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Nomenclature 

A : Area of cell 

Da : Darcy number 

g : Gravitational acceleration 

k : Hydraulic conductivity 

l : Length of cell face 

m : Time step 

n : Outward-normal unit vector on cell face 

p : Piezometric pressure 

pf : Pressure at interface 

Re : Reynolds number 

t : Time 

t+ : Nondimensional time 

u : Cartesian velocity 

u+ : Nondimensional Cartesian velocity 

iû  : Intermediate velocity 

u* : Intermediate velocity 

iu   : Intermediate velocity 

u,f : Velocity at interface 

U : Normal velocity on cell face 

Uave : Average bulk velocity in fluid domain 

(u)face : Cartesian velocity on cell face 

x : Cartesian coordinate 

x+ : Nondimensional Cartesian coordinate 

 : Density of water 

 : Kinematic viscosity of water 

 : Porosity 

t : Computational time step 

 : Distance from cell center to interface 
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1 Introduction 

1.1 Motivation 

The simultaneous computation of the seepage flow in porous media and the regular 

flow in the fluid domain has a variety of applications to practical problems related to the 

prevention of natural disasters, such as the erosion of soil structures, piping flows within 

natural slopes, and the stability of embankments subjected to tidal waves. For example, 

the erosion of soils is affected by surface flows as well as by subsurface flows, i.e., 

seepage flows, and these two flow fields need to be grasped in order to predict how the 

erosion develops. The present thesis focuses on the water flows through these two 

domains, and a numerical method to compute the two flow fields simultaneously is 

proposed. 

Studies on the interaction of the Navier-Stokes and the seepage flows in the fluid 

domain can be traced to the velocity on the boundary between the fluid and the Darcy 

domains. Beavers and Joseph (1967) conducted experiments under the condition that the 

Hagen-Poiseuille seepage flow occurs along a wall, and discussed the boundary 

conditions of the fluid domain. Based on the experimental results, they suggested that it 

was desirable to give the slip condition to the boundary between the fluid and the Darcy 

domains. After that, the components of the flow velocity along the boundary between the 

fluid and the Darcy domains were discussed several times. Saffman (1971) improved the 

model which was proposed by Beavers and Joseph (1967). Moreover, Neale and Nader 

(1974) explained the velocity and stress on the boundary between the fluid and the Darcy 

domains using the continuous model. In addition, Bars and Worster (2006) and Ochoa-

Tapia and Whitaker (1995a, 1995b) also discussed this topic. Although a great deal of 

effort has been made to clarify this issue, the best model has not yet been obtained. Thus 

far, there have been several numerical studies dealing with the coupled analysis of the 

Navier-Stokes and the Darcy flows (e.g., Çeşmelioğlu and Rivière, 2012; Chidyagwai 

and Rivière, 2009, 2011; Badea et al., 2010; Girault and Rivière, 2009; Cai et al., 2009; 

Urquiza et al., 2008; Mu and Xu, 2007). They adopted different governing equations 



Introduction 

2 

 

between the fluid and the Darcy domains, as shown in Equations (1.1) and (1.2). 
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where ui, p, , , k, and g denote the flow velocity, the piezometric pressure, the density 

of water, the kinematic viscosity of water, the hydraulic conductivity, and the gravitational 

acceleration, respectively, and t and xi are time and the Cartesian coordinates. Girault and 

Rivière (2009) numerically analyzed steady solutions for Equations (1.1) and (1.2) by the 

discontinuous Galerkin scheme, and Chidyagwai and Rivière (2009) discussed the 

existence and uniqueness of the numerical solutions which are discontinuous at the 

interface between the fluid and the Darcy domains. Badea et al.(2010) implemented the 

coupling of the fluid and the Darcy domains using the iterative method, and Chidyagwai 

and Rivière (2011), Cai et al.(2009), and Mu and Xu (2007) proposed numerical schemes 

to solve Equations (1.1) and (1.2) using a two-grid method, which can reduce the 

computational costs with the aid of coarse and fine grids. Çeşmelioğlu and Rivière (2012) 

initiated studies on the existence of solutions for a problem which was coupled with an 

advection-diffusion equation in addition to Equations (1.1) and (1.2). Their interest was 

mainly in the mathematical treatment used to connect the numerical solutions in the two 

different domains and in the numerical procedure for satisfying the conservation of mass 

and momentum at the interface. 

There are two objectives in the thesis. The first objective is to propose a simple 

numerical method to simultaneously solve the Navier-Stokes and the Darcy flows which 

is uncomplicated and applicable to practical problems. The second objective is to 

investigate the influence of the Darcy flow in porous media on the Navier-Stokes flow in 

the fluid domain by using the numerical method proposed in the thesis. 
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1.2 Thesis outline 

This thesis consists of seven chapters as summarized below. 

Chapter 1 is the present introduction which describes the motivation of the thesis 

and a review of the studies related to the thesis. 

In Chapter 2, a numerical method for simulating the Navier-Stokes and the Darcy 

flows is described. The Darcy-Brinkman equations have been employed as the governing 

equations. At first, they are discretized by the finite volume method. They include the 

Navier-Stokes equations and can approximately describe the Darcy flow by changing the 

values of porosity and hydraulic conductivity. The solutions to the Darcy-Brinkman 

equations are affected by two dimensionless quantities, namely, the Reynolds number and 

the Darcy number. 

In Chapter 3, the proposed numerical method is validated by means of several 

problems. First, the lid-driven cavity flow and the backward-facing step flow are 

computed in order to validate the Navier-Stokes flow in the fluid domain since the 

computational domain in these problems is occupied by the fluid domain. Next, the one-

dimensional uniform flow in the water channel and the lid-driven cavity flow with porous 

media are computed in order to validate the Darcy flow in the Darcy domain and the 

interpolation of velocity and pressure on the interface between the fluid and the Darcy 

domains. 

In Chapter 4, the backward-facing step flow with a porous step is computed to 

investigate the influence of the Reynolds and the Darcy numbers on the flow in the fluid 

and the Darcy domains. It is well-known that the distance from the step to the 

reattachment point depends on the Reynolds number. Various Reynolds and Darcy 

numbers are computed, and the distance from the porous step to the reattachment point is 

evaluated. 

In Chapter 5, the influence of the void shape on the Reynolds and the Darcy 

numbers is investigated. A rectangular porous domain, whose void is filled only with 

water, is assumed. Three shapes are computed for the void. The relationship between the 

shape of the void and the maximum velocity in the void is discussed. 

In Chapter 6, the conclusions described in each chapter are summarized and the 

future prospects of this study are discussed. 
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2 Coupled analysis of Navier-Stokes and Darcy 

flows 

Governing equations are needed for a coupled analysis of the Navier-Stokes and the 

Darcy flows. In this thesis, we propose a numerical method for these two flows using one 

set of governing equations. When the Navier-Stokes and the Darcy flows are simulated 

using one set of governing equations, the simple linear interpolation method cannot be 

used at the interface between the fluid and the Darcy domains. Thus, we also propose an 

interpolation method which can connect the pressure and the flow velocity of the fluid 

and the Darcy domains. In this chapter, focus is placed on the Darcy-Brinkman equations 

which can express both of the flows. The governing equations and the numerical method 

are herein described. 

 

2.1 Introduction 

The seepage flow in porous media and the regular flow in the fluid domain have 

different characteristics. The Navier-Stokes equations are widely used to predict the 

regular flow in the fluid domain. And several models have been proposed to predict the 

seepage flow in porous media, for example, Darcy’s law, Darcy’s law with Brinkman’s 

extension (Brinkman, 1947), Ergun’s equations (Ergun, 1952), and Forchheimer’s 

equation (Forchheimer, 1901). Predicting both of these flows at the same time has a 

variety of applications to practical problems. Thus, over the past few decades, a 

considerable number of studies have been conducted. Çeşmelioğlu and Rivière (2012), 

Chidyagwai and Rivière (2009, 2011), Badea et al. (2010), Girault and Rivière (2009), 

Cai et al. (2009), Urquiza et al. (2008), and Mu and Xu (2007) are taken as recent 

examples of these studies. There are three common points among all these studies. The 

first point is that they use the Navier-Stokes equations, as described by Equation (1.1) (or 

the Stokes equations which ignore the advective term), in the fluid domain. The second 

point is that they use Equation (1.2) which can be obtained by applying Darcy's law to 

the equation of continuity in porous media. The third point is that the governing equations 
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can be solved by satisfying the velocity at the interface between the fluid and the Darcy 

domains in addition to the conservation of mass and momentum. However, it is not easy 

to solve Equations (1.1) and (1.2) simultaneously as several requirements must be 

satisfied. A large part of the previous studies dealt with how well the solutions for the two 

partial differential equations, which have different characteristics, are connected. Such 

practical problems remain unsolved.  

