exact formulas for the power spectrum and bispectrum in

redshift space, expressed in terms of the real-space quantities, are derived. Recalling that
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Figure 7: Comparison of the 1 σ (solid lines) and 2 σ (dashed lines) confident regions of
fσ8, DA/rs and Hrs, corresponding to the LOWZ and CMASS samples of BOSS. Here,
DA and rs are the angular diameter distance and the sound horizon. The orange con-
tours correspond to the constrains obtained by analyzing the power spectrum monopole
and quadrupole up to kmax = 0.24hMpc−1 for LOWZ and kmax = 0.23hMpc−1 for CMASS,
using the covariance matrix obtained from the MD-Patchy mocks [65]. The turquoise con-
tours are the 1σ and 2σ confident levels obtained from the analysis of combining the power
spectrum multipoles and the bispectrum up to kmax = 0.18hMpc−1 for the LOWZ sample
and kmax = 0.22hMpc−1 for the CMASS sample. This figure is taken from Ref. [62].
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the power spectrum and bispectrum are respectively defined as

(2π)3δD(k + k′)P(s)(k) ≡ ⟨δ(s)(k)δ(s)(k′)⟩, (120)

(2π)3δD(k1 + k2 + k3)B(s)(k1, k2, k3) ≡ ⟨δ(s)(k1)δ(s)(k2)δ(s)(k3)⟩, (121)

substituting Eq. (66) into the above leads to

P(s)(k) =
∫

dreik·r12

⟨
e−i f kzu12z {δ(r1) + f∇zuz(r1)} {δ(r2) + f∇zuz(r2)}

⟩
, (122)

for the redshift-space power spectrum, and

B(s)(k1, k2, k3) =
∫

dr13r23ei(k1·r13+k2·r23)

×
⟨
e−i f (k1zu13z+k2zu23z) {δ(r1) + f∇zuz(r1)} {δ(r2) + f∇zuz(r2)} {δ(r3) + f∇zuz(r3)}

⟩
, (123)

for the redshift-space bispectrum. Here, we used the normalized peculiar velocity defined

at Eq.(87), and denote the pairwise normalized velocity of the separation ri j = ri − r j by

ui j ≡ ui − u j.

From the above expressions, we see that albeit the simple relation (60), the power spec-

trum and bispectrum in redshift space are rather intricate statistical relation. Qualitatively,

the amplitude of the power spectrum is enhanced by the additional term of the velocity

field at large scales (Kaiser effect [4]), while at small scales, it is also known that an expo-

nential damping factor suppress the amplitude (Finger-of-God effect). We expect that the

redshift-space bispectrum possesses similar qualitative features, because the structure of

the expressions is of the same form in both the power spectrum and bispectrum. However,

redshift-space bispectrum has additional complexity, that no longer characterized simply

by the shape of the triangle, i.e., length of three wave vectors k1, k2 and k3, or length of

vectors k1 and k2 and their angle θ12 ≡ cos−1( k̂1 · k̂2). In addition to these three variables,

we need two more variables to describe the orientation of the triangular shape with respect

to the line-of-sight direction. In this respect, the identification and separation of the Kaiser

and Finger-of-God effects are rather non-trivial, and we need more careful treatment for an

accurate modeling of redshift-space bispectrum.

4.3 An improved modeling of redshift-space bispectrum
In this section, we present the PT model of redshift-space bispectrum which keeps the

non-perturbative damping effect. Our strategy is to decompose the contributions into non-

perturbative part and the terms which can be evaluated with PT calculation, starting with



38 Chapter 4. Precision modeling of redshift-space bispectrum

the exact expression, Eq. (123). For this purpose, we follow the treatment by Ref. [11], and

rewrite the exact expression in terms of cumulants. We then identify the non-perturbative

part responsible for the FoG damping. Based on the simple proposition similarly made by

Ref. [11], the non-perturbative damping term is separated out from the rest of the contribu-

tions, for which we apply the PT calculation. We derive the expression valid at one-loop

order.

Let us begin by rewriting Eq. (123) in the form

B(s)(k1, k2, k3) =
∫

dr13dr23ei(k1 r13+k2 r23)⟨A1A2A3e j4A4+ j5A5⟩, (124)

where the quantities Ai, ji are respectively defined by

A1 = δ(r1) + f∇zuz(r1), (125)

A2 = δ(r2) + f∇zuz(r2), (126)

A3 = δ(r3) + f∇zuz(r3), (127)

A4 = uz(r1) − uz(r3), (128)

A5 = uz(r2) − uz(r3), (129)

j4 = −ik1µ1 f , (130)

j5 = −ik2µ2 f , (131)

with µi = ki · ẑ/ki. To express the moment given above in terms of the cumulants, we use

the relation between moment and cumulant generating functions (e.g., [11, 6, 22]). For the

stochastic vector field A, we have

⟨e j·A⟩ = exp
{
⟨e j·A⟩c

}
, (132)

with j being an arbitrary constant vector, j. To be specific, we assume that the vector fields

given above are five components, i.e., A = {A1, A2, A3, A4, A5} and j = { j1, j2, j3, j4, j5}.
Then, taking the derivative three times with respect to j1, j2 and j3, we set j1 = j2 = j3 = 0.

We obtain

⟨A1A2A3e j4A4+ j5A5⟩ = exp
{
⟨e j4A4+ j5A5⟩c

} [
⟨A1A2A3e j4A4+ j5A5⟩c + ⟨A1A2e j4A4+ j5A5⟩c⟨A3e j4A4+ j5A5⟩c

+ ⟨A2e j4A4+ j5A5⟩c⟨A1A3e j4A4+ j5A5⟩c + ⟨A1e j4A4+ j5A5⟩c⟨A2A3e j4A4+ j5A5⟩c

+ ⟨A1e j4A4+ j5A5⟩c⟨A2e j4A4+ j5A5⟩c⟨A3e j4A4+ j5A5⟩c
]
. (133)
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This equation is indeed what we want to derive, and the left hand side is exactly the

same one as in the integrand of Eq. (124).

The above expression shows that the pairwise velocity fields A4 and A5 in the exponent

produce non-trivial correlations with density and velocity gradient fields. Further, these

fields appear in the overall prefactor. This is indeed the same structure as seen in the ex-

pression of power spectrum [11]. In power spectrum, the exponential prefactor is known

to give a suppression of the amplitude due to the large-scale coherent and small-scale viri-

alized motions, and at the large-scale of our interest, it mainly affects the broadband shape

of the power spectrum. We expect that the overall prefactor in Eq. (133) similarly behaves

like the one in the power spectrum, and it can alter the broadband shape of the bispectrum.

Because of its functional form, the prefactor is likely to be affected by the small-scale non-

linearity even at large scales, and we may thus take it as non-perturbative part. On the other

hand, the terms in the square bracket of Eq. (133) include the density fields and are respon-

sible for reproducing the real-space bispectrum in the absence of redshift-space distortions

[this is simply obtained by setting all the velocity fields in Eq. (133) to zero]. Thus, these

terms basically carry the cosmological information, and imprints the acoustic feature of

BAO. Although each term in the square bracket contains the exponential factor e j4A4+ j5A5 ,

the contribution can be small as long as we consider the BAO scales, and the perturbative

expansion may work well.

Based on these considerations, Ref. [11] presented a PT-based model for redshift-space

power spectrum which we call TNS model. The TNS model reproduces the measured

results of N-body simulations quite well, and incorporating the effect of galaxy bias into the

model, it has been also applied to the galaxy survey data [13]. We describe the formulation

of TNS model in Appendix C. Below, adopting the proposition by Ref. [11], we derive the

PT model of redshift-space bispectrum valid at weakly nonlinear scales. That is,

(i) The overall prefactor, exp
{
⟨e j4A4+ j5A5⟩c

}
, is kept as a non-perturbative contribution, and

is replaced with general functional form DFoG, which is assumed to be given as a

function of k1µ1, k2µ2 and k3µ3, ignoring the spatial correlation of A4 and A5. This

means that the zero-lag correlation is the only dominant contribution. The relevant

functional form of DFoG will be discussed in Chap. 4.4.

(ii) The terms in the square bracket are treated perturbatively, and regarding the variables

j4 and j5 as expansion parameters, we collect the contributions valid at one-loop
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order in standard PT.

From the proposition (i), the overall exponential factor is factorized outside the integral

over r13 and r23. We have

B(s)(k1, k2, k3) −→ DFoG(k1µ1, k2µ2, k3µ3)
∫

dr13dr23

× ei(k1 r13+k2 r23)
[
⟨A1A2A3e j4A4+ j5A5⟩c + ⟨A1A2e j4A4+ j5A5⟩c⟨A3e j4A4+ j5A5⟩c

+ ⟨A2e j4A4+ j5A5⟩c⟨A1A3e j4A4+ j5A5⟩c + ⟨A1e j4A4+ j5A5⟩c⟨A2A3e j4A4+ j5A5⟩c

+ ⟨A1e j4A4+ j5A5⟩c⟨A2e j4A4+ j5A5⟩c⟨A3e j4A4+ j5A5⟩c
]
, (134)

We then expand the terms in the square bracket. Up to the third order in jn, we obtain

B(s)(k1, k2, k3) −→ DFoG(k1µ1, k2µ2, k3µ3)
11∑

n=1

Cn(k1, k2, k3), (135)

where the functions Cn are defined by

Cn(k1, k2, k3) ≡
∫

dr13dr23 ei(k1 r13+k2 r23) S n (136)

with the integrands S n given below:

S 1 = ⟨A1A2A3⟩c, (137)

S 2 = ⟨A1A2⟩c⟨( j4A4 + j5A5)A3⟩c + cyc, (138)

S 3 = ⟨( j4A4 + j5A5)A1A2A3⟩c, (139)

S 4 = ⟨( j4A4 + j5A5)A1A2⟩c⟨( j4A4 + j5A5)A3⟩c + cyc, (140)

S 5 = ⟨A1A2⟩c⟨( j4A4 + j5A5)2A3⟩c + cyc, (141)

S 6 = ⟨( j4A4 + j5A5)A1⟩⟨( j4A4 + j5A5)A2⟩⟨( j4A4 + j5A5)A3⟩, (142)

S 7 = ⟨( j4A4 + j5A5)2A1A2A3⟩c, (143)

S 8 = ⟨( j4A4 + j5A5)3A1A2A3⟩c, (144)

S 9 = ⟨( j4A4 + j5A5)2A1A2⟩c⟨( j4A4 + j5A5)A3⟩c + cyc, (145)

S 10 = ⟨( j4A4 + j5A5)A1A2⟩c⟨( j4A4 + j5A5)2A3⟩c + cyc, (146)

S 11 = ⟨A1A2⟩c⟨( j4A4 + j5A5)3A3⟩c + cyc. (147)

In the above, the relevant terms for one-loop PT calculations, which are of the order of

O(P3
L), appear at n ≤ 6, and the rest of the terms turns out to be higher-order. Hence,
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Figure 8: Monopole (left) and quadrupole (right) moments of redshift-space bispectrum
from PT. The results at z = 1 are shown. While top panels show the scale-dependence
of the equilateral configuration (i.e., plotted as function of k ≡ k1 = k2 = k3 fixing θ12

to 2π/3), bottom panels plot the shape dependence for isosceles configuration fixing the
wave numbers to k1 = k2 = k = 0.19h Mpc−1. In each panel, green dotted and red dashed
lines are respectively the standard PT predictions at tree-level (B(s)

SPT,tree) and one-loop order
(B(s)

SPT,1-loop). Magenta solid lines are the prediction based on Eq. (151), B(s)
model, for which

the term DFoG is set to 1. This is essentially B(s)
SPT,1-loop, but the terms, D1 (orange) and D2

(cyan), are subtracted. This figure is taken from Ref. [47].

keeping the terms valid at the one-loop level, we model the redshift-space bispectrum as

B(s)
model(k1, k2, k3) = DFoG(k1µ1, k2µ2, k3µ3)

6∑
n=1

Cn(k1, k2, k3). (148)

The above model is compared with the standard PT results in Chap. 3.3, which can be

also derived from Eqs. (124) and (133) by a naive expansion of all the exponential factors,

ei( j4A4+ j5A5). Collecting the relevant contributions at one-loop order, we have

B(s)
SPT,1-loop(k1, k2, k3) =

6∑
n=1

Cn(k1, k2, k3) +
2∑

n=1

Dn(k1, k2, k3). (149)

with the functions Dn given by

Dn(k1, k2, k3) =
1
2

∫
dr13dr23 ei(k1 r13+k2 r23)S n ⟨( j4A4 + j5A5)2⟩c, (150)
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ωr̂2
ẑ

r̂1

θ12
k1

k2k3

φ

Figure 9: Definition of the angles, ω and ϕ, given in Eqs. (207) and (208), which char-
acterize the orientation of the triangle against the line-of-sight direction, ẑ. Here, the
unit vectors, r̂1 and r̂2, are expressed in terms of the quantities indicated in the figure by
r̂1 = ẑ × (k1 × k2)/(k1k2 sin θ12 sinω) and r̂2 = k1 × k2/(k1k2 sin θ12). This figure is taken
from Ref. [47]

where the function S n (n = 1, 2) is defined by Eqs. (137) and (138). These terms come

from the expansion of the overall prefactor exp
{
⟨e j4A4+ j5A5⟩c

}
. Hence, at one-loop order,

Eq. (148) is recast as

B(s)
model(k1, k2, k3) = DFoG(k1µ1, k2µ2, k3µ3)

{
B(s)

SPT,1-loop(k1, k2, k3) −
2∑

n=1

Dn(k1, k2, k3)
}
.

