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Abstract

Audio scene analysis and its application to robot audition is indispensable for a
rescue robot, both to detect victims and to sense the robot itself (i.e., location and
posture) in disaster environments where visual and/or GPS sensors cannot be
used. This work focuses on hose-shaped rescue robots used for probing narrow
gaps under rubble. Arrays of microphones, inertial sensors, and loudspeakers
on the robot are used for audio scene analysis.

Two fundamental problems of audio scene analysis are addressed: speech
enhancement and posture (shape) estimation. Speech enhancement is crucial
for detecting speech sounds in captured noisy signals. Posture estimation is
essential for enabling an operator to control the flexible robot and for localizing
the speech source by using the deformable microphone array. In addition, the
integration of these techniques enables the robot to find and approach a victim
autonomously. The major difficulties are that the layout of the microphones
changes as the robot moves and that some of them are occasionally occluded by
rubble. In this study, Bayesian signal processing is used for speech enhancement.
The latent speech signals and parameters, which depend on the surrounding
environment, are simultaneously estimated．Multi-modal signal processing is
used for posture estimation. Unreliable audio measurements due to occlusion
are compensated for by using the measurements of other sensors.

This thesis consists of seven chapters. Chapter 2 overviews audio scene anal-
ysis for rescue robots and reviews speech enhancement and posture estimation.

Chapter 3 describes a speech enhancement method called Bayesian robust
non-negative tensor factorization. To deal with the dynamic configuration of the
microphones, speech and noise signals are separated on the basis of their spectral
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pattern difference instead of on the phase difference (which is unreliable). Under
the assumption that the speech and noise spectrograms are sparse and low-
rank, respectively, they are separated from the input multichannel spectrogram
without prior training. To cope with the partial occlusion of microphones, the
speech volume gain at each microphone is estimated on the basis of its feasible
gain. Experimental results showed that this method outperforms conventional
multichannel methods even when a half of the microphones are occluded.

To further improve the enhancement performance, a deep prior distribution
on speech signals is introduced in Chapter 4. Instead of using the unrealistic
sparse assumption for speech signals, a deep generative model is trained with
clean speech signals from a large database. Posterior estimates of clean speech
are obtained using the speech model as a prior distribution while adapting a
noise model to the observed noisy signals. Experimental results showed that this
method outperforms a method based on the low-rank and sparse decomposition.
The results also showed that the method outperforms a conventional supervised
method with deep learning in unseen noisy environments.

Chapter 5 describes an audio-based posture estimation method that can deal
with the dynamic configuration of microphones. The time differences of arrival
(TDOAs) of beacon sounds, which depend on the locations of the microphones
and loudspeakers, are used to estimate the posture. A state-space model repre-
senting the posture dynamics is formulated, and the current posture is tracked
by estimating the posture change rate and predicting the current posture.

In Chapter 6, the audio-based posture estimation method is extended to
a multi-modal 3D posture estimation method that can work when the micro-
phones are partially occluded. The method excludes TDOA measurements
distorted by obstacles and compensates for the missing posture information by
using the tilt angles obtained from accelerometers. Experiments using a 3 m
hose-shaped rescue robot showed that this method reduces the tip position er-
ror of the initial state to about 0.2 m. When the initial error of the initial state is
less than 20 %, it can estimate the correct 3D posture in real time.

Chapter 7 concludes this thesis with a brief look at future work.
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Chapter 1

Introduction

This thesis addresses audio scene analysis for rescue robots designed to work
in severely adverse environments. This chapter presents the background to this
work, describes the problems addressed, and introduces the approaches used.

1.1 Background

The mission of rescue robots is to sense the environment at distant disaster sites
where people and animals cannot go and to act accordingly [1–7]. Since a rescue
operation is a race against time, the robot should undertake and complete it
as soon as possible. This has led to the development of various types of rescue
robots that can meet the demands for various disaster situations [3–9]. To widely
and quickly monitor a post-disaster environment, aerial rescue robots, such as
multi copters [7–9] and micro airplanes [10], have been developed. To search
in polluted areas and narrow gaps under rubble, ground rescue robots, such as
rover and flexible robots, have been developed [3–5]. Marine rescue robots, such
as boat and submarine robots, are helpful for probing a rubble-strewn marine
environment [11].

To quickly reach and search a target area, it is critical to collect information
about the environment around the robot and the state of the robot. Video
cameras and microphones are widely used for helping to manipulate a robot and
searching for targets (e.g., victims). Since the raw observations of such sensors
are often confusing for a human operator, various sensor systems for helping the
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(a) Searching for victims (b) Estimating robot location

Figure 1.1: Applications of audio scene analysis for rescue robot.

operator to interpret the observations have been developed [2]. For example, it is
difficult to spot clues about victim locations from video images of a complicated
rubble-filled environment. A method that classifies the objects captured in a
video image was thus developed [12]. Simultaneous localization and mapping
(SLAM) methods have also been developed. They are used along with video
cameras and/or laser rangefinders to estimate the robot location and to create a
map of the area around the robot [13, 14]. The global positioning system (GPS),
magnetometers, and inertial sensors (accelerometers and gyroscopes) are widely
used for estimating the location and posture of a robot [1].

Audio scene analysis and its applocation to robot audition [15–17] is indis-
pensable for a rescue robot, both to locate victims and to estimate the state of
the robot in disaster environments where visibility is low and/or GPS sensors
cannot be used (Figure 1.1). Even if a victim is hidden by obstacles so that the
robot cannot see him or her, sounds created by the victim might still reach the
robot. Microphone array signal processing can detect and localize audio events
around the robot [16–19]. Drones with microphone arrays have actively been
studied for finding victims quickly from the sky [20]. The location and posture
of a robot can be estimated by transmitting reference (beacon) and then using
microphones on the robot to capture them [21, 22]. Submarine robots localize
themselves using audio beacons because GPS signals are blocked and the visual
range is limited in the sea [21].

2
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(a) Phase 1 (b) Phase 2 (c) Phase 3
Figure 1.2: Typical usage scenario of hose-shaped rescue robot.

1.2 Hose-Shaped Rescue Robot

This thesis focuses on hose-shaped rescue robots, which are typically used as
ground rescue robots for finding victims buried under collapsed buildings [23–
25]. Such robots have a long thin flexible body and can penetrate the narrow
gaps in collapsed buildings. A remote operator steers the robot to a target lo-
cation by using its specialized locomotion mechanism. Active Hose-II [23], for
example, has small powered wheels to move forward. Active Scope Camera
(ASC) [26] moves forward by vibrating the cilia covering its body. It was used
for real search-and-rescue operation in Jacksonville, Florida in 2008 [27].

The typical usage scenario of a hose-shaped rescue robot consists of three
phases, as shown in Figure 1.2. First, the operator of the robot inserts it into
the target collapsed building and steers the robot to an area where a surviving
victim is likely trapped. After reaching the target area, the operator calls to
the victim with a loudspeaker and searches for him with a video camera and a
microphone on the robot. If a victim is found, the operator determines his or
her condition and directs the rescue team to the victim’s location.

This study focuses on audio scene analysis for a hose-shaped rescue robot,
which works under collapsed buildings where visibility is poor and GPS cannot
be used. A microphone array is placed on the robot, as shown in Figure 1.3.
The robot has the same self-propelling mechanism as the ASC robot. Eight
microphones are distributed along the body so that all the microphones are
not obstructed by rubble at the same time. Eight inertial sensors and seven
loudspeakers are attached to the robot. These sensors are used to sense the
surrounding environments and the robot itself.

3
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7 loudspeakers & 
vibration motors

8 microphones &
inertial sensors

Tip camera
(not used in this study)

Figure 1.3: Hose-shaped rescue robot with eight-channel microphone array.

1.3 Audio Scene Analysis

Various types of audio scene analysis and its application to robot audition
have been studied (Figure 1.4). Acoustic event identification [28–30] and au-
tomatic speech recognition (ASR) [31, 32], for example, estimate the content of
a sound. Voice activity detection (VAD) detects whether speech sounds exist
in an observed signal [33]. Since captured audio signals often include multi-
ple sounds originating at different locations, these recognition methods require
sound source separation for extracting each sound source signal and sound
source localization for understanding the audio scene spatially.

Sound sources can be extracted from a mixture recording on the basis of the
spectral pattern difference across source signals [34,35] and the spatial informa-
tion (e.g., relative source locations) [36,37]. Since many types of robots generate
ego-noise from their actuators, ego-noise reduction is essential for understand-
ing the audio scene around the robot [34, 38, 39]. Speech enhancement, which
suppresses noise signals and extracts speech signals, is also important for ASR
and VAD [40].

The locations of sound sources can be estimated with a microphone array on
the basis of power or phase differences between the microphones [41–43]. Like
bats and dolphins, echolocation and active sonar systems transmit a beacon

4
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Recognition

Action & 
Presentation Active audition

Voice activity detection Acoustic event detection

Automatic speech recognition

Separation
Source separation

Speech enhancement

Ego-noise reduction

Auditory Display

Localization

Layout estimation of microphones

Source localization Echolocation

Audio-SLAM

Figure 1.4: Overview of audio scene analysis.

signal, receive it with microphones, and localize objects that reflect the beacon
sound [21, 44, 45]. The localization results of sound sources can be used for
a SLAM system in a way similar to visual-based SLAM [46]. An underlying
assumption for most localization methods is that the layout of microphones
is known in advance. Simultaneous localization of microphones and sound
sources has been studied for estimating the layout when it is unknown [18,22].

The results of the separation, localization, and recognition are used for se-
lecting the robot actions automatically and presenting the audio scene to the
remote operator [42, 47, 48]. Although localization results with a single micro-
phone array have distance ambiguities, a robot can localize and approach the
3D point of a sound source by moving around the source [42, 49]. Active audi-
tion has been studied for planning efficient moving strategies [47, 49]. Since the
robot movements generate ego-noise from its actuators, active audition requires
not only localizing the sound sources but also separating and distinguishing the
sources [50]. Visualizing the audio scenes is an effective way for the distant oper-
ator to recognize the scene. A telepresence robot with robot audition displayed
sound source directions superposed on a remote display [17]. This system
demonstrated the feasibility of an auditory display for telepresence robots.
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1.4 Problems

This thesis addresses two fundamental problems of audio scene analysis for a
hose-shaped rescue robot: speech enhancement and posture (shape) estimation.
Speech enhancement is crucial for detecting speech sounds in captured noisy
signals. Posture estimation is essential for enabling the operator to control the
flexible robot. Together they are essential for higher-level audio scene analysis
(Figure 1.4). Since the microphone layout depends on the robot posture, source
localization of a victim’s speech sound requires posture estimation. The en-
hancement results enable automatic detection of speech sound (i.e., VAD). The
integration of their results enables active audition and auditory display.

1.4.1 Speech Enhancement

When the robot operator searches for victims using microphones and a tip cam-
era on the robot, speech signals captured with the microphones are contaminated
by non-stationary ego-noise (e.g., motor and friction noise). While hose-shaped
rescue robots keep moving in order to search a wide area in a limited amount
time, conventional robots must stop their actuators and remain silent in order
to detect external sounds. This constraint is inconvenient, and speech occurring
when the robot is moving is often missed. Speech enhancement helps prevent
the operator from failing to detect speech sounds even when the robot is moving.

Speech enhancement is the task of suppressing noise and enhancing speech
signals included in a captured noisy signal. It has been studied for a wide
variety of applications such as speech telecommunication, speech recognition,
and hearing aids [37, 51–53]. In these applications, it is often difficult to an-
ticipate the usage situations. The speech recognition system on a smartphone,
for example, is used in various noisy environments such as houses, train sta-
tions, and outdoor environments. To cope with unknown noise, blind speech
enhancement, which works without using noise signal training data has been
studied [37, 53–55]. Speech enhancement for a hose-shaped rescue robot must
also deal with environment-dependent noise because the ego-noise of the robot
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depends on the robot’s movements and surrounding materials.
For microphone array signal processing, speech enhancement must deal with

two additional characteristics of a hose-shaped rescue robot:
Dynamic configuration of microphones – The relative positions of the mi-
crophones change due to vibration and deformation of the robot body. Most
conventional blind enhancement are degraded because they assume the relative
layout of microphones is stable [37, 53–55].
Partial occlusion of microphones – Microphones may fail to capture target
speech signals when they are obstructed by rubble around the robot. Since
such microphones degrade enhancement performance, detection of obstructed
microphones is important.

1.4.2 Posture Estimation

It is crucial to estimate the unseen posture of the robot because the unexpected
bending of the flexible body makes it difficult for an operator to control the robot
as desired. A posture estimation method for a hose-shaped rescue robot was
proposed by using gyroscopes distributed on the long body of the robot [56].
Since this method estimates the robot posture by using the angular velocities
obtained with the gyroscopes, the estimation error is gradually accumulated as
time passes. Shape estimation of a flexible cable has also been conducted with
magnetometers [57, 58]. Magnetometers, however, cannot be used for a hose-
shaped robot because the magnetic fields are easily distorted in rubble-existing
environments.

Both the microphones and loudspeakers on the robot can be simultaneously
localized using time differences of arrival (TDOAs) of the beacon sounds trans-
mitted by the loudspeakers [18,22,59,60]. Since the TDOAs depend only on the
current relative positions of the microphones and loudspeakers, the accumula-
tive error problem can be avoided. The audio-based approach can be used in
any enclosed space allowing sound propagation. This means that sound-based
posture estimation is complementary to gyroscope-based and magnetometer-
based posture estimation. The simultaneous localization problem is also known
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as unsupervised microphone array calibration. Various types of problem set-
tings have been studied such as localization of sub-microphone arrays (pairs of
microphones) and asynchronous microphones [18, 22, 59, 60].

The partial occlusion and dynamic configuration of microphones are the
main issues in posture estimation:
Dynamic configuration of microphones – As in speech enhancement, most
existing localization methods are based on the assumption that the relative lo-
cations of the microphones and/or sources are fixed [18,61].
Partial occlusion of microphones – Since the TDOAs in rubble are much dif-
ferent from those in an open space, it is crucial to detect degraded TDOAs au-
tomatically. When many of the microphones are obstructed in a narrow space,
posture estimation using only audio measurements is difficult.

1.5 Approaches

This thesis tackles speech enhancement and posture estimation by exploiting two
key ideas: using Bayesian signal processing and using multi-modal signal processing.

1.5.1 Bayesian Speech Enhancement

Bayesian signal processing is used for speech enhancement. The latent speech
signals and parameters, which depend on the surrounding environment, are
estimated simultaneously. Bayesian inference can be used to stabilize parameter
inference by assuming appropriate prior distributions [62]. This is because prior
distributions can be regarded as regularization terms from the viewpoint of op-
timization. In this study, to deal with the partial occlusion of microphones, the
speech volume gain at each microphone is estimated in a time-varying manner.
This estimation is stably conducted by putting a prior distribution represent-
ing feasible gains. Prior distributions represent the statistical characteristics of
parameters. To cope with the dynamic configuration of microphones, speech
and noise signals are separated on the basis of their spectral pattern difference
instead of the phase difference, which is unreliable as it is sensitively affected by
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the array layout. The spectral pattern difference is treated as the structure differ-
ence of their prior distributions. In addition, Bayesian modeling can use prior
distributions trained in advance. Deep generative models, such as variational
autoencoders (VAEs), have recently been proposed for learning a probability
distribution over complicated data [63–67]. A method that uses a speech prior
distribution based on a pre-trained VAE is developed in this study. Utilizing a
deep generative model, it enhances speech in unseen noisy signals by estimating
the latent speech and noise.

1.5.2 Multi-Modal Posture Estimation

Posture estimation is tackled using multi-modal signal processing. It is impor-
tant to detect sensor failures and integrate multiple sensors that compensate for
each other’s weaknesses [1, 68–70]. A 3D posture estimation method is devel-
oped in this study by integrating TDOAs obtained from microphones and tilt
angles obtained from accelerometers. Unreliable audio measurements due to
occlusion are compensated for by using the measurements of accelerometers.
Although accelerometers capture only partial information of the robot posture
(tilt angles), they are robust against external environments. Multi-modal esti-
mation is done based on a unified state-space model representing the sensor
measurements and temporal dynamics of the posture.

1.6 Organization

The organization of this thesis is outlined in Figure 1.5. Chapter 2 reviews au-
dio scene analysis for rescue robots, introduces speech enhancement and sound
source separation, and explains the posture estimation of flexible cables and si-
multaneous localization of microphones and loudspeakers. Chapter 3 presents a
blind multi-channel speech enhancement method that can cope with the partial
occlusion and dynamic configuration of microphones To improve enhancement
performance, Chapter 4 introduces a deep prior distribution on speech signals.
Chapter 5 presents an audio-based method that can cope with the dynamic con-
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Speech Enhancement Posture Estimation

7. Conclusion
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Figure 1.5: Organization of this thesis.

figuration of microphones by estimating the posture change rate and predicting
the current posture. In Chapter 6, the audio-based posture estimation method is
extended to a multi-modal 3D posture estimation method that can work when
there is partial occlusion of microphones. The thesis conclude in Chapter 7 with
a brief look at future work.
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Chapter 2

Literature Review

This chapter reviews the literature related to audio scene analysis for rescue
robots. Section 2.1 summarizes the audio scene analysis for existing rescue
robots. Section 2.2 reviews existing methods of speech enhancement and source
separation. Section 2.3 describes studies of simultaneous localization of micro-
phones and sources and posture estimation of flexible cables.

2.1 Audio Scene Analysis for Rescue Robots

Rescue robots are categorized into aerial rescue robots, marine rescue robots,
and ground rescue robots [1]. This section describes audio scene analysis for
each of these categories.