In the present study, a numerical method to simultaneously solve the Navier-Stokes 

and the Darcy flows is proposed. Governing equations which can express the Navier-

Stokes and the Darcy flows are needed. Herein, focus is placed on the Darcy-Brinkman 

equations; they are used as the governing equations for the coupled analysis of the Navier-

Stokes and the Darcy flows. This approach for the Navier-Stokes and the Darcy flows is 

called the two-domain approach. As another approach, the single-domain approach is also 

used (e.g., Mercier et al., 2002; Jue, 2004). In the two-domain approach, the 

computational domain is divided into two domains, the fluid domain and the Darcy 

domain. The interface between the fluid and the Darcy domains is defined, and the 

conditions on the interface are important. Thus, various conditions have been proposed 

in several researches (e.g., Saffman, 1971; Vafai and Kim, 1990; Salinger et al., 1994; 

Ochoa-Tapia and Whitaker, 1995a, 1995b; Chandesris and Jamet, 2006). 

Numerical studies which use a combination of the Navier-Stokes equations (or the 

Stokes equations) and Darcy’s equation have been widely done (e.g., Mu and Xu, 2007; 

Girault and Rivière, 2009; Cai et al., 2009; Chidyagwai and Rivière, 2009, 2011; 

Cesmelioglu et al., 2013; Si et al., 2014). When Darcy’s equation is used to predict the 

seepage flow in porous media, the conditions on the interface between the fluid and the 

Darcy domains are important. This is because the orders of the velocity in the Navier-

Stokes equations and Darcy’s equation are different. In order to avoid this problem, 

adding the Brinkman term to Darcy’s equation is effective. Hence, the approach which 

uses the Brinkman term has been adopted here. 

In this chapter, the governing equations and the numerical method for 

simultaneously solving them are described. First, the Darcy-Brinkman equations used as 

the governing equations, along with their nondimensionalization, are presented. Next, the 

discretization of the governing equations using the finite volume method is explained. 
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2.2 Governing equations 

The following partial differential equations, called Darcy-Brinkman equations, are 

employed for the coupled analysis of the Navier-Stokes flow in the fluid domain and the 

Darcy flow in porous media. 
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where  denotes the porosity, and iu  and 
*

p  denote the volume-averaged velocity 

and the averaged piezometric pressure, respectively. The operation to average the velocity 

and pressure of the Navier-Stokes equations in the porous media is summarized in 

Anderson and Jackson (1967). The derivation of the Darcy-Brinkman equations is seen 

in Bars and Worster (2006) and Dukhan (2012). The averaging theorems are explained in 

Howes and Whitaker (1985) and Whitaker (1999). Permeability K, seen in Equation 

(2.1b), is replaced with hydraulic conductivity k using the following form: 
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Equations (2.1a) and (2.3) look like the Navier-Stokes equations shown as Equation (1.1), 

when  =1.0 and 1/k=0 are given. Therefore, the following partial differential equations 

can describe the Darcy and the Navier-Stokes flows. The following partial differential 

equations are employed as the governing equations for the coupled analysis of the Navier-

Stokes flow in the fluid domain and the Darcy flow in porous media. 
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Flow velocity ui in Equation (2.4) means the usual flow velocity in the fluid domain and 

the Darcy velocity in porous media. It can be easily understood that Equation (2.4b) 

becomes the Navier-Stokes equations when  =1.0 and 1/k=0 are given. 

The nondimensionalization of Equation (2.4) reveals that two types of dimensionless 

parameters, namely, the Reynolds and the Darcy numbers, affect its solutions. The 

nondimensional quantities of ui
+, xi

+, and t+ are introduced as follows: 

 ii Vuu  ,  ii Lxx  ,  t
V

L
t  (2.5) 

By substituting Equation (2.5) into Equation (2.4a), a reduction into the following form 

can be made: 
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where Re and Da denote the Reynolds and the Darcy numbers, respectively. The 

dimensionless numbers are defined as follows: 



VL
Re  , 

2
Da

gL

k
  (2.7) 

The first term on the right-hand side of Equation (2.6b) is not fully nondimensionalized, 

because the nondimensionalization of the pressure depends on whether or not the fluid 

domain or the porous media are taken into consideration. In the fluid domain, the pressure 

can be nondimensionalized by following form for p: 

 pVp 2   (2.8) 

because the pressure depends on the change in the velocity head. Substituting Equation 
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(2.8) into Equation (2.6b), it is reduced into the following form: 
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In the fluid domain,  =1.0 and 1/k=0 (Da-1=0) hold true; Equation (2.9) becomes the 

nondimensional Navier-Stokes equations. On the other hand, the pressure changes with 

the loss of hydraulic head in the porous media. Hence, the pressure can be 

nondimensionalized by the following form: 
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k

gLV
p

 
 (2.10) 

noting that V/k means the representative hydraulic gradient. Substituting Equation (2.10) 

into Equation (2.6b), the following form is obtained: 


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






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
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
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
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


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


i

j

u
xx

u

x

puu

xt

u

jj

i

i

jii 1-

2

1- DaDaRe 


 (2.11) 

when the hydraulic conductivity is sufficiently small and the inverse of the Darcy number, 

Da-1, is even larger than the Reynolds number, namely, Da-1  ≫Re and Da-1  ≫1, and the 

left-hand side and the second term on the right-hand side of Equation (2.11) become 

negligible. Then, Equation (2.11) can be transformed into the following form: 

0


 





iu
x

p

i

 (2.12) 

Equation (2.12) is identical to the well-known Darcy’s law, which implies that Darcy’s 

law is approximately described by the Darcy-Brinkman equations when the hydraulic 

conductivity is sufficiently small. Equation (2.4) can describe the Navier-Stokes 

equations in the fluid domain by giving =1.0 and 1/k=0, and it can approximate Darcy’s 

law in porous media. Therefore, the Darcy-Brinkman equations allow us to simulate the 

Darcy and the Navier-Stokes flows without employing different governing equations in 

the fluid domain and porous media. It should be noted that the solutions for the Darcy-

Brinkman equations depend on both the Reynolds number and the Darcy number. The 

above nondimensionalization is summarized in Figure 2.1. 
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Figure 2.1 Nondimensionalization of governing equations. 
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2.3 Numerical method 

2.3.1 Characteristics 

The method presented herein is based on Kim and Choi (2000); it can be used to 

solve the Navier-Stokes equations for incompressible fluids by the finite volume method 

with unstructured grids. The finite volume method is widely used on unstructured grids 

(e.g., Davidson, 1996; Mathur and Murthy, 1997; Lai, 1997; Thomadakis and Leschziner, 

1996; Taniguchi and Kobayashi, 1991; Hwang, 1995, 1997; Kobayashi et al., 1999). 

Research works on the application of the finite volume method to incompressible flows 

are briefly summarized in Kim and Choi (2000). The method is characterized by the grid 

system shown in Figure 2.2. The velocity and the pressure are stored at the centroids of 

the finite volume cells and flux U is additionally computed at the mid-point of each cell 

face, which has the following definition: 

ii nuU face)(  (2.13) 

where (ui)face and ni denote the flow velocity and the outward-normal unit vector on the 

cell face, respectively. 

 

U

U

UU

u
1

p

u
2

Control volume

 

Figure 2.2 Finite volume cells and variables. 



Coupled analysis of Navier-Stokes and Darcy flows 

12 

 

The advantages of the method for the simultaneous analysis of the Navier-Stokes 

and the Darcy flows are summarized in the following. 

 

1. Unlike the finite difference method, the finite volume discretization can definitely 

divide the Darcy domain and the fluid domain. 

2. The usage of flux U, defined at the cell faces, enables the conservation of mass 

and momentum to be satisfied at the interface between the fluid domain and 

porous media. 

3. Unlike the common finite element method, the finite volume method allows the 

variables at the cell faces to be freely constructed. This is advantageous for 

extending the numerical method. For example, the discontinuous tangential flow 

velocity at the interface between the two different domains (e.g., Beavers and 

Joseph, 1967) can be easily introduced, although the flow velocity is continuously 

interpolated herein for simplicity. 

 

The method proposed by Kim and Choi (2000) for numerically solving the Navier-

Stokes equations can accept unstructured grids. However, the usage of unstructured grids 

is not straightforward when two different domains exist, namely, the fluid and the porous 

domains. Hence, a structured grid is employed in the following formulations and 

numerical simulations. 