(151)

In what follows, we use Eq. (151) to compute the PT model of redshift-space bispec-

trum, and compare the predictions with N-body simulations. To be precise, we first com-

pute B(s)
SPT,1-loop based on the standard PT calculations summarized in Chap. 3.3 [Eqs. (112)

with (115), (116), (117), (118), and (119)]. Then, we subtract D1 and D2 terms from the

standard PT bispectrum and, we take into account Fingers-of-God effect. The explicit ex-

pressions for D1 and D2 relevant for the one-loop calculations are presented in Appendix

A.

Before closing this section, we look at the significance of the difference between the

standard PT bispectrum and the model given in Eq. (151) or (148). In Fig. 8, ignoring the

DFoG contribution, the monopole and quadrupole moments of the bispectrum are computed

at z = 1 for equilateral (top) and isosceles (bottom) configurations, and the results are

plotted as function of k and angle θ12 ≡ cos−1( k̂1 · k̂2), respectively. Here, the multipole
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moments of the bispectrum, B(s)
ℓ , are defined by:

B(s)
ℓ (k1, k2, θ12) =

∫ 2π

0

dϕ
2π

∫ 1

0
dµB(s)(k1, k2, k3)Pℓ(µ), (152)

where the function Pℓ(µ) is the Legendre polynomials with µ being the directional cosine

given by µ = cosω. The angles ω and ϕ characterize the orientation of the triangles (i.e.,

k1, k2, and k3) with respect to the line-of-sight direction (see Fig. 9). Precise definition

of the angles ω and ϕ, together with the properties of multipole expansion, is described in

Appendix B. Note that our definition differs from the one frequently used in the literature

(e.g., Refs. [46, 66, 30, 61]), but a nice property is that the bispectrum multipoles become

fully symmetric under the permutation of the order of k1, k2 and k3.

Fig. 8 shows that both the one-loop bispectra, B(s)
SPT,1-loop (red) and B(s)

model (magenta),

have a larger amplitude than the tree-level prediction. While these predictions lead to sim-

ilar scale and shape dependencies, differences appear manifest at smaller scales due to the

D1 and D2 terms. Though these two terms are basically small and weakly depend on scales,

we will see below that subtracting these from B(s)
SPT,1-loop indeed plays an important role to

get a consistent damping behavior of DFoG from both power spectrum and bispectrum (see

Chap. 4.4.4).

4.4 Comparison with N-body simulations
In this section, we present a detailed comparison of the redshift-space bispectrum between

PT predictions and N-body simulations. After briefly describing the N-body data set used

in the analysis in Chap. 4.4.1, we first compare the real-space results in Sec 4.4.2 to see the

applicable range of PT as well as the quality of N-body data. We then move to the redshift

space, and compare the monopole and quadrupole bispectra from N-body simulations with

those obtained by PT calculations in Chap. 4.4.3. Chap. 4.4.4 discusses the validity and

consistency of the ansatz for the damping function DFoG in our PT model of bispectrum.

4.4.1 N-body simulations and measurement of the bispectrum

We use the simulation ensembles Set B and Set C from Dark Energy Universe Simulation

- Parallel Universe Runs (DEUS-PUR) introduced by [67] 1. Each simulation started from

a given realization of the initial matter density field and cosmological parameters shown in
1Set C was not directly presented in [67] but it was performed at the same time for the same project.
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parameters

H0 72
ΩΛ 1 −Ωm

Ωm 0.2573
σ8 0.801
ns 0.963

Table 2: Cosmological parameters used in the simulations with RAMSES code.

HR LR
Set B C
Number of realizations 96 512
Box size [h−1Mpc] 656.25 1312.5
Number of particles 10243 5123

Particle [h−1M⊙] 1.88 × 1010 1.20 × 1012

Initial redshift (zini) 190 106
Output redshifts z = 1, 0 z = 1, 0.5, 0

Table 3: Parameters of N-body simulation sets used in the simulations.

Table 4.4.1. The initial conditions were generated with an improved version of MPGRAFIC

[36] while the particles evolution were computed with an optimized version of the RAM-

SES N-body code [35]. The main characteristics of the two ensembles of simulations are

summarized in Table 3. Set B consists in 96 simulations with 10243 particles in a cosmolog-

ical volume of (656.25 h−1Mpc)3. The total effective volume is 27 (h−1Gpc)3 and the mass

resolution is 1.88× 1010 h−1M⊙. We call this set HR (“High Resolution”). Set C consists in

512 simulations with 5123 particles in a cosmological volume of (1312.5 h−1Mpc)3. The to-

tal effective volume of 1158 (h−1Gpc)3 is larger but the mass resolution of 1.20×1012 h−1M⊙

is more limited. We call this set LR (“Low Resolution”). The two sets are complementary

because they are affected at different level by numerical effects such as sample variance,

finite volume and mass resolution effects (see Refs [67, 68] for a study of these effects).

The matter bispectrum is estimated using the BISP MES code [37] kindly provided

by S.Colombi. The code has been updated to take into account redshift space distortions

(RSD) and projections onto multipoles. We provide here a short summary of the numerical

methods, for more details see [37]. Particles position and velocity from a given snapshot are
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provided as an input of the code. Particles position are then displaced along the ẑ-direction

of the box using Eq. (60). When a particle falls outside of the simulation box, periodic

boundary conditions are assumed to ensure conservation of the total number of particles.

The density in Fourier-space is then computed using Cloud-In-Cell (CIC) mass assignment

followed by a Fast Fourier Transform (FFT). The density field is further deconvolved with

the CIC window function. We call the resulting density field from a given snapshot of the

j-th simulation of a set, δsim,j. For triangles with sides k1, k2 and k3, the multipole moments

of the bispectrum are computed by a projection onto Legendre polynomials followed by

an averaging over an homogeneous sample of modes within a bin of size ∆k1, ∆k2 and ∆k3

centered on k1, k2 and k3. The averaging procedure is performed by randomly picking Nmode

possible orientations and sizes of triangles within this interval (Monte-Carlo method). The

estimated multipole projection of the bispectrum for a given snapshot of the j-th simulation

is then given by

B(s)
ℓ,sim,j(k1, k2, k3) =

1
Nmode

Nmode∑
i=1

δ(s)
sim,j(ki

1)δ(s)
sim,j(ki

2)δ(s)
sim,j(ki

3)Pℓ(µi), (153)

where the subscript i indicates the rank of the orientation/size of the triangle.

The number of orientations/sizes Nmode used for the averaging procedure is set to 107.

With such a large value, the results are insensitive to the exact choice of Nmode. The size

of the bin is chosen to be equal to the fundamental frequency of the box. We also use

an FFT grid with 5123 elements. The corresponding Nyquist frequency is 2.45 h Mpc−1

(1.23 h Mpc−1) for the HR (LR) simulation. As a consequence, we do not apply any shot

noise corrections nor any aliasing corrections since such effects are negligible at the scale

of interest in this thesis (k < 0.3 h Mpc−1). However, at the very large scales of interest

for comparison to perturbation theory (k = 0.01 − 0.1 h Mpc−1), HR simulations might

suffer from non-negligible finite-mode sampling [69]. In the linear regime, the bispectrum

of the density field should be zero for perfect ensemble average. Because the total number

of independent modes in the simulation is finite, the resulting bispectrum is non-zero. To

mitigate this effect at large scales, we compute the initial bispectrum of each snapshot

B(s)
ℓ,ini,j. The linearly evolved bispectrum is then subtracted from the snapshot bispectrum to

obtain a corrected bispectrum B(s)
ℓ,corr,j. The linearly evolved bispectrum is computed using

Eq. (153) but instead of using the snapshot density δ(s)
sim,j(ki), we use the linearly evolved
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density field

δ(s)
linevol,j(ki, z) =

1 + f (z)µ2

1 + f (zini)µ2

D(z)
D(zini)

× δ(s)
sim,j(ki, zini), (154)

where f (z) is the linear growth rate and D(z) is the linear growth factor. This correction

plays a role at the percent level at small k (k < 0.1 h Mpc−1) for the HR run.

For each snapshot we consider isosceles triangles (k1 = k2) and scalene triangles (k1 =

2k2). For each type of triangle, we explore the scale dependence by fixing θ12 and varying

k1 and the shape dependence by fixing k1 and varying θ12. Once the bispectrum is computed

for all simulations of a given set, we perform an ensemble average of B(s)
ℓ,corr,j(k1, k2, k3) to

get the mean bispectrum of the set

B(s)
ℓ,sim(k1, k2, k3) =

1
Nsim

Nsim∑
j=1

B(s)
ℓ,corr,j(k1, k2, k3), (155)

where Nsim is the number of simulations of the set. This bispectrum estimate is the one

used in the rest of the thesis. We also compute the standard error of the bispectrum and we

estimate statistical error bars assuming2

∆B(s)
ℓ,stat =

√
1

Nsim

∑Nsim
j=1 B(s)

ℓ,corr,j(k1, k2, k3)2 − B(s)
ℓ,sim(k1, k2, k3)2

√
Nsim

. (156)

The same analysis is repeated in comoving space (i.e. no redshift space distortions) by

setting the velocity field and linear growth rate to zero.

4.4.2 Results in real space

Let us first look at the results in real space and check the applicable range of PT as well as

the quality of N-body data.

Fig. 10 shows the power spectra at z = 1 (top), 0.5 (middle) and 0 (bottom). Left panel

plots the power spectra multiplied by k3/2, while the right panel summarizes their fractional

difference, for which we take the predictions by the Emulator code [70, 71, 72, 73] as the

base value, and evaluate [P(k) − PEmu(k)]/PEmu(k) with PEmu being the Emulator power

spectrum. Note here that the error bars in the N-body results indicate the standard error of
2Multiplying the expression of Eq. (156) by

√
Nsim/(Nsim − 1) decreases the bias in the estimate of the

standard error. However, we think that our realizations are enough to neglect −1.
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Figure 10: Real-space power spectrum as function of wave number k at z = 1 (top), 0.5
(middle) and 1 (bottom). The left panel plots the power spectrum multiplied by k3/2, while
the right panel shows the fractional difference between the emulator and other predictions,
(P− PEmu)/PEmu. In each panel, black and gray points with errorbars indicate the results of
LR and HR simulations, respectively. The green dashed and red solid lines are the linear
theory and the standard PT one-loop predictions. The black dashed lines in the left panels
are the prediction based on the cosmic emulator [70, 71, 72, 73]. This figure is taken from
Ref. [47].
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Figure 11: Real-space bispectrum in real space at z = 1 (top), 0.5 (middle), and 0 (bot-
tom). The first two panels from the left show the results for equilateral triangular shape
(i.e., k1 = k2 = k3 = k), plotted as function of wave number k. The leftmost panel is the
bispectrum amplitude multiplied by k3, while the second panel plots the fractional differ-
ence between standard PT one-loop predictions and others, i.e., (B − B1-loop)/B1-loop. The
right two panels also present the results similarly to the left two panels, but the cases with
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standard PT prediction at tree-level order.This figure is taken from Ref. [47].



48 Chapter 4. Precision modeling of redshift-space bispectrum

the averaged power spectrum over the number of realizations. The claimed error bars of

the Emulator are 1%.

The PT predictions at one-loop order (red) reasonably agree with those of the emula-

tor code, and the agreement is at the 3 percent level for the scales of k ≲ 0.18, 0.12 and

0.1 h Mpc−1 at z = 1, 0.5 and 0, respectively. This is consistent with what has been found

in the literature. The high-resolution N-body data (HR) also shows a reasonable agree-

ment with the emulator (1 percent level over all the studied range of wavenumber) and

one-loop PT predictions, but the low-resolution data (LR) systematically deviates from

others at small scales. The deviation gradually increases from about 0.5 percent near

k = 0.05 h Mpc−1) to 5 percent near k = 0.2 h Mpc−1. This is a well known mass-resolution

effect which tends to decrease the power at small scale [70, 68, 74]. We refer to Ref. [68] for

a dedicated section about statistical and systematics errors on the matter power spectrum

with a similar simulation set-up as the one used in this thesis.

On the other hand, turning to look at the real-space bispectrum, we do not clearly see

the systematic difference between HR and LR simulations. Fig. 11 shows the results for

the equilateral triangular shapes plotted as function of k (left two panels), and those for the

isosceles triangles plotted as function of θ12 ≡ cos−1( k̂1 · k̂2) (right two panels). Note that

in panels showing the amplitude of bispectrum, the results are all multiplied by k3. Also, in

plotting the fractional difference (second left and rightmost panels), we take the one-loop

PT predictions as the base model, and evaluate the ratio, (B − B1-loop)/B1-loop.