2.1.1 Aerial Rescue Robots

Aerial rescue robots with microphone arrays have been developed for quickly
finding a victim from the sky. Since small microphone arrays on these robots
can only estimate the direction of arrival (DOA) of a target sound, they move
fast in a large search area and localize the source by integrating the DOAs ob-
served at multiple locations [10, 20]. The relative locations of multiple robots
can also be estimated by submitting beacon signals and localizing them [71,72].
Multi-copters (or drones) have recently gained attention because of their high
maneuverability [19, 20, 39]. The main problem of these robots is continuous
and large ego-noise caused by their propellers [39]. Ohata et al. developed a
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localization method robust against ego-noise based on the multiple signal classi-
fication (MUSIC) algorithm [19]. A source classification method was proposed
based on deep learning for detecting sound events directly from a captured
noisy signal [28].

2.1.2 Marine Rescue Robots

The sound navigation and ranging (sonar) has long been studied for marine
vehicles including the rescue robots [11,73,74]. Sonar systems on marine rescue
robots are used for localizing objects around the robot and imaging the surface of
the sea floor [11]. Since radio waves including the GPS signals tend to be blocked
in the sea, acoustic self-localization is used by the submarine robots [21]. Beacon
buoys that can observe GPS signals submit beacon sounds into the sea and the
submarine robots localize themselves from the beacon signals.

2.1.3 Ground Rescue Robots

Many ground rescue robots have microphones for finding a victim and detecting
relevant auditory events [75–79]. The microphones are also used by an operator
for feeding back on the behavior of a robot (e.g., slipping or not) [80]. General
methods for audio scene analysis, such as ego-noise reduction, localization, and
separation, can be applied to the rescue robots that move on the ground. Several
ground rescue robots have microphone arrays and localize sound events around
the robot [81, 82]. Audio scene analysis for flexible or snake-like robots that
penetrate into gaps under rubble, however, has not been well investigated. Most
of these robots only have a single microphone and the operators have to carefully
listen to the captured signal and check whether the victim exists [25].

2.2 Speech Enhancement

This section first introduces conventional single-channel and multichannel meth-
ods for speech enhancement. Then, enhancement methods with deep learning
are introduced, which recently gained a lot of attention.
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2.2.1 Single-channel Speech Enhancement

Single-channel speech enhancement or source separation works based on the
spectral pattern difference between speech and noise signals. For example, con-
ventional Wiener filters and spectral subtraction methods assume that the noise
spectrogram is stable and extract the non-stable speech signal from a noisy au-
dio signal. Their performances easily deteriorate in actual recordings because
real noise signals are often unstable (e.g., engine sounds of automobiles). An
approach for dealing with non-stationary noise signals is to model speech and
noise spectrograms with hidden Markov models representing the dynamics of
spectral changes [83]. This approach, however, requires a lot of training data for
both speech and noise signals in advance. Another approach for non-stationary
noise signals is to use non-negative matrix factorization (NMF). NMF assumes
that an observed mixture signal is represented by spectral basis (template) vec-
tors and their activation vectors [84, 85]. By preparing the basis vectors for
speech signals in advance, NMF can estimate those for noise from an observed
signal and separate speech and noise signals [85, 86]. Since the spectrogram of
a speech signal has large time variation and cannot be represented by a small
number of basis vectors, its performance for speech enhancement is limited.

Low-rank and sparse decomposition can suppress non-stationary noise and
enhance speech without prior training [87–91]. Robust principal component
analysis (RPCA), for example, decomposes an amplitude spectrogram into low-
rank and sparse spectrograms corresponding to noise and speech [87,88]. RPCA
can be extended in a Bayesian manner to deal with the uncertainty of latent low-
rank and sparse components [92,93]. Ding et al. [92] proposed a Bayesian RPCA
whose prior distribution of sparse components has a Markovian constraint. This
model was used for separating background and foreground images from video
streams and reduced salt-and-pepper noise of estimated foreground images.
Application of RPCA to audio data, however, is not physically justified because
RPCA allows input, low-rank, and sparse amplitude spectrograms to take neg-
ative values. Robust NMF (RNMF) has been studied for decomposing an input
non-negative matrix into non-negative low-rank and sparse matrices [90, 91].
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2.2.2 Multichannel Speech Enhancement

Multichannel speech enhancement or source separation is conducted based on
not only the spectral pattern information but also the power and time differences
across microphones. Since these differences depend only on the geometric con-
figurations of microphones and sound sources, multichannel signal separation
can be robust against the spectral characteristics of source signals. In addi-
tion, since the microphones on a hose-shaped rescue robot are distributed on
the whole body, multichannel speech enhancement can deal with microphone
occlusion problem by using only the available microphones.

The most basic method of multichannel speech enhancement is beamform-
ing. By using steering vectors that represent the spatial relationship of the
sound sources and microphones, beamformers can extract each of source sig-
nals from a multichannel mixture recording [36,94,95]. The steering vectors are
estimated from the relative locations of sources and microphones. In the case
of a hose-shaped rescue robot, obtaining such information precise enough for
beamforming is difficult. The steering vectors can also be estimated from the
power spectrograms of speech signals obtained by the single-channel enhance-
ment [96]. This approach can deal with microphone failures (and occlusions) by
using the speech power at each microphone. Since the single-channel and multi-
channel enhancements are serially cascaded, the performance will be improved
by feeding back the multichannel results to the single-channel results.

Blind source separation based on the phase differences between the micro-
phones can be used without prior knowledge about microphones and sources [37,
53–55,97,98]. Frequency-domain independent component analysis (FD-ICA), for
example, separates sound sources by maximizing the statistical independence
between the separated sources. Since FD-ICA is independently conducted at fre-
quency bins, it has signal permutation ambiguities over frequency bins. To solve
the permutation problem, independent vector analysis (IVA) was proposed by
modeling the source spectra as multivariate random vectors. Since this method
assumes that source signals are stationary, its performance is degraded by the
mixture recordings of non-stationary source signals.
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Multichannel non-negative matrix factorization (MNMF) [54, 55, 99] decom-
poses given multichannel complex spectrograms into multiple low-rank source
spectrograms and their transfer functions. As in single-channel NMF, each of
source spectrograms is represented as a product of spectral basis vectors and
their temporal activation vectors. Kitamura et al. [55] proposed independent
low-rank matrix analysis (ILRMA), which is a variant MNMF, by integrating IVA
and NMF. Kounades-Bastian et al. [99] extended MNMF for moving sources by
assuming a Markov chain of time-varying transfer functions. Its performance
may, however, be degraded by the unexpected moving of sources.

One way to avoid estimating the time-varying transfer functions of sound
sources is to perform source separation over multichannel magnitude (or power)
spectrograms, which are insensitive to relatively small motions. Non-negative
tensor factorization (NTF) [100–103] has been used for decomposing the mul-
tichannel spectrogram into source spectrograms and their magnitude transfer
functions. Murata et al. [101] proposed an NTF by marginalizing out the phase
term of MNMF. This method, however, requires the basis vectors for each source
in advance. Although another NTF that does not need information about the
basis vectors was proposed [103], it requires the volume level ratio of each source
in the channels in advance. To make NTF completely blind, it is necessary to
import other separation criteria that can remove the constraints.

2.2.3 Speech Enhancement with Deep Learning

With the high non-linearity and model flexibility, deep neural network (DNN)-
based speech enhancement demonstrates excellent performance. Various net-
work architectures and cost functions for enhancing speech signals have been
reported [51, 52, 104–107]. The popular approach of DNN-based speech en-
hancement is to train a DNN to represent clean speech directly [107]. The DNN
is trained using simulated noisy data constructed by adding noise to speech as
input and clean speech as the target. Several methods combine a supervised
NMF and a DNN [108, 109]. A DNN is trained to estimate activation vectors
of the pre-trained basis vectors corresponding to speech and noise. Bayesian
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WaveNet [110] uses two networks: one, called a prior network, represents how
likely a signal is speech and the other, called a likelihood network, represents
how likely a signal is included in the observation. These two networks enhance
the noisy speech signal with a maximum a posteriori (MAP) estimation. An-
other reported method uses two networks that are trained to represent how
likely the input signal is speech or noise, respectively [111]. The speech signal is
enhanced by optimizing a cost function so that the estimated speech maximizes
the speech-likelihood network and minimizes the noise-likelihood network. All
the methods mentioned above are trained with sufficient amount of datasets of
both speech and noise signals.

A DNN-based method using only training data of speech signals was re-
ported [112]. This method represents speech and noise spectra with two au-
toencoders (AEs). The AE for speech is pre-trained, whereas that for noise is
trained at the inference for adapting to the observed noise signal. Since the
inference in this framework is under-determined, the estimated speech is con-
strained to be represented by a pre-trained NMF model. It, thus, might have the
same problem as the semi-supervised NMF.

DNN-based models have a potential to be a source model of blind speech
enhancement described in the above sections. One way to represent the complex
distribution of speech signals is to use a deep generative model. Deep generative
models [63–65] are deep-learning frameworks for representing a probabilistic
distribution of a training data set. Instead of formulating a parametric prior
distribution of speech signals, such models trained with a large number of clean
speech signals can be used [66,67,113,114]. The recently proposed frameworks of
generative adversarial networks (GANs) and variational autoencoders (VAEs)
can represent the probabilistic distribution of speech signals [66, 67, 113] and
are used to synthesize speech signals. A VAE is formulated as a Bayesian
probabilistic model that can be integrated into other probabilistic frameworks.
A speech signal can be separated from a noisy input signal by estimating the
posterior distribution of the integrated probabilistic generative process of the
noisy speech signal.
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2.3 Posture Estimation

This section first introduces existing methods for estimating the posture of a
flexible cable, and then reviews methods for simultaneous localization of micro-
phones and sound sources.

2.3.1 Posture Estimation of Flexible Cables

Posture estimation for a flexible cable has been studied for medical robots [57,
115]. Lee et al. [57] estimated the posture of a medical robot that works in the
colon by using a set of 3-axis accelerometers and 3-axis magnetometers. The
robot posture is modeled as a link model and estimated by using orientation
information obtained by the sensors. Tully et al. [115] reported a posture estima-
tion method for a surgical robot. This method is also based on magnetometers.
Because of sensor noise or poor estimation models, conventional methods often
output unrealistic locations (e.g., inside of an organ when the robot is outside
of it). The authors proposed a Kalman filter that truncates the probabilistic
density function of latent variables. This truncation constrains the robot pos-
ture to be a possible location. These methods, however, cannot be used for
hose-shaped rescue robots used in collapsed buildings where magnetic fields
are easily distorted.

Posture estimation has also been developed for towed array sonars, which are
one of the passive sonars [73,74,116,117]. The towed array sonar is a hydrophone
array used for localizing other ships or submarines. The posture is estimated by
using orientation sensors that consist of depth sensors and magnetometers. To
deal with the situation when these sensors are not available, audio-based posture
estimation have long been studied [74, 116, 117]. The posture is estimated from
the sounds caused by other ships around the array. Since the sound source
is assumed to be far from the towed array, such a method uses a plane-wave
source model, which is parameterized only with the direction of a sound source
instead of its location. This assumption does not hold on the microphones and
loudspeakers on a hose-shaped rescue robot.
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Ishikura et al. [56] estimated the posture of a hose-shaped rescue robot by
using gyroscopes, which measures 3-axis angular velocities. By integrating the
observed angular velocities, current sensor orientations can be estimated. They
formulated a flexible posture model called absolute nodal coordinate formu-
lation, which is based on the Euler-Bernoulli beam theory. The time-varying
posture is recursively estimated based on this posture model and an observa-
tion model for the gyroscopes by using an unscented Kalman filter. Since this
method uses only inertial sensors, the estimation accuracy is not affected by the
environment around a robot. The estimation performance, however, deterio-
rates as time passes because gyroscopes have the accumulative error problem.
In addition, the posture model requires high computational costs for simulating
the curve of the flexible robot.

2.3.2 Simultaneous Localization of Microphones and Sources

Simultaneous localization of microphones and sound sources have been studied
in various problem settings. A simple way is to use time of arrivals (ToAs),
which are flight times of sounds from sources to microphones. By multiplying
a ToA by the speed of sound (e.g., 340 m/s), the distance between a microphone
and a sound source can be obtained. Based on the distances obtained from ToAs,
the location of the microphones and sources can be determined with a closed
form solution [118]. Since ToA-based localization needs synchronization of both
the microphones and sound sources (loudspeakers), alternative methods that
do not need synchronization between them have been studied.

Chen et al. [119] reported a method that uses the energies of a sound mea-
sured at microphones, each of which depends on the distance between the
sound source and the microphone. This method estimates the microphone and
loudspeaker positions based on the attenuation model of a sound. Compared
to the ToA-based methods, this approach needs rough synchronization among
microphones and sources because the energies are measured by taking the aver-
ages of recorded signals. The performance of this method is, however, severely
degraded by external noise, which easily distorts the energy measurements.
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Time differences of arrivals (TDOAs) are used for the simultaneous localiza-
tion that requires only the synchronization of microphones [18, 22, 61, 120, 121].
A TDOA is the onset time differences between two microphones observing a
single source signal. A TDOA provides the distance difference between two
microphones and a source. The TDOA estimation is more robust against noise
signals than the energy estimation when the noise signals and a target reference
signal are uncorrelated [122]. Le et al. [121] derived a closed form solution for
this localization problem. This method can be applied even when the micro-
phones are not synchronized because it estimates the recording offset times at
microphones. Bando et al. [123] proposed a audio-based posture estimation
for a hose-shaped robot by using microphones and loudspeakers put on the
robot. This method designed to estimate the stable locations of the microphones
and loudspeakers. Miura et al. [22] built a TDOA-based online method that
localizes a moving sound source and asynchronous microphones. The latent
variables are estimated based on a SLAM frame work with an extended Kalman
filter (EKF-SLAM). The method localizes microphones as the map and a moving
sound source as the self-location. Several methods allow the microphone mov-
ing by assuming that the source locations are fixed or some of microphones and
sources are relatively fixed [124, 125]. To estimate the time-varying posture of a
hose-shaped rescue robot, the dynamic configuration of both the microphones
and loudspeakers on the robot has to be estimated.

2.4 Summary

This chapter reviewed audio scene analysis for rescue robots and summarized
the works relevant to speech enhancement and posture estimation. Audio scene
analysis has widely been studied for the aerial and marine robots and the robots
that move on the ground. That for flexible or snake-like ground robots penetrat-
ing into narrow gaps has not been well investigated. The dynamic configuration
and partial occlusion of microphones are the remaining problems of both speech
enhancement and posture estimation for such rescue robots.
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Chapter 3

Blind Speech Enhancement on
Multichannel Magnitude Spectrograms

This chapter presents a multichannel blind speech enhancement method robust
against the dynamic configuration and partial occlusion of microphones. The
method is formulated as a Bayesian generative model and extended to a state
space model for real-time enhancement.

3.1 Introduction

Blind speech enhancement has been studied for various applications such as
speech recognition and speech telecommunication [37, 40, 51, 52, 126–128]. In
these applications, it is often difficult to assume the typical usage situation,
such as noise characteristics and the relative layout of sources and microphones.
To enhance noisy speech signals with few assumptions on the usage situation,
blind speech enhancement has been studied by focusing on some statistical
structures of observed signals [37, 40, 54, 91, 128, 129]. Single-channel speech
enhancement, for example, focuses on the spectral pattern difference between
speech and noise signals [126, 128]. Multichannel speech enhancement focuses
on the inter-channel correlation difference between them, which depends on the
relative layout of sources and microphones [37, 40, 54].

This study addresses developing a blind multichannel speech enhancement
method that is robust against the time-varying layout of sources and micro-
phones. While most of the existing blind speech enhancement (or source sepa-
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Figure 3.1: Overview of the proposed Bayesian RNTF.

ration) methods assume that the mixing system is time-invariant, this assump-
tion does not always hold [53–55, 97]. A possible way is to enhance speech in
magnitude (or power) spectrogram domain, which is insensitive to relatively
small changes of the layout. Non-negative tensor factorization (NTF), for exam-
ple, can separate a multichannel magnitude spectrogram into source spectro-
grams [100–103]. NTF, however, requires prior information such as the spectral
bases (templates) of each source spectrogram, and thus it is not completely blind.

This chapter presents blind multichannel speech enhancement that works
in magnitude spectrogram domain based on low-rank and sparse decomposi-
tion. Low-rank and sparse decomposition, such as robust non-negative matrix
factorization (RNMF), can decompose a magnitude spectrogram into low-rank
and sparse spectrograms without any prior training [87–91, 130]. The low-rank
spectrogram corresponds to a noise spectrogram that can be represented by a
small number of spectral bases (e.g., motor noises). The sparse spectrogram
corresponds to a speech spectrogram that has harmonic structures. The method
is inspired by NTF and RNMF, and decomposes a multichannel magnitude
spectrogram into channel-wise low-rank noise spectrograms and sparse speech
spectrogram common to all the channels (Figure 3.1). It is formulated as a
Bayesian generative model called Bayesian robust NTF (Bayesian RNTF). Since
its mixing system is independently estimated at each time frame, it is robust
against the time-varying layout of sources and microphones.

Bayesian RNTF is applied to speech enhancement with a microphone array
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on a hose-shaped rescue robot. The following three characteristics make the
speech enhancement for the robot difficult:

1. Environment-dependence of ego-noise: The ego-noise changes over time
depending on the robot’s movements and surrounding materials.

2. Dynamic configuration of microphones: The relative positions of the mi-
crophones change over time because of the vibration and deformation of
the robot body.

3. Partial occlusion of microphones: Some of the microphones often fail to
capture target speech when they are shaded by rubble around the robot.

These problems make it impossible to use conventional supervised methods [34,
35, 51, 52, 127, 131], and degrade the conventional blind methods that assume a
time-invariant mixing system [53–55, 97]. On the positive side, since the ego-
noise is generated from the vibration motors, the noise spectrogram has repet-
itive structures and is, thus, considered as low rank. The proposed Bayesian
RNTF is based on the low-rank and sparse decomposition and time-varying
mixing system, and thus it is robust against the first two problems. In addition,
it can deal with the occlusion problem because it estimates the speech level at
each microphone.