 

2.3.2 Numerical procedures 

The numerical procedures for the rectangular finite volume cells, shown in Figure 

2.2, are presented in this section. A fractional step method (e.g., Kim and Moin, 1985; Le 

and Moin, 1991; Choi, and Moin, 1994) is applied to Equation (2.4), namely, the flow 

velocity is predicted by Equation (2.4b) and then the predicted flow velocity is corrected 

so as to satisfy the continuity equation of Equation (2.4a). When the flow velocity is 

predicted by Equation (2.4b), Equation (2.4b) is divided into the following two steps: 

i
i u

k

g

t

u 





 (2.14) 
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 (2.15) 

Applying the fractional step method and the Crank-Nicolson method to the time 

integration of Equations (2.14) and (2.15), Equations (2.16) to (2.20) can be derived. 

 m

ii

m

i
uu

k

g

t

uu i
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2


 (2.16) 
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i
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t

uu








  1*1




 (2.20) 

where iu  , iû , and 
*

iu  denote the intermediate velocities between 
m

iu  and 
1m

iu , 

respectively, and t is the time step. Superscript m implies the iteration for the time steps. 

iu  is the intermediate velocity calculated by Equation (2.14), and iû  is obtained from 

the integration of Equation (2.15) using iu  for the initial value. Equations (2.16) and 

(2.17) correspond to the prediction step of the flow velocity, and Equations (2.18) to 

(2.20) are used to calculate the pressure and the correction of the predicted flow velocity 

to satisfy the continuity equation. Integrating Equations (2.16) to (2.20) over the finite 

volume cells, and applying the Gauss divergence theorem, Equations (2.16) to (2.20) are 

transformed into 

 m

ii

m

i
uu

k

g

t

uu i





  

2


 (2.21) 
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n

p

t

UU mm




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

  1*1




 (2.26) 

where A, l, and ni denote the area of the cell, the length of the cell faces, and the outward 

normal unit vector at the cell faces, respectively, and n /  implies the directional 

derivative for the outward normal direction. Porosity  is constant in each finite volume 

cell. U is the flux defined at each cell face, and Equation (2.26) is derived by multiplying 

ni with Equation (2.20). U* (= ii nu*
) is the intermediate flux; it is calculated using Equation 

(2.13) and interpolating intermediate velocity 
*

iu  at the centroids of each cell to the cell 

faces. The method for the interpolation of the velocity and the pressure to the cell faces 

is explained in the following section. Substituting Equation (2.26) into Equation (2.24), 

the following equality is obtained: 

0 1 
 dlU

l

m
 (2.27) 

Equation (2.27) means that the velocity at each finite volume cell satisfies the continuity 

equation. 
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2.3.3 Interpolation of velocity and pressure 

In order to compute the integrals appearing in Equations (2.22) to (2.25) and to 

discretize these equations, the velocities, the pressure, and their directional derivatives 

need to be evaluated at the mid-point of each cell face. In the computation, the integrals 

are calculated by the following equation: 

  
i

ii ldl  (2.28) 

where  is an arbitrary flow variable, namely, the velocities, the pressure, and their 

directional derivatives, and l is the length of the cell boundary, and i and li denote the 

value of  at the mid-point of the ith cell face and its length, respectively. The values for 

the velocity and the pressure, except for flux U, are stored at the centroids of the finite 

volume cells (See Figure 2.2), and they need to be interpolated at each cell face from 

those at the centroids of the neighboring cells. Thus, the manner in which these variables 

are interpolated plays an important role in the stable computation at the interface between 

the fluid and the Darcy domains. This section introduces an interpolation scheme, as 

shown in Figures 2.3 and 2.4, for achieving a stable and physically-natural computation 

of the Darcy-Brinkman equations.  

For simplicity, rectangular finite volume cells are considered herein. As will be 

explained in the next chapter, the simple linear interpolation of the variables may induce 

physically unrealistic oscillations at the interface of the two different domains. In order 

to avoid the oscillations, the interpolation method described by the following equations 

is useful: 


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where pf and ui,f denote the values of the pressure and the velocity at the interface, 

respectively, and  is the distance from the cell center to the interface. Subscripts a and b 

indicate that the values are related to the left and right cells, respectively, as seen in 

Figures 2.3 and 2.4. Equation (2.30) is also applied to the interpolation of intermediate 

velocities iu , iû , and 
*

iu .  

Figures 2.3 and 2.4 illustrate the interpolation of the pressure and the velocity, 

respectively, when the left is the Darcy domain and the right is the fluid domain. Equation 

(2.29) implies that the pressure is linearly interpolated if the neighboring cells are within 

the same domain, but that the pressure of the fluid domain is extended to the interface if 

the domains of the two cells are different. On the other hand, the velocity of the Darcy 

domain is extended to the interface if it is shared by the different domains, as described 
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by Equation (2.30). Since Equations (2.29) to (2.32) represent the interpolation method, 

taking the interface between the horizontally-placed left and right cells as an example, 

these equations are obviously applicable to any interface, such as the one between the 

vertically-placed upper and lower cells. 

 

 

 

 

Distance

p

Cell bCell a

Interface

o

(Interface)

(
b

, p
b
)

(-
a

, p
a
)


a


b

p
a

p
b

p
f

p
f
=p

b

-
a 

b

Darcy phase Fluid phase

Linear interpolation

∂p/∂n|a

(=-∂p/∂n|b)

1

Darcy domain Fluid domain

 

Figure 2.3 Interpolation of pressure at interface  

between fluid and Darcy domains. 
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Figure 2.4 Interpolation of velocity at interface  

between fluid and Darcy domains. 
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2.3.4 Linear solvers 

Equations (2.22) and (2.24) become the systems of linear equations for velocity iû  

and pressure pm+1, respectively. Letting Nc be the total number of finite volume cells, 

Equation (2.22) produces a 2Nc×2Nc matrix, while Equation (2.24) produces a Nc×Nc 

matrix. Generally, these matrixes are asymmetric and sparse. The Gauss-Seidel method 

is used for Equation (2.22), and the QMRCGSTAB method (Chan et al., 1994), which is 

a variant of the BiCG method, is applied to Equation (2.24). 

 

 

2.4 Conclusions 

In this chapter, a numerical method has been proposed to achieve the simultaneous 

analysis of the Darcy and the Navier-Stokes flows using the Darcy-Brinkman equations 

as the governing equations. The results are summarized as follows. 

 

1. The governing equations nondimensionalized with the Reynolds and the Darcy 

numbers can be transformed to Darcy’s law when the hydraulic conductivity is 

sufficiently small and the inverse of the Darcy number is even larger than the 

Reynolds number. 

 

2. The pressure gradient in the Darcy domain is usually even greater than that in the 

fluid domain, such that the linear interpolation of the pressure induces 

unrealistically high gradients for the water pressure in the fluid domain 

neighboring the interface. 

 

3. The flow velocity in the fluid domain is usually even greater than that in the Darcy 

domain, such that the linear interpolation of the velocity overestimates the inward 

or outward flux at the interface. 

 

4. The key to obtaining stable and physically natural solutions lies in the 

interpolation of variables onto the interface between the porous and fluid domains. 
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3 Validation of numerical method for Navier-

Stokes and Darcy flows 

A numerical method for the coupled analysis of the Navier-Stokes and the Darcy 

flows was proposed in the previous chapter. In this chapter, the numerical method is 

validated through the use of several problems. 

 

3.1 Introduction 

In the previous chapter, a numerical method was proposed to realize the 

simultaneous analysis of the Darcy and the Navier-Stokes flows using the Darcy-

Brinkman equations as the governing equations. The Darcy-Brinkman equations are 

identical to the Navier-Stokes equations when the porosity of 1.0 and the infinite 

hydraulic conductivity are given, and it has been shown that the Darcy-Brinkman 

equations can approximately satisfy Darcy’s law for porous media. 

The proposed numerical method is applied to three problems. First, the lid-driven 

cavity flow and the backward-facing step flow are computed in order to validate the 

Navier-Stokes flow in the fluid domain since the computational domain in these problems 

is occupied by the fluid domain. The computed results are compared with the results of 

previous studies, which were obtained by solving the Navier-Stokes equations. Second, 

the one-dimensional uniform flow in the water channel and the lid-driven cavity flow 

with porous media are computed in order to validate the Darcy flow in the Darcy domain 

and the interpolation of the velocity and the pressure on the interface between the fluid 

and the Darcy domains. The computed water pressure in the one-dimensional uniform 

flow is compared with the analytical solution calculated by Darcy’s law. Two different 

layouts for the Darcy domain are computed in the lid-driven cavity flow with porous 

media. In this problem, the interpolation of velocity and pressure on the interface between 

the fluid domain and the Darcy domain is mainly discussed. 
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3.2 Lid-driven cavity flow 

The lid-driven cavity flow is well known as a problem which has a non-uniform flow. 

A square domain filled with water is assumed, as shown in Figure 3.1. The left, right, and 

bottom walls of the domain are fixed, while the top wall is movable. When the top wall 

is moved to the right with constant velocity, the water around the top wall is dragged 

along with the wall. The dragged water goes to the right wall. Then, the water turns 

downward because it cannot pass through the right wall. The turned water goes to the 

bottom wall, and then turns to the left again. On the other hand, the water flows into the 

top left corner from the lower side in order to fill the shortage of the water which goes to 

the right wall. By repeating these steps, the vortex appears in the domain. Ghia et al. 

(1982) reported that the vortex is obtained in the analysis using the Navier-Stokes 

equations. 

Figure 3.1 shows the geometry and the boundary conditions for the lid-driven cavity 

flow. The height and the width of the computational domain are L. As the boundary 

conditions, the horizontal velocity of V is given to the top surface and the non-slip 

condition is imposed on the side and bottom walls. The Reynolds number in this problem, 

Re, is defined as follows: 



VL
Re  (3.1) 

The computation is performed with Re=1000. The inverse of the Darcy number is set to 

zero in the fluid domain. After the initial flow velocity and the initial water pressure are 

set to zero, the numerical computation is carried out until the steady state is realized. 