Compared to the power spectrum case, the statistical errors in N-body simulations

is larger, and the difference between the two data set can be seen only at large scales

k ≲ 0.05 h Mpc−1. Rather, there seems to be a systematic difference between simulations

and PT prediction, and because of this, the agreement between simulations and PT predic-

tion look somewhat worse, and is at 5% level even at the scales where the reasonable agree-

ment at a few percent level can be seen in the power spectrum. Perhaps, these results might

be partly ascribed to the setup of initial conditions (early starting redshift) or to the overes-

timate of non-linear effects on the bispectrum by standard PT, but without any reference, it

is difficult to further clarify the origin of systematics. We will leave it to future investiga-

tion. Nevertheless, one important point is that the one-loop PT predictions can capture the

major trend in the N-body simulations at small scales; scale-dependent enhancement of the

bispectrum amplitude at k ≳ 0.05 h Mpc−1. Because of this, the agreement still remains at

the 5 − 10% level even at small scales at all redshifts.
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Keeping the systematics and a level of agreement in the real space in mind, we will

move to the redshift space, and continue the comparison in next subsection.

4.4.3 Results in redshift space
To see the impact of FoG damping on the bispectrum, we first compare the standard PT

predictions with results of N-body simulations.

Figs. 12 and 13 respectively show the scale- and shape-dependencies of the bispectrum

for equilateral and isosceles configurations. Based on the definition of multipole expansion

in Eq. (152) and Appendix B, we compute and measure the monopole and quadrupole

moments of the bispectrum, which are respectively plotted in left and right panels. Overall,

the N-body results both from the LR and HR data agree well each other. A closer look

at k ≳ 0.1 h Mpc−1 reveals that the amplitude of the LR data is systematically larger than

that of the HR data, but within the errorbars there is no significant discrepancy in both

monopole and quadrupole moments. Rather, a discrepancy between the N-body results and

PT predictions is manifest, and compared to the results in real space, the range of agreement

is fairly narrower for standard PT one-loop, and is restricted to a low-k region. This is rather

manifest at higher redshifts, and the prediction generally overestimates the simulations. On

the other hand, shifting the overall amplitude, the shape dependence predicted by standard

PT one-loop seems to reasonably match the measured results of N-body simulations (see

Fig. 13). The results clearly manifest that a naive standard PT fails to describe the damping

behaviors seen in the N-body simulations, and an appropriate prescription for the damping

effect is important for prediction even at large scales.

Let us then see how the PT model presented in Chap. 4.3 works well. In doing so,

an appropriate functional form of DFoG needs to be first specified. The function DFoG is

generally expressed as function of k1µ1, k2µ2, and k3µ3, and it contains the non-perturbative

damping behavior arising from the exponential factor, exp{⟨e j4A4+ j5A5⟩c} [see Eq. (133) and

proposition (i) in Chap. 4.3]. Here, we adopt the following Gaussian form as a simple and

relevant ansatz, similar to what has been frequently used in the power spectrum cases [11]:

DFoG = exp
[
−1

2
( f σv)2

{
(k1µ1)2 + (k2µ2)2 + (k3µ3)2

} ]
. (157)

The function f is the linear growth rate, and σv is the constant parameter corresponding to

the one-dimensional velocity dispersion, which controls the strength of the FoG damping.

Note that similar functional form is obtained by expanding the exponential pre-factor and
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Figure 12: Monopole (left) and quadrupole (right) moments of the redshift-space bispec-
trum for the equilateral triangles, plotted as function of wave number k at z = 1 (top), 0.5
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truncating it at the second-order in cumulants, just ignoring the spatial correlation. A non-

trivial point may be whether DFoG is still expressed as univariate function of (k1µ1)2 +

(k2µ2)2+(k3µ3)2 or not beyond the scales relevant for tree-level predictions. We will discuss

and check it in Chap. 4.4.4.

Adopting Eq. (157), Figs. 14-17 compare the prediction of the PT model with N-body

simulations. While Figs. 14 and 15 show the scale-dependence of the bispectrum ampli-

tudes for equilateral (k1 = k2 = k3) and scalene triangular configuration with k1 = 2k2 =

(2/
√

3)k3, Figs. 16 and 17 respectively plot the shape-dependence of the bispectrum as

function of θ12 = cos−1( k̂1 · k̂2) for the triangles of k1 = k2 and k1 = 2k2. In each figure,

the monopole and quadrupole moments of the bispectrum are computed/measured accord-

ing to the definition in Appendix B, and the results are presented in left and right panels,

respectively. Here, the measured results of the bispectra are shown only for LR data, since

no notable difference has been found in both LR and HR data.

Overall, the one-loop PT model depicted as magenta solid lines better agree with simu-

lations over a wider range of k as well as for a wide range of shapes. Note that the free pa-

rameter σv in Eq. (157) is determined at each redshift by fitting the predicted monopole and

quadrupole moments with measured results of N-body simulations at the range [kmin, kmax].

While kmin is set to 0.05 h Mpc−1, we adopt k1% defined by Ref. [75] as the maximum

wavenumber kmax, indicated by the vertical arrow in each panel of Figs. 14 and 15 (blue

for tree-level PT and red for one-loop PT). The k1% indicates the maximum wavenumber

below which the predicted power spectrum is shown to well reproduce the N-body result

within 1% accuracy in the real space, and from Fig. 11, we see that the k1% also gives a

good indicator for the applicable range of one-loop bispectrum in real space. Because the

deviations between PT and simulations do not behave as a monotonous function it is how-

ever hard to extract an exact scale. This is why we rely on more accurate power spectrum

measurements to define k1%. The fitted result of the parameter σv is given in left panel

of each figure, which are close to the linear theory prediction of one-dimensional velocity

dispersion (see also Tables 4, 5, Figs. 18 and 19).

A notable point may be that the one-loop PT model reproduces the N-body results even

beyond the fitting range of σv. For comparison, in Figs. 14-17, we have also plotted the
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P(s)
model: 1-loop B(s)

model: 1-loop
z kmax k1 = k2 = k3 k1 = 2k2 = (2/

√
3)k3 σv,lin

1 0.13 4.3 ± 0.1 (4.2 ± 0.04) 4.9 ± 0.3 (5.9 ± 0.3) 4.0 ± 0.2 (4.3 ± 0.3) 3.8
0.5 0.1 5.9 ± 0.1 7.8 ± 0.4 6.3 ± 0.3 4.8
0 0.08 8.8 ± 0.3 (9.8 ± 0.3) 13 ± 0.8 (15 ± 1.0) 10 ± 0.6 (9.1 ± 1.1) 6.1

Table 4: Fitted values of σv given in Eq. (157) from 1-loop models of power spectrum and
bispectrum. The results are obtained by fitting the monopole and quadrupole predictions
of PT models to the measured results from the LR (HR) data of N-body simulations, and
are listed in units of h Mpc−1. For reference, the rightmost column shows the linear theory
predictions.

B(s)
model: tree

z kmax k1 = k2 = k3 k1 = 2k2 = (2/
√

3)k3 σv,lin

1 0.09 6.1 ± 0.2 6.5 ± 0.1 3.8
0.5 0.07 9.0 ± 0.3 9.5 ± 0.2 4.8
0 0.06 13 ± 0.6 15 ± 0.4 6.1

Table 5: Same as Fig. 5, but the results for tree bispectrum model

tree-level standard PT predictions multiplied by the damping function of Eq. (157)3, de-

picted as blue short-dashed lines, but the agreement with N-body simulations is restricted

to the fitting range indicated by the blue vertical arrow. In this respect, the one-loop cor-

rections play an important role, together with damping function, to better describe the

redshift-space bispectrum at weakly non-linear regime. A closer look at the equilateral

case in Fig. 14 reveals that the agreement of the one-loop model is bit degraded compared

to the scalene case (Fig. 15), especially for the quadrupole moment. Similar trend is also

found for the shape dependence in Figs. 16 and 17. This is partly because for a fixed

wavenumber k, one of the side length for the triangle becomes smaller or larger than k, and

the results can be less or more sensitive to the nonlinearity of the gravitational clustering

and RSD. Indeed, for the cases shown in Figs. 15 and 17, the tree-level PT predictions get

closer to the one-loop PT results at large scales.



Section 4.4. Comparison with N-body simulations 53

 0

 1

 2

 3
z=1

σv=  4.9 (6.1)[Mpc/h]

LR
B1-loop

model
Btree

model

 0

 2

 4

k3 B
(s

)
0  

(k
,k

,2
π/

3)
  ×

10
-4

   
[(

M
pc

/h
)3 ]

z=0.5

σv=  7.8 (9.0)[Mpc/h]

 0

 4

 8

 12

 0.05  0.1  0.15  0.2  0.25
k  [h/Mpc]

z=0

σv=   13 (13)[Mpc/h]

 0

 0.5

 1

 1.5

 2
z=1

 0

 1

 2

 3

-k
3 B

(s
)

2  
(k

,k
,2
π/

3)
  ×

10
-4

   
[(

M
pc

/h
)3 ]

z=0.5

 0

 2

 4

 0.05  0.1  0.15  0.2  0.25
k  [h/Mpc]

z=0

Figure 14: Monopole (left) and quadrupole (right) moments of the redshift-space bispec-
trum for the equilateral triangles, plotted as function of wave number k at z = 1 (top), 0.5
(middle), and 0 (bottom). Here, the PT models involving the damping function DFoG are
compared with the measured results obtained from the LR data of N-body simulations. The
predictions of tree- and one-loop PT model are depicted as blue dashed and magenta solid
lines, respectively. In plotting the predictions, the free parameter σv in the damping func-
tion is determined by fitting the monopole and quadrupole moments to the N-body data at
0.05 h Mpc−1≤ k ≤ kmax, with kmax indicated by the vertical arrows in each panel. Note
that the error bars depicted as solid and dotted lines respectively represent the statistical
error averaged over the number of realizations, and the one including both the statistical
and systematic errors (see Chap. 4.4.4). This figure is taken from Ref. [47].
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Figure 15: Same as Fig. 14, but the results for scalene triangle of k1 = 2k2 = (2/
√

3)k3 = k
are shown. This figure is taken from Ref. [47].
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Figure 16: Same as Fig. 14, but here the shape dependence of the bispectrum for isosceles
triangle (k1 = k2) is plotted as function of θ12 = cos−1( k̂1 · k̂2), fixing the scale of k1 and k2
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models, we adopt the fitted results of σv obtained from Fig. 15. This figure is taken from
Ref. [47].



Section 4.4. Comparison with N-body simulations 55

 0

 4

 8

 12

σ
v  

[M
pc

/h
]

z=1

B (k1=k2=k3)
B (k1=2 k2=2/√3 k3)

P
σv,lin

z=0.5 z=0

 0

 1

 2

 3

 0.08  0.1  0.12 0.14 0.16 0.18  0.2

χ2 re
d  

kmax  [h/Mpc]

z=1

B (k1=k2=k3)
B (k1=2 k2=2/√3 k3)

P

 0.08  0.1  0.12 0.14 0.16 0.18  0.2
kmax  [h/Mpc]

z=0.5

 0.08  0.1  0.12 0.14 0.16 0.18  0.2
kmax  [h/Mpc]

z=0

Figure 18: Dependence of the fitted results of parameter σv (top), and the reduced chi-
square (bottom) on the maximum wavenumber kmax at z = 1 (left), 0.5 (middle), and 0
(right). Red and green symbols respectively represent the results from the bispectrum for
equilateral and scalene shape with k1 = 2k2 = (2/

√
3)k3. On the other hand, blue sym-

bols are obtained from TNS model by Ref. [11]. Note that all the results are obtained by
fitting the one-loop PT model predictions to the measured results from LR data of N-body
simulations. This figure is taken from Ref. [47].

 0

 4

 8

 12

σ
v  

[M
pc

/h
]

z=1

B (k1=k2=k3)
B (k1=2 k2=2/√3 k3)

P
σv,lin

z=0.5 z=0

 0

 1

 2

 3

 0.08  0.1  0.12 0.14 0.16 0.18  0.2

χ2 re
d  

kmax  [h/Mpc]

z=1

B (k1=k2=k3)
B (k1=2 k2=2/√3 k3)

P

 0.08  0.1  0.12 0.14 0.16 0.18  0.2
kmax  [h/Mpc]

z=0.5

 0.08  0.1  0.12 0.14 0.16 0.18  0.2
kmax  [h/Mpc]

z=0
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Figure 20: Ratio of the redshift-space bispectrum measured from the LR data and to the
one-loop (top) and tree-level (bottom) PT models, setting DFoG to unity (or equivalently,
taking the limitσv → 0). Here, without applying multipole expansion, the ratio is evaluated
for various orientation of the triangle, and the scatters of the estimated results are shown as
color shaded regions, fixing the equilateral shape (left) and scalene shape with k1 = 2k2 =

(2/
√

3)k3 (right). The resultant ratio is then plotted against (k1µ1)2 + (k2µ2)2 + (k3µ3)2.
Note that the four different color strengths imply the length of k1 used to estimate the ratio,
indicated at the upper horizontal axis. For reference, Gaussian (dashed) and Lorentzian
(dotted) forms of the damping function are also plotted. This figure is taken from Ref. [47].
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4.4.4 Testing the ansatz of damping function

Adopting the Gaussian form of the non-perturbative damping function, we have seen that

the PT model successfully describes the measured results of the bispectrum. However, the

validity and consistency of the treatment have to be checked and/or verified, at least in the

following two aspects. One is the consistency of the fitted values of σv. Since the present

PT model is constructed in similar manner to the TNS model in Ref. [11], the fitted values

of the parameter σv derived from bispectrum have to be consistent with those from the

power spectrum. The other aspect is the functional form of the damping function. We have

assumed in Eq. (157) that the damping function is expressed as the univariate function of

(k1µ1)2 + (k2µ2)2 + (k3µ3)2, but this can be verified only at the leading-order, and have to be

checked at the scales relevant for the one-loop PT.