In actual rescue activities searching for victims, real-time speech enhance-
ment is crucial. Bayesian RNTF is extended to a state-space model called
Bayesian streaming RNTF (Bayesian SRNTF) that represents the dynamics of
the latent variables. The Bayesian inference of Bayesian SRNTF is conducted
in a mini-batch manner with a variational Bayesian (VB) framework [62, 93].
Experimental results show that the method works in real time on a mobile
general-purpose graphics processing unit (GPGPU).

3.2 Low-Rank and Sparse Decomposition

Low-rank and sparse decomposition is a popular approach to suppressing non-
stationary periodic noise and enhancing target speech without prior training
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Figure 3.2: Speech enhancement by low-rank and sparse decomposition. Speech
signals that have a sparse structure are separated from low-rank noise signals.

(Figure 3.2) [87–91]. Let Y ∈ RF×T , L ∈ RF×T , and S ∈ RF×T be input, low-rank
and sparse matrices (magnitude spectrograms withF frequency bins and T time
frames), respectively. This decomposition was originally proposed in robust
principal component analysis (RPCA) and is conducted by solving the following
minimization problem with the augmented Lagrange multiplier framework [88]:

argmin
L,S

∥L∥∗ + λ∥S∥1 s.t. Y = L+ S, (3.1)

where ∥ · ∥∗ is the nuclear norm representing the low-rankness, ∥ · ∥1 is the L1
norm representing the sparsity, and λ represents a scale parameter controlling
the sparseness of S. To reduce the processing time of RPCA, the following
relaxed problem of Eq. (3.1) is proposed by replacing the equality constraint
with a penalty term [132,133]:

argmin
L,S

1

2
∥Y − L− S∥2F + λ1∥L∥∗ + λ2∥S∥1, (3.2)

where ∥x∥F is the Frobenius norm and λ1 and λ2 are the scale parameters. When
these scale parameters are small enough, the solutions to Eq. (3.2) approach the
solutions to Eq. (3.1).

Eq. (3.2) can be interpreted as a log-likelihood function (1
2
∥Y − L − S∥2F )

with priors for the latent variables (λ1∥L∥∗ and λ2∥S∥1). Bayesian RPCA has
been studied for dealing with uncertainty of latent low-rank and sparse com-
ponents [92, 93]. Babacan et al. [93] derived a VB algorithm for Bayesian RPCA
(VB-RPCA) to reduce the computational cost. Bayesian RPCA represents the
low-rank matrix L as the product of K basis vectors W = [w1, . . . ,wK ] ∈ RF×K

and their coefficient vectors H ∈ RK×T as follows:

L = WH. (3.3)
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Note that the rank of the low-rank matrix L is constrained to be K or less.
Using this low-rank model, the likelihood function is defined with a Gaussian
distribution (denoted by N ) as follows:

p(Y|W,H,S) =
∏
f,t

N

(
yft

∣∣∣∣∣∑
k

wfkhkt + sft, σ

)

∝ exp

(
− 1

σ
∥Y −WH− S∥2F

)
, (3.4)

where σ is a variance parameter and is simultaneously estimated with other
parameters. The low-rankness and sparseness of L and S are controlled by this
structural constraint and their prior distributions.

By constraining the low-rank and sparse matrices to be non-negative, RNMF
was proposed for analyzing audio spectrograms or video images [90, 91, 128–
130]. Since the Frobenius norm (Euclidean distance) in Eqs. (3.2) and (3.4) often
causes over-emphasis of high-energy components in a magnitude spectrogram,
Li et al. [128] proposed an RNMF with the Kullback-Leibler (KL) divergence,
which has been widely used in audio source separation:

argmin
W,H,S

KL(Y|WH+ S) + λ∥S∥1, (3.5)

where KL(·|·) represents the KL divergence. Min et al. [129] proposed an RNMF
with the Itakura-Saito divergence, which is derived from a statistical generative
model of acoustic signals.

3.3 Robust Non-Negative Tensor Factorization

This section describes the proposed RNTF model that represents a multichannel
magnitude spectrogram by channel-wise low-rank components and sparse com-
ponents common to all the channels as shown in Figure 3.1. Since the proposed
method does not use the phase information, the phase differences across chan-
nels do not affect the result. To derive the proposed multichannel model, this
section first formulates a Bayesian reformulation of RNMF (Bayesian RNMF)
that is inspired by Bayesian NMF [134] and Bayesian RPCA [93]. Then, its mul-
tichannel extension (Bayesian RNTF) is formulated as a statistical generative
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model, and finally the mini-batch extension called Bayesian SRNTF is derived
by reformulating the batch Bayesian RNTF to a state-space model.

3.3.1 Bayesian RNMF for Single-Channel Enhancement

This sub-section formulates an offline single-channel enhancement model called
Bayesian RNMF. The problem of Bayesian RNMF is defined as follows:

Input: Single-channel magnitude spectrogram Y ∈ RF×T
+

Output: Denoised magnitude spectrogram S ∈ RF×T
+

Assumption: The following values are given in advance:
A) Possible maximum rank of noise spectrogram K ∈ N
B) Hyperparameters αw ∈ R+, βw ∈ R+, αh ∈ R+, βh ∈ R+, and αs ∈ R+

where F and T indicate numbers of frequency bins and time frame bins, re-
spectively. The magnitude spectrogram is defined as the absolute values of the
short-time Fourier transform (STFT) of a time-domain signal. Interpretations of
the hyperparameters are explained below.

Overview

As in existing low-rank and sparse decomposition methods (Eqs. (3.2), (3.4),
and (3.5)), Bayesian RNMF approximates an input spectrogram Y ∈ RF×T

+ as
the sum of a low-rank spectrogram L ∈ RF×T

+ (noise) and a sparse spectrogram
S ∈ RF×T

+ (target speech) as follows:

Y ≈ L+ S. (3.6)

The low-rank spectrogram is represented by the product of K spectral basis
vectors W = [w1, . . . ,wK ] ∈ RF×K

+ and their temporal activation vectors H =

[h1, . . . ,hT ] ∈ RK×T
+ :

Y ≈ WH+ S. (3.7)

The low-rankness and sparseness of each term can be controlled in a Bayesian
manner as explained below.
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Likelihood Function

Bayesian RNMF tries to minimize the approximation error for the input spectro-
gram by using the KL divergence. Since the maximization of a Poisson likelihood
corresponds to the minimization of a KL divergence, the likelihood function is
defined as follows:

p(Y|W,H,S) =
∏
ft

P

(
yft

∣∣∣∣∣∑
k

wfkhkt + sft

)
, (3.8)

whereP(x|λ) ∝ 1
Γ(x+1)

λxe−λ denotes a Poisson distribution with a rate parameter
λ ∈ R+. Although the discrete Poisson distribution can be used by quantizing
the observation yft, it has been empirically shown that NMF with the continuous
Poisson likelihood performs as well as those of the discrete distribution [135].

Prior Distributions on Low-Rank Components

The proposed low-rank modeling is inspired by Bayesian NMF [134] that has
been studied for low-rank decomposition of audio spectrograms. Since the
gamma distribution is a conjugate prior for the Poisson distribution, gamma
priors are put on the basis and activation matrices of the low-rank components
as follows:

p(W|αw, βw) =
∏
f,k

G(wfk|αw, βw), (3.9)

p(H|αh, βh) =
∏
k,t

G(hkt|αh, βh), (3.10)

where G(x|α, β) denotes a gamma distribution with a shape parameter α and
a rate parameter β; αw ∈ R+, βw ∈ R+, αh ∈ R+, and βh ∈ R+ are the hyper-
parameters which should be appropriately set in advance. Setting the shape
parameters αw and αh to 1.0 or less forces the basis and activation matrices to be
sparse [134], which means that the low-rank component L is forced to be low-
rank. These prior distributions enhance the low-rankness of this component
compared to the original RNMF.

27



CHAPTER 3. BLIND SPEECH ENHANCEMENT ON MULTICHANNEL
MAGNITUDE SPECTROGRAMS

𝑦𝑦𝑚𝑚𝑚𝑚

ℎ𝑘𝑘𝑚𝑚

𝑠𝑠𝑚𝑚𝑚𝑚

𝛽𝛽𝑚𝑚𝑚𝑚𝑠𝑠

𝑤𝑤𝑚𝑚𝑘𝑘

𝑇𝑇

𝐾𝐾

𝐹𝐹

(a) Bayesian RNMF

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

ℎ𝑚𝑚𝑘𝑘𝑚𝑚𝑔𝑔𝑚𝑚𝑚𝑚

𝑠𝑠𝑚𝑚𝑚𝑚

𝛽𝛽𝑚𝑚𝑚𝑚𝑠𝑠

𝑤𝑤𝑚𝑚𝑚𝑚𝑘𝑘

𝑇𝑇

𝐾𝐾

𝐹𝐹

𝑀𝑀
(b) Bayesian RNTF

Figure 3.3: Graphical models for Bayesian RNMF and RNTF.

Prior Distributions on Sparse Components

In Bayesian RPCA, Gaussian priors with the Jeffreys hyperpriors are put on
sparse components [93]. To force the sparse components to take non-negative
values, gamma priors are put on the sparse components as follows:

p(S|αs,βs) =
∏
f,t

G(sft|αs, βsft), (3.11)

where αs ∈ R+ and βsft ∈ R+ represent the shape and rate hyperparameters of
the gamma distributions, respectively. To estimate the rate hyperparameters,
the Jeffreys hyperpriors are put on them as follows:

p(βsft) ∝ (βsft)
−1. (3.12)

The rate hyperparameters are independently defined at individual time-frequency
bins. The significance of each time-frequency bin is automatically estimated by
optimizing the rate hyperparameter as in Bayesian RPCA [93]. The shape hyper-
parameterαs, on the other hand, controls the sparseness of the sparse component
S and should be set appropriately in advance. The complete graphical model
that represents the probabilistic dependency of the latent variables is shown in
Figure 3.3-(a).
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3.3.2 Bayesian RNTF for Multichannel Enhancement

This sub-section then formulates a multichannel extension of Bayesian RNMF
called Bayesian RNTF. The problem in this subsection is defined as follows:

Input: M -channel magnitude spectrograms Ym ∈ RF×T
+

Output: Denoised magnitude spectrogram S ∈ RF×T
+

Assumption:
The following values are given in advance:
A) Possible maximum rank of noise spectrogram K ∈ N
B) Hyperparameters αw ∈ R+, βw ∈ R+, αh ∈ R+, βh ∈ R+,
αg ∈ R+, and αs ∈ R+

where m represents the microphone index. Interpretations of the hyperparam-
eters are explained below. Bayesian RNTF is designed for enhancing speech
sounds coming from one direction at each time frame. This is considered to
be reasonable because multiple speakers located at different directions may not
talk simultaneously in disaster situations. Even when a few people speak si-
multaneously from the same direction, the overlapping speech sounds could be
enhanced because those sounds still have sparse harmonic structures and the
fine time-frequency fluctuations of speech spectrograms violate the low-rank
assumption.

Overview

Bayesian RNTF approximates an input spectrogram at each channel Ym ∈ RF×T
+

as the sum of channel-wise low-rank spectrogram and channel-wise sparse spec-
trogram S′

m ∈ RF×T
+ :

Ym ≈ WmHm + S′
m, (3.13)

where Wm ∈ RF×K
+ and Hm ∈ RK×T

+ are channel-wise basis and activation
matrices for the low-rank spectrogram, respectively.

The relationship between the target speech signal S ∈ RF×T
+ and its obser-

vation at each microphone S′
m is assumed to be a time-variant and frequency-

invariant linear system:

s′mft ≈ gmtsft, (3.14)

29



CHAPTER 3. BLIND SPEECH ENHANCEMENT ON MULTICHANNEL
MAGNITUDE SPECTROGRAMS

where gmt ∈ R+ represents a gain of the target speech signal at microphone m
and time t. According to Eqs. (3.13) and (3.14), Bayesian RNTF decomposes the
input spectrogram Ym into the following four components:

ymft ≈
∑
k

wmfkhmkt + gmtsft. (3.15)

where gm = [gm1, . . . , gmT ] is a gain vector. Although magnitude spectrograms
are insensitive to relatively small motions [101], the gain gmt depends on the
motion of microphones and target speech. The gain gmt is, therefore, indepen-
dently estimated at each time frame to deal with the movement of microphones
and sources.

Likelihood Function and Prior Distributions

The likelihood function and prior distributions except for those on the gain pa-
rameters gmt are formulated in the same manner as in Bayesian RNMF (Eqs. (3.8)
– (3.12)). A gamma prior is put on gmt assuming that its mean is 1:

p(gmt|αg) = G(gmt|αg, αg), (3.16)

where αg ∈ R+ is a hyperparameter controlling the variance of the gain param-
eters. The complete graphical model is shown in Figure 3.3-(b).

3.3.3 Bayesian Streaming RNTF for Real-Time Enhancement

This subsection describes the Bayesian SRNTF. It is formulated as a state-space
model representing the latent variable as time-varying latent variables.

Overview

Bayesian SRNTF sequentially enhances target speech for T frames of mini-batch
audio inputs (Figure 3.4). The problem in this subsection is defined as follows:
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⋯

⋯

Figure 3.4: Mini-batch processing flow of Bayesian SRNTF.

Input:
1. M -channel magnitude spectrograms Y(n)

m ∈ RF×T
+

2. Posterior distribution at the previous (n− 1) mini-batch.
Assumption:
The following values are given in advance:
A) Possible maximum rank of noise spectrogram K ∈ N
B) Hyperparameters αw ∈ R+, βw ∈ R+, αh ∈ R+, βh ∈ R+,
αg ∈ R+, αs ∈ R+, and γ ∈ R+

where n indicates the mini-batch index (n = 1, 2, 3, . . .). As explained below, the
posterior distribution at the prevous mini-batch is used for the prior informa-
tion of the current latent variables. Interpretations of the hyperparameters are
explained below.

Bayesian SRNTF decomposes the mini-batch audio spectrogram y
(n)
mft into

low-rank and sparse components in the same manner as in Bayesian RNTF:

y
(n)
mft ≈

∑
k

w
(n)
mfkh

(n)
mkt + g

(n)
mt s

(n)
ft . (3.17)

where W
(n)
m ∈ RF×K

+ , H(n)
m ∈ RK×T

+ , g(n)m ∈ R1×T
+ , and S(n) ∈ RF×T

+ are the latent
variables for the basis and activation matrices, gain, and sparse matrix notated
in the same manner as in Bayesian RNTF, respectively. Let Θ(n) be a set of all
the latent variables at the n-th mini-batch {W(n)

1:M ,H
(n)
1:M , g

(n)
1:M ,S

(n),βs(n)}. The
proposed state-space model consists of an observation model p(Y(n)

1:M |Θ(n)) and
a state update model p(Θ(n)|Θ(n−1)) that represent the relationship between the
observation and latent variables and the dynamics of the latent variables.
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Observation Model

The observation model of Bayesian SRNTF p(Y
(n)
1:M |Θ(n)) is formulated with a

Poisson distribution in the same manner as in Bayesian RNTF:

p
(
Y

(n)
1:m

∣∣Θ(n)
)
=
∏
m,f,t

P

(
y
(n)
mft

∣∣∣∣∣∑
k

w
(n)
mfkh

(n)
mkt + g

(n)
mt s

(n)
ft

)
. (3.18)

State Update Model

Since the latent variables for the sparse component (g(n)1:M , S(n), and βs(n)) and
the activation matrix for the low-rank component (H(n)

1:M ) are time-independent,
only the basis matrix W

(n)
m depends on the previous state W

(n−1)
m in the state

update model:

p
(
Θ(n)

∣∣Θ(n−1)
)
= p

(
W

(n)
1:M

∣∣∣W(n−1)
1:M

)
p
(
H

(n)
1:M

)
p
(
g
(n)
1:M

)
p
(
S(n)

)
p
(
βs(n)

)
.

(3.19)

The priors for H(n)
m , g(n)m , S(n), and βs(n) are formulated in the same way as in the

batch Bayesian RNTF (Section 3.3.2-2).
In this study, the state update model for W(n)

1:M is independently formulated
on each of its elements w(n)

mfk:

p
(
W(n)

m

∣∣W(n−1)
m

)
=
∏
m,f,k

p
(
w

(n)
mfk

∣∣∣w(n−1)
mfk

)
. (3.20)

The state update model p(w(n)
mfk|w

(n−1)
mfk ) represents how w

(n)
mfk varies from the

previous state w(n−1)
mfk . It has the following properties. The mean of w(n)

mfk should
not be changed from that of w(n−1)

mfk because no bias on the update is assumed.
The variance of w(n)

mfk, on the other hand, should be increased from that of w(n−1)
mfk

because its uncertainty increases over time. As proposed in [136], such an
update model can be formulated with a multiplicative process noise v(n)mfk ∈ R+

as follows:

w
(n)
mfk = v

(n)
mfkw

(n−1)
mfk . (3.21)
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A beta prior distribution is put on v(n)mfk as follows:

p(v
(n)
mfk|α

(n−1)
mfk , γ) = B

(
v
(n)
mfkγ

∣∣∣γα(n−1)
mfk , (1− γ)α

(n−1)
mfk

)
, (3.22)

where B(α, β) represents a beta distribution with two shape parameters α and β,
and γ ∈ R+ is a rate parameter controlling the variance ofw(n)

mfk. From Eqs. (3.21)
and (3.22), the update model p(w(n)

mfk|w
(n−1)
mfk ) can be derived as follows:

p
(
w

(n)
mfk

∣∣∣w(n−1)
mfk

)
= B

γ
w

(n)
mfk

w
(n−1)
mfk

∣∣∣∣∣∣ γα̂(n−1)
mfk , (1− γ)β̂

(n−1)
mfk

 . (3.23)

As shown later (Section IV), the posterior p(w(n−1)
mfk |Y(1:n−1)) is a gamma dis-

tribution G(w(n−1)
mfk |α̂(n−1)

mfk , β̂
(n−1)
mfk ) with a shape parameter α̂(n−1)

mfk ∈ R+ and a
rate parameter β̂(n−1)

mfk ∈ R+. As proven in [136], the predictive distribution
p(w

(n)
mfk|Y(1:n−1)) is calculated from p(w

(n−1)
mfk |Y(1:n−1)) as follows:

p(w
(n)
mfk|Y

(1:n−1)) =

∫
p(w

(n)
mfk|w

(n−1)
mfk )p(w

(n−1)
mfk |Y(1:n−1))dw

(n−1)
mfk

= G(γα̂(n−1)
mfk , γβ̂

(n−1)
mfk ). (3.24)

Note that the mean of this distribution is the same as that of the one in the
previous state and its variance is γ−1 times larger than that of the one in the
previous state.