Figure 3.2 shows the finite volume cells for the computation. The computational domain 

is divided into 50 cells in the horizontal and vertical directions. A total 2500 cells are used 

to compute the problem. 
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Figure 3.1 Geometry and boundary conditions of lid-driven cavity flow. 

 

 

 

Figure 3.2 Finite volume cells for lid-driven cavity flow. 
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The velocity distributions at the steady state are shown in Figure 3.3. The flow 

exhibits the vortex as is usually seen in the lid-driven cavity flow. Figures 3.4 and 3.5 

show the distributions of the horizontal and vertical flow velocities at the central cross 

section of the domain, respectively. The computed flow velocity is in good agreement 

with the results by Ghia et al. (1982). The proposed numerical method can simulate the 

Navier-Stokes flow in the fluid domain when  =1.0 and Da-1=0 are given. 
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Figure 3.3 Computed velocity vector of flow (Re=1000). 
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Figure 3.4 Distribution of horizontal velocity at central cross section. 
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Figure 3.5 Distribution of vertical velocity at central cross section. 
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3.3 Backward-facing step flow 

The backward-facing step flow is well known as a basic flow field which involves 

separation and reattachment. The flow field in the backward-facing step flow has a step 

on the downstream side, as shown in Figure 3.6. The inflow comes into the domain from 

the left side of the domain, and goes along the top and bottom walls. Then, the flow 

separates from the wall at the step. After the separation, the water flows for a while and 

reattaches to the wall again. The distance from the step to the reattachment point has been 

addressed in studies on the backward-facing step flow. In this study, the reattachment 

point is defined as the point where the velocity along the bottom wall changes from a 

positive value to a negative one. The distance from the step to the reattachment point is 

normalized by the following equation: 

h

X
X   (3.2) 

where X  denotes the normalized distance between the step and the reattachment point, 

X denotes the distance between the step and the reattachment point, and h denotes the 

height of the step. Many experimental and numerical analyses have been conducted all 

around the world. The first experimental study on the backward-facing step flow goes 

back to Armaly et al. (1983). They showed that the position of the reattachment point 

depends on the changing of the Reynolds number from within the range of the laminar to 

the turbulent flow. 

 

 

Figure 3.6 Backward-facing step flow. 
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The geometry and the boundary conditions for the problem are shown in Figure 3.7. 

The parabolic profile of the flow velocity is given on the left boundary of the fluid domain 

and the right side has the free outflow condition where the pressure and the gradient of 

the velocity are zero. The non-slip condition is imposed on the top and bottom sides. The 

flow velocity and the pressure are initially set to zero in all of the computational domain. 

The finite volume cells are shown in Figure 4.3. A total of 15,200 finite volume cells are 

used. The computation is carried out until the flow field becomes steady.  
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Figure 3.7 Geometry and boundary conditions of backward-facing step flow. 
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Figure 3.8 Finite volume cells for backward-facing step flow. 
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Three different Reynolds numbers, namely, 264, 396, and 528, are computed. The 

Reynolds number, Re, in this problem is defined as follows:  



LU aveRe   (3.3) 

where Uave is the bulk velocity in the fluid domain and L is the height of the channel (See 

Figure 3.7).These values are placed in the range of those given in previous studies on the 

backward-facing step flow (e.g., Kim and Moin, 1985; Kim and Choi, 2000). 

The velocity distributions at the steady state for all the Reynolds numbers are shown 

in Figure 3.9. The flows in all cases exhibit separation bubbles after the step as is usually 

seen in the backward-facing step flow. Then, the separated flow reattaches to the bottom 

wall around the center of the computational domain. The flow along the top wall also 

separates from the wall and reattaches. This is because the width of the duct has expanded 

to the lower side. After the reattachment to the top and bottom walls, the flow goes along 

the top and bottom walls. Finally, the distribution of horizontal velocity forms a parabola 

at the outflow boundary. 
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(a) Re=528 
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(b) Re=396 
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(c) Re=264 

Figure 3.9 Computed velocity vector of flow. 
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Figure 3.10 shows the relationship between the Reynolds number and the position 

of the reattachment point. The computed reattachment points are in good agreement with 

the computational results by Kim and Moin (1985). These results indicate that the 

proposed numerical method can simulate the flow in the fluid domain when  =1.0 and 

Da-1=0 are given. 
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Figure 3.10 Plot of reattachment point using Reynolds number. 
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3.4 One-dimensional uniform flow in water channel 

The one-dimensional flow problem is assumed to validate the numerical method 

presented in the previous chapter. The seepage water flows from the high pressure side to 

the low pressure side in a water channel filled with porous media and seepage water when 

the different levels of pressure are given to both sides of the water channel (See Figure 

3.11). The relationship between the velocity of seepage flow u and the pressure on both 

sides is described by the following equation: 


21 pp

g

k
u


  (3.4) 

Equation (3.4) is the well-known Darcy’s law. In the one-dimensional uniform flow 

problem, the analytical solution can be obtained by this equation. 

In this section, the water channel, including the fluid and the Darcy domains, is 

computed. The obtained velocity and pressure are compared to the analytical solution 

obtained by Darcy’s law in order to validate the proposed numerical method. And the 

oscillation of the flow velocity and pressure is measured in order to evaluate the stability 

of the computed solution. 
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Figure 3.11 Water channel filled with porous media. 
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The geometry and the boundary conditions of the water channel are shown in Figure 

3.12. The channel is 15L long and L wide. It includes the porous media (5L<x1<10L) and 

is divided into two domains. Each domain possesses a different Darcy number and a 

different porosity, as shown in Table 3.1. As the boundary conditions, the inflow velocity 

is given on the left side of the channel, and the water pressure on the right side is kept at 

0 kPa. The free-slip condition is imposed on the upper and lower sides. After the initial 

flow velocity and water pressure are both set to zero, the flow field is computed up to the 

steady state. Figure 3.13 shows the finite volume cells discretizing the water channel. The 

computational domain is divided into 150 cells in the horizontal direction and 10 cells in 

the vertical direction. A total of 1500 cells are used to compute the problem. 
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Figure 3.12 Geometry and boundary conditions of one-dimensional flow. 

 

 

 

Table 3.1 Properties of Darcy domains. 

 
Darcy domain I 
(5 < x1/L < 7.5) 

Darcy domain II 
(7.5 < x1/L < 10) 

Darcy number 1.63×10-8 6.52×10-8 

Porosity 0.4 0.5 

 

 



3.4 One-dimensional uniform flow in water channel 

33 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

x
2

 /
L

x1 / L  

Figure 3.13 Finite volume cells for one-dimensional flow. 

 

 

Figures 3.14 and 3.15 show the computed water pressure and horizontal flow 

velocity at the steady state, respectively. The water pressure in both the fluid and the 

Darcy domains is nondimensionalized by Equation (2.10). The distribution of the 

computed pressure is almost identical to the analytical solution calculated from Darcy’s 

law. As seen in Figure 3.15, the flow velocity is kept at the constant value of the inflow 

velocity along the channel, although slight oscillations can be seen at the interfaces 

between the different domains. 

Here, focus shall be placed on the effect of interpolating the pressure by Equation 

(2.29). Figure 3.16 shows the velocity calculated using the simple linear interpolation on 

all cells. The other conditions are the same as in the above-described problem. When 

Equation (2.29) is not used for the interpolation of the water pressure and the simple linear 

interpolation is employed, the strong oscillation of the flow velocity is observed at the 

interface between the porous media and the fluid domain, as shown in Figure 3.16. The 

figure shows the numerical results of the computed flow velocity at numerous time steps, 

namely, 50, 500, and 2000. The oscillation appears at the interfaces located on the left- 

and the right-hand sides of the porous media and it is amplified with the time steps. When 

the pressure is linearly interpolated at the interface, the pressure gradient in the fluid 

domain becomes unrealistic, as seen in Figure 3.17, because the pressure gradient in the 

porous media is usually even greater than that in the fluid domain. As seen in Figure 3.17, 

if the pressure is interpolated linearly at the interface where the hydraulic conductivity 

changes sharply, the pressure in the cells of the fluid domain is overestimated due to the 
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influence of the decrease in pressure in the domain where the hydraulic conductivity is 

small. Thus, at the interface of the fluid domain, the velocity calculated by Equations 

(2.22) and (2.25) becomes large locally, and this causes the oscillation. Therefore, 

Equation (2.29) interpolates the pressure by ignoring the influence of the pressure in the 

cells with small hydraulic conductivity. Equation (2.29) is made equivalent to the 

following equation in order to obtain a steady-state solution for the Darcy equations: 

b

fbb

a

afa
pp

g

kpp

g

k







 (3.5) 

Equation (3.5) denotes ‘when the flow velocity is constant, the pressure gradient becomes 

small (large) in the region with the large (small) hydraulic conductivity’. Moreover, 

interpolating the pressure based on Equation (3.5) enables the computation of the steady-

state analysis close to the analytical solution. 
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Figure 3.14 Computed pressure along horizontal axis. 
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Figure 3.15 Computed flow velocity along horizontal axis. 
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Figure 3.16 Oscillation of flow velocity at interface. 
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Figure 3.17 Linear interpolation of pressure around interface 

between water and Darcy domain. 