Let us first discuss the consistency of the fitted value, σv. Tables 4 and 5 summarize

the results derived both from the bispectrum and power spectrum. The estimated results

are based on the N-body simulations of the LR (HR) data, and we used the one-loop model

for power spectrum, while for the bispectrum, the fitted results from two different con-

figurations are presented in both tree-level and one-loop PT cases. The best-fitted values

both from the power spectrum and bispectrum one-loop models reasonably agree with each

other at z = 1. Although a deviation is manifest at lower redshifts, this is small compared

to the cases with tree-level predictions of bispectrum.

To see the robustness of the fitted values, we extend the analysis in Tables 4 and 5, and

using the LR data, we examine the fitting in various range of k. The results are shown in

Figs. 18 and 19. In each figure, top and bottom panels respectively plot the fitted values

σv and the reduced χ2 as function of kmax. Note that in estimating χ2
red and the errors of the

fitted σv, we took account of the systematics in the N-body simulations. That is, at each

data point, we added the systematic errors ∆P(s)
ℓ,sys and ∆B(s)

ℓ,sys to the statistical errors of the

power spectrum and bispectrum multipoles, ∆P(s)
ℓ,stat and ∆B(s)

ℓ,stat, as shown in Figs. 14-17

for the bispectrum case (solid error bars: ∆B(s)
ℓ,stat, dotted error bars: ∆B(s)

ℓ,stat + ∆B(s)
ℓ,sys). The

size of the systematics is estimated from the real-space results in Figs. 10 and 11. We as-

sume that the relative systematics in redshift space for the power spectrum and bispectrum

are proportional to the relative systematics in real space for the matter power spectrum,

3In terms of the descriptions given in Chap. 4.3, the tree-level standard PT multiplied by DFoG corresponds
to the leading-order PT calculations of Eq. (148) with the functions Cn summing up to n = 2.
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∆Psys/Psim = |Psim − Pref |/Psim, where Psim represents the measured real-space power spec-

trum in N-body simulations, and Pref is our reference for the real-space power spectrum.

For the reference, we choose the emulator power spectrum (although the estimated system-

atics is of order 1 percent, we neglect this contribution). The systematics for the power

spectrum and bispectrum in redshift space are estimated as,

∆P(s)
ℓ,sys(ka)

P(s)
ℓ,sim(ka)

= α
∆Psys(ka)
Psim(ka)

, (158)

∆B(s)
ℓ,sys(k1, k2, k3)

B(s)
ℓ,sim(k1, k2, k3)

= β

√√
1
3

3∑
a=1

(
∆Psys(ka)
Psim(ka)

)2

, (159)

where α and β are two fudge factors that we have fixed to α ∼ 1 and β ∼ 1. We have checked

that at large-k (where statistical error bars are small compared to systematics), Eq. (159)

reproduces the order of magnitude of the relative difference between the bispectrum of the

HR set and the LR set (which is affected by mass resolution effect).

The rough systematic errors adopted here may result in a rather crude estimate of the

goodness of fit, and thus the derived χ2
red can only be used for a comparison between tree-

level and one-loop results in Fig. 18 and 19. Nevertheless, we see that the fitting results

in one-loop PT cases are basically stable against the variation of kmax, and the estimated

values of χ2
red are smaller than those in the tree-level cases. Further, we checked that the

(best-)fitted values of σv are robust against the systematic errors, and the resultant values

in one-loop PT reasonably agree well with each other, especially at z = 1. Although the

deviation becomes manifest at lower redshift, this would be probably due to the break down

of the one-loop predictions. In fact, the χ2
red systematically increases with kmax, indicating

that the fitting starts to fail. Thus, at least at the redshift z = 1, the one-loop PT models

work fine, and the FoG damping is described with a single parameter.

Next consider the validity of the ansatz for DFoG at Eq. (157). To clarify whether the

non-perturbative part is described by the univariate function or not, we directly measure the

bispectrum, not applying the multipole expansion. In this case, the bispectrum in redshift

space is described by the five variables. For each shape and orientation of the bispectrum,

we compute the corresponding PT prediction based on Eq. (148) or (151), but setting DFoG

to 1. Taking the ratio gives

B(s)
sim(k1, k2, θ12, ω, ϕ)

B(s)
model(k1, k2, θ12, ω, ϕ)

∣∣∣∣
DFoG=1

. (160)
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At the scales where the one-loop PT is applicable, this ratio directly quantifies the func-

tional form of DFoG, and thus we can check whether it is expressed as univariate function

of (k1µ1)2 + (k2µ2)2 + (k3µ3)2 or not.

Fig. 20 shows the measured results of the ratio, Eq. (160), for various orientations at

z = 1, plotted against (k1µ1)2 + (k2µ2)2 + (k3µ3)2. To be precise, what is shown here is

the dispersion of the measured ratio depicted as shaded color region, and the four different

color strengths imply the length of k1 used to estimate the ratio: k1 ≤ 0.05, 0.15, 0.5,

and 1 h Mpc−1 from dark to light. The results are compared with the univariate damping

function of the Gaussian (dashed) and Lorentzian (dotted) form. Clearly, the scatter of the

ratio for the one-loop PT model, given in top panel, is small, and its mean values fairly

trace the univariate damping function. This is in marked contrast to the results for tree-

level PT shown in bottom panel, where we see a large scatter. Further, the results seem

robust irrespective of the shape of the bispectrum triangle, as seen in both left and right

panels, where we respectively show the results for the equilateral case (k1 = k2 = k3) and

the scalene triangle with k1 = 2k2 = (2/
√

3)k3. A closer look at results suggests that

Lorentzian form describes the measured ratio reasonably well at the high-k tail, although it

is mostly the boundary where we can apply one-loop PT prediction. Hence, we conclude

that the univariate ansatz for DFoG is validated at least in the applicable range of one-loop

predictions.



Chapter 5 Testing improved bispectrum
template against simulation
catalogs

In this chapter, toward future practical application of the improved model of redshift-space

bispectrum developed in previous chapter, we here study how well we can get a robust and

tight constraint on the gravity both from the power spectrum and bispectrum. For this pur-

pose, we run a large number of N-body simulations and create mock matter/halo catalogs,

with which we perform cosmological data analysis. Using the improved models of power

spectrum and bispectrum, we carefully investigate how well these models reproduce the

fiducial model parameters in the N-body simulations, especially focusing on the growth

rate parameter. In doing this, one practical issue is the measurement of bispectrum from

N-body simulation, which requires a time-consuming calculation based on the standard

method. Hence, we first develop a fast estimation method for bispectrum, together with

accelerated calculation method for theoretical template. Applying these methods, we an-

alyze mock data from N-body simulation, and check if our model can properly reproduce

the fiducial cosmological parameters. We also demonstrate the impact of combining power

spectrum and bispectrum compared to the case using power spectrum alone.

5.1 Fast measurement of the bispectrum
Because the observable range of the universe is finite, available number of Fourier modes

is limited, and we can not perform a rigorous statistical average with galaxy survey data.

Nevertheless, we can estimate power spectrum and bispectrum from observation or simu-

lation by taking average over finite number of Fourier modes. For a robust measurement

of statistical quantity, we need to choose the estimator of statistical quantity in such a way

that, for an infinite number of Fourier modes, the estimator is exactly reduced to what we

want to measure, and the statistical fluctuation (i.e., variance) of it is minimized. Further,

the estimator should be evaluated faster as much as possible in measuring the bispectrum

from the data. Below, employing the bispectrum estimator developed by [76, 77], which

60
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enable us to calculate quite faster than usual one by adapting FFT, we extend it to the

measurement of bispectrum multipole shown in Fig. 9.

Following [77], we define the bispectrum estimator as:

B̂ℓ(k1, k2, θ12) ≡ (2ℓ + 1)
NT

123

3∏
i=1

∫
S i

d3 piδD(p1 + p2 + p3)
∫

d3xi

(2π)3 δ(xi)e−ipi·xiPℓ(q̂ · x̂), (161)

where, S i represents a linear bin around ki with the width given by ∆k, i.e., ki−∆k/2 ≤ pi ≤
ki + ∆k/2. The δ is the redshift-space density field measured from the data, x̂ is the unit

vector which points to the line-of-site direction, because we adapted the distant observer

and plane-parallel approximation, we can take x̂ as fixed direction ẑ (see Eq.(64)). q̂ is the

unit vector which is used to define the multipole moment of bispectrum. The NT
123 is the

number of triangles inside the shells S 1, S 2 and S 3, given by

NT
123 =

∫
S 1

d3 p1

∫
S 2

d3 p2

∫
S 3

d3 p3δD(p1 + p2 + p3). (162)

Note here that the N123 depends on the wave numbers, k1, k2, and k3.

In the N-body simulation and galaxy surveys, density fields are computed with particle

distributions, and discreteness of the particles produces additional systematics in measuring

statistical quantities, called shot noise. In the case of matter field, we can neglect the shot

noise if we have a sufficient number of particles. However, in the case of halos, or galaxies,

the shot noise becomes significant, and needs to be subtracted. To see the impact of the

shot noise, we consider to discrete Fourier transform of the density perturbation:

δ̃(k) ≡
N∑

i=1

wieik·xi , (163)

where, wi is the weight for each object, and we choose wi = 1/N which gives the same

weight for each object. The shot noise comes from the self pairs that appear in the summa-

tion over the product of the density perturbation.

In the case of monopole (ℓ = 0), the above estimator is rewritten with:

B̂0(k1, k2, θ12) =
1

NT
123

3∏
i=1

∫
S i

d3 pi

∫
d3rei(p1+p2+p3)rδ̃(pi) − Ns

0

=
1

NT
123

3∏
i=1

∫
d3rD0,S i(r) − Ns

0, (164)
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with the shot noise contribution Ns
0 given by

Ns
0 =

1
NT

123N

3∏
i=1

∫
S i

d3 piδD(p1 + p2 + p3)
[
δ̃(p1)δ̃(−p1) + cyc

] − 2
N2

=
1

NT
123N

∫
d3r

[D′0,S 1
(r)E0,S 2(r)E0,S 3(r) + cyc

] − 2
N2 , (165)

NT
123 =

3∏
i=1

∫
S i

d3 pi

∫
d3rei(p1+p2+p3)r =

3∏
i=1

∫
d3rE0,S i(r) (166)

D0,S i(r) ≡
∫

S i

d3 pδ̃(p)eip·r, (167)

D′0,S i
(r) ≡

∫
S i

d3 p|δ̃(p)|2eip·r, E0,S i(r) ≡
∫

S i

d3 peip·r, (168)

In the second line of Eq.(164) and (165), the Dirac delta function is rewritten with Fourier

integral form, and decompose it into several pieces. Thanks to this decomposition, we

can avoid a time-consuming operation for finding three-wave vectors satisfying triangular

condition, and only require the three-times FFT to evaluate the estimator.

In the case of quadrupole moment (ℓ = 2), there appears the differences arising from the

definition of multipole expansion. In the paper by [77], he took q̂ as k̂1, but in this thesis,

we choose q̂ as r̂2, as defined in Fig. 9. In this case, the Legendre polynomial becomes

P2(r̂2 · ẑ) =
3
2

{
k1xk2y − k1yk2x

k1k2 sin θ12

}2

− 1
2

=
3

2(k1k2 sin θ12)2

(
k2

1xk
2
2y − 2k1xk2yk1yk2x + k2

1yk
2
2x

)
− 1

2
. (169)

Substituting Eq.(169) into Eq.(161) and subtructing the shot noise, we obtain the estimator

of bispectrum quadrupole:

B̂2(k1, k2, θ12) =
5

NT
123

∫
d3rD0,S 3(r)

×
[3
2

{
Dxx,S 1(r)Dyy,S 2(r) +Dyy,S 1(r)Dxx,S 2(r) − 2Dxy,S 1(r)Dxy,S 2(r)

}
− 1

2
D0,S 1(r)D0,S 2(r)

]
− Ns

2,

(170)

Ns
2 =

5
NT

123N

∫
d3r

×
{
E0,S 3(r)

[3
2

{
D′xx,S 1

(r)Eyy,S 2(r) +D′yy,S 1
(r)Exx,S 2(r) − 2D′xy,S 1

(r)Exy,S 2(r)
}
− 1

2
D′0,S 1

(r)E0,S 2(r)
]

+ E0,S 3(r)
[3
2

{
Exx,S 1(r)D′yy,S 2

(r) + Eyy,S 1(r)D′xx,S 2
(r) − 2Exy,S 1(r)D′xy,S 2

(r)
}
− 1

2
E0,S 1(r)D′0,S 2

(r)
]
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+D′0,S 3
(r)

[3
2

{
Exx,S 1(r)Eyy,S 2(r) + Eyy,S 1(r)Exx,S 2(r) − 2Exy,S 1(r)Exy,S 2(r)

}
− 1

2
E0,S 1(r)E0,S 2(r)

]}
,

(171)

Dab,S i(r) ≡ 1
sin θ12

∫
S i

d3 p
pa pb

p2 δ̃(p)eip·r, (172)

D′ab,S i
(r) ≡ 1

sin θ12

∫
S i

d3 p
pa pb

p2 |δ̃(p)|2eip·r, Eab,S i(r) ≡ 1
sin θ12

∫
S i

d3 p
pa pb

p2 eip·r, (173)

where px and py are the x and y components of wave vector p, and Ns
2 is the shot noise of

bispectrum quadrupole. In deriving Eq.(170), we have fixed the angle θ12 inside the bin.