3.4 Speech Enhancement Based on Bayesian RNTF

This section derives Bayesian inferences of the proposed Bayesian RNMF, RNTF,
and SRNTF, and describes the processing flow of speech enhancement based
on Bayesian RNTF. The inferences of these models are derived with the VB
framework. In summary, the proposed enhancement methods are VB-RNMF,
VB-RNTF, and VB-SRNTF collectively.

3.4.1 Variational Inference

The goal is to calculate the full posterior distributions of the proposed models.
Since the true posterior is analytically intractable, it is approximated by using a
VB algorithm [93,134].
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First, this sub-section shows a brief description of the VB inference frame-
work. Let Y be an observation variable, Zi (i = 1, . . . , I) be parameters whose
posterior distributions are estimated, and Θ = {Z1, . . . ,ZI} be a set of all the
parameters. Then, the true posterior distribution p (Θ |Y ) is approximated by
the product of variational posterior distributions q (Zi) as follows:

p (Θ |Y ) ≈
∏
i

q (Zi) . (3.25)

VB algorithm estimates the variational distributions q (Zi) by maximizing the
following lower bound L(q) of log p (Y):

log p (Y) = log

∫
p (Y,Θ) dΘ (3.26)

≥
∫
q (Θ) log

p (Y,Θ)

q (Θ)
dΘ (3.27)

= ⟨log p (Y,Θ)⟩ − ⟨log q (Θ)⟩ def
= L(q), (3.28)

where ⟨x⟩ is the expectation operation. This maximization corresponds to the
minimization of the KL divergence between the true and approximated distri-
butions. L(q) is maximized by alternately and iteratively updating each of q (Zi)
as follows:

q(Zi) = exp ⟨log p(Y,Θ)⟩Θ\Zi
, (3.29)

where Θ \ Zi represents a subset of Θ obtained by removing Zi from Θ.

VB-RNMF

The target full posterior distribution of Bayesian RNMF is p(W,H,S,β|Y). Let
Θ be a set of all the parameters and q(x) be a variational posterior distribution
of x. Then, the true posterior distribution is approximated as follows:

p(Θ|Y) ≈ q(W)q(H)q(S)q(βs). (3.30)

The approximated posterior distributions are estimated by taking a lower bound
of log p (Y) and maximizing it.
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Since the expectation of log p(Y|W,H,S) includes the following intractable
expectations:

⟨log p(Y|W,H,S)⟩ =
∑
f,t

yft

⟨
log

(∑
k

wfkhkt + sft

)⟩
−
∑
f,t,k

⟨wfkhkt⟩ −
∑
f,t

⟨sft⟩+ const., (3.31)

this Poisson log-likelihood is lower-bounded by using Jensen’s inequality [134]:

⟨log p(Y|W,H,S)⟩ ≥
∑
f,t,k

yftϕftk

⟨
log

(
wfkhkt
ϕftk

)⟩
+
∑
f,t

yftψft

⟨
log

(
sft
ψft

)⟩
−
∑
f,t,k

⟨wfkhkt⟩ −
∑
f,t

⟨sft⟩+ const. (3.32)

def
=⟨p′(Y|W,H,S)⟩ (3.33)

where ϕftk ∈ R+ and ψft ∈ R+ (
∑

k ϕftk + ψft = 1) are the auxiliary variables.
Using ⟨p′(Y|W,H,S)⟩, log p(Y) is lower-bounded as follows:

log p(Y) ≥⟨log p′(Y|W,H,S)⟩+ ⟨log p(W)⟩+ ⟨log p(H)⟩

+ ⟨log p(S|βs)⟩+ ⟨log p(βs)⟩ − ⟨log q (W)⟩ − ⟨log q (H)⟩

− ⟨log q (S)⟩ − ⟨log q (βs)⟩ def
= L(q). (3.34)

By maximizing L(q) with the Lagrange multiplier method, the optimal ϕftk and
ψft are obtained as follows:

ϕftk =
G[wfk]G[hkt]∑

kG[wfk]G[wkt] +G[sft]
, (3.35)

ψft =
G[sft]∑

kG[wfk]G[hkt] +G[sft]
, (3.36)

where G[x] = exp(⟨log x⟩) represents the geometric expectation.

The update rules for the latent variables are obtained such that L(q) is max-
imized. Each variational posterior distribution is alternately and iteratively
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updated by fixing the other distributions as follows:

q(wfk) = G(αw +
∑
t

yftϕftk, β
w +

∑
t

⟨hkt⟩), (3.37)

q(hkt) = G(αh +
∑
f

yftϕftk, β
h +

∑
f

⟨wfk⟩), (3.38)

q(sft) = G(αs + yftψft,
⟨
βsft
⟩
+ 1), (3.39)

q(βsft) = G(αs, ⟨sft⟩). (3.40)

VB-RNTF

The target full posterior distribution of Bayesian RNTF, p(W1:m,H1:m, g1:m,S,β|Y1:m),
is approximated in the same manner as that of Bayesian RNMF. The true poste-
rior distribution is approximated as:

p(Θ|Y1:M) ≈

{∏
m

q(Wm)q(Hm)q(gm)

}
q(S)q(βs). (3.41)

The variational posterior distributions are calculated in the same way as in
Bayesian RNMF, and each of them is alternately and iteratively updated as
follows:

q(wmfk) = G(αw +
∑
t

ymftϕmftk, β
w +

∑
t

⟨hmkt⟩), (3.42)

q(hmkt) = G(αh +
∑
f

ymftϕmftk, β
h +

∑
f

⟨wmfk⟩), (3.43)

q(gmt) = G(αg +
∑
f

ymftψmft, α
g +

∑
f

⟨sft⟩), (3.44)

q(sft) = G(αs +
∑
m

ymftψmft,
⟨
βsft
⟩
+
∑
m

⟨gmt⟩), (3.45)

q(βsft) = G(αs, ⟨sft⟩), (3.46)

ϕmftk =
G[wmfk]G[hmkt]∑

kG[wmfk]G[hmkt] +G[gmt]G[sft]
, (3.47)

ψmft =
G[gmt]G[sft]∑

kG[hmfk]G[hmkt] +G[gmt]G[sft]
. (3.48)

where ϕmftk and ψmft are auxiliary variables.
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VB-SRNTF

VB-SRNTF estimates the current posterior distribution recurrently in prediction
and correction steps. The prediction step calculates p(Θ(n)|Y(1:n−1)) from the
previous posterior distribution p(Θ(n−1)|Y(1:n−1)):

p
(
Θ(n)

∣∣Y(1:n−1)
)
=

∫
p
(
Θ(n)

∣∣Θ(n−1)
)
p
(
Θ(n−1)

∣∣Y(1:n−1)
)
dΘ(n−1).

According to Eqs. (3.19) and (3.20), the predictive distribution is calculated as
follows:

p
(
Θ(n)

∣∣Y(1:n−1)
)
=
∏
m,f,k

G
(
w

(n)
mfk

∣∣∣γα̂(n−1)
mfk , γβ̂

(n−1)
mfk

)
×

p
(
H(n)

)
p
(
g(n)m

)
p
(
S(n)

)
p
(
βs(n)

)
, (3.49)

where α̂(n−1)
mfk and β̂

(n−1)
mfk are the shape and rate parameters of the gamma distri-

bution p(w(n−1)
mfk |Y(1:n−1)), respectively. The correction step estimates the current

posterior distribution p(Θ(n)|Y(1:n)) from the observationY(n) and the predictive
distribution p(Θ(n)|Y(1:n−1)) as follows:

p
(
Θ(n)

∣∣Y(1:n)
)
∝ p

(
Y(n)

∣∣Θ(n)
)
p
(
Θ(n)

∣∣Y(1:n−1)
)
. (3.50)

In the correction step, the current posterior distribution is estimated in the same
manner as in Eqs. (3.42)–(3.48) by replacing the prior distribution of Bayesian
RNTF with the predictive distribution. The initial correction step (n = 1) uses
the prior distribution of Bayesian RNTF (Section 3.3.2-2) as the predictive distri-
bution.

3.4.2 Speech Enhancement Based on VB-SRNTF

Figure 3.5 shows the overall processing flow for the speech enhancement using
VB-SRNTF. The proposed framework first takes the STFT of each microphone
recording and obtains a multichannel magnitude spectrogram. Since each noisy
input magnitude spectrogram includes fine fluctuations, the input spectrogram
is smoothed for stable low-rank and sparse decomposition. LettingY

′(n)
m ∈ RF×T

+
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Figure 3.5: Processing flow of the proposed speech enhancement.

be the raw magnitude spectrogram obtained with the STFT, this smoothing pre-
processing is conducted as follows:

y
(n)
mft =

1

9

f+1∑
f ′=f−1

t+1∑
t′=t−1

y
′(n)
mf ′t′ . (3.51)

After conducting VB-SRNTF, the framework reconstructs the target speech sig-
nal at each microphone with Wiener filtering because VB-SRNTF cannot estimate
the absolute scale of the target signal. Letting Y(n)

m ∈ CF×T be the input complex
spectrogram at them-th microphone, the complex spectrogram of the enhanced
speech signal S(n)

m ∈ CF×T is obtained as follows:

s
(n)
mft =

ŝ
(n)
mft

ŝ
(n)
mft + n̂

(n)
mft

y
(n)
mft (3.52)

where ŝ
(n)
mft ∈ R+ and n̂

(n)
mft ∈ R+ are the estimated power spectrograms of

speech and noise signals, respectively. Finally, the time-domain output signal is
obtained by taking the inverse STFT of the complex spectrogram.

3.5 Experimental Evaluation with Simulated Data

To analyze the performance of the proposed enhancement methods, and com-
pare them with existing methods, these methods were evaluated using simu-
lated audio signals.

3.5.1 Common Experimental Conditions

As shown in Figure 1.3, the body of the hose-shaped robot used in this evaluation
was made from a corrugated tube of 38 mm in diameter and 3 m long. The entire
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Figure 3.6: Four conditions of robot and loudspeaker in experimental evaluation.

surface of the robot was covered by cilia and seven vibrators used for moving
forward by vibrating the cilia. This robot had an 8-ch synchronized microphone
array whose microphones were distributed on its body at 40-cm intervals. The
audio signals of these microphones were captured at 16 kHz and with 24-bit
sampling.

The input signals were generated by mixing target speech and ego-noise
signals at signal-to-noise ratios (SNRs) varying from −20dB to +5 dB. As shown
in Figure 3.6, there were four conditions differing in the relative positions of the
robot and the loudspeaker (target speech).

1. Open-Front: The robot was in an experimental room with no obstacles. The
loudspeaker was in front of the robot. The reverberation time (RT60) of the
room was 750 ms.

2. Open-Right: Same as Open-Front except that the loudspeaker was to the
right of the robot.

3. Door-4ch: The robot was caught by a door, the loudspeaker was in front of the
robot, and four of the microphones were behind the door. The reverberation
time was 990 ms.

4. Door-2ch: Same as Door-4ch except that six microphones were behind the
door.

The ego-noise was recorded for 60 seconds under each condition while sliding
the robot left and right by using vibrators and a hand. The loudspeaker was used
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for recording the impulse response. Multichannel speech signals were generated
by convoluting clean speech signals and the impulse response, and then they
were mixed with 20 seconds of the ego-noise recordings. The clean speech data
consisted of 24 recordings of three male and three female speech, which were
included in the JNAS phonetically balanced Japanese utterances database [137].
In this setting, the location of the target speech did not change as the speech
signal was generated with a single impulse response at each condition.

The enhancement performance was evaluated with the source-to-distortion
ratio (SDR) [138], speech-to-overall ratio (SOR), and noise reduction ratio (NRR).
The SDR measures the power ratio of the target speech and distortion component
included in an output signal. Letting st ∈ R (t = 1 . . . , T ) and ŝt ∈ R be the
time-domain signals of reference and estimated speech signals, respectively, the
SDR was calculated as follows:

SDR =

∑
t=1,...,T (

∑
τ aτst−τ )

2∑
t=1,...,T (ŝt −

∑
τ aτst−τ )

2
, (3.53)

where aτ ∈ R (τ = 0, . . . , 127) is the filter coefficient that compensates the phase
and power differences between the estimated and reference speech signals [138].
The SOR measures the average power ratio of the speech section and the whole
section in an output signal. Letting S be the set of time indices where speech
exists in the reference signal, the SOR was calculated as follows:

SOR =

1
|S|
∑

t∈S ŝ
2
t

1
T

∑
t=1,...,T ŝ

2
t

(3.54)

where |S| represents the number of elements in S . The SOR represents how
prominent the speech is in the output signal. The NRR measures the power
ratio of the estimated speech and reference noise signals at the non-speech
sections. Let nt ∈ R be the time-domain signal of a reference noise signal, the
NRR was calculated as follows:

NRR =

1
T−|S|

∑
t/∈S ŝ

2
t

1
T−|S|

∑
t/∈S n

2
t

. (3.55)

The NRR represents how suppressed the noise is in an output signal. Since
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Table 3.1: Configurations and Results of Bayesian Optimization

Parameters Group Idx. αw αh αg αs γ K

Search range min – 0.01 0.01 0.01 0.01 0.01 1
max – 1.0 1.0 10.0 2.0 1.0 10

1 0.87 0.032 – 0.61 – 9
VB-RNMF 2 0.56 0.070 – 0.55 – 7

3 0.77 0.16 – 0.51 – 7
1 0.87 0.31 9.0 1.9 – 4

VB-RNTF 2 0.36 0.13 5.2 1.9 – 6
3 0.58 0.073 6.0 1.9 – 6
1 0.92 0.86 8.2 1.7 0.71 7

VB-SRNTF (T=200) 2 0.98 0.55 8.1 1.7 0.81 5
3 0.94 0.47 7.7 1.5 0.66 5

VB-RNTF and VB-SRNTF outputs are obtained by applying Wiener filtering to
one of the microphones, the results at the tip (8th) microphone were evaluated.

The parameters for VB-RNMF, VB-RNTF, and VB-SRNTF were as follows.
The shifting interval and window lengths of the STFT were set to 160 and 1024
samples, respectively. The hyperparameters αw, αh, αg, αs, γ and the number of
basesK, which control the low-rankness and sparseness, were decided by using
a Bayesian optimization method [139]. This method regards a target method
as a black-box function that takes hyperparameters as input and outputs the
value of average SDR. Assuming the function to follow a Gaussian process, the
method searches for optimal hyperparameters that maximize the output of the
function. The optimization was conducted by using noisy signals with SNRs of
−10dB and −5dB and with layout conditions of Open-Front and Door-4ch. The
noisy signals are separated into three groups at each condition, and the 3-fold
cross validation was conducted. The search range and optimization results at
each group were summarized in Table 3.1. The rate hyperparameters βw and βh

were set to αw and αhK, respectively. VB-RNMF and VB-RNTF were iterated
200 times and VB-SRNTF was iterated 100 times. The latent variables were
initialized randomly.

3.5.2 Evaluation of Batch VB-RNTF and VB-RNMF

VB-RNTF and VB-RNMF were compared with existing phase-based blind source
separation methods [37, 55] and low-rank and sparse decomposition meth-
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Figure 3.7: Speech enhancement performances in SDR. Each line indicates av-
erage SDR at the specified condition. Error bars for VB-RNMF and the input
signal span the maximum and minimum SDRs in all the microphones.

ods [87, 93, 128, 140]. The phase-based blind source separation methods were
MNMF [55] and independent vector analysis (IVA) [37]. The number of sources
was set to eight for MNMF and IVA because seven vibrators generated noise
and one target speech existed. This value corresponds to the maximum value
tractable in these methods because they cannot perform under-determined
source separation. Since these methods cannot distinguish the target speech
source and other noise sources, the performance was determined by taking a
maximum SDR value from all eight separation results. The low-rank and sparse
decomposition methods were conventional RPCA [87,88], RNMF [128] and VB-
RPCA [93]. The results of them were obtained by using the tip (8th) microphone
signals. This experiment also evaluated extended RPCA results that were ob-
tained by taking median values of all the microphone results (Med-RPCA) [140].
As a baseline, an adaptive spectral subtraction (SS) method [141] was evaluated
by applying to the tip microphone signals.

As shown in Figure 3.7, in the Open-Front and -Right conditions, VB-RNTF
performed the best of all the evaluated methods in SDR. The low-rank and sparse
decomposition methods (VB-RNTF, VB-RNMF, RPCA, and Med-RPCA) signif-
icantly outperformed conventional phase-based methods (MNMF and IVA). In
the Door-4ch and Door-2ch conditions where some of the microphones were
shaded, Med-RPCA significantly degraded from the Open-Front and Open-
Right conditions. VB-RNTF, on the other hand, outperformed other multichan-
nel methods. Although VB-RNTF was also degraded in both of the Door con-
ditions, its performance was comparable to those of single-channel VB-RNMF
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Figure 3.9: Excerpts of enhancement results obtained by VB-RNTF and VB-
RNMF when the layout was the Door-4ch condition and the SNR was −5dB.

and RPCA in these condition except when the SNR was less than −10dB.