 

 

3.5 Lid-driven cavity flow over porous media 

The regular lid-driven cavity flow is calculated in Section 3.2. The computed flow 

velocity is in good agreement with the results by Ghia et al. (1982). In this section, the 

lid-driven cavity flow problem, which has porous media in the computational domain, is 

computed in order to validate the interpolation of the velocity and the pressure between 

the fluid and the Darcy domains. 

Figure 3.18 shows the geometry and the boundary conditions for the lid-driven 

cavity flow. The height and the width of computational domain are L. The Darcy domain 

is installed in the bottom quarter of the square domain, while the rest of the region is 

occupied by the fluid domain. As for the boundary conditions, horizontal velocity V is 

given to the top surface and the non-slip condition is imposed on the side and bottom 

walls. The Darcy number and the porosity of the Darcy domain are assumed to be  

1.0×10-8 and 0.4, respectively. After the initial flow velocity and the initial water pressure 

are set to zero, the numerical computation is carried out until the steady state is realized. 

Figure 3.19 shows the finite volume cells for the computation. The computational domain 

is divided into 40 cells in the horizontal and vertical directions. A total of 1600 cells are 

used to compute the problem. 
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Figure 3.18 Geometry and boundary conditions of cavity flow 

with Darcy domain at bottom. 

 

 

Figure 3.19 Finite volume cells for cavity flow with Darcy domain at bottom. 
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Figure 3.20 shows the computed flow velocity field. As seen in the figure, a large 

vortex is induced in the fluid domain by the given boundary velocity at the top. Figure 

3.21 highlights the velocity field in the Darcy domain because the flow velocity in the 

Darcy domain is even smaller than that in the fluid domain, and the detailed velocity 

profile cannot be recognized in Figure 3.20. Figure 3.21 reveals that the upward seepage 

flow, heading to the vortex created in the fluid domain, occurs in the central region of the 

Darcy domain, which results from the lower pressure at the vortex. Figure 3.22 shows the 

distribution of the computed water pressure at the steady state. The water pressure in both 

the fluid and the Darcy domains is nondimensionalized by Equation (2.10). It is seen from 

the figure that the pressure at the center of the vortex is smaller and is continuously 

computed at the interface between the fluid and the Darcy domains. Furthermore, the 

vortex formed in the fluid domain moves slightly to the right as the porous medium is 

placed at the bottom of the computational domain. 

Let us now take a more careful look at the effect of the interpolation of pressure by 

Equation (2.29). Figure 3.23 shows the pressure distribution computed using the linear 

interpolation which does not consider the hydraulic conductivity. The other conditions 

are the same as for the above problem. The pressure in Figure 3.23 exhibits discontinuity 

on the surface between the fluid and the Darcy domains. The unrealistic and large pressure 

is calculated, especially on the surface where water flows out from the fluid domain and 

into the Darcy domain. On the other hand, the pressure decreases unrealistically around 

the surface where water flows out from the Darcy domain and into the fluid domain. This 

is caused by the difference between the magnitude of velocities in the fluid and the Darcy 

domains. Figure 3.24 presents a schematic of the situation whereby the velocity is 

interpolated linearly on the surface between the fluid and the Darcy domains. In two-

dimensional flow problems, the velocity in the fluid domain is generally calculated more 

excessively than the velocity in the Darcy domain. Thus, the velocity of the flow which 

flows out from the surface is overestimated if a linear interpolation is used for the velocity. 

As a result, the pressure increases unrealistically in the area where the inflow is 

overestimated when Equation (2.25) is solved. In order to avoid this unrealistic pressure, 

the velocity should be interpolated by giving large weight in the area where the hydraulic 

conductivity is small. Equation (2.30) embodies these ideas. Equations (2.29) and (2.30) 
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mean that the velocity in the Darcy domain is adopted and the gradient of pressure in the 

fluid domain becomes zero on the interface between the fluid and the Darcy domains. 
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Figure 3.20 Computed velocity vector of flow. 
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Figure 3.21 Computed velocity vector of flow in Darcy domain. 
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Figure 3.22 Pressure distribution at steady state. 
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Figure 3.23 Pressure distribution at steady state (Linear interpolation of velocity). 
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Figure 3.24 Linear interpolation of flow velocity around interface  

between fluid and Darcy domains. 

 

 

3.6 Lid-driven cavity flow around porous media 

A problem with complex arrangements of porous media was computed. Figure 3.25 

shows the geometry and the boundary conditions. It looks like the problem that was 

presented in the previous section, but the arrangement of the porous media is different. 

The gray domain in Figure 3.25 is porous media. It was installed around the centroid 

where the vortex appears in the regular lid-driven cavity flow. The porous media consist 

of two squares which have different sizes. Accordingly, the influence of the size of the 

porous media on the flow around the porous media is also investigated in this problem. 

The Darcy number and the porosity were set to 1.0×10-8 and 0.4, respectively; they are 

the same values as those used for the problem presented in the previous section. 
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Figure 3.25 Geometry and boundary conditions of cavity flow 

with Darcy domain at center. 

 

 

 

Figure 3.26 Finite volume cells for cavity flow with Darcy domain at center. 
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Figure 3.27 shows the flow velocity at each state. In the early state, the flow exhibits 

the vortex in the top right corner of the fluid domain. Afterwards, the vortex disappears 

progressively. Finally, a flow which goes around the Darcy domain is formed. The 

velocity in the Darcy domain is very much smaller than the velocity in the fluid domain. 

Figure 3.28 shows the flow velocity in the Darcy domain. The figure indicates that the 

seepage water flows into the large Darcy domain from the top of the right surface and 

flows out from the top surface of the Darcy domain. This is because the water flows 

towards the right surface of the large Darcy domain in the fluid domain. The flow velocity 

in the joints of the two Darcy domains becomes relatively large. We have identified that 

the water might flow easily through the narrow area of the Darcy domain. The velocity 

of the flow in the smaller Darcy domain is relatively higher than that in the larger Darcy 

domain, and we have identified that this is due to the same reason. These results indicate 

that the shape of the Darcy domain has a strong influence not only on the flow in the fluid 

domain, but also on the seepage flow in the Darcy domain. 
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(a) t+=10 
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(b) t+=10 
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(c) t+=25 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

u
+
=1

|u
+
|

x
2

 /
L

x1 / L

 0

 0.2

 0.4

 0.6

 0.8

 1

 

(d) t+=50 

Figure 3.27 Computed velocity vector of flow. 
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Figure 3.28 Computed velocity vector of flow in Darcy domain. 

 

 

3.7 Conclusions 

In this chapter, several problems were computed to validate the proposed numerical 

method. The obtained numerical results have shown that the method can produce stable 

and physically realistic numerical solutions. The results are summarized as follows. 

 

1. The flow velocity in the lid-driven cavity flow and the reattachment point in the 

backward-facing step flow are in good agreement with the results of previous studies. 

The proposed numerical method can simulate the Navier-Stokes flow in the fluid 

domain when  =1.0 and Da-1=0 are given. 
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2. The computed pressure in the one-dimensional uniform flow problem is in good 

agreement with the analytical solutions calculated from Darcy’s law, and the flow 

velocity is kept at a constant value for the inflow velocity along the channel. 

 

3. Using the proposed interpolation of pressure by Equation (2.29), the oscillation of 

velocity can be avoided. If the pressure is linearly interpolated at the interface, the 

oscillation appears at the interfaces located on the left- and right-hand sides of the 

porous media and is amplified with the time steps. 
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4 Backward-facing step flow with porous step 

Chapter 3 described how stable velocity and pressure can be obtained using the 

numerical method presented in Chapter 2. This indicates that the interpolations of 

velocity and pressure work well. In this chapter, the influence of the Reynolds and the 

Darcy numbers on the flow will be investigated. 

 

4.1 Introduction 

The backward-facing step flow is a well-known problem in computational fluid 

dynamics. The step is introduced in the water channel, as shown in Figure 4.1, and the 

separation of the step flow from the left side and its reattachment to the bottom wall on 

the right side of the step are observed. The first experimental study on the backward-

facing step flow goes back to Armaly et al. (1983). Through an experiment in which the 

Reynolds number was changed from within the range of the laminar flow to the turbulent 

flow, they showed that the position of the reattachment point depends on the Reynolds 

number. Several other numerical studies have also been carried out (e.g., Kim and Moin, 

1985; Keskar, 1999; Kim and Choi, 2000; Erturk, 2008). In Section 3.3, the proposed 

numerical method for the coupled analysis of the Navier-Stokes and the Darcy flows was 

validated by comparing it with the results of Kim and Moin. 