This is an approximation, but is valid as long as the size of the Fourier shell, S i, is small

enough. Thanks to this approximation, we can still apply FFT to Dab,S i(r), D′ab,S i
(r) and

Eab,S i(r).

We calculate monopole and quadrupole of bispectrum using these estimators as fol-

lows. 1) We assign the particles or halos to a cartesian grid of dimension Ngrid = 5123

using Cloud in Cell (CIC) interpolation. 2) Applying FFT for the density field on grids, we

obtain the density field in Fourier space. 3) Applying inverse FFT, we calculate D and E
in Eqs.(167),(168),(172) and (173) (we omit the subscripts in D and E) on grids from the

density field in Fourier space. 4) Taking summation over the product ofD and E, we obtain

Eqs.(164)-(166),(170) and (171). The difference between the fast measurement method and

he naive estimator in Eq.(161) appears from process 3). To calculate the bispectrum from

the density field in Fourier space, naive estimator have to check N2
grid cells for the triangle

condition, δD(p1 + p2 + p3), while the fast measurement method only needs Ngrid log Ngrid

operations for FFT. Therefore, the fast measurement method is quite powerful compare to

the naive estimator [76]. This fast measurement method takes less than two hour to calcu-

late monopole and quadrupole of bispectrum in the case of data set 3 for halo catalog which

we will describe below (see Table 8). Here, we used the 64 nodes for parallel computation

with OpenMP to perform FFT.

5.2 Fast calculation for improved bispectrum template
Toward a practical data analysis using bispectrum, fast computational method is demand-

ing not only for the measurement of bispectrum but also for the calculation of bispectrum

template. The improved model of bispectrum developed in Chap.4 needs five-dimensional

integration and computational cost becomes high if we proceed to the parameter estima-

tion analysis using all configurations of bispectrum, which we will later demonstrate. A
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straightforward way to accelerate the calculation is to store the numerical data of the tem-

plate for various configurations over the parameter space, and interpolate these results to

obtain the template to be fitted to the measured bispectrum. In this section, we summarize

the method to quickly construct the template of our improved bispectrum model.

In this thesis, we are particularly interested in constraining the growth rate, f , from bis-

pectrum, marginalizing over other nuisance parameters which keep the systematics under

control. The systematics we need to take care are the Finger-or-God effect and galaxy/halo

bias for which we will assume linear bias (but we allow it to be scale dependent, see

Chap.5.6.1). Then, the number of free parameters for each configuration of bispectrum

is three, i.e., f , σv, and b. In this case, our improved model Eq.(151) can be expanded in

polynomial form of f and b except FoG damping term:

B(s)
model(k1, k2, k3) = DFoG(k1µ1, k2µ2, k3µ3, fσv)

×
{ 1∑

i1=0

1∑
i2=0

1∑
i3=0

6∑
j=0

bi1(k1)bi2(k2)bi3(k3) f jBi1i2i3 j(k1, k2, k3)
}
, (174)

with, i1 + i2 + i3 + j ≤ 6. The expression given above is valid at one-loop order, and

number of possible non-vanishing components in Bi1i2i3 j becomes 32. This expression can

be also applied to the tree bispectrum model, and in this case, i1 + i2 + i3 + j ≤ 4 and Bi1i2i3 j

has 16 components. Hence, once we obtain Bi1i2i3 j(k1, k2, k3), we can quickly construct

the template the perturbative part for any values of f and b. To construct the template for

bispectrum multipoles, we need to further perform the angular integral for Bi1i2i3 j multiplied

by the FoG factor:

Bi1i2i3 j,ℓ(k1, k2, θ12) =
∫ 2π

0

dϕ
2π

∫ 1

0
dµDFoG(k1µ1, k2µ2, k3µ3, fσv)Bi1i2i3 j(k1, k2, k3)Pℓ(µ).

(175)

In the analysis below, we first store the numerical data of Eq.(175) for various config-

urations and values of σv. Interpolating these data set, the bispectrum template is then

constructed according to Eq.(174).

5.3 Constructing mock catalogs from N-body simulations
To test our bispectrum template, we create matter and halo catalog from N-body simulation

with cosmological parameters shown in Table 5.3. We use publicly available code, Gad-

get2, and the initial conditions were generated with 2LPT. The main characteristics of the
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simulation are summarized in Table 7. We first created the 380 realizations of matter fields

with 10243 particles in a cosmological volume of (1.0 h−1Gpc)3. The total effective volume

is 380 (h−1Gpc)3 and the mass resolution is 2.58 × 1011 h−1M⊙.

Then, we construct the halo fields from 350 simulations with the Friends-of-frends

(FoF) group finder [78] and the Rockstar code [79]. In the FoF algorithm, the particles are

linked together when their distance is shorter than linking length. In this thesis, we set the

linking length to 0.2 times of mean separation of particles, and consider the groups linked

more than 20 particles as candidates of halo. These candidates of halo still have particles

which is not bounded for the gravity of halo, and some of neighbor halos are recognized as

one halo, because FoF algorithm only cares the positions of particles. The Rockstar code

analyzes each candidate of halo in phase space, then removes the unbounded particles and

classifies the neighbor halos [79].

The FFT grid used for statistical calculation is 5123 elements. The corresponding

Nyquist frequency is 1.61 h Mpc−1. While we neglect shot noise corrections in matter

fields, we take into account the shot noise corrections for halo power spectrum and bis-

pectrum. Since we are interested in the scales much larger than Nyquist frequency, we do

not consider the aliasing corrections in both cases. In the simulations presented below, we

did not apply the method to reduce the fluctuation of the initial density fields, described in

Eq.(154).

Setting the size of the Fourier bin to the fundamental Fourier mode, i.e., ∆k = 2π/L,

we measure the bispectra using the fast estimator described in Chap. 5.1. Because of finite

size of bins, various wave vectors k⃗i fall into the same bin. Due to the finite numbers of

discrete Fourier modes, the averaged wavenumber over each bin is not always equal to the

central value of the bin. To take account of this, we estimate the actual mean value of

wavenumber in each Fourier bin, which is used to compute theoretical template of power

spectrum and bispectrum. For the power spectrum, we also consider the effect of inho-

mogeneous sampling arising from discrete Fourier modes, and take the average over the

discrete Fourier-modes (see Appendix B of Ref. [26] in detail).

5.4 Likelihood Analysis
To get the best-fit values and statistical errors of the free parameters, we perform maximum

likelihood analysis based on the Markov-chain Monte Carlo technique (MCMC) using pub-

licly available python code, emcee [80, 81]. We assume Gaussian likelihood function for
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parameters

H0 72
ΩΛ 1 −Ωm

Ωm 0.301
σ8 0.801
ns 0.963

Table 6: Cosmological parameters using for Gadget-2 simulation.

Matter fields Halo fields
Number of realizations 380 350
Box size [h−1Mpc] 1000. 1000.
Number of particles 10243 10243

Particle/Halo mass [h−1M⊙] 2.58 × 1011 > 5.16 × 1012

Initial redshift (zini) 15 15
Output redshifts z = 1, 0.5 z = 1, 0.5

Table 7: Parameters of N-body simulation data sets used in the Gadget-2 code.

power spectrum and bispectrum:

LP ∝ exp
{
−1

2
χ2

P

}
; χ2

P ≡
∑
ℓ,ℓ′=1,2

∑
i j

(
P(s)

i,ℓ,model − P(s)
i,ℓ,sim

) (
CP
ℓℓ′

)−1

i j

(
P(s)

j,ℓ,model − P(s)
j,ℓ,sim

)
,

(176)

LB ∝ exp
{
−1

2
χ2

B

}
; χ2

B ≡
∑
ℓ,ℓ′=1,2

∑
i j

(
B(s)

i,ℓ,model − B(s)
i,ℓ,sim

) (
CB
ℓℓ′

)−1

i j

(
B(s)

j,ℓ,model − B(s)
j,ℓ,sim

)
.

(177)

Here, i and j represent the Fourier bin. The functions P(s)
i,ℓ,model and B(s)

i,ℓ,model are respec-

tively the theoretical templates of multipole power spectrum and bispectrum given at the

wavenumber of i-th Fourier bin or the i-th triangular configuration (actual meaning of the

index i for the bispectrum will be later described in Chap. 5.5). For P(s)
i,ℓ,model, we use the

TNS model in Ref. [11]. The derivation of the TNS model and its analytical expressions

are summarized in Appendix C. For B(s)
i,ℓ,sim, we adapt our improved model in Eq.(148) with

Gaussian damping function (Eq.(157)), but for references, the models ignoring the one-loop

corrections (tree PT model), and including the D1 and D2 terms (SPT one-loop model, see
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0 1 2 3
Statistical quantity Power spectrum Bispectrum
kmin k f k f 0.05
kmax 0.15 k3 < 0.05, k1 and k2 < 0.15 0.15
Configurations cos θ23 < 0.0 0.0 ≤ cos θ23

Number of bins 29 204 384 766

Table 8: Summary of data sets for power spectrum and bispectrum used in likelihood anal-
ysis. Here, cos θ23 ≡ k̂2 · k̂3.

Eqs.(149), (150) and Appendix A) with Gaussian damping function are also examined to

see the impact of correction terms. The P(s)
i,ℓ,sim and B(s)

i,ℓ,sim are the averaged power spectrum

and bispectrum over 300 realizations of N-body simulations given at i-th Fourier bin or i-th

triangular configuration. The CP
ℓℓ′,i j and CB

ℓℓ′,i j in Eqs.(176) and (177) are the covariance

matrices of the ℓ- and ℓ′-th moment of multipole power spectrum and bispectrum between

i-th and j-th bins. In this thesis, we consider only the diagonal components, ignoring the

non-Gaussian off-diagonal components. Thus, the covariances can be written as

CP
ℓℓ′,i j ≡ δℓℓ′δi j

(
σP

i

)2
, (178)

CB
ℓℓ′,i j ≡ δℓℓ′δi j

(
σB

i

)2
. (179)

Here, σP
i and σB

i is the statistical errors of power spectrum and bispectrum at i-th bin

or i-th triangle, which are evaluated from the standard error of simulations according to

Eq.(156). Then, the maximum likelihood estimation gives the best fit values of parameters.

Also, with the MCMC chain of the samples, one can evaluate the posterior probability

distribution for each parameter from which we can estimate the statistical uncertainty of

the best-fit values. When combining both power spectrum and bispectrum, we assume that

power spectrum and bispectrum are statistically uncorrelated, and use LP × LB as the total

likelihood function to estimate the best-fit value and statistical uncertainties of the model

parameters.

Below, the likelihood analysis is performed with various values of kmax up to 0.15 h

Mpc−1. In particular, for the bispectrum, robustness of the best-fit results are carefully

checked with different combination of data set. Table 8 summarizes the data used for

likelihood analysis.
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5.5 Results in matter fields
Let us first present the results for matter density fields to check if our improved bispec-

trum model can consistently reproduce the fiducial model parameters, as well as to see the

impact of combining both power spectrum and bispectrum to break the degeneracy of the

parameters between f and σ′v ≡ fσv.

To demonstrate this, we assume a hypothetical survey with the volume 1 h−3 Gpc3 at

z = 1. This is comparable to that of a particular redshift slice of Subaru PFS [82]. To

estimate the statistical errors, we simply rescale the (diagonal component of) covariance

evaluated from 380 simulations by

CP
ℓℓ′,ii →

Vsim

Vsurv
CP
ℓℓ′,ii, (180)

CB
ℓℓ′,ii →

Vsim

Vsurv
CB
ℓℓ′,ii. (181)

Here, Vsim is the total volume of simulation over 380 realization while Vsurv is survey vol-

ume of hypothetical survey, i.e., Vsurv = 1h−3Gpc3. Fig. 21 and Table 9 present the results

of the parameter estimation. In Fig. 21, the 68% (and 96%) confidence regions of power

spectrum and bispectrum are respectively depicted as darker (lighter) gray and green con-

tours. There is a strong degeneracy between parameters f and σ′v in each case. However,

the degeneracies shown in power spectrum and bispectrum cases are slightly different each

other, and combining power spectrum and bispectrum helps to break the degeneracy, re-

ducing the statistical error significantly, as shown by the red contour in Fig. 21. As a result,

the marginalized 1 σ error (68% C.L.) on f becomes tighter than 30%, and fiducial value

of f is inside the confidence region (Table 8). Increasing kmax, available number of Fourier

modes gets increased, and the statistical error would be further reduced, leading to a much

tighter constraint. However, the present theoretical templates are built with one-loop PT

calculations, and beyond kmax = 0.15 h Mpc−1, nonlinear effect of gravity becomes signifi-

cant, and the higher-order corrections need to be included.

The resultant constraint shown in Fig. 21 indicates that the PT-based template works

very well, but comparing the best-fit results of the PT templates with the measured results

from simulations, as shown in Figs. 22-24, we sometimes see a large discrepancy especially

for bispectrum in several types of configurations. Here, in Figs. 23 and 24, the results

are sorted as triangle configurations indexed with Fourier bins similar to Ref. [62]. The

index starts from the smallest triangle among the data set. We then plot the bispectrum for
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Figure 21: Constraints on the parameters f and σ′v from the matter field, assuming a hy-
pothetical survey with the volume 1 h−3 Gpc3 at z = 1. The darker (lighter) green, black
and red contours show the statistical uncertainty at 68% (95%) confident limit from the
bispectrum, power spectrum, and combination of both power spectrum and bispectrum,
respectively. Blue vertical lines indicate the fiducial value of f .