The performances of single-channel VB-RNMF and the existing low-rank and
sparse decomposition methods (RPCA, VB-RPCA, and RNMF) are compared in
Figure 3.8; where we see that VB-RNMF was comparable to the existing methods.
This shows that VB-RNMF provides extensibility of RNMF in a Bayesian manner
without performance degradation.

Figure 3.9 illustrates excerpts of enhancement results by VB-RNTF and VB-
RNMF in the Door-4ch condition. While the VB-RNMF result applied to the
tip (8th) microphone successfully enhanced the target speech, the result on the
shaded (1st) microphone failed due to the low-SNR input. On the other hand,
VB-RNTF using all the microphones robustly enhanced speech in this condition.
Figure 3.10 shows estimated speech magnitudes at microphones gmt

∑
f sft es-

timated by VB-RNTF. In the Door-4ch and Door-2ch conditions, the speech
magnitudes at the microphones that were separated from the sound source
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∑

f sft obtained by VB-RNTF in the condition where SNR was 0 dB. Male
speech was emitted between 8 s and 12 s. Microphones shaded in Door-4ch and
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Figure 3.11: Estimated sparse and low-rank components (m=8) obtained by
VB-RNTF when the layout was the Door-4ch condition and the SNR was 0dB.

(highlighted in red) got significantly smaller. This shows that the estimated
magnitudes can be used as a reliability of each microphone.

VB-RNTF outperformed the existing methods under high reverberation (RT60

≥ 750ms). The late reverberation can be considered as low-rank because it con-
sists of a large number of reflected sounds. As shown in Figure 3.11, VB-RNTF
dealt with reverberations by estimating the most prominent reverberant speech
as a speech signal and separating other residuals into the low-rank components.

Figure 3.12 shows the enhancement performances in the SOR and NRR. The
SORs of VB-RNTF were almost equivalent to those of the reference speech signals
when SNR was more than−15 dB in the Open-Front and -Right conditions, more
than −10 dB in the Door-4ch condition, and more than −5 dB in the Door-2ch
condition. In the case of the SNR smaller than the above values, the performance
of VB-RNTF deteriorated as the SNR decreased. On the other hand, the NRRs of
VB-RNTF suppressed noise signals by more than 25 dB in all the conditions. The
NRRs of VB-RNTF were almost constant at each layout condition when the SNR
was 0 dB or less. These results show that VB-RNTF successfully suppresses
noise signals regardless of the SNR and fails to extract speech signals in the

44



3.5. EXPERIMENTAL EVALUATION WITH SIMULATED DATA

−20 −15 −10 −5 0 5
SNR [dB]

−8

−4

0

4

8

S
O

R
[d

B
]

Open-Front

−20 −15 −10 −5 0 5
SNR [dB]

Open-Right

−20 −15 −10 −5 0 5
SNR [dB]

Door-4ch

−20 −15 −10 −5 0 5
SNR [dB]

Door-2ch
VB-RNTF

VB-RNMF (Tip)

Med-RPCA

RPCA (Tip)

MNMF

IVA

SS (Tip)

Reference

Input

−20 −15 −10 −5 0 5
SNR [dB]

−40

−30

−20

−10

0

N
R

R
[d

B
]

Open-Front

−20 −15 −10 −5 0 5
SNR [dB]

Open-Right

−20 −15 −10 −5 0 5
SNR [dB]

Door-4ch

−20 −15 −10 −5 0 5
SNR [dB]

Door-2ch
VB-RNTF

VB-RNMF (Tip)

Med-RPCA

RPCA (Tip)

MNMF

IVA

SS (Tip)

Figure 3.12: Speech enhancement performances of VB-RNTF, VB-RNMF, and
existing methods in SOR and NRR.

low-SNR conditions. Especially in the Door-4ch and -2ch conditions, the SORs
of VB-RNTF were worth than those of the single-channel VB-RNMF when the
SNR was less than −10dB. One way to improve VB-RNTF in these conditions
is selection of valid microphones. The proposed method would be improved
by selecting microphones when a few microphones are available. The idea of
beta-process NMF [142] will be effective for this extension.

3.5.3 Evaluation of Mini-Batch VB-SRNTF

The performance of VB-SRNTF was evaluated with various mini-batch sizes.
The following mini-batch sizes T were tested: 300, 200, 100, 50, and 10 frames.
VB-SRNTF was compared with batch VB-RNTF and the following two existing
mini-batch inferences: Ind-VB-RNTF and SVI-RNTF. Ind-VB-RNTF simply and
independently conducts VB-RNTF at each mini-batch observation. SVI-RNTF is
based on the conventional mini-batch VB inference [143] of VB-RNTF. It corre-
sponds to VB-SRNTF whose γ is set to 1.0. VB-SRNTF was also compared with a
variant of VB-SRNTF (VB-SRNTF-Raw) that takes a raw magnitude spectrogram
without smoothing as input.

As shown in Figure 3.13, the enhancement performance in SDR became
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Figure 3.13: SDR performances of VB-SRNTFs with different mini-batch sizes.
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Figure 3.14: Speech enhancement performances of VB-SRNTFs in SOR and NRR.

higher as the mini-batch size was increased. When the mini-batch size was 200
frames or more, the SDR performances tended to be saturated. On the other
hand, when the mini-batch size was 50 frames or less, the SDR performances
were significantly degraded. Since a large mini-batch size leads to a large latency,
there is a trade-off between performance and latency. These results show that a
2.0-second mini-batch (T = 200) was needed for adequate performance.

Figure 3.14 shows the enhancement performances of VB-SRNTFs in SOR
and NRR. The SORs of the VB-SRNTFs (T ≥ 100) were comparable to those of
VB-RNTF and the reference speech signals in the conditions where the SORs of
VB-RNTF and the reference signals were almost equivalent. The NRRs of the
VB-SRNTs (T ≥ 100) were also less than −25dB.

Figure 3.15 compares the proposed VB-SRNTF results and other mini-batch
inference results. Compared with Ind-VB-RNTF, which did not consider the
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Figure 3.15: Comparison of VB-SRNTF (T=200) and existing mini-batch infer-
ences of Bayesian RNTF.
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Figure 3.16: Speech enhancement results for 1-minute noisy signal. Female
speech and ego-noise were mixed at −5dB by using the impulse response of the
Open-Front condition.

relationship between adjacent mini-batches, VB-SRNTF improved SDRs in the
Door-4ch and Door-2ch conditions. Compared with SVI-RNTF, which did not
consider the process noise of the basis vectors, the proposed VB-SRNTF slightly
improved SDRs when the SNR was less than −5dB in the Open-Front and -
Right conditions. Compared with VB-SRNTF-Raw, which did not smooth the
input spectrogram, the proposed VB-SRNTF improved SDRs in all the condi-
tions. Since the VB-SRNTF can deal with the long-term change of ego-noise,
the difference between VB-SRNTF and SVI-RNTF can usually be observedwith
longer signals. Figure 3.16 shows speech enhancement results of VB-SRNTF
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Figure 3.17: SDR differences between VB-SRNTF with different values ofK and
that with the values in Table 3.1 (Kopt).

and SVI-RNTF for a 1-minute noisy signal. The result of SVI-RNTF had more
noise residuals than that of VB-SRNTF after 50 s. In actual environments, the
ego-noise changes over time depending on the surrounding environments. The
robustness against the long-term change of ego-noise is essential for a hose-
shaped rescue robot.

Figure 3.17 shows SDR differences between VB-SRNTF with different values
of K. Let Kopt be the optimized value of K shown in Table 3.1. The SDR
degradation in the Open-Front and Open-Right conditions was less than 1.0 dB
when K was Kopt − 1 or more and Kopt + 3 or less. On the other hand, K has
to be set to Kopt or Kopt + 2 in the Door-4ch condition and only Kopt in Door-2ch
condition. The performance of the method was sensitive to the number of bases
K when some of the microphones were shaded. The author confirmed that the
SDR degradation was less than 1 dB even when the hyperparameters αw was
changed by 15% from the values of Table 3.1, and αh and αg were changed by
20% from the optimal values. The αs and γ had robustness against 6% and 5%
changes, respectively.

3.5.4 Investigation of Gain Parameter Modeling

The gain parameter g(n)mt of VB-SRNTF (Eq. (3.14)) ignores its frequency depen-
dency and temporal continuity. Since the proposed formulation has only one
gain parameter shared by all the frequency bins, the frequency characteristics
are not considered. It also does not take into account the temporal continuity of
the gains as shown in Figure 3.10.

The gain parameter modeling was investigated by evaluating variants of VB-
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Figure 3.18: Comparison of VB-SRNTF (T=200) and the variants of VB-SRNTF
with the frequency-dependent and the temporal-continuous gains.

SRNTF with frequency-dependent gains and temporal-continuous gains. The
following two variants with the frequency-dependent gains were evaluated:
1. VB-SRNTF-g(n)mft: The gain g(n)mft is both frequency and time dependent.
2. VB-SRNTF-g(n)mf : The gain g(n)mf is frequency dependent but time independent.

The following two variants with the temporal-continuous gains were evaluated:

3. VB-SRNTF-EV: The prior distribution of the current state is given with the
expected value of the previous posterior distribution ⟨g(n−1)

m ⟩ as follows:

p
(
g
(n)
mt

∣∣∣αg, ⟨g(n−1)
m

⟩)
= G

g(n)mt

∣∣∣∣∣∣αg, αgT∑
t

⟨
g
(n−1)
mt

⟩
 , (3.56)

where αg ∈ R+ is a hyperparameter that controls the strength of the depen-
dencies.

4. VB-SRNTF-GMC: Markov dependencies between adjacent time frames are
introduced with a gamma Markov chain prior [144] as follows:

p
(
g
(n)
mt

∣∣∣ η, z(n)mt

)
= G

(
g
(n)
mt

∣∣∣η, ηz(n)mt

)
, (3.57)

p
(
z
(n)
mt

∣∣∣ η, g(n)m(t−1)

)
= G

(
z
(n)
mt

∣∣∣η, ηg(n)m(t−1)

)
, (3.58)

p
(
z
(n)
m1

∣∣∣ η, g(n−1)
mT

)
= G

(
z
(n)
m1

∣∣∣η, ηg(n−1)
mT

)
, (3.59)

where z(n)mt is an auxiliary latent variable that makes Markov dependencies
between g(n)mt and g(n)m(t−1) in a conjugate manner and η ∈ R+ is a hyperparam-
eter that controls the strength of the dependencies.

The hyperparameters of these models were determined by using the Bayesian
optimization method in the same way as in Section V-A.
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Figure 3.19: Average magnitude spectrum of a speech spectrogram at each
microphone. A female speech spectrum with the condition of Open-Front is
shown. Note that scale differences across microphones are normalized.

Figure 3.18 compares the SDR performances of the original VB-SRNTF and
its variants with frequency-dependant and temporal-continuous gains. Com-
pared with the performances of VB-SRNTF-g(n)mt and -g(n)mft, the results show that
the performance did not significantly deteriorate even if the frequency differ-
ences were ignored. As shown in Figure 3.19, this is because the spectral pattern
differences of speech across microphones were small enough to ignore them.
Figure 3.18 also shows that the performance of VB-SRNTF was comparable to
those of VB-SRNTF-EV and -GMC. Although the temporal continuity of gains
is one of the essential clues for blind source separation, only the sparse assump-
tion on speech spectrograms was adequate in this evaluation. The sparseness
assumption may cause the method to extract other sparse noise signals (e.g.,
impact sounds). The gain modeling with the temporal continuity will cope with
such situations.

3.6 Experiments with Recorded Data

This section reports experimental results obtained using data recorded in an
environment with simulated rubble.

3.6.1 Experimental Conditions

VB-RNTF and VB-SRNTF were evaluated in the condition that the robot moved
under simulated rubble. To simulate rubble disturbing sound propagation,
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Figure 3.20: Condition of rubble and target speech in experiments reported in
section 3.6.

styrene foam boxes and wooden plates were piled up (Figure 3.20-(a)). A loud-
speaker for playing back target speech signals was put 2 m away from this
rubble (Figure 3.20-(b)). The robot was inserted from behind the rubble and
captured eight-channel audio signals (mixtures of ego-noise and target speech)
for 10 seconds during the insertion. Although the boxes and plates were placed
only around the robot, they were enough for disturbing sound propagation
around the robot. The target signals were four male and female speech record-
ings screaming for rescue in Japanese (e.g., “Tasukete kudasai (Help me)” and
“Kokoniimasu (I’m here)”) and the loudspeaker was calibrated so that its sound
pressure level for each utterance was 80 dB. In this experiment, the relative lay-
out of the microphones and target speech source changed over time due to the
insertion and vibration. The parameters of the proposed VB-RNMF, VB-RNTF,
and VB-SRNTF were set to the values of the optimization results for the first
group listed in Table 3.1.

Since it was impossible to obtain clean speech signals captured by the robot
microphones, the following SNR was used as an evaluation criterion in this
experiment:

SNR(Ŝ,S, a) = 10 log10

∑
f,t a

2s2ft∑
f,t(ŝft − asft)2

, (3.60)

where S ∈ RF×T
+ and Ŝ ∈ RF×T

+ represent the magnitude spectrograms of refer-
ence and estimated target speech signals, respectively, and a represents a gain
parameter compensating for the level difference between S and Ŝ. This gain pa-
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Figure 3.21: Speech enhancement performances in terms of SNR improvement
from the input signal (at the tip microphone). Error bars indicate the standard
deviation of the results. The average SNR of the input signals was −19.7dB.
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Figure 3.22: Examples of enhancement results obtained in experiments reported
in Section 3.6.

rameter was determined with minimum mean-square error estimation (MMSE)
between aS and Ŝ.

3.6.2 Experimental Results

Figure 3.21 shows that VB-RNTF and VB-SRNTF outperformed all of the other
methods. VB-SRNTF improved the SNR by 1.07 dB more than VB-RNMF, which
had the second-best performance. Figure 3.22 shows the magnitude spectrogram
of an observed signal (at the tip microphone) and the enhanced speech signals
obtained by VB-RNTF and VB-SRNTF. These results showed that VB-RNTF and
VB-SRNTF suppressed the time-varying ego-noise.

As shown in Figure 3.23, to realize a real-time mobile enhancement system,
VB-SRNTF was implemented on an embedded GPGPU board (NVIDIA Jetson
TX1) and a standard laptop computer (Dell XPS13). The proposed VB-SRNTF
was implemented on the TX1 with GPGPU programming using C++ and CUDA
8.0. The elapsed time for VB-SRNTF with a 20.0 s input signal was 15.2 s when
the batch size T was 200 frames. Since this value was small enough compared
with the whole signal length, the method could work in real time.
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Figure 3.23: Hose-shaped rescue robot system including robot body (back),
robot controller (left), laptop PC (middle), and embedded GPGPU board (right).

3.7 Summary

This chapter presented a multichannel blind speech enhancement method based
on low-rank and sparse decomposition. The proposed method is formulated as
a Bayesian model called Bayesian RNTF. It separates a multichannel magnitude
spectrogram into sparse and low-rank spectrograms (target speech and noise)
without any prior training. Since Bayesian RNTF works without phase informa-
tion, it can deal with the time-varying layout of microphones and sound sources.
For real-time speech enhancement, Bayesian RNTF is extended to a state-space
model called Bayesian SRNTF that represents the dynamics of the latent vari-
ables in a mini-batch manner. The Bayesian inferences of these models were
derived with a VB framework, so the decomposition methods are abbreviated as
VB-RNTF and VB-SRNTF. Experiments using a 3-m hose-shaped rescue robot
with eight microphones showed that VB-SRNTF improves the SNR of a speech
signal 1.07 dB more than conventional blind methods do. Using an embedded
GPGPU board, the proposed VB-SRNTF was fast enough to work in real time.

The proposed methods based on the low-rank noise and sparse speech as-
sumptions have the following limitations. Experimental results showed that
the possible maximum rank of the low-rank component K should be given ap-
propriately in advance. The sparseness assumption, on the other hand, may
cause the method to enhance not only speech signals but also other sparse noise
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signals. For example, if an input signal includes impact noise sounds caused by
rubble-removal operations, the method extracts the noise as a speech signal. To
relax the low-rank limitation, future work includes the estimation ofK based on
the non-parametric Bayesian framework [134]. Speech-specific structures can be
introduced as prior information of the speech signals because spectrograms of
speech signals have dependencies between frequency bins (e.g., harmonic struc-
tures) and time frames (e.g., temporal continuity). This extension is addressed
in Chapter 4 by using a pre-trained deep generative model.
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Chapter 4

Speech Enhancement with a Deep
Speech Prior

This chapter presents a single-channel speech enhancement method that com-
bines a DNN-based speech model and a conventional unsupervised noise model.
To improve the enhancement performance, this chapter uses a pre-trained deep
generative model as a prior distribution of a speech spectrogram instead of the
sparse assumption presented in Chapter 3.

4.1 Introduction

Deep neural networks (DNNs) have demonstrated excellent performance in
single-channel speech enhancement [51, 52, 104–107]. The denoising autoen-
coder (DAE), for example, is a typical variant of such networks, which is trained
to directly convert a noisy speech spectrogram to a clean speech spectrogram
with a supervised training [51]. Alternatively, a DNN can be trained to predict
time-frequency (TF) masks called ideal ratio masks (IRMs) that represent ratios
of speech to input signals and are used for obtaining a speech spectrogram from
a noisy spectrogram [105]. Although it is necessary to prepare as training data
a large amount of pairs of clean speech signals and their noisy versions, these
supervised methods often deteriorate in unknown noisy environments. This
calls for semi-supervised methods that are trained by using only clean speech
data in advance and then adapt to unseen noisy environments.
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Figure 4.1: Overview of the proposed speech enhancement model.