 

 

 

Figure 4.1 Backward-facing step flow. 
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Now, the influence of the seepage flow in the Darcy domain on the regular water 

flow in the fluid domain will be investigated. Therefore, a backward-facing step flow 

whose step is constructed with porous media is computed. In a regular backward-facing 

step flow, the horizontal flow velocity above the step is distributed like a parabola, known 

as the Hagen-Poiseuille flow, because the non-slip condition is given to the top and 

bottom walls including the upper surface of the step. However, if the wall of the water 

channel is porous media, the flow velocity on the surface of the porous media does not 

become zero. The wall constructed with porous media behaves like the slip condition. By 

varying the hydraulic conductivity of the porous media and the inflow rate, it can be seen 

how the regular water flow changes with the Reynolds number and the Darcy number. 

The position of the reattachment point is evaluated by the change in the regular water 

flow, and the reattachment point is defined as the point where the velocity along the 

bottom wall changes from a positive value to a negative one. The distance from the step 

to the reattachment point is normalized by the following equation: 

h

X
X   (4.1) 

where X  denotes the normalized distance between the step and the reattachment point, 

X denotes the distance between the step and the reattachment point, and h denotes the 

height of the step (See Figure 4.1). 

 

4.2 Geometry and initial / boundary conditions 

The geometry and the boundary conditions of the problem are shown in Figure 4.2. 

The porous media are installed as the backward-facing step and are located at the bottom 

left of the computational domain. The parabolic distribution of the flow velocity is given 

on the left boundary of the fluid domain, and the right side has the free outflow condition 

where the pressure and the gradient of the velocity are zero. The non-slip condition is 

imposed onto the top and bottom sides. The flow velocity and the pressure are initially 

set to zero in all of the computational domain. The finite volume cells are shown in Figure 

4.3. A total of 16,000 finite volume cells are used. The computation is carried out until 

the flow field becomes steady.  
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By varying the hydraulic conductivity of the porous media and the inflow rate, how 

the reattachment point changes with the Reynolds number and the Darcy number is 

investigated. In this problem, the Reynolds number, Re, is defined as follows:  



LU aveRe   (4.2) 

where Uave is the bulk velocity in the fluid domain and L is the height of the channel (See 

Figure 4.2). 
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Figure 4.2 Geometry and boundary conditions. 
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Figure 4.3 Computational finite volume cells for backward-facing step flow. 
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4.3 Results and discussion 

4.3.1 Influence of Reynolds number 

Three different Reynolds numbers, namely, 264, 396, and 528, are computed to 

investigate how the reattachment point changes with the Reynolds number when porous 

media are installed as the backward-facing step. These values are placed in the range of 

the previous studies for the backward-facing step flow (e.g., Kim and Moin, 1985; Kim 

and Choi, 2000), where the Darcy number of the porous media as the backward-facing 

step is fixed at 1.0×10-3 in all cases. 

The velocity distributions at the steady state for the all the Reynolds numbers are 

shown in Figure 4.4. The flows in all cases exhibit separation bubbles after the porous 

steps as is usually seen in the backward-facing step flow, as shown in Figure 4.5. Then, 

the separated flow reattaches to the bottom wall around the center of the computational 

domain. The flow along the top wall also separates from the wall and then reattaches. 

This is because the width of the duct has expanded to the lower side. After the 

reattachment to the top and bottom walls, the flow goes along the top and bottom walls. 

Finally, the distribution of horizontal velocity forms a parabola at the outflow boundary. 

Figure 4.6 shows the seepage flow velocity in the porous step in all cases. The flow 

velocity around the upper surface is greater than the velocity at the bottom of the porous 

step because the seepage water is accelerated by the Navier-Stokes flow around the upper 

surface. Thus, the velocity increases with the approaching upper surface of the step. And 

the flow velocity around the upper surface increases with an increase in the Reynolds 

number, as shown in Figure 4.7, because the flow velocity in the fluid domain is high. 
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Figure 4.4 Computed velocity vector of flow (Da=1.0×10-3). 
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Figure 4.5 Computed velocity vector of flow (without porous step). 
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(c) Re=264 

Figure 4.6 Computed velocity vector of flow in porous step (Da=1.0×10-3). 
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Figure 4.7 Distribution of velocity at vertical lines of x1/L=1.0 (Da=1.0×10-3). 

 

 

Figure 4.8 shows the relationship between the Reynolds number and the position of 

the reattachment point in two cases; one has the porous step (Da=1.0×10-3) and the other 

is the regular backward-facing step flow with an impermeable step. The reattachment 

points computed in the two cases become closer to the step as the Reynolds number 

decreases, and the results are consistent with Kim and Moin (1985). The surface of the 

porous media behaves like the wall given the non-slip condition, because the seepage 

flow velocity around the upper surface is small. These results indicate that the influence 

of the porous media as the backward-facing step on the position of the reattachment point 

is small, because the Reynolds number has a dominant influence on the flow in the fluid 

domain. 
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Figure 4.8 Plot of reattachment point using Reynolds number. 

 

 

4.3.2 Influence of Darcy number 

Three different Darcy numbers, namely, 1.0×10-11, 1.0×10-7, and 1.0×10-3, are 

computed to investigate how the reattachment point changes with the Darcy number for 

the porous media as the backward-facing step. The Reynolds number is fixed at 528 in all 

cases. 

The velocity distributions at the steady state are shown in Figure 4.9 (a)-(c). The 

flows in the figures exhibit separation bubbles after the porous steps as is usually seen in 

the backward-facing step flow, as shown in Figure 4.5(a). The patterns for the Navier-

Stokes flow do not change when the Darcy number changes. 
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(a) Da=1.0×10-11 
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(b) Da=1.0×10-7 
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(c) Da=1.0×10-3 

Figure 4.9 Computed velocity vector of flow (Re=528). 
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(b) Da=1.0×10-7 
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(c) Da=1.0×10-3 

Figure 4.10 Computed velocity vector of flow in porous step (Re=528). 
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Figure 4.11 shows the relationship between the Darcy number and the position of 

reattachment point. In this figure, the reattachment points do not significantly change 

even if the Darcy number varies from 1.0×10-11 to 1.0×10-3. This is because the velocity 

in the porous medium is even smaller than that in the fluid domain, as shown in Figure 

4.12. However, in the case of Da=1.0×10-3, the profile for the flow velocity at the edge of 

the step diverts from the Hagen-Poiseuille flow (See Figure 4.12), and the reattachment 

point moves slightly further from the step. 
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Figure 4.11 Plot of reattachment point using Darcy number (Re=528). 
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Figure 4.12 Distribution of velocity at vertical lines of x1/L=1.0 (Re=528). 

 

 

4.4 Conclusions 

The numerical method presented in Chapter 2 was applied to the backward-facing 

step flow with a porous step. And the influence of the Reynolds and the Darcy numbers 

on the position of the reattachment point has been investigated. The results are 

summarized as follows. 

 

1. The flows in all cases exhibit separation bubbles after the porous step as is usually 

seen in the backward-facing step flow. 

 

2. The reattachment point gets closer to the step as the Reynolds number decreases, 

and the results are consistent with those of Kim and Moin (1985). 
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3. The reattachment point does not significantly change even if the Darcy number 

changes. However, the reattachment point moves slightly away from the step in 

the case of Da=1.0×10-3, because the profile for the flow velocity at the edge of 

the step diverts from the Hagen-Poiseuille flow. 
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5 Seepage flow within and around closed void 

A uniform velocity field is obtained in the rectangular domain filled with porous 

media when there is a gap in pressure on both sides of the domain. However, the velocity 

field does not become uniform if the void in the domain is only filled with water. The 

flow in the void described by the Navier-Stokes equations is different from the flow in 

porous media, and both flows influence each other. In this chapter, the influence of the 

void shape on the flow in the Reynolds and the Darcy domains is investigated. 

 

5.1 Introduction 

Seepage water flows from the high pressure point to the low pressure point when 

there is a gap in pressure at different points in the porous media. This is the well-known 

Darcy’s law. A rectangular domain filled with porous media, called the Darcy domain, is 

assumed. The top and bottom walls are under free slip boundary conditions. When higher 

pressure than the right side is given to the left side, the seepage water flows from the left 

side to the right side. Then, the velocity is distributed at a constant value all over the 

domain, and the pressure decreases linearly from the left side to the right side. As this 

problem was constructed only with porous media, the flow in the Darcy domain depends 

on the inflow velocity and the permeability of the porous media. Next, a domain which 

has a void filled only with water is assumed. The water flows into or out of the void 

through the interface between the void and the Darcy domain. The behavior of the water 

in the void is described by the Navier-Stokes equations. The flow of water through the 

void depends on the shape of the void and the inflow/outflow on the boundary. 