P(s)
model: 1-loop B(s)

model: 1-loop P(s)
model + B(s)

model: 1-loop fiducial/linear

f 0.8582+0.0097
−0.0105 0.8619+0.0135

−0.0138 0.8582+0.0068
−0.0073 0.8698

σ′v 3.380+0.114
−0.128 3.493+0.247

−0.266 3.392+0.091
−0.101 3.164

Table 9: The best-fit values and the marginalized 1 σ error of the parameters f and σ′v
from redshift-space power spectrum, bispectrum and combination of power spectrum and
bispectrum in matter fields assuming a hypothetical survey with the volume 1 h−3 Gpc3

at z = 1. The results are obtained from the maximum likelihood analysis with MCMC
technique up to kmax = 0.15 hMpc−1.
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triangular bins where we sequentially loop through all possible sets of values of k1, k2 and

k3, with k3 in the inner most loop, and k1 in the outer most increasing loop, where the loops

go from kf to the maximum value considered, either kmax = 0.15hMpc−1, a truncation scale

set by our constraints k3 ≤ k2 ≤ k1 or k1 ≤ k2 + k3. In this method, a smaller index tends to

represent the bispectrum at larger scale.

In Figs. 23 and 24, while the best-fit power spectrum template perfectly matches the

measured power spectrum quite well, a large discrepancy is found for squeezed and flattened-

shape triangles in the quadrupole moments of bispectrum, and it is true even at large scales.

A possible reason for this may be that due to a finite number of Fourier modes, discrete-

ness of Fourier modes leads to an inhomogeneous sampling over each bin. As a result,

the measured bispectrum averaged over each Fourier bin may differ from the PT template

computed at the center of Fourier bin. Our bispectrum templates were built accounting for

the weighted sampling, and each bispectrum was computed at the weighted Fourier modes,

however, the effect of inhomogeneous sampling has not been properly taken into account

in this treatment. Note that in computing the power spectrum, we partly include it by av-

eraging over the discrete Fourier modes over each bin according to Ref. [26] (In Fig. 22,

the zigzag pattern seen in the quadrupole power spectrum indeed comes from the effect of

inhomogeneous sampling). Another important source for the discrepancy may come from

our measurement of bispectrum from N-body simulations. Indeed, in measuring bispec-

trum for each configuration, we assume that the angle θ12 (see Fig. 9 for definition) is fixed

over each Fourier bin, but this would be a crude approximation especially at large scales

(low-k modes). To see the impact of these systematics, the data set 2 is useful, because the

triangles in this data set is chosen as 0.0 ≤ cos θ23(≡ k̂2 · k̂3) and k3 < 0.05h−1Mpc. In

Fig. 23, we see the discrepancy between measurement and the best-fit template including

other data sets.

Finally, we compare the parameter estimation results of our improved model with other

PT models. Fig. 25 shows the kmax dependance of the best fit values, the statistical uncer-

tainty at 68% confidence levels of fitting parameters, and, χ2
red, from maximum likelihood

analysis and MCMC with TNS model of power spectrum, tree, SPT one-loop and our im-

proved model of bispectrum, and these results at kmax = 0.15h−1Mpc is summarized in

Table 10. Here, the χ2
red is calculated dividing the chi-square in the exponent in Eqs.(176)

and (177) by the degrees of freedom. To reduce the systematics mentioned above, we only

use the triangles satisfying the conditions, k2min + k3min > k1max, where kimin (kimax) is the
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Figure 22: Redshift-space power spectrum multiplied by k3/2 for matter fields (top) and
fractional difference between the best-fit theoretical model and measured result from sim-
ulations, normalized by the standard error, (P(s)

ℓ,sim − P(s)
ℓ,model)/σ

P, (bottom). The results
are then plotted as function of wave number k at z = 1. In top panel, red (green) points
with error bars and blue (magenta) line indicate the results of power spectrum monopole
(quadrupole) from simulations and TNS model, respectively. The red (green) points in bot-
tom panel are the fractional error of power spectrum monopole (quadrupole). In plotting
the predictions, the best-fit values of the parameters, f and σ′v, obtained from the maximum
likelihood analysis with kmax = 0.15 h Mpc−1 are used.
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Figure 23: Redshift-space bispectrum multiplied by k3
3 in matter fields (top) and its frac-

tional difference between the theoretical model and simulation result normalized by sta-
tistical error of simulation , (B(s)

ℓ,sim − B(s)
ℓ,model)/σ

B, (bottom), plotted as function of triangle
index of data set 1 (left) and 2 (right) at z = 1. The horizontal axis means the index of
triangles, and B(s)

i is the bispectrum corresponding to the bin which has ith index. In top
panel, red (green) points with error bars and blue (magenta) line indicate the results of bis-
pectrum monopole (quadrupole) from simulations and our theoretical model, respectively.
The red (green) points in bottom panel are the fractional error of bispectrum monopole
(quadrupole). In plotting the predictions, the best-fit values of the parameters f and σ′v
obtained from the maximum likelihood analysis with kmax = 0.15 h Mpc−1 are used.
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Figure 24: Same as Fig.23, but here we show the results of data set 3. Left and right panels
show the results of monopole and quadrupole of bispectrum, respectively.
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P(s)
model: 1-loop B(s)

model: 1-loop B(s)
model: SPT,1-loop B(s)

model: tree fiducial/linear

f 0.8582+0.0005
−0.0005 0.8984+0.0011

−0.0011 0.9184+0.0014
−0.0013 0.7560+0.0009

−0.0005 0.8698

σ′v 3.380+0.006
−0.006 4.171+0.014

−0.014 4.761+0.016
−0.015 0.186+0.001

−0.000 3.164

Table 10: The best-fit values and the marginalized 1 σ errors of the parameters f and
σ′v from redshift-space power spectrum and bispectrum in matter fields at z = 1. The
results are obtained from the maximum likelihood analysis with MCMC technique up to
kmax = 0.15 hMpc−1. In this analysis, the bispectra which do not satisfy the conditions,
k2,min + k3,min > k1,max and cos θ12 > −0.9 are removed.

minimum (maximum) wavelength of the bin ki, and cos θ12 > −0.9. Here, we do not assume

any survey condition, and just check the accuracy of estimation. That is the covariance ma-

trices of power spectrum and bispectrum are just those evaluated over 380 simulations (i.e.,

Vsim/Vsurv = 1 in Eqs.(180) and (181)).

Due to a large number of realization data, we can get the best fit values with sufficiently

small uncertainty, with which we can address the accuracy of theoretical template by few

percent level. From the Fig. 25 and Table 10, we see that the TNS model can reproduce

the fiducial value of growth rate f within 3% accuracy in any kmax, and σ′v = fσv is almost

consistent with linear theory prediction. For references, Fig. 25 and Table 10 also show the

results based on the tree-level PT and SPT one-loop models. As increasing kmax, the best-fit

value of f obtained from the tree PT model starts to deviate from fiducial one by more than

10%. One the other hand, SPT one-loop model reasonably reproduces the fiducial value of

f within almost 3% accuracy. This demonstrates that one-loop contribution to the redshift-

space bispectrum is quite important to estimates the cosmological parameters correctly. A

closer look at the estimated f , however, reveals a small but non-negligible systematic offset

from the fiducial value. In both cases, the resultant values of χ2
red are larger than that of our

improved model. We thus conclude that our improved model of bispectrum is the best

among the three PT models, and gives a consistent result with the likelihood analysis using

power spectrum.

5.6 Results in halo fields
Let us next consider the halo catalogs. The dark matter halo is the self-gravitating bound

object composed of dark matter. After halo is formed, the mass of halo continuously grows
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Figure 25: Best-fit value with 1 σ error of the parameters f (top) and σ′v (middle), and the
reduced chi-square (bottom), plotted against maximum wavenumber kmax at z = 1. Red,
green and black symbols respectively represent the results from the bispectrum from the
SPT one-loop, our improved model and tree calculation removing the bispectra which do
not satisfy the conditions, k2,min + k3,min > k1,max and cos θ12 > −0.9. On the other hand,
black symbols are obtained from the power spectrum based on TNS model by Ref. [11].



Section 5.6. Results in halo fields 75

through the accretion and merger processes. Baryonic material will be therefore dragged

gravitationally by the dark matter halo, and baryons will concentrate towards its deep po-

tential well. The halos are thus regarded as the sites of galaxy formation, and in this respect,

the statistics of halo distribution are expected to be close to those of the observed galaxy

distribution. Hence, the test against halo catalogs is an important next step toward practical

application.

One important difference between halo and dark matter catalogs is that the halo distri-

bution is not a perfect tracer of dark matter distribution, and we need to incorporate the

effect of clustering bias into the theoretical template. This is rather essential for our case

with PT-based template for the dark matter distribution.

5.6.1 Linear bias model
Here, we discuss a simple recipe to incorporate the effect of clustering bias into our PT-

based template. The clustering bias for halos, in comparison with dark matter distribution,

is basically described by the so-called extended Press-Schechter formalism that is con-

structed based on the assumption of peak-background split [83]. With this treatment, the

fluctuation of number density of halos, δh, is generally expressed as a nonlinear function

of dark matter density field δm (e.g.,Refs. [84, 85]). However, the nonlinearity of halo bias

partly comes from gravitational evolution, and for our interest of large scales, the non-

linearity is supposed to be weak. In this respect, the assumption of linear bias may be

validated. In what follows, adopting the same approach by Ref. [86] as examined in the

power spectrum, we assume the linear but scale-dependent bias in the form:

δh(k) = b(k)δm(k). (182)

Here, b is the linear bias parameter, in the absence of primordial non-Gaussianity, it is

expected to be constant on large scales [87]. It is shown in Refs. [86, 13] that the halo

power spectrum is well described by the linear bias Eq.(182) on top of the following scale-

dependent function:

b2(k) = b2
0
1 + Qk2

1 + Ak
, (183)

where, b0, Q and A are regarded as nuisance parameters to be determined by fitting the

template to the measured data.

The scale dependent function in Eq.(183) is known to empirically work well in weakly

non-linear regime, and has been used for the data analysis in 2dF Galaxy Redshift Survey
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[88] and SDSS-II DR7 LRG catalog [13]. Also, Ref. [89] shows that combining TNS

model with the linear bias with Eq.(183), the growth rate can be estimated in a good accu-

racy from the halo catalog.

5.6.2 Results

Similarly to the matter field case, let us first examine the analysis assuming the hypothetical

survey of the volume 1 h−3 Gpc3 at z = 1. Incorporating the bias prescription in Chap. 5.6.1

into PT-based template, we check if the growth rate f is estimated correctly from the halo

power spectrum and bispectrum. Note that in this study, we have in total five parameters

to be determined, i.e., f , σ′v = f σv, b0, A and Q. The result of likelihood analysis is

shown in Fig. 26 and Table 11. Note that the statistical error are estimated based on the

covariance matrices given at Eqs.(180) and (181) with Vsim/Vsurv = 350/1. We here use all

the data set shown in Table 8. Similar to the matter field case, there is a strong degeneracy

between f and σ′v. Combining bispectrum helps to partly break the degeneracy, tightening

the constraint on f , as we saw in previous section. Quantitatively, the statistical uncertainty

at 68% confidence limit of f is reduced by more than 30% if we combinin the bispectrum.

Still, the fiducial value of f is estimated correctly within the confidence region.

However, as summarized in Table 11, the best-fit value of the growth rate from the

bispectrum data rather differs from the one from the power spectrum data, and largely

deviates from the fiducial value. In Figs. 27, 28 and 29, the best-fit power spectrum and

bispectrum templates are compared with measured results from halo catalogs, showing a

large discrepancy in the squeezed and flattened-shape triangles for the bispectrum. As

we have already seen in the matter field case, this would be probably due to the effect of

inhomogeneous sampling in both measurement and theoretical template. A great difference

is that this effect does not affect the parameter estimation in matter field case, but now in

the halo case, it leads to a biased estimation of f . One possible reason may be that the

incomplete prescription for halo bias leads to a spurious parameter degeneracy between

growth rate and bias parameters, which results in a biased estimation.

In order to reduce the impact of this flaw, one simple approach is to remove the squeezed

and flattened-shape bispectra from the parameter estimation analysis. Fig. 30 and Ta-

ble 12 presents the results removing the bispectra which do not satisfy the conditions,

k2,min + k3,min > k1,max and cos θ12 > −0.9. Fig. 30 summarizes the best-fit values of f and

marginalized 1σ errors, plotted as function of kmax. Here, to estimate the statistical error,
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we simply adopt the covariance evaluated from the 350 realizations of halo catalogs (that

is, Eqs.(180) and (181) with Vsim/Vsurv = 1).

Then, with the improved one-loop templates (black and red), the resultant best-fit values

of the growth rate and other parameters, obtained from power spectrum and bispectrum,

become almost consistent with each other. As a result, the fiducial value is recovered well

within the 3% accuracy. The χ2
red is also reasonably small even at kmax = 0.15 h Mpc−1. On

the other hand, bispectrum templates based on the tree-level PT and naive one-loop SPT

yield biased estimation of f , inconsistent with the best-fit values obtained from the power

spectrum data.