Statistical source separation methods based on the additivity of speech and
noise spectrograms have also been used for speech enhancement [86, 126, 145].
Non-negative matrix factorization (NMF) [84, 85], for example, regards a noisy
speech spectrogram as a non-negative matrix and approximates it as the product
of two non-negative matrices (a set of basis spectra and a set of the corresponding
activations). If a partial set of basis spectra is trained in advance from clean
speech spectrograms, the noisy spectrogram is decomposed into the sum of
speech and noise spectrograms in a semi-supervised manner. As discussed
in Chapter 3, robust principal component analysis (RPCA) [87, 146] is another
promising method that can decompose a noisy spectrogram into a sparse speech
spectrogram and a low-rank noise spectrogram in an unsupervised manner.
These conventional statistical methods, however, have a common problem that
the linear representation or the sparseness assumption of speech spectrograms
is not satisfied in reality and results in considerable signal distortion.

Recently, deep generative models such as generative adversarial networks
(GANs) and variational autoencoders (VAEs) have gained a lot of attention for
learning a probability distribution over complex data (e.g., images and audio
signals) that cannot be represented by conventional linear models [63–67]. GANs
and VAEs are both based on two kinds of DNNs having different roles. In
GANs [63], a generator is trained to synthesize data that fool a discriminator from
a latent space while the discriminator is trained to detect synthesized data in
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a minimax-game fashion. In VAEs [64, 65], on the other hand, an encoder that
embeds observed data into a latent space and a decoder that generates data from
the latent space are trained jointly such that the lower bound of the log marginal
likelihood for the observed data is maximized. Although in general GANs can
generate more realistic data, VAEs provide a principled scheme of inferring the
latent representations of both given and new data.

This chapter presents a unified probabilistic generative model of noisy speech
spectra by combining a VAE-based generative model of speech spectra with an
NMF-based generative model of noise spectra (Figure 4.1). The VAE is trained
in advance from a sufficient amount of clean speech spectra and its decoder is
used as a prior distribution on clean speech spectra included in noisy speech
spectra. Given observed data, the proposed method can estimate both the
latent representations of speech spectra as well as the basis spectra and their
activations of noise spectra through Bayesian inference based on a Markov chain
Monte Carlo (MCMC) algorithm initialized by the encoder of the VAE. The
proposed Bayesian approach can adapt to both unseen speech and noise spectra
by using prior knowledge of clean speech and the low-rankness assumption on
noise instead of fixing all the parameters in advance.

4.2 Variational Autoencoder

A VAE [64] is a framework for learning the probability distribution of a dataset.
This subsection denotes by X a dataset that contains F -dimensional samples
xt ∈ RF (t = 1, . . . , T ). The VAE assumes that a D-dimensional latent variable
(denoted by zt ∈ RD) follows a standard Gaussian distribution and each sample
xt is stochastically generated from a conditional distribution p (xt |zt ):

zt ∼ N (0, ID) , (4.1)

xt ∼ p (xt |zt ) , (4.2)

where N (µ, σ) represents a Gaussian distribution with mean parameter µ and
variance parameter σ. p (xt |zt ) is called a decoder and parameterized as a well-
known probability density function whose parameters are given by nonlinear
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functions represented as neural networks. For example, Kingma et al. [64]
reported a VAE model that has the following Gaussian likelihood function:

xt ∼ p (xt |zt ) =
∏
f

p (xft |zt ) =
∏
f

N
(
µxf (zt), σ

x
f (zt)

)
, (4.3)

where µxf : RD → R and σxf : RD → R+ are neural networks representing the
mean and variance parameters, respectively.

The objective of VAE training is to find a likelihood function p (xt |zt ) that
maximizes the log marginal likelihood:

argmax
p(xt|zt )

log p (X) = argmax
p(xt|zt )

∏
t

∫
p (xt |zt ) p (zt) dzt. (4.4)

Since calculating this marginal likelihood is intractable, it is approximated with a
variational Bayesian (VB) framework. The VAE first approximates the posterior
distribution of zt with the following variational posterior distribution q (zt)

called an encoder:

p (z1, . . . , zT |X) ≈
∏
t

q (zt) =
∏
d,t

q (zdt) (4.5)

=
∏
d,t

N (µzd(xt), σ
z
d(xt)) , (4.6)

where µzd : RF → R and σzd : RF → R+ are nonlinear functions representing the
mean and variance parameters, respectively. These functions are formulated
with DNNs. By using the variational posterior, the log marginal likelihood is
lower-bounded as follows:

log p (X) =
∑
t

log

∫
p (xt |zt ) p (zt) dzt (4.7)

≥
∑
t

∫
q (zt) log

p (xt |zt ) p (zt)
q (zt)

dzt (4.8)

= −
∑
t

KL [q (zt) |p (zt) ] +
∑
k

Eq [log p (xt |zt )] , (4.9)

where KL [· |· ] represents the Kullback-Leibler divergence. The VAE is trained
so that p (xt |zt ) and q (zt) maximize this variational lower bound. The first term
of Eq. (4.9) is analytically tractable and the second term can be approximated
with a Monte-Carlo algorithm. The lower bound can be maximized by using a
stochastic gradient descent (SGD) [147].
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Figure 4.2: VAE representation of a speech spectrogram.

4.3 Probabilistic Combination of VAE and NMF

This section describes the proposed probabilistic generative model called VAE-
NMF, that combines a VAE-based speech model and a NMF-based noise model.
This section formulates the generative process of an observed complex spectro-
gram X ∈ CF×T by formulating the process of a speech spectrogram S ∈ CF×T

and a noise spectrogram N ∈ CF×T . The characteristics of speech and noise
signals are represented by their priors based on VAE and NMF, respectively.

4.3.1 VAE-Based Speech Model

The speech model assumes a frame-wise D-dimensional latent variable Z ∈
RD×T . Each time-frame of the latent variable zt is supposed to represent the
characteristics of a speech spectrum such as fundamental frequency, spectral
envelope, and type of phoneme. The specific representation of zt is obtained
automatically by conducting the VAE training with a dataset of clean speech
spectra. As in the conventional VAEs, the standard Gaussian prior is put on
each element of Z:

zdt ∼ N (0, 1) . (4.10)

Since the speech spectra are primarily characterized by its power spectral
density (PSD), it follows a zero-mean complex Gaussian distribution whose
variance parameter is formulated with Z (Figure 4.2):

sft ∼ NC
(
0, σsf (zt)

)
, (4.11)
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where NC (µ, σ) is a complex Gaussian distribution with mean parameter µ and
variance parameter σ. σsf (zt) : RD → R+ is a nonlinear function representing
the relationship between Z and the speech signal S. This function is formulated
by using a DNN and obtained by the VAE training.

4.3.2 Generative Model of Mixture Signals

In the proposed Bayesian generative model, the input complex spectrogram
X ∈ CF×T is represented as the sum of a speech spectrogram S and a noise
spectrogram N:

xft = sft + nft. (4.12)

The VAE-based hierarchical prior model (Eqs. (4.10) and (4.11)) is put on the
speech spectrogram S . On the other hand, the PSD of the noise spectrogram
is assumed to be low-rank by putting NMF-based prior model on it. More
specifically, the PSD of a noise spectrogram can be represented as the product of
K spectral basis vectors W = [w1, . . . ,wK ] ∈ RF×K

+ and their activation vectors
H ∈ RK×T

+ . The zero-mean complex Gaussian distribution is put on each TF bin
of the noise spectrogram N as follows:

nft ∼ NC

(
0,
∑
k

wfkhkt

)
. (4.13)

For mathematical convenience, conjugate prior distributions are put on W and
H as follows:

wfk ∼ G (a0, b0) , hkt ∼ G (a1, b1) , (4.14)

where G (α, β) is a gamma distribution with the shape parameter α > 0 and the
rate parameter β > 0; a0, b0, a1, and b1 are hyperparameters that should be set in
advance.

By marginalizing out the speech and noise complex spectrograms S and N,
the following Gaussian likelihood is obtained:

xft ∼ NC

(
0,
∑
k

wfkhkt + σsf (zt)

)
. (4.15)
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Since this likelihood function is independent of the phase term of the input
spectrogram X, it is equivalent to the following exponential likelihood:

∥xft∥2 ∼ Exp

(∑
k

wfkhkt + σsf (zt)

)
, (4.16)

where ∥xft∥2 is the power spectrogram ofX andExp (λ) is the exponential distri-
bution with a mean parameter λ. Maximization of the exponential likelihood on
a power spectrogram corresponds to minimization of Itakura-Saito divergence,
which is widely used in audio source separation [84,134].

4.3.3 Pre-Training of VAE-based Speech Model

The goal of the pre-training of the VAE-based speech model is to find p (st |zt )
that maximizes the following marginal likelihood p (S) from the dataset of clean
speech signal (denoted by S ∈ CF×T in this subsection):

p (S) =
∏
t

∫
p (st |zt ) p (zt) pzt. (4.17)

As stated in Sec. 4.2, it is difficult to analytically calculate this marginal likelihood.
The marginal likelihood is approximated by using the Variational mean-field
approximation. Let q (Z) be the variational posterior distribution of Z. Since
p (S |Z) is independent from the phase term of the speech spectrogram S, the
variational posterior q (Z) is defined by ignoring the phase term as follows:

q (Z) =
∏
d,t

q (zdt) =
∏
d,t

N
(
µzd
(
∥st∥2

)
, σzd

(
∥st∥2

))
, (4.18)

where ∥st∥2 is the power spectrum of st and µzd : RF
+ → R and σzd : RF

+ →
R+ are nonlinear functions representing the mean and variance parameters of
the Gaussian distribution. These two functions are defined with DNNs. The
marginal likelihood is approximately calculated as follows:

logp (S) ≥ −KL [q (Z) |p (Z) ] + Eq [log p (S |Z)] (4.19)

= −
∑
d,t

1

2

{(
µzd(∥st∥2)

)2
+ σzd(∥st∥2)− log σzd(∥st∥2)

}
+
∑
f,t

Eq

[
− log σsf (zt)−

∥sft∥2

σsf (zt)

]
+ const. (4.20)
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The DNNs for σsf , µzd, and σzd are optimized by using SGD so that this variational
lower bound is maximized.

4.3.4 Bayesian Inference of VAE-NMF

To enhance the speech signal in a noisy observed signal, VAE-NMF calculates the
full posterior distribution: p (W,H,Z |X). Since the true posterior is analytically
intractable, it is approximated with a finite number of random samples by using
a Markov chain Monte Carlo (MCMC) algorithm [62]. MCMC alternatively and
iteratively samples one of the latent variables (W, H, and Z) according to their
conditional posterior distributions.

By fixing the speech parameter Z, the conditional posterior distributions
p (W |X,H,Z) and p (H |X,W,Z) can be derived with a variational approxima-
tion [62,134] as follows:

wfk | X,H,Z ∼ GIG

(
a0, b0 +

∑
t

hkt
λft

,
∑
t

∥xft∥2
ϕ2
ftk

hkt

)
, (4.21)

hkt | X,W,Z ∼ GIG

(
a1, b1 +

∑
f

wfk
λft

,
∑
f

∥xft∥2
ϕ2
ftk

wfk

)
, (4.22)

λft=
∑
k

wfkhkt + σsf (zt), ϕftk =
wfkhkt∑

k wfkhkt+σ
s
f (zt)

, (4.23)

where GIG (γ, ρ, τ) ∝ xγ−1exp(−ρx − τ/x) is the generalized inverse Gaussian
distribution and λft and ϕftk are auxiliary variables.

The latent variable of speech Z is updated by using a Metropolis method [62]
because it is hard to analytically derive the conditional posterior p (Z |X,W,H).
The latent variable is sampled at each time frame by using the following Gaussian
proposal distribution q (z∗t |zt ) whose mean is the previous sample zt:

z∗t ∼ q (z∗t |zt ) = N (zt, σI) , (4.24)

where σ is a variance parameter of the proposal distribution. This candidate z∗t
is randomly accepted with the following probability:

az∗
t |zt = min

(
1,
p (xt |W,H,z∗t ) p (z

∗
t )

p (xt |W,H,zt ) p (zt)

)
. (4.25)
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4.3.5 Reconstruction of Complex Speech Spectrogram

In this chapter the enhanced speech is obtained with Wiener filtering by maxi-
mizing the conditional posterior p (S |X,W,H,Z). Let Ŝ ∈ CF×T be the speech
spectrogram that maximizes the conditional posterior. It is given by the follow-
ing equation:

ŝft =
σsf (zt)∑

k wfkhkt + σsf (zt)
xft. (4.26)

The mean values of the sampled latent variables are simply used as W, H, and
Z in Eq. (4.26).

4.4 Evaluation with Datasets of Urban Noise

For evaluating the basic performance of VAE-NMF, this section reports experi-
mental results with noisy speech signals whose noise signals were captured in
actual urban environments.

4.4.1 Experimental Settings

To compare VAE-NMF with a DNN-based supervised method, this evaluation
used CHiME-3 dataset [96] and DEMAND noise database1. The CHiME-3
dataset was used for both the training and evaluation. The DEMAND database
was used for constructing another evaluation dataset for unseen noise condi-
tions. The evaluation with the CHiME-3 was conducted by using its devel-
opment set, which consists of 410 simulated noisy utterances in each of four
different noisy environments: on a bus (BUS), in a cafe (CAF), in a pedestrian
area (PED) and on a street junction (STR). The average signal-to-noise ratio (SNR)
of the noisy speech signals was 5.8 dB. The evaluation with the DEMAND was
conducted by using 20 simulated noisy speech signals in each of four different
noisy environments: on a subway (SUB), in a cafe (CAF), at a town square (SQU),
and in a living room (LIV). These signals were generated by mixing the clean
speech signals of the CHiME-3 development set with the noise signals in the

1http://parole.loria.fr/DEMAND/
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Figure 4.3: Configuration of the VAE used in the Section 4.4.

DEMAND database. The SNR of these noisy speech signals was set to be 5.0 dB.
The sampling rate of these signals was 16 kHz. The enhancement performance
was evaluated by using the source-to-distortion ratio (SDR) [138].

The prior distribution of speech signals p (st |zt ) was obtained by training
a VAE that had two networks of p (st |zt ) and q (zt) as shown in Figure 4.3.
The dimension of the latent variables D was set to be 10. The training data
were about 15 hours of clean speech signals in the WSJ-0 corpus [148]. Their
spectrograms were obtained with a short-time Fourier transform (STFT) with a
window length of 1024 samples and a shifting interval of 256 samples. To make
the prior distribution robust against a scale of the speech power, the average
power of the spectrogram was changed between 0.0 and 10.0 at each parameter
update.

The parameters for VAE-NMF were as follows. The number of bases K was
set to be 5. The hyperparameters a0, b0, a1, b1, and σ were set to be 1.0, 1.0, and
1.0, K/scale, and 0.01, respectively. The scale represents the empirical average
power of the input noisy spectrogram. After drawing 100 samples for burn-
in, 50 samples were drawn to estimate the latent variables. These parameters
had been determined empirically. The latent variables of noise W and H were
randomly initialized. Since the latent variable of speech Z depends on the initial
state, the initial sample was drawn from q (zt |st ) by setting the observation xt
as the speech signal st.

VAE-NMF was compared with a DNN-based supervised method and the
unsupervised RPCA. A DNN that outputs IRMs (DNN-IRM) was implemented.
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Table 4.1: Enhancement performance in SDR for CHiME-3 dataset

Method Average BUS CAF PED STR
VAE-NMF 10.10 9.47 10.62 10.93 9.39
DNN-IRM 10.93 8.92 11.92 12.92 9.95
RPCA 7.53 6.13 8.10 9.13 6.77
Input 6.02 3.26 7.21 8.83 4.78

Table 4.2: Enhancement performance in SDR for DEMAND dataset

Method Average SUB CAF SQU LIV
VAE-NMF 11.17 10.56 9.57 12.38 12.16
DNN-IRM 9.85 9.13 9.15 10.69 10.42
RPCA 7.03 6.48 6.37 6.99 8.28
Input 5.21 5.25 5.24 5.19 5.16

It had five hidden layers with ReLU activation functions. It takes as an input 11
frames of noisy 100-channel log-Mel-scale filterbank features and predicts one
frame of IRMs2. DNN-IRM was trained with the training dataset of CHiME-3,
which was generated by using the WSJ-0 speech utterances and noise signals.
The noise signals were recorded in the same environments as those in the eval-
uated data.

4.4.2 Experimental Results

The enhancement performance is shown in Tables 4.1 and 4.2. In the experiments
using the CHiME-3 test set (Table 4.1), DNN-IRM, which was trained using the
noisy data recorded in the same environments at the test data, yielded the highest
average SDR. The proposed VAE-NMF achieved higher SDRs than RPCA in all
conditions and even outperformed the supervised DNN-IRM in BUS condition
without any prior training of noise signals. From the results obtained using
the test set constructed with the DEMAND noise data, we can see that VAE-
NMF outperformed the other methods in all the conditions. The noise data
in DEMAND is unknown to DNN-IRM trained using the CHiME-3 training

2SDRs were evaluated by dropping 2048 samples (5 frames) at both ends.
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set, and its enhancement performance deteriorated significantly. These results
clearly show the robustness of the proposed VAE-NMF against various types of
noise conditions.

The SDR performance of VAE-NMF for the CAF condition in the DEMAND
test set was lower than those for the other conditions. In this condition, the
background noise contained conversational speech. Since VAE-NMF estimates
speech component independently at each time frame, the background conver-
sations were enhanced at the time frames where the power of the target speech
was relatively small. This problem would be solved by making the VAE-based
speech model to maintain time dependencies of a speech signal. The variational
recurrent neural network [149] would be useful for this extension.

4.5 Evaluation with Hose-Shaped Rescue Robot

This section reports the enhancement performance of VAE-NMF for a hose-
shaped rescue robot.