The flow in a domain which has a void depends on the velocity on the inflow 

boundary, the permeability of the porous media, and the shape of the void. In this chapter, 

the Darcy domain which has a void is computed with various Reynolds numbers, Darcy 

numbers, and void shapes in order to investigate the influence of these factors on the flow 

in the domain. The Reynolds and the Darcy numbers are controlled by the inflow velocity 

and the permeability of the porous media, respectively. 
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5.2 Geometry and initial / boundary conditions 

Figure 5.1 shows the geometry and the boundary conditions of this problem. The 

computation was carried out in the rectangular domain. The domain was assumed to be 

filled with porous media, such as soil, and the void is located around the center of the 

computational domain. Three different void sizes are prepared, as seen in Table 5.1. 

Several cases for different values of the Reynolds and the Darcy numbers are computed. 

The porosity is assumed to be 0.40. Uniform inflow velocity is given to the left side of 

the computational domain, while the free outflow boundary condition is given to the right 

side of it. The Reynolds and the Darcy numbers are controlled by the inflow velocity from 

the left side and the hydraulic conductivity of the porous media. The Reynolds number is 

selected from the range wherein laminar flows can be achieved in the void. The Reynolds 

number is defined as follows:  



LU inRe   (5.1) 

where Uin is the velocity on the inflow boundary and L is the representative length of the 

domain (See Figure 5.1). Both the upper and the lower sides have the free-slip boundary 

condition. Assuming the flow velocity and the pressure to be zero as the initial conditions, 

the numerical computation is carried out until the flow field reaches the steady state. The 

finite volume cells used in the numerical computation are shown in Figure 5.2. 
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Figure 5.1 Geometry and boundary conditions. 

 

 

 

 

 

Table 5.1 Size and aspect ratios of voids. 

Length Width 
Aspect ratio 

(=Length/Width) 

4L L 4.0 

2L 2L 1.0 

L 4L 0.25 
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(a) Aspect ratio=4.0 

 

(b) Aspect ratio=1.0 

 0

 2

 4

 6

 8

 10

 0  2.5  5  7.5  10  12.5  15  17.5  20  22.5  25

x
2
 /
L

x1 / L  

(c) Aspect ratio=0.25 

Figure 5.2 Computational finite volume cells. 
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5.3 Results and discussion 

5.3.1 Influence of shape of void on flow 

Three different void shapes, seen in Table 5.1, are computed to investigate how the 

flow in and around the void changes with the shape of the void. Figure 5.3 shows the flow 

velocity at the steady state. Water accumulates in the void and passes through it. When 

the aspect ratio is 1.0 or 0.25, seepage water comes into the void from the corners of its 

left side, and forms two major streams along the upper and lower sides. On the other hand, 

when the aspect ratio is 4.0, the two streams on the left side of the void immediately 

combine and form one main steam.  

Figure 5.4 shows the distribution of pressure. The span of the pressure contour line 

means the gradient of pressure. The gradient of pressure is large when the span of the 

pressure contour line is narrow. The gradient of pressure is small in the void and large on 

the left and right sides of the void in all three cases. And, it becomes small in the void and 

large on the left and right sides of the void with increments in the aspect ratio. The 

pressure decreases linearly from the left side to the right side of the computational domain, 

and the gradient of pressure becomes uniform in the computational domain if there is no 

void. However, the gradient of pressure does not become uniform in this problem due to 

the void. 

The gradient of pressure is generally small in the void because there is no resistance 

to the flow. Moreover, the period during which the gradient of pressure is small expands 

with increments in the aspect ratio. On the other hand, the gaps in pressure between the 

inflow and the outflow boundary are the same because the inflow velocities are fixed in 

all three cases. Thus, the gradient of pressure becomes large on the left and right sides of 

the void in order to keep the pressure in balance at the inflow and outflow boundaries. 

The pressure contour line and the upper and lower surfaces of the void cross at an 

almost right angle when the aspect ratio is 0.25; however, they cross diagonally when the 

aspect ratio is 4.0. According to Darcy’s law, seepage water flows from high pressure to 

low pressure. This means that the seepage water flows at a right angle for the pressure 

contour line. Thus, Figure 5.4 indicates that the seepage water around the upper and lower 

surfaces of the void flows along the surface when the aspect ratio is 0.25 and the 
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inflow/outflow through the upper and lower surfaces of the void increases when the aspect 

ratio is 4.0. These tendencies in the flow are in good agreement with the flow velocity 

vector, shown in Figure 5.3, and indicate that the shape of the void has a strong influence 

on the flow in the fluid and the Darcy domains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.3 Results and discussion 

69 

 

 0

 2

 4

 6

 8

 10

 0  2.5  5  7.5  10  12.5  15  17.5  20  22.5  25

u
+
=1

|u
+
|

x
2
 /
L

x1 / L

 0

 1

 2

 3

 4

 5

 

(a) Aspect ratio=4.0 
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(b) Aspect ratio=1.0 
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(c) Aspect ratio=0.25 

Figure 5.3 Computed velocity vector of flow (Re=30, Da=2.5×10-8). 
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(a) Aspect ratio=4.0 
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(b) Aspect ratio=1.0 
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(c) Aspect ratio=0.25 

Figure 5.4 Distribution of pressure (Re=30, Da=2.5×10-8). 
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Figure 5.5 shows the distribution of horizontal flow velocity at the central cross 

section of the void. The velocity distribution for an aspect ratio of 4.0 is almost parabolic. 

Moreover, the tangential velocity at the interface between the porous media and the void 

become small in all three cases, because the pressure in the void does not change 

significantly and the interface behaves as a constant pressure line. 
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Figure 5.5 Distribution of horizontal velocity at center of void 

(Re=30, Da=2.5×10-8). 
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Figure 5.6 shows the distribution of horizontal velocity at the different cross sections 

of the void when the aspect ratio is 4.0. It can be seen that the velocity quickly approaches 

a parabolic shape, although it is not parabolic at all on the left side of the void. 
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Figure 5.6 Distribution of horizontal velocity at x1/L=5.1, 6.0, and 7.0 

(Aspect ratio=4.0, Re=30, Da=2.5×10-8). 
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Figure 5.7 shows the relationship between the maximum velocity in the void and the 

aspect ratio. The maximum velocity increases with an increase in the aspect ratio. The 

shape of a void in porous media has a strong influence on the flow through it. When the 

shape of the void is short and wide in the flow direction, the seepage water comes into 

the void from the corners of its upstream side, and forms two major streams along the 

upper and lower sides. On the other hand, when the shape is long and narrow in the flow 

direction, the two streams in the upstream side combine immediately and develop into 

one main stream. 
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Figure 5.7 Plot of maximum velocity using aspect ratio (Re=30, Da=2.5×10-8). 
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5.3.2 Influence of Reynolds number 

Three different Reynolds numbers, namely, 10, 20, and 30, were computed to 

investigate the influence of the Reynolds number on the flow within and around the void. 

The Darcy number was fixed at 2.5×10-8 in all cases. 

The velocity distributions at the steady state are shown in Figures 5.8 to 5.10. The 

velocities in the Darcy domain decrease with a reduction in the Reynolds number with all 

aspect ratios. In this problem, the Reynolds number is controlled by the inflow velocity; 

therefore, a reduction in the Reynolds number decreases the inflow velocity. The 

velocities in the void also decrease in the same way as the velocities in the Darcy domain 

because the velocities around the void decrease due to the reduction in the Reynolds 

number. One major stream is formed in the void for all Reynolds numbers when the aspect 

ratio is 4.0, and two major streams along the upper and lower sides are formed for all 

Reynolds numbers when the aspect ratio is 1.0 or 0.25. The patterns of the flow in the 

void do not change even if the Reynolds number is changed. 

Figures 5.11 to 5.13 show the distribution of pressure. None of the patterns for any 

of the contour lines of the Reynolds numbers change even if the Reynolds number is 

changed. This means that the stream line does not change because the flow of seepage 

water is at a right angle of the pressure contour line. These results match the velocity 

distribution shown in Figures 5.8 to 5.10. 
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(b) Re=20 
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(c) Re=10 

Figure 5.8 Computed velocity vector of flow (Aspect ratio=4.0, Da=2.5×10-8). 
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(b) Re=20 
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(c) Re=10 

Figure 5.9 Computed velocity vector of flow (Aspect ratio=1.0, Da=2.5×10-8). 
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(b) Re=20 
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(c) Re=10 

Figure 5.10 Computed velocity vector of flow (Aspect ratio=0.25, Da=2.5×10-8). 
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(b) Re=20 
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(c) Re=10 

Figure 5.11 Distribution of pressure (Aspect ratio=4.0, Da=2.5×10-8). 
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(a) Re=30 
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(b) Re=20 
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(c) Re=10 

Figure 5.12 Distribution of pressure (Aspect ratio=1.0, Da=2.5×10-8). 
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(c) Re=10 

Figure 5.13 Distribution of pressure (Aspect ratio=0.25, Da=2.5×10-8). 
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Figure 5.14 shows the relationship between the Reynolds number and the maximum 

velocity in the case of Da=2.5×10-8. The maximum velocities increase linearly with an 

increase in the Reynolds number, because the Reynolds number is controlled by the 

inflow velocity and the patterns of flow in the void do not change. 
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Figure 5.14 Plot of maximum velocity using Reynolds number (Da=2.5×10-8). 
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5.3.3 Influence of Darcy number 

Two different Darcy numbers, 2.5×10-8 and 2.5×10-4, were computed to investigate 

the influence of the Darcy number on the flow within and around the void. The Reynolds 

number was fixed at 30 in all cases. 