Having confirmed that removing the squeezed and flattened-shape configurations re-

duces systematics, we go back to the combined analysis of both power spectrum and bis-

pectrum, and finally demonstrate how well we can properly estimate and constrain the

growth rate with the limited number of triangles for bispectrum. Fig. 31 and Table 13

present the results, again assuming the hypothetical survey with the volume of 1 h−3 Gpc3

at z = 1. Removing the squeezed and flattened- shape triangles, the statistical power of

bispectrum data is rather suppressed, and the improvement of the constraint on f is limited

to 17% at most, although the best-fit value properly reproduces the fiducial one. The result

clearly illustrates the importance of including all the configurations of the bispectrum to

tightly constrain f . Thus, making the best use of the potential power of the bispectrum,

halo bias prescription needs to be improved, together with a proper account of the effect of

inhomogeneous sampling. Still, however, the improvement of the constraint on f is rather

comparable to the result by Ref. [62], in which they combined the power spectrum with

bispectrum monopole only, and used the data at z = 0.57 up to higher kmax (≃ 0.2 h Mpc−1).

Despite the fact that the number of triangles used in the parameter estimation is reduced by

∼ 40%, the results in Fig. 31 and Table 13 are regarded as a considerable success, and it

proves that including bispectrum quadrupole indeed plays an important role to tighten the

constraint on f . We thus conclude that the data analysis including the anisotropic bispec-

trum data is crucial for future galaxy surveys, and the analysis and methods developed in

this chapter, including the fast estimation of bispectrum and the accelerated calculation of

PT-based template, are valuable and helpful.
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Figure 26: Constraint on the parameters f , σ′v, b0, Q and A from the halo catalog, assuming
a hypothetical survey with the volume 1 h−3 Gpc3 at z = 1. The darker (lighter) green, black
and red contour respectively shows the statistical uncertainty at 68% (95%) confident limit
from bispectrum, power spectrum, and combination of them based on the improved PT
templates. Blue vertical lines indicate the fiducial value of f .
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P(s)
model: 1-loop B(s)

model: 1-loop P(s)
model + B(s)

model: 1-loop fiducial/linear

f 0.8568+0.0280
−0.0367 0.7769+0.0352

−0.0155 0.8590+0.0171
−0.0263 0.8698

σ′v 2.671+0.271
−0.425 0.2833+0.9908

−0.0965 2.712+0.180
−0.336 3.164

b0 1.817+0.045
−0.022 1.822+0.054

−0.036 1.815+0.034
−0.019

Q −2.054+4.453
−2.487 −8.546+9.304

−3.512 −2.389+3.270
−2.238

A −0.5802+0.9149
−0.4497 −1.353+1.485

−0.654 −0.6752+0.6619
−0.3838

Table 11: Best fit values and the marginalized 1 σ errors of parameters f , fσv, b0, Q and A
from redshift-space power spectrum, bispectrum and combination of power spectrum and
bispectrum for halo fields assuming a hypothetical survey with the volume 1 h−3 Gpc3 at
z = 1. The results are obtained kmax = 0.15 hMpc−1.
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Figure 27: Same as Fig. 22, but in the case of halo power spectra. Five fitting parameters,
f , σ′v, b0, Q and A. The best-fit power spectra are computed based on TNS model assuming
linear bias relation at Eqs.(182) and (183).
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Figure 28: Same as Fig. 23, but in the case of halo catalog, based on our improved bispec-
trum template combined with linear bias prediction at Eqs.(182) and (183).
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Figure 29: Same as Fig. 24, but in the case of halo catalog.
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Figure 30: Best-fit values and χ2
red as function of kmax in the case of halo catalog. Depen-

dance of bias parameters on the maximum wavenumber kmax is also shown at right panels.

P(s)
model: 1-loop B(s)

model: 1-loop B(s)
model: SPT,1-loop B(s)

model: tree fiducial/linear

f 0.8558+0.0016
−0.0016 0.8433+0.0039

−0.0033 0.8662+0.0050
−0.0039 0.6760+0.0022

−0.0014 0.8698

σ′v 2.654+0.016
−0.017 2.081+0.054

−0.047 3.046+0.059
−0.050 0.2762+0.0028

−0.0019 3.164

b0 1.820+0.002
−0.002 1.868+0.006

−0.006 1.869+0.005
−0.006 1.805+0.010

−0.0051

Q −1.526+0.179
−0.171 −4.693+0.572

−0.485 −4.942+0.537
−0.462 −9.708+1.770

−0.874

A −0.4866+0.0338
−0.0317 −0.5069+0.1079

−0.1023 −0.4887+0.1042
−0.0962 −2.733+0.235

−0.114

Table 12: The best-fit values and the marginalized 1 σ errors of the parameters f , fσv, b0,
Q and A from redshift-space power spectrum and bispectrum in halo field at z = 1. The
results are obtained from the maximum likelihood analysis with MCMC technique up to
kmax = 0.15 hMpc−1.
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Figure 31: Same as Fig. 26, but the bispectra which do not satisfy the conditions, k2,min +

k3,min > k1,max and cos θ12 > −0.9 in this analysis are removed.
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P(s)
model: 1-loop B(s)

model: 1-loop P(s)
model + B(s)

model: 1-loop fiducial/linear

f 0.8568+0.0280
−0.0367 0.8420+0.0830

−0.0373 0.8945+0.0268
−0.0265 0.8698

σ′v 2.671+0.271
−0.425 2.027+1.178

−0.651 2.988+0.243
−0.263 3.164

b0 1.817+0.045
−0.022 1.859+0.091

−0.058 1.810+0.038
−0.023

Q −2.054+4.453
−2.487 −5.977+14.262

−4.249 −2.042+4.330
−2.397

A −0.5802+0.9149
−0.4497 −0.7531+2.5795

−0.8427 −0.6506+0.8252
−0.4373

Table 13: Same as Fig. 11, but the bispectra which do not satisfy the conditions, k2,min +

k3,min > k1,max and cos θ12 > −0.9 in this analysis are removed.
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Despite the considerable success of the standard cosmological model that consistently ex-

plains the cosmic expansion and structure formation, the origin of late-time cosmic acceler-

ation has not yet been clarified. To clarify this, in precision cosmology era, a gigantic data

will be obtained from upcoming surveys, and measurement of statistical quantities will be

made very precisely. Toward future cosmological analysis, improving the accuracy of the-

oretical template is rather critical. So far, the cosmological constraints on gravity and/or

dark energy, obtained from large-scale structure observations, has been mainly made with

the theory and measurement of the two-point statistics. However, the large-scale galaxy

distribution in the late-time universe exhibits gravity-induced non-Gaussianity, and the bis-

pectrum, three-point cumulant is expected to contain significant cosmological informations

together with power spectrum. In particular, the measurement of the bispectrum helps to

tighten the constraints on dark energy and modified gravity through the redshift-space dis-

tortions (RSD).

In this thesis, toward a robust and severe test of gravity with redshift-space distortions

(RSD) from future galaxy redshift surveys, we have presented a perturbation theory (PT)

model of redshift-space bispectrum that can keep the non-perturbative damping effect of

the redshift-space distortions (RSD) under control. Starting with the exact formula for

redshift-space bispectrum, we rewrite the expression in terms of the cumulants to identify

the non-perturbative term. Separating the non-perturbative term responsible for the so-

called Fingers-of-God (FoG) damping effect, we derive the perturbative expressions for

bispectrum valid at one-loop order. The resultant model has been constructed similarly to

the TNS model in Ref. [11], and it incorporates the non-perturbative damping term on top

of the terms that can be computed with standard PT.

Adopting the Gaussian form of damping function, we have performed a detailed com-

parison between the predictions of PT model with the measured results of the bispectrum

from a suite of cosmological N-body simulations in matter field. Incorporating a single free

parameter into the damping function, the one-loop PT model reproduces the simulation re-

sults fairly well at weakly nonlinear scales at z = 0 − 1. The fitted results of the parameter

84
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σv are found to agree well with those obtained from the power spectrum, and the agree-

ment generally holds irrespective of the shape of the triangles. On the other hand, even if

we incorporate the damping function into the model, the tree-level PT predictions start to

deviate from N-body results at rather low-k. Also, the fitted value σv does not match the

one obtained from the power spectrum, and varies with triangular shapes.

We have further examined the validity of the ansatz imposed in the functional form of

the damping function [Eq. (157)]. Combining the simulation data with standard PT results,

we confirmed that the univariate ansatz for damping function DFoG indeed hold for one-

loop PT model, and its functional form is shown to be very close to the Gaussian, although

the Lorentzian form looks slightly better. Note, however, that in the case of the tree-level

PT model, univariate ansatz does not give a good description, and this can be a part of the

reason why the failure of tree-level PT prediction appears at rather low-k. Hence, even at

large scales, a careful modeling with one-loop correction is essential, and together with the

model of power spectrum proposed by Ref. [11], the present one-loop model of bispectrum

gives a coherent description for RSD.

From the maximum likelihood analysis using Markov-chain Monte Carlo technique

(MCMC), we also investigate the impact of combining power spectrum and bispectrum

for constraining growth rate and the accuracy of the estimation, using our improved model

of bispectrum in the case of matter and halo fields. For practical data analysis, we de-

velop a fast estimation method of bispectrum multipole as well as the accurate calculation

method of the PT-based bispectrum template. Employing these methods, we demonstrate

the estimation of growth rate from mock catalog made by N-body simulation assuming a

hypothetical survey with the volume 1 h−3 Gpc3 at z = 1. Both case of the matter and halo

field, the constraints on growth rate from combining power spectrum and bispectrum are

30% tighter than that from power spectrum alone, by solving the degeneracy of parameters

between f and σv, and the best fit value of f is consistent with fiducial value with 1σ level.

However, we find large discrepancy between the bispectrum from N-body simulation and

our improved model at squeezed and flattened triangles. A possible reasons for this may

be the discreteness of Fourier modes inside the bins and our measurement of bispectrum

from N-body simulation. By removing the bispectra of squeezed and flattened triangles,

our improved and SPT one-loop models of bispectrum can predict the growth rate accu-

rately without power spectrum, while the best fit value of f from tree model of bispectrum

starts to deviate from the fiducial value as increasing kmax in matter and halo fields. The
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accuracy of estimated f from our improved model is slightly better than that from SPT

one-loop model, and within 3% even if we take kmax = 0.15h−1Mpc. Removing the bis-

pectra of squeezed and flattened triangles, the constraint on growth rate from combining

power spectrum and bispectrum becomes week, but the constraint is still improved 17%

compare to the analysis of power spectrum alone in halo fields. Despite the fact that the

number of triangles is reduced by ∼ 40%, this improvement of the constraint on f is rather

comparable to the result by Ref. [62], in which they combined the power spectrum with

bispectrum monopole only, and used the data at z = 0.57 up to higher kmax (≃ 0.2 h Mpc−1).

It proves that including bispectrum quadrupole indeed plays an important role to tighten

the constraint on f . We thus conclude that the data analysis including the anisotropic bis-

pectrum data is crucial for future galaxy surveys, and the analysis and methods developed

in this thesis, including the fast estimation of bispectrum and the accelerated calculation of

PT-based template, are valuable and helpful.

Finally, we note that toward the practical application to real applications, there still

remain several issues to be addressed. One is the improvement of the PT prediction. In-

cluding the higher-order (two-loop) corrections or applying the resummation technique,

the applicable range of PT is expected to become wider, and a more tighter test of grav-

ity will be made. Effective field theory approach may also help to improve the prediction

(e.g., Refs. [90, 91, 92, 93]). Another issue is the estimation of statistical error covari-

ance of bispectrum, which is crucial and necessary for unbiased and robust cosmological

data analysis. The N-body measurement of the covariance is, however, known to be com-

putationally extensive (e.g., Refs. [56, 57] for weak lensing case), and a clever approach,

involving the analytic treatment, may have to be developed, for instance. The cross covari-

ance between power spectrum and bispectrum is also important for the precise estimation

of growth rate. In this thesis, we treat the power spectrum and bispectrum is independent,

but the constraint on parameters from their combination can be weaken by considering the

cross covariance of them. The treatment of bispectra of squeezed and flattened triangles

are also the important issue. To perform further tight and accurate constraint by combining

bispectrum, we need more careful treatment for these bispectra. One final big issue is the

galaxy biasing. Throughout the thesis, we have employed the linear bias model, but the

observations imply that the galaxy bias has the non-linearity and stochasticity. Especially,

the second order bias effect appears in the leading order of bispectrum. Incorporating the

realistic galaxy bias model is thus very crucial.
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Appendix A Perturbative calculations for D1

and D2 terms

In this Appendix, we present the perturbative expressions for the D1 and D2 terms defined

in Eq. (150), relevant at one-loop order calculations.

First note that Eq. (150) is expressed in terms of the real-space quantities, including the

auto- and cross-power spectra and bispectra of density and velocity fields. For convenience,

we introduce the two-component multiplet:

Ψa(k) =
(
δ(k), θ(k)

)
, (184)

with θ being the dimensionless velocity divergence defined in real space by θ(x) = −∇ ·
v/( f aH). Then the auto- and cross-power spectra and bispectra are given by

(2π)3δD(k1 + k2) Pab(k1) ≡ ⟨Ψa(k1)Ψb(k2)⟩, (185)

(2π)3δD(k1 + k2 + k3) Babc(k1, k2, k3) ≡ ⟨Ψa(k1)Ψb(k2)Ψc(k3)⟩, (186)

where subscripts a, b, c run from 1 to 2.