4.5.1 Experimental Settings

The mixture signals were the same signals as those used in Section 3.5. VAE-
NMF was compared with RPCA, VB-RNMF, and VB-RNTF. The enhancement
performance was evaluated by using the SDR for the whole enhanced signal.
To evaluate the speech quality, the SDR for the speech section of the enhanced
signal was also evaluated. The hyperparameters and network parameters of
VAE-NMF were set to the same values as those for the previous section. The
VAE-NMF was implemented by using python 3.6 and Chainer 3.2 framework.
When the inference of VAE-NMF was conducted on a workstation that had an
Intel Xeon E5-1650 CPU (6 cores, 3.5 GHz) and NVIDIA GeForce 1080 GPU, the
elapsed time with a 20-seconds input signal was 19.0 s.
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Figure 4.4: Speech enhancement performances in SDR. Error bars for the input
signal span the maximum and minimum SDRs in all the microphones.

4.5.2 Experimental Results

As shown in Figure 4.4-(a), when the SNR was +5dB, VAE-NMF performed
better than RPCA and VB-RNMF, which are the low-rank and sparse decompo-
sition methods. Furthermore, in the Door-4ch and -2ch conditions, VAE-NMF
outperformed the multichannel method of VB-RNTF when the SNR was +5dB.
As shown in Figure 4.4-(b), when the SNR was more than −5dB, VAE-NMF per-
formed better than RPCA and VB-RNMF in the SDR for the speech section of the
enhanced signal. These results show that the VAE-NMF extracted speech signals
more efficiently than RPCA and VB-RNMF did whereas its noise suppression
performance was lower than those of the low-rank and sparse decomposition
methods. As shown in Figure 4.5, the enhancement results of VAE-NMF includes
more residuals of noise signals than the other methods. VAE-NMF would be
further improved by introducing a sparse constraint to the VAE speech model.
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Figure 4.5: Excerpts of enhancement results when the layout was the Front
condition and the SNR was +5dB.

4.6 Summary

This chapter presented a semi-supervised speech enhancement method, called
VAE-NMF, that involves a probabilistic generative model of speech based on
a VAE and that of noise based on NMF. Only the speech model is trained in
advance by using a sufficient amount of clean speech. Using the speech model as
a prior distribution, posterior estimates of clean speech were obtained by using
an MCMC sampler while adapting the noise model to noisy environments.
Experimental results showed that VAE-NMF outperformed the conventional
method based on low-rank and sparse decomposition. In addition, the results
showed that VAE-NMF outperformed the conventional supervised DNN-based
method in unseen noisy environments. It was also experimentally confirmed
that the enhancement performance of VAE-NMF for a hose-shaped rescue robot
was higher than those of VB-RNMF and RPCA when the SNR was relatively
high.
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Chapter 5

Audio-Based Time-Varying Posture
Estimation

This chapter presents an audio-based method that can accurately estimate the
time-varying posture of a hose-shaped rescue robot. The estimation is conducted
based on a state-space model that represents the posture dynamics.

5.1 Introduction
To control a hose-shaped robot that flexibly changes its posture (shape) over time
in an unseen environment, it is necessary to estimate the time-varying posture of
the moving robot. Ishikura et al. [56], for example, proposed an inertial-sensor-
based method that can estimate the posture by integrating the acceleration and
angular-velocity information obtained from gyro sensors installed on the robot.
Such integral-type methods based on the posture change rate, however, cannot
work over a long time because the estimation error is gradually accumulated.
Although non-integral-type methods based on information obtained by mag-
netometers and strain gauges can accurately track the posture independently of
the past history [57,150], those methods can neither be used indoors nor be used
for a robot with a long body.

A posture of the robot can be estimated by localizing microphone positions
with sound generated by itself. This study aims to develop a non-integral-type
posture estimation method that robustly works in disaster sites. The proposed
method uses a set of microphones and loudspeakers distributed on a hose-
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shaped rescue robot. The robot emits a reference signal from a loudspeaker one
by one and estimates its posture by measuring the time differences of arrival
(TDOAs) at the microphones. Since those TDOAs depend only on the current
relative positions of the microphones and loudspeakers, the cumulative error
problem can be avoided. The audio-based approach can be used in a closed
space allowing sound propagation, whereas the accurate magnetometer-based
approach can be used only outdoors for receiving the Earth’s magnetic field.
This indicates that audio-based posture estimation is complementary to inertial-
sensor-based and magnetometer-based posture estimation.

The major requirement of the posture estimation is that the time-varying
robot posture should be continuously presented to an operator in real time. Most
of the existing audio-based methods are intended for offline use and assume that
microphones are stable [18, 61, 120, 121]. Miura et al. [22] proposed a method
based on simultaneous localization and mapping (SLAM) framework. This
method can localize microphones and a moving sound source in an online
manner. However, this method also assumes the microphones to be stable.

This chapter presents an audio-based online method that can accurately esti-
mate the time-varying posture of a moving hose-shaped robot. This is achieved
by formulating state-space model that represents the dynamics of not only the
posture itself but also its change rate in the state space. The proposed model has
two distinct characteristics. First, to use the method in an online manner, the
current posture of the robot is predicted from the previous posture by using an
unscented Kalman filter (UKF) [151]. Second, the proposed model assumes that
the relative positions of the microphones and loudspeakers can change over time
under a constraint that the microphones and loudspeakers are serially linked in
a specified order.

5.2 Audio-based Posture Estimation

The proposed method estimates the posture of a moving robot by using TDOAs
calculated from the recorded signals. The posture of a hose-shaped robot is
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Figure 5.1: Microphone and loudspeaker arrangements.

estimated by repeating the following three steps: 1) generate a reference signal
from each loudspeaker, one by one, 2) estimate the TDOAs of the reference signal
at the microphones, and 3) estimate the relative positions of the microphones
and loudspeakers from the estimated TDOAs.

5.2.1 Problem Specification

Microphones and loudspeakers are installed alternately at a regular interval l
on the body of a hose-shaped robot, as shown in Figure 5.1. Note that the
bending of the robot body makes the distance between adjacent modules less
than l. Letmicm (m = 1, · · · ,M ) and srcn (s = 1, · · · , N ) are the microphones and
loudspeakers, respectively, where N = M − 1. Let k, xmic

m,k, and xsrc
n,k represent a

measurement index, the microphone, and loudspeaker positions, respectively.
In this chapter, it is assumed that the microphones and loudspeakers are on a
two-dimensional surface.

The problem of the posture estimation is defined for each k as follows:

Input: Synchronized M -channel audio signals yk(t)
obtained by recording a reference signal s(t) emitted from srcnk

.
Output: The relative positions of microphones xmic

m,k and loudspeakers xsrc
n,k.

The input signals are used for calculating the TDOA of the reference signal
at each microphone. Since the TDOA represents the relationship between the
microphones and loudspeaker, the output is the relative positions of the micro-
phones and loudspeakers. The xmic

1,k and xsrc
1,k are therefore assumed to be known

without loss of generality.
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Figure 5.2: Serially-connected link model of robot posture.

5.2.2 State-Space Model of Robot Posture

The method estimates the posture of a moving robot by using the TDOAs calcu-
lated from the input data. More specifically, we formulate a nonlinear state-space
model that associates a state space representing the posture dynamics with an
observation space representing the TDOA. The UKF approximates the posterior
distribution p(ζk|y1:k) from the likelihood p(yk|ζk) and prior p(ζk|y1:k−1) using
unscented transform.

The robot posture is modeled as a serially-connected link model, as shown
in Figure 5.2. The posture at the k-th measurement, zk, is defined as

zk = [θ1,k, · · · , θM+N−2,k, l1,k, · · · , lM+N−1,k], (5.1)

where θa,k (1 ≤ a ≤ M + N − 2) is a link angle and lb,k (1 ≤ b ≤ M + N − 1) is
a link length. To deal with a moving robot, the proposed method estimates not
only posture, zk, but also its change rate, żk. The state-space vector, ζk, is given
by

ζk = [zk, żk]
T ∈ RL, (5.2)

where L = 4M + 4N − 6 is the dimension of the state space.
The relative positions of the microphones and loudspeakers on the robot,

xmic
m,k and xsrc

n,k, can be calculated recursively from the known positions xmic
1,k and

xsrc
1,k. Suppose that x∗

i,k is the i-th member of [xmic
1,k ,x

src
1,k, · · · ,x

mic
M−1,k,x

src
N,k,x

mic
M,k],

each position is given by

x∗
i,k = x

∗
i−1,k + li,k ×

[
cos

(
i−1∑
a=1

θa,k

)
, sin

(
i−1∑
a=1

θa,k

)]T
.
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Measurement Model

The TDOA measurement model p(τk|ζk) is defined using a set of TDOAs τnk
nk→mk

where the mk is the one of the filtered microphone indices Mk:

p(τk|ζk) = N (τk|[τnk
nk→m(zk)|m ∈ Mk]

T, στI), (5.3)

where στ ∈ R+ represents the variance of the measurement noise and TDOA
τnm1→m2

(ζk) is calculated by using the distances between the two microphones
and the loudspeaker as follows:

τnm1→m2
(ζk) =

|xmic
m2,k

− xsrc
n,k| − |xmic

m1,k
− xsrc

n,k|
c

, (5.4)

where c represents the speed of sound. In this thesis,C is assumed to be 340 m/s.

State Update Model

A state update model p(ζk|ζk−1) is based on two concepts: a) posture dynamics
and b) posture constraint. The posture dynamics q(ζk|ζk−1) represents how
likely the previous posture zk−1 is to change to the current posture zk with a
change rate żk−1 as follows:

q(ζk|ζk−1) = N
(
ζk|[zk−1 + żk−1, żk−1]

T, diag
(
σζ
))
, (5.5)

whereσζ ∈ RL
+ is the variance vector of the process noise. The posture constraint

r(ζk), on the other hand, is modeled as a Gaussian distribution:

r(ζk) = N (ζk|ζ,P), (5.6)

where ζ ∈ RL and P ∈ RL×L are the mean vector and covariance matrix of the
feasible posture. More specifically, the following gaussian prior distribution is
put on ζk:

r(ζk) =
M+N−2∏
a=1

{
N
(
θa,k|0, σθ

)
N
(
θ̇a,k|0, σθ̇

)}M+N−1∏
b=1

{
N
(
lb,k|l, σl

)
N
(
l̇b,k|0, σ l̇

)}
,

(5.7)

where σθ, σθ̇, σl, and σ l̇ are the variance parameters of the gaussian distribution.
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Figure 5.3: TSP signal with length of 8192 samples at 16 kHz.

These two distributions are integrated into the state update model p(ζk|ζk−1)

on the basis of the product of experts [152]:

p(ζk|ζk−1) =
1

A
q(ζk|ζk−1)r(ζk), (5.8)

where A =
∫
q(ζk|ζk−1)r(ζk)dζk is a normalization factor.

Estimation Algorithm

The robot posture zk is estimated from y1:k in an online manner by using an
UKF [151] assuming that the posterior distribution of the state variable ζk fol-
lows a Gaussian distribution. The UKF approximates the posterior distribution
p(ζk|y1:k) from the likelihood p(yk|ζk) and prior p(ζk|y1:k−1) using unscented
transform. The prior distribution p(ζk|y1:k−1) is obtained by calculating the
following equation using unscented transform:

p(ζk|y1:k−1) =

∫
p(ζk|ζk−1)p(ζk−1|y1:k−1)dζk−1. (5.9)

The calculation of the prior distribution p(ζk|y1:k−1) can be simplified as
follows. Since the q(ζk|ζk−1) is a linear transformation of ζk−1 (Equation (5.5))
and the r(ζk) is defined as a Gaussian distribution (Equation (5.6)), the state
update model can be written as a linear model. The prior distribution p(ζk|y1:k−1)
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is therefore calculated without unscented transform as follows:

p(ζk|y1:k−1) = N (ζk|ζ−k ,P
−
k ), (5.10)

ζ−k = P−
k ((P

∗
k)

−1ẑk−1 +P−1ζ), (5.11)

P−
k = ((P∗

k)
−1 +P−1)−1, (5.12)

P∗
k = FTP̂k−1F+Pk, (5.13)

where ẑk−1 and P̂k−1 are the mean vector and covariance matrix of the last pos-
terior distribution p(ζk−1|y1:k−1). F ∈ RL×L is the transition matrix representing
the linear update model. This calculation is recursively performed over time.

5.2.3 Robust TDOA Estimation

To make TDOA estimation robust against motor noise, we use a time stretched
pulse (TSP) [153] as a reference signal (Fig. 5.3). A TSP has a high time resolution
because the auto-correlation of the TSP signal become an impulse. In addition,
the TSP can be sent with large energy from a loudspeaker. Therefore, the
reference signal can be easily distinguished from the motor noise. A TSP signal
with a length of W samples is defined in the frequency domain as follows:

S(ω) =

{
exp(j2πω2/W 2) 0 ≤ ω ≤ W/2
S(W − ω) W/2 ≤ ω ≤ W

, (5.14)

whereS(ω) is the frequency spectrum of the reference signal s(t) in the frequency
domain and ω indicates a frequency. The reference signal s(t) is obtained by the
inverse discrete Fourier transform of S(ω).

As shown in Fig. 5.4, TDOA τnm1→m2
is estimated from the recorded signal

yk(t) as follows:

1. Calculate the cross correlation coefficient Gm,k(τ) between each recorded
signal zm,k(t) and the reference signal s(t).

2. Calculate the onset times of the input signals, tm1,k and tm2,k by detecting the
first peak of the correlation coefficient Gm1,k(τ) and Gm2,k(τ), respectively.

3. Calculate the TDOA τnm1→m2
by subtracting tm1,k from tm2,k.
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Figure 5.4: Overview of TDOA estimation.

The cross correlation is calculated using the generalized cross correlation with
phase transform (GCC-PHAT), which is robust against reverberation [122,154].

5.3 Experimental Evaluation

This section reports the experiments that were conducted for evaluating the
proposed method of online posture estimation using a prototype hose-shaped
robot as shown in Figure 5.5.

5.3.1 Experimental Settings

The proposed method was compared with a conventional method that does not
consider the posture change rate. The initial shape of the robot was set to one
of three postures: C-shape, S-shape, and straight. The TSP reference signal had
a length of 8192 samples (512 ms) generated at 16 kHz. The TSP is played by
each loudspeaker in order (1, 2, 3, . . ., 7, 1, . . .). To use a UKF, the initial state
ζ0 = [z0, ż0] was determined in the following manner. The initial posture z0 was
sampled from a Gaussian distribution whose mean corresponds to the correct
posture and standard deviation was 15◦. The initial change rate ż0 was set to
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Figure 5.5: Prototype hose-shaped robot placed on experimental room.

zero. The other parameters were determined experimentally.

The estimation algorithm was implemented using Python without multi-
processing. A standard laptop computer with an Intel Core i7-3517U CPU (2
cores, 1.9 GHz) and 4.0 GB of memory was used to estimate the TDOAs of the
reference signal and the posture of the robot. The CPU time and elapsed time
for 50 TDOA estimations (25.6 s) were 8.759 s and 8.843 s, respectively. Those
for posture estimation were 2.679 s and 2.697 s, respectively. Therefore, the total
computation time for an input signal of 25.6 s was 11.456 s.

The tip position error was the distance between the ground-truth and esti-
mated positions of the tip microphone. The average estimation error was the
average distance between the ground-truth and estimated positions of all the
microphones. The ground-truth position of each microphone was measured us-
ing a motion capture system (OptiTrack, NaturalPoint Inc.). Ishikura et al. [56]
achieved a tip position error of under about 0.2 m at 35 sec estimation with a
3.0 m mock-up robot by using the inertial sensor approach. To overcome this
method, the objective accuracy was set to 0.2 m of the position error. All ex-
periments were conducted in an experimental room whose reverberation time
(RT60) was 800 ms.
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Figure 5.6: The tip and average position errors obtained by the proposed and
baseline methods. The red line represents the proposed method, and the gray
line represents the baseline method. The polyline and error bar indicate the
mean and standard deviation, respectively.

5.3.2 Experimental Results

When the initial posture was set to the C-shape or S-shape, as shown in Fig-
ures 5.6-(a), -(b), -(c), and -(d), the estimation errors were decreased over time
and, as shown in Figures 5.7 and 5.8, the estimated postures followed the mov-
ing robot postures accurately. Moreover, when the initial posture was set to
the C-shape, the baseline method failed to follow the moving posture and the
estimation error increased after the 30-th measurement. On the other hand, the
proposed method successfully tracked the moving posture in real time. The
estimation errors, when the initial posture was set to the C-shape or S-shape,
were almost under 0.2 m after the 40-th measurement.

When the initial posture was straight, as shown in Figures 5.6-(e) and -(f),
on the other hand, the estimation error was larger than those obtained in the
cases of the other initial postures. This is because of the mirror-symmetrical
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Figure 5.7: Estimation results when the initial posture was set to the C-shape.
The red and blue lines indicate the postures estimated by the proposed and
baseline methods, respectively. The gray line illustrates the correct posture.
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Figure 5.8: Estimation results when the initial posture was set to the S-shape.
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Figure 5.9: Estimation results when
the initial posture was set to straight.
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Figure 5.10: Another set of results when
the initial posture was set to straight.

problem. Since the microphones and loudspeakers were installed in a row on
the robot, it is difficult to distinguish between two postures which were mirror-
symmetrical with respect to mic1 and src1. The correct posture was estimated
with an initial state as shown in Figure 5.9 whereas the mirror-symmetrical
posture was estimated with another initial state as shown in 5.10.