The velocity distributions at the steady state are shown in Figures 5.15 to 5.17. The 

flow velocities only change slightly even if the Darcy number is changed. The inflow 

velocities are the same in all cases. This is because the Reynolds number, which is 

controlled by the inflow velocity, is fixed. Therefore, the bulk velocities in the 

computational domain do not change. Figures 5.15 to 5.17 also exhibit the concentration 

of seepage water on the left side of the void and the diffusion of it on the right side of the 

void in all cases. These tendencies are maintained even if the Darcy number is changed. 

For all Darcy numbers, one major stream is formed in the void when the aspect ratio is 

4.0 and two major streams are formed along the upper and lower surfaces of the void 

when the aspect ratio is 1.0 or 0.25. The flow in the void does not change for any aspect 

ratios even if the Darcy number is changed. The Darcy number does not have any direct 

influence on the flow in the void because there is no porous media in the void. 

Figures 5.18 to 5.20 show the distribution of pressure at the steady state. The 

tendency for the gradient of pressure to be large on the left and right sides of the void, 

and small in the void, is maintained for all aspect ratios. These results indicate that the 

influence that the Darcy number gives to the flow within and around the void in porous 

media is small. 
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(a) Da=2.5×10-8 
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(b) Da=2.5×10-4 

Figure 5.15 Computed velocity vector of flow (Aspect ratio=4.0, Re=30). 
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(a) Da=2.5×10-8 
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(b) Da=2.5×10-4 

Figure 5.16 Computed velocity vector of flow (Aspect ratio=1.0, Re=30). 
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(a) Da=2.5×10-8 
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(b) Da=2.5×10-4 

Figure 5.17 Computed velocity vector of flow (Aspect ratio=0.25, Re=30). 
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(a) Da=2.5×10-8 
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(b) Da=2.5×10-4 

Figure 5.18 Distribution of pressure (Aspect ratio=4.0, Re=30). 
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(a) Da=2.5×10-8 
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(b) Da=2.5×10-4 

Figure 5.19 Distribution of pressure (Aspect ratio=1.0, Re=30). 
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(a) Da=2.5×10-8 
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(b) Da=2.5×10-4 

Figure 5.20 Distribution of pressure (Aspect ratio=0.25, Re=30). 
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Figure 5.21 shows the influence of the Darcy number on the maximum velocity. The 

maximum velocity depends on the Darcy number because the inflow/outflow velocity on 

the interface between the porous media and the fluid domain changes, as shown in Figure 

5.22. U denotes the flux of Equation (2.13) at the left and upper sides, as exhibited in the 

figure, where the positive and negative values for U mean the inflow into the void and 

the outflow from the void, respectively. The inflow velocity of Da=2.5×10-8 at the corners 

of the left side is greater than that of Da=2.5×10-4, while the velocity of Da=2.5×10-8 on 

the upper side is smaller than that of Da=2.5×10-4. Thus, in the case of Da=2.5×10-8, the 

main stream in the void accelerates and reaches the maximum velocity around the center 

of the void. On the other hand, the acceleration of the main stream of Da=2.5×10-4 is 

slower, because the inflow from the upper and lower sides decelerates the main stream 

(see Figure 5.23). 
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Figure 5.21 Plot of maximum velocity using Darcy number (Re=30). 
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Figure 5.22 Inflow/outflow velocity on surface between void and porous medium 

(Aspect ratio=4.0, Re=30). 
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Figure 5.23 Distribution of horizontal velocity at x2/L=5.15 (Aspect ratio=4.0, Re=30). 
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5.4 Conclusions 

The numerical method presented in Chapter 2 was applied to a problem which has 

a void in the porous media. The influence of the void shape on the flow in the Reynolds 

and the Darcy numbers was investigated. The results are summarized as follows. 

 

1. The shape of the void in porous media has a strong influence on the flow in it. 

When the shape of the void is short and wide in the flow direction, the seepage 

water comes into the void from the corners of its upstream side, and forms two 

major streams along the upper and lower sides. On the other hand, when the shape 

is long and narrow in the flow direction, the two streams in the upstream side 

combine immediately and develop into one main stream. 

 

2. The maximum velocities increase linearly with an increasing Reynolds number, 

because the Reynolds number is controlled by the inflow velocity and the patterns 

of the flow in the void do not change. 

 

3. The Darcy number influences the flow velocity in the void because of the inflow 

and the outflow through the interface between the fluid domain and the porous 

media. 
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6 Concluding remarks and future prospects 

In this study, we have proposed a numerical method for the coupled analysis of the 

Darcy flow and the Navier-Stokes flow. Several problems were computed using the 

proposed numerical method. The conclusions of each chapter are summarized as follows. 

In Chapter 2, a numerical method for achieving a simultaneous analysis of the 

Darcy and the Navier-Stokes flows, using the Darcy-Brinkman equations as the 

governing equations, was proposed. It was shown that the governing equations 

nondimensionalized with the Reynolds and the Darcy numbers can be transformed to 

Darcy’s law when the hydraulic conductivity is sufficiently small and the inverse of the 

Darcy number is even larger than the Reynolds number. The pressure gradient in the 

Darcy domain is usually even greater than that in the fluid domain, such that the linear 

interpolation of the pressure induces an unrealistically high gradient for the water pressure 

in the fluid domain neighboring the interface. The flow velocity in the fluid domain is 

usually even greater than that in the Darcy domain, such that the linear interpolation of 

the velocity overestimates the inward or the outward flux at the interface. 

In Chapter 3, several problems were computed to validate the proposed numerical 

method. The obtained numerical results showed that the method can produce stable and 

physically realistic numerical solutions. The flow velocity in the lid-driven cavity flow 

and the reattachment point in the backward-facing step flow were found to be in good 

agreement with the results of previous studies. The proposed numerical method was able 

to simulate the Navier-Stokes flow in the fluid domain when  =1.0 and Da-1=0 were 

given. The computed pressure in the one-dimensional uniform flow problem was in good 

agreement with the analytical solutions calculated from Darcy’s law, and the flow velocity 

was kept at a constant value of the inflow velocity along the channel. It was proven that 

use of the proposed interpolation of pressure by Equation (2.29) enables the avoidance of 

the oscillation of velocity. If the pressure is linearly interpolated at the interface, the 

oscillation appears at the interfaces located at the left- and right-hand sides of the porous 

media and is amplified with the time steps. 
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In Chapter 4, the numerical method presented in Chapter 2 was applied to the 

backward-facing step flow with a porous step. The influence of the Reynolds and the 

Darcy numbers on the position of the reattachment point was investigated. The flows in 

all cases exhibited separation bubbles after the porous steps as is usually seen in the 

backward-facing step flow. The reattachment point was seen to move closer to the step as 

the Reynolds number decreased, and the results were consistent with those of Kim and 

Moin (1985). The reattachment point did not change significantly even if the Darcy 

number changed. However, the reattachment point moved slightly away from the step in 

the case of Da=1.010-3, because the profile of the flow velocity at the edge of the step 

diverted from the Hagen-Poiseuille flow. 

In Chapter 5, the numerical method presented in Chapter 2 was applied to a 

problem which had a void in the porous media. The influence of the void shape on the 

flow in the Reynolds and the Darcy domains was investigated. The shape of the void in 

the porous media was seen to have a strong influence on the flow in the media. When the 

shape of the void is short and wide in the flow direction, the seepage water comes into 

the void from the corners of its upstream side and forms two major streams along the 

upper and lower sides. On the other hand, when the shape is long and narrow in the flow 

direction, the two streams in the upstream side combine immediately and form one main 

stream. The maximum velocities were found to increase linearly with an increasing 

Reynolds number, because the Reynolds number is controlled by the inflow velocity and 

the patterns of the flow in the void do not change. The Darcy number influences the flow 

velocity in the void because of the inflow and the outflow through the interface between 

the fluid domain and the porous media. 

A numerical method to simulate the Navier-Stokes and the Darcy flows was 

proposed in this thesis. Several problems were computed by the proposed numerical 

method, and the obtained results indicate that the proposed interpolation methods for 

water pressure and flow velocity are effective for avoiding the oscillation of water 

pressure and flow velocity. In order to apply the method to more practical problems, the 

proposed numerical method should be further developed. In addition, the problems shown 

in this thesis remain within the laminar flow. The numerical method needs to be expanded 

to the turbulent flow in order to deal with more practical problems. The interface between 
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the fluid and the Darcy domains can be moved easily during the computation because the 

proposed numerical method does not need the boundary condition at the interface 

between the fluid and the Darcy domains. Thus, it is expected that the proposed numerical 

method can be applied when problems are encountered in which the interface between 

the fluid and the Darcy domains moves during the progress of the computation, i.e., the 

erosion of soil with seepage water. 
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