Since the integrand of the D1 and D2 terms respectively involves BabcPde and PabPcdPe f ,

the leading-order non-vanishing contributions become O(P3
L). This is the same order as in

the one-loop redshift-space bispectrum. Hence, the tree-level calculations of Pab and Babc

are sufficient for a consistent one-loop treatment of redshift-space bispectrum. That is,

Pab(k) ≃ PL(k), (187)

Babc(k1, k2, k3) ≃ 2
{
Fa(k2, k3) PL(k2)PL(k3) + Fb(k1, k3) PL(k1)PL(k3) + Fc(k1, k2) PL(k1)PL(k2)

}
,

(188)

where the kernel Fa is the standard PT kernels at second-order, given by Fa = (F2, G2).

Below, we will separately present the explicit expressions for D1 and D2 terms. In doing
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so, we use the following expressions for the cumulants:

⟨A1A2A3⟩c =
∫

d3 p1d3 p2

(2π)6 ei{p1·r13+p2·r23}
2∑

a,b,c=1

f a+b+c−3µ2(a−1)
p1
µ2(b−1)

p2
µ2(c−1)

p3
Babc(p1, p2, p3),

(189)

⟨( j4A4 + j5A5)2⟩c = − f 2
∫

d3 p
(2π)3

µ2
p

p2 P22(p)

×
{
(k1µ1)2 + (k2µ2)2 + (k3µ3)2 + 2

(
k1k2µ1µ2eip·r12 + k1k3µ1µ3eip·r13 + k2k3µ2µ3eip·r23

)}
,

(190)

⟨A1A2⟩c =
∫

d3 p
(2π)3 eip·r12

{
P11(p) + 2 fµ2

p P12(p) + f 2µ4
pP22(p)

}
, (191)

⟨( j4A4 + j5A5)A3)⟩c = − f
∫

d3 p
(2π)3

µp

p

{
P12(p) + fµ2

pP22(p)
}{

k1µ1 eip·r13 + k2µ2 eip·r23 + k3µ3

}
(192)

with the quantities µi and µp respectively defined by µi = (ki · ẑ)/ki and µp = (p · ẑ)/p.

A.1 D1 term
According to Eq. (150), the D1 term is explicitly written as

D1(k1, k2, k3) =
1
2

∫
d3r13d3r23 ei(k1·r13+k2·r23) ⟨A1A2A3⟩c ⟨( j4A4 + j5A5))2⟩c. (193)

Substituting Eq. (189) and (190) into the above, we obtain

D1(k1, k2, k3) = − f 2

2

{
(k1µ1)2 + (k2µ2)2 + (k3µ3)2

}
σ2

v,lin C1(k1, k2, k3)

− f 2
∫

d3 p
(2π)3

µ2
p

p2 P22(p)
{
(k1k2µ1µ2) C1(k1 + p, k2 − p, k3)

+ (k1k3µ1µ3) C1(k1 + p, k2, k3 − p) + (k2k3µ2µ3) C1(k1, k2 + p, k3 − p)
}

(194)

with the quantity σv,lin being the linear theory estimate of the one-dimensional velocity

dispersion, given by

σ2
v,lin ≡

∫
d3 p

(2π)3

µ2
p

p2 P22(p) ≃
∫

dp
6π2 PL(p). (195)

Here, the function C1 is the same one as defined in Eq. (136 ) with (137), and is explicitly

given by

C1(k1, k2, k3) =
2∑

a,b,c=1

µ2(a−1)
1 µ2(b−1)

2 µ2(c−1)
3 Babc(k1, k2, k3). (196)
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A.2 D2 term
From Eq. (150), the D2 term is expressed in terms of the cumulants below:

D2(k1, k2, k3) =
1
2

∫
d3r13d3r23 ei(k1·r13+k2·r23) ⟨( j4A4 + j5A5))2⟩c

×
[
⟨A1A2⟩c ⟨( j4A4 + j5A5))A3⟩c + ⟨A1A3⟩c ⟨( j4A4 + j5A5))A2⟩c + ⟨A2A3⟩c ⟨( j4A4 + j5A5))A1⟩c

]
.

(197)

Substituting Eqs. (190)-(192) into the above expression, after lengthy calculation, we ob-

tain

D2(k1, k2, k3) = − f 2

2
{(k1µ1)2 + (k2µ2)2 + (k3µ3)2}σ2

v,lin C2(k1, k2, k3)

+ f 3(k1µ1)(k2µ2)(k3µ3) J2(k1, k2, k3) + f 3 K2(k1, k2, k3). (198)

Here, the function C2 is the same one as defined in Eq. (136) with (138). The explicit

expressions for the functions C2, J2 and K2 are given below:

C2(k1, k2, k3) = − f (k1µ1)
{
X(k2)Y(k3) + X(k3)Y(k2)

}
+ cyc. (199)

J2(k1, k2, k3) =
∫

d3 p
(2π)3

µ2
p

p2 P22(p)
{
X(k2 − p)Y(k1 + p) + X(k1 + p)Y(k2 − p)

}
+ cyc.

(200)

K2(k1, k2, k3) =
∫

d3 p
(2π)3

µ2
p

p2 P22(p)
[{

(k1µ1)2(k2µ2) X(k2 − p) + (k1µ1)(k2µ2)2 X(k1 − p)
}

Y(k3)

+ (X ↔ Y)
]
+ cyc. (201)

with the functions X and Y defined by

X(p) = P11(p) + 2 f µ2
p P12(p) + f 2 µ4

p P22(p), (202)

Y(p) =
µp

p

{
P12(p) + f µ2

p P22(p)
}
. (203)



Appendix B Multipole expansion of
redshift-space bispectrum

In Chap. 4.3 and 4.4, we have applied the multipole expansion to the redshift-space bispec-

trum, and evaluated its monopole and quadrupole moments. In this Appendix, we present

the definition of our multipole expansion which differs from the one frequently used in the

literature (e.g., [46, 66, 30, 61]). The newly defined bispectrum multipoles have several

nice properties, which we will discuss below.

The redshift-space bispectrum is characterized as a function of five variables. Three of

them characterize the shape of triangle, i.e., the length of two wave vectors k1 and k2, and

the angle between them, θ12 ≡ cos−1( k̂1 · k̂2). The two remaining variables describe the

orientation of the triangle with respect to the line-of-sight. We denote them by ω and ϕ. In

Ref. [46], the dependance of the orientation of the triangle are conveniently described by

decomposing into spherical harmonics:

Bs(k1, k2, k3) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

B(ℓ,m)
s (k1, k2, θ12)Yℓm(ω, ϕ). (204)

Similar to Ref. [46], we focus on the m = 0 multipoles, which correspond to averaging over

ϕ. Then, the above equation leads to∫ 2π

0

dϕ
2π

Bs(k1, k2, k3) =
∞∑
ℓ=0

B(ℓ)
s (k1, k2, θ12)Pℓ(µ), (205)

were Pℓ(µ) is the Legendre polynomials. The variable µ represents the directional cosine

of the orientation, µ = cosω. This is rewritten with

B(ℓ)
s (k1, k2, θ12) =

2ℓ + 1
2

∫ 1

−1
dµ Pℓ(µ)

∫ 2π

0

dϕ
2π

Bs(k1, k2, k3). (206)

In the above, the bispectrum multipole, B(ℓ)
s , is the quantity of our interest, but at this

moment, Eq. (206) is ambiguous because we do not yet specify what is ω and ϕ. To

describe the orientation of the triangle, a simple way is to choose k1 specifically, and define

the orientation angle as µ = cosω = k̂1 · ẑ [46]. Then, we set ϕ to the azimuthal angle
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around k1. In this case, however, the resultant bispectrum multipoles B(ℓ)
s (k1, k2, θ12) are not

fully symmetric under the permutation of order, k1, k2 and k3.

Here, we give alternative definitions of ω and ϕ to preserve the symmetry of bispectrum

multipoles. This is shown in Fig. 9. Given two vectors k1 and k2, we define the orientation

of the triangle by the angle between line-of-sight direction and the vector normal to the

triangle, i.e., k̂1 × k̂2. That is,

µ = cosω =
( k̂1 × k̂2) · ẑ

sin θ12
. (207)

The remaining angle ϕ may be defined as the azimuthal angle around the vector k̂1 × k̂2.

Since this is perpendicular to the plane of the triangle, we have

cos ϕ =

{
ẑ × (k̂1 × k̂2)

}
· k̂1

sinω
. (208)

One may suspect that the above definition still breaks the symmetry. Indeed, the vectors

k1 and k2 can be arbitrarily chosen among three vectors, and we can even exchange k̂1 ←→
k̂2. Then the orientation angle is changed to ω → π − ω. Nevertheless, the bispectrum

multipole B(ℓ)
s is invariant. This is because only the ℓ = even modes of the bispectrum

become non-vanishing, and we have Pℓ(cosω) = Pℓ(cos(π − ω)) for ℓ = even.

Once accepting the new definition, the measurement of the bispectrum multipoles is

straightforward:

• In harmonic space, we first pick up the three density fields, δ(k1), δ(k2), and δ(k3),

with the vectors satisfying k1+k2+k3 = 0. Here, labels of k1, k2 and k3 are arbitrary.

• Choosing the two vectors among the three, we calculate the directional cosine µ

according to Eq. (207).

• Multiplying the bispectrum estimator by the Legendre polynomial Pℓ(µ).

• Repeating the above three steps for the same triangle configuration but with different

µ, we average the weighted bispectrum estimator over µ. Further multiplying the

averaged bispectrum by the factor (2ℓ+ 1)/2, we finally obtain the bispectrum multi-

pole, B(ℓ)
s , which is characterized by the length of two vectors, and the angle between

them [see Eq. (206)].



Appendix C Review of TNS model

In this section, we present the PT model of redshift-space power spectrum which keeps

the non-perturbative damping effect described by Ref. [11]. The strategy is similar to our

improved bispectrum model, i.e. decomposing the contributions into non-perturbative part

and the terms which can be evaluated with PT calculation, starting with the exact expres-

sion, Eq. (122).

Let us begin by rewriting Eq. (122) in the form

P(s)(k) =
∫

drei(kr)⟨A1A2e j′A′⟩, (209)

where the quantities A1 and A2 is similar to the bispectrum case shown at Eq.(125) and

(126), while A′ and j′ are respectively defined by

A′ = uz(r1) − uz(r2), (210)

j′ = −ikµ f , (211)

with µ = k · ẑ/k. Using Eq.(132), we express the moment given above in terms of the cu-

mulants. To be specific, we assume that the vector fields given above are three components,

i.e., A = {A1, A2, A′} and j = { j1, j2, j′}. Then, taking the derivative two times with respect

to j1, j2, we set j1 = j2 = 0. We obtain

⟨A1A2e j′A′⟩ = exp
{
⟨e j′A′⟩c

} [
⟨A1A2e j′A′⟩c + ⟨A1e j′A′⟩c⟨A2e j′A′⟩c

]
. (212)

This equation is indeed what we want to derive, and the left hand side is exactly the

same one as in the integrand of Eq. (209).

Here, we employ the proposition mentioned at Chap. 4.3. From the proposition (i), the

overall exponential factor is factorized outside the integral. We have

P(s)(k, µ) −→ DFoG(k, µ)
∫

dr

× eikr
[
⟨A1A2e j′A′⟩c + ⟨A1e j′A′⟩c⟨A2e j′A′⟩c

]
, (213)
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We then expand the terms in the square bracket. Up to the second order in j′, we obtain

P(s)
model(k, µ) = DFoG(k, µ)

∫
dr eikr

×
[
⟨A1A2⟩c + j′⟨A1A2A′⟩c + ( j′)2⟨A1A2⟩c⟨A1A′⟩c +

( j′)2

2
⟨A2

1A2A′⟩c
]
. (214)

The ( j′)2

2 ⟨A2
1A2A′⟩c term in above expression do not contribute significantly. Finally, TNS

model is given by:

P(s)
model(k, µ) = DFoG(k, µ)

∫
dr eikr

[
P11(k) + 2 fµ2P12(k) + f 2µ4P22(k) + A(k, µ) + B(k, µ)

]
.

(215)

A(k, µ) ≡ j′
∫

dreikr⟨A1A2A′⟩c,

= −kµ
∫

d p
(2π)3

µp

p
[Bσ(p, k − p,−k) − Bσ(p, k,−k − p)], (216)

B(k, µ) ≡ ( j′)2
∫

dreikr⟨A1A2⟩c⟨A1A′⟩c,

= ( f kµ)2
∫

d p
(2π)3 F(p)F(k − p), (217)

F(p) ≡
µp

p

[
P12(p) + µ2

p f P22(p)
]
. (218)

Here, we define the cross bispectrum:⟨
θ(k1)

δ(k2) + f
k2

2z

k2
2

θ(k2)


δ(k3) + f

k2
3z

k2
3

θ(k3)


⟩

c

≡ (2π)3δD(k1 + k2 + k3)Bσ(k1, k2, k3).

(219)

The power spectrum is expanded by Legendre polynomials:

P(s)
ℓ (k, µ) =

∫ 2π

0

dϕ
2π

∫ 1

0
dµP(s)(k, µ)Pℓ(µ). (220)