The possible reason why the baseline method failed in the C-shape condi-
tion is also due to the mirror-symmetrical problem. As shown in Figure 5.7-(c),
more than half part of the posture became straight at the 30-th measurement.
The baseline method failed to estimate the correct posture because the method
failed to estimate the direction of the robot movement after the 30-th measure-
ment. The experimental results show that the estimation of the posture change
rate reduces the mirror-symmetrical problem of a moving robot. However,
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additional information is required to solve the problem completely.
One way to solve the mirror symmetrical problem is to use multi-modal

information, i.e., integrate various types of information obtained from micro-
phones, accelerometers, and gyro sensors. If a robot has those modalities,
mirror-symmetrical postures can be distinguished by considering the posture
change history and the robot can work in a closed and narrow space in which
some modalities do not work. The mirror-symmetrical ambiguity could be
handled with an unscented particle filter [155] that can maintain multiple pos-
sibilities about the posture of the robot at the same time.

5.4 Summary

This chapter presented an online method that can accurately estimate the time-
varying posture of a moving hose-shaped rescue robot having multiple micro-
phones and loudspeakers. The experiments using a 3 m moving hose-shaped
robot showed that the method successfully suppressed the estimation error un-
der 20 cm at the tip position even after the robot moved over a long time. The
results also revealed that the purely audio-based method often confuses mirror-
symmetrical postures, depending on the initial value of the estimation. The
mirror-symmetrical problem will be solved by integrating with other sensors
such as gyroscopes. The probabilistic state-space modeling enables us to in-
tegrate various types of information obtained from multi-modal sensors in a
principled way. The 3D posture estimation is also an important future work.
This extension is addressed in Chapter 6.
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Chapter 6

Microphone-Accelerometer Based
3D Posture Estimation

This chapter presents 3D posture estimation that can deal with the partial occlu-
sion of microphones. The unreliable audio measurements due to the occlusion
is compensated for by using the tilt information obtained from accelerometers.

6.1 Introduction
Sensor systems on rescue robots including the hose-shaped robots typically do
not work well in the extreme environments where such robots are intended to be
used [1, 68–70]. The accuracy of the GPS, for example, is degraded because the
rubble in collapsed buildings blocks signals from the satellites [1], and a video
camera inserted into narrow gaps often fails to capture the views there because
the lighting causes whiteout or blackout conditions [68]. To develop robust
sensor systems, it is thus essential to integrate various modalities compensating
each other’s weaknesses [2, 156–158].

Although there are many posture estimation methods using various types
of sensors [56, 57, 159], these methods face some problems in the disaster en-
vironments. The performances of magnetometer-accelerometer based method,
for example, are degraded in the disaster environments because magnetic fields
are easily affected by the steel frames of collapsed buildings [57]. As presented
in Chapter 5, the audio-based posture estimation can be used in a closed space
allowing sound propagation among microphones and loudspeakers installed
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on the robot. This method uses a set of microphones and loudspeakers in-
stalled on the robot, and estimates the posture from the time differences of
arrival (TDOAs) using recorded acoustic signals. Nevertheless, an audio-based
method often fails to estimate the robot posture accurately because the obstacles
around the robot block sound propagation.

This chapter presents a microphone-accelerometer based 3D posture esti-
mation method for a hose-shaped robot equipped with a set of microphones,
loudspeakers, and accelerometers. The microphones and loudspeakers allow
to estimate their relative positions using the time differences of arrival (TDOAs)
of a reference signal emitted from the loudspeakers, and the accelerometers are
used for estimating their tilts by measuring the acceleration of gravity. Since
the TDOA-based method is degraded in a rubble-containing environment, the
proposed method excludes TDOAs distorted by rubble and fills up the lack of
posture information with the tilt information. To do this, it detect TDOAs of
direct sound by excluding outliers, and estimate the robot posture based on a
nonlinear state-space model integrating TDOA and tilt information by using the
unscented Kalman filter (UKF) [151].

6.2 3D Posture Estimation Based on Microphones
and Accelerometers

In the proposed method of microphone-accelerometer based 3D posture estima-
tion, the posture of a hose-shaped robot is estimated by repeating the following
four steps: 1) generate a reference signal from each loudspeaker, one by one, 2)
estimate the reference signal’s TDOAs at the microphones, 3) estimate the tilts
at 3-axis accelerometers, and 4) estimate the robot posture from the estimated
TDOAs and tilts by using the UKF.

6.2.1 Prototype Hose-shaped Robot

As shown in Figure 1.3, a prototype hose-shaped robot is used in this study.
This robot has two types of modules, one with a microphone (mic) and 3-axis
accelerometer (acc) (Figure 6.1-(a)) and the other with a small loudspeaker (src)

82



6.2. 3D POSTURE ESTIMATION BASED ON MICROPHONES AND
ACCELEROMETERS
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Figure 6.1: Modules with a microphone and accelerometer or a loudspeaker and
vibrator placed on the robot.

and vibration motor (vib) (Figure 6.1-(b)). As shown in Figure 6.2, M = 8 mic-
acc modules andN = 7 src-vib modules are positioned on the robot at a regular
interval l = 20 cm. The distance between the modules at the ends is 2.8 m.

6.2.2 Problem Specification

The microphones, accelerometers, and loudspeakers were denoted by micm,
accm (m = 1, · · · ,M ), and srcn (n = 1, · · · , N ), respectively, where N = M − 1.
Let k be the measurement index and the mic-acc module and src-vib module
positions be xmic

m,k and xsrc
n,k, respectively.

The problem of the microphone-accelerometer based posture estimation is
defined as follows:

Input: 1) TDOAs τnm1→m2
∈ R (m1,m2 ∈ Mk) when srcn omits a reference

signal, and 2) tilt angles at the accelerometers ψ1,k, · · · , ψM,k ∈ R.
Output: The positions of each mic-acc module xmic

m,k ∈ R3 and each src-vib
module xsrc

n,k ∈ R3.

where τnm1→m2
represents a TDOA between micm1 and micm2 and Mk represents

a set of indices for microphones that record the direct sound of the reference
signal. The TDOAs τnm1→m2

and microphone indices Mk are estimated from
synchronized M -channel audio signals yk(t) ∈ RM obtained by recording a
reference signal s(t) ∈ R (Sec. 6.2.3). The tilts ψ1,k, · · · , ψM,k are estimated from
M -channel 3-axis accelerometer measurements a1,k, · · · ,aM,k ∈ R3 (Sec. 6.2.3).
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Figure 6.2: Arrangements of microphones, accelerometers, and loudspeakers.

6.2.3 Feature Extraction

The robot posture is estimated by using TDOAs and tilts at the mic-acc modules
calculated from the M -ch audio signal yk(t) and the accelerometer measure-
ments a1,k, · · · ,aM,k.

TDOA Estimation

The output of TDOA estimation is a set of TDOAs τnm1→m2
(m1,m2 ∈ Mk) where

Mk represents a set of microphone indices for microphones that record the
direct sound of the reference signal. Since the TDOA between two adjacent
microphones cannot be longer than the sound propagation time for the interval
length on the robot (2l) in an open space, the proposed method excludes the
TDOA that does not satisfy this theorem. We formulate the set of indices Mk

for microphones that record the direct sound of the reference signal as follows:

Mk = {m|m satisfies valid(m)} (6.1)

valid(m) =


valid(m− 1) ∧ |τnm−1→m| < 2l

c
if m > n

|τnn→n+1| < ϵ if m = n
valid(m+ 1) ∧ |τnm+1→m| < 2l

c
if m < n

(6.2)

where c and ϵ represent the speed of sound in an open space and a threshold
parameter for regarding the TDOA τnn+1,nn as small enough, respectively. A
TDOA τnm1→m2

between micm1 and micm2 when srcn omits a reference signal is
estimated from the difference of onset times at the microphones tnm1,k

and tnm2,k
:

τnm1→m2
= tnm2,k

− tnm1,k
. (6.3)

The TDOA is calculated in the same way as in Chapter 5.
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Figure 6.3: Graphical representation of the proposed state-space model.

Tilt Estimation

The tilts at the accelerometers are estimated by measuring the direction of grav-
itational acceleration. The output of tilt estimation is a set of tilts ψm,k(m =

1, · · · ,M) at the accelerometers accm. The tilt ψm,k is estimated from the ac-
celerometer measurements am,k as follows:

ψm,k = arctan
(
−axm,k

/√
(aym,k)

2 + (azm,k)
2
)

(6.4)

where axm,k, a
y
m,k, and azm,k represent the elements of the input acceleration am,k,

respectively.

6.2.4 State-Space Model of Robot Posture

The proposed state-space model associates a state space representing the 3D
robot posture with an observation space representing the TDOA and tilt of each
mic-acc module (Figure 6.3). The current posture is estimated by using the UKF.

As shown in Figure 6.4, the robot posture is modeled as a serially-connected
link model. A posture at the k-th measurement, zk, is defined as follows:

zk = [θ1,k, · · · , θM+N−2,k,ϕ1,k, · · · , ϕM+N−1,k, l1,k, · · · , lM+N−1,k]
T, (6.5)

where θi,k, ϕi,k, and li,k are a horizontal link angle, a vertical link angle, and a
link length, respectively.
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Figure 6.4: 3D serially-connected link model of robot posture.

The relative positions of the microphones and loudspeakers on the robot,
xmic
m,k and xsrc

n,k, are calculated recursively from the first position xmic
1,k . Suppose

that x∗
i,k is the i-th member of [xmic

1,k ,x
src
1,k, · · · ,x

mic
M−1,k,x

src
N,k,x

mic
M,k]. Then each

position is given by

x∗
i,k = x

∗
i−1,k + li−1,k

cos(ϕ∗
i,k) cos(θ

∗
i,k)

cos(ϕ∗
i,k) sin(θ

∗
i,k)

sin(ϕ∗
i,k)

 , ϕ∗
i,k =

i−1∑
j=1

ϕj,k, θ∗i,k =
i−2∑
j=1

θj,k. (6.6)

State Update Model

As in Chapter 5, the state update model p(zk|zk−1) is based on two concepts: a)
posture dynamics and b) posture constraint. The posture dynamics q(zk|zk−1)

is represented as random walk:

q(zk|zk−1) = N (zk|zk−1, diag (σ
z)) , (6.7)

where σz ∈ RL
+ is the variance vector of the process noise. Note that in this

chapter only the posture zk is estimated for evaluating the effectiveness of inte-
gration of the audio and accelerometer measurements. The posture constraint
r(zk), on the other hand, is modeled as a Gaussian distribution:

r(zk) = N (zk|z,P), (6.8)

where z ∈ RL and P ∈ RL×L are the mean and covariance matrix of the feasible
posture. The z and P are parameterized as in Eq. 5.7. These two distributions
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are integrated for the state update model p(zk|zk−1) on the basis of the product
of experts [152]:

p(zk|zk−1) =
1

A
q(zk|zk−1)r(zk), (6.9)

where A =
∫
q(zk|zk−1)r(zk)dzk is a normalization factor.

Measurement Model

The measurement model p(τk,ψk|zk) is formulated with two sub models: a) a
TDOA measurement model p(τk|zk) and b) a tilt measurement model p(ψk|zk)
as follows:

p(τk,ψk|zk) = p(τk|zk)p(ψk|zk) (6.10)

The TDOA measurement model p(τk|zk) is defined using a set of TDOAs
τnk
nk→mk

where the mk is the one of the filtered microphone indices Mk:

p(τk|zk) = N (τk|[τnk
nk→m1

zk)|m1 ∈ Mk]
T,Rτ

k), (6.11)

whereRτ
k represents the covariance matrix of the measurement noise and TDOA

τnm1→m2
(zk) is calculated by using the distances between the two microphones

and the loudspeaker as follows:

τnm1→m2
(zk) =

|xmic
m2,k

− xsrc
n,k| − |xmic

m1,k
− xsrc

n,k|
c

, (6.12)

where c represents the speed of sound.
The tilt measurement ψk is a set of tilts angles ψm,k at mic-acc modules:

q(ψk|zk) = N (ψk|[ψ1(zk), · · · , ψM(zk)]
T,Rψ

k ) (6.13)

where Rψ
k represents the covariance matrix of the measurement noise and tilt

ψm(zk) is calculated by accumulating the vertical link angles ϕa,k as follows:

ψm(zk) =
1

2

2m−2∑
i=1

ϕi,k +
1

2

2m−1∑
i=1

ϕi,k (6.14)

6.3 Evaluation

This section reports an experiment evaluating the proposed method of 3D pos-
ture estimation in rubble-containing environments.
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Figure 6.5: Three conditions for experimental evaluation. Ground-truth pos-
tures were measured using a motion capture system.

6.3.1 Experimental Settings

The proposed method was compared with a baseline method estimating the
posture by using only microphone information. This experiment was conducted
in an experimental room where the reverberation time RT60 was 800 ms. As
shown in Figure 6.5, the robot postures were estimated in the following three
conditions:
1. Open space: There was no rubble around the robot. The robot curved three-

dimensionally on a stepladder 140 cm high.
2. Sticks: Six wooden sticks (91 cm × 9 cm × 4 cm) representing rubble were

placed around the robot.
3. Sticks and plate: The six wooden sticks and a wooden plate (91 cm × 25 cm

× 1.5 cm) were placed around the robot.
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The TSP reference signals used in this experiment had a length of 8,192 samples
(512 ms) at 16 kHz. The initial state z0 = [θi,0, · · · , ϕi,0, · · · , li,0, · · · ]T of the UKF
was determined in the following manner. The initial horizontal and vertical
link angles θi,0 and ϕi,0 were sampled from a Gaussian distribution whose mean
corresponded to the ground-truth posture and standard deviation was 6◦. The
link lengths li,0 were set to 0.2 m which was the distance between mic-acc and
src-vib modules on the robot. The threshold of the TDOA estimation ϵ was set
to 0.04/340 sec. The other parameters were determined experimentally.

The proposed method was implemented by using Python without multipro-
cessing. The estimation was conducted with a standard laptop computer with
an Intel Core i7–3517U CPU (2-core, 1.9 GHz) and 4.0 GB of memory. The CPU
time and elapsed time for the whole estimation algorithm with 50 measure-
ments were 8.561 s and 9.129 s, respectively. These values were small enough
compared with the whole signal length of the reference signals (25.6 s) that the
method could work in real time.

As in Section 5, the tip position error and average estimation error were
evaluated The tip position error was the distance between the ground-truth
and estimated positions of the tip module (8-th mic-acc module). The average
estimation error was the average distance between the ground-truth and esti-
mated positions of all the modules. The ground-truth position of each module
was measured using a motion capture system (OptiTrack, NaturalPoint Inc.).
The estimation errors were evaluated with 32 different initial states. Since the
conventional audio-only method, which does not consider the tilt information,
has rotation ambiguity at the x-axis of the 1-st mic-acc module, the estimated
posture was rotated to make the average estimation error as small as possible.

6.3.2 Experimental Results

As shown in Figure 6.6, in all conditions, the proposed method suppressed the
tip position errors at the initial states to about 0.2 m and suppressed the average
position errors there to less than 0.2 m. Moreover, when the robot was placed in
rubble-containing environments (conditions 2 and 3), the baseline audio-based
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Figure 6.6: Tip and average position errors obtained by proposed and baseline
methods in the three conditions. Polylines and error bars indicate the mean and
standard deviation for 32 different initial states, respectively.

method failed to estimate the robot’s posture. The proposed method, on the
other hand, robustly suppressed the estimation errors

As shown in Figure 6.7, in the all conditions, the postures estimated by
the proposed method were close to the ground-truth posture, whereas when
the robot was placed in condition 2 or 3, the first joint angle estimated by the
conventional method was significantly different from the ground-truth posture.
Both of the rubble-containing environments had a wooden stick in front of the
joint place (2nd src-vib module) to prevent estimation of the robot posture. This
shows that in the proposed method the lack of information at the joint was
compensated by the information obtained from the accelerometers.

As shown in Figure 6.8, when the errors of the initial state of the Kalman
filter were larger than those in the other conditions, the estimation error became
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Figure 6.7: Examples of estimated postures at the 50-th measurement. Black
and gray lines represent initial and ground-truth postures, respectively.

larger. In this condition the standard deviation of initial errors was set to
30 deg, whereas in the other conditions it was set to 6 deg. This shows that
the proposed method is sensitive to the initial state. This is because mirror
symmetrical ambiguity could not solved even if both TDOA and tilt information
were used. A promising solution to this problem is to predict the time-varying
posture of a moving robot in a dynamical manner. Since the posture at the
initial insertion is given with a insertion-guide pipe [24], the current posture can
be obtained by tracking the time-varying posture during the insertion. It was
shown that a sound-based method can track the moving posture by considering
the posture change rate in Chapter 5. Integration with sequential information
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Figure 6.8: Tip and average position errors with larger errors of initial states, in
condition 3. The standard deviation of initial errors was set to 30 deg (it was set
to 6 deg in the other conditions).

obtained by accelerometers and gyrometers would also be beneficial for further
improvement of 3D time-varying posture estimation.

6.4 Summary

This chapter presented a 3D posture estimation method using microphones and
accelerometers for a hose-shaped rescue robot. Since correct TDOAs are not
always obtained at all microphones if a reference signal is blocked by some
obstacles, the proposed method incorporates tilt information obtained by the
accelerometers for estimating a robot posture robustly in rubble-containing en-
vironments. A nonlinear state-space model was formulated to integrate TDOA
and tilt information, and the robot posture was estimated by using the unscented
Kalman filter. Experiments using a 3 m hose-shaped robot with eight micro-
phones and accelerometers and seven loudspeakers showed that the method
successfully reduced the tip position errors of the initial states to about 0.2 m
even when the robot was placed in rubble-containing environments. The future
work includes the extension for estimating the 3D time-varying posture.
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Chapter 7

Conclusion

This thesis addressed audio scene analysis for rescue robots that work in severely
adverse environments. This chapter first reviews the contributions of this thesis,
and then presents directions for future research.

7.1 Contributions

This work focused on audio scene analysis for a hose-shaped rescue robot,
which is one of the ground rescue robots for penetrating into narrow gaps of
collapsed buildings. Sets of microphones, inertial sensors, and loudspeakers on
the robot were used for sensing the surrounding environments and the robot
itself. This thesis addressed two fundamental functions for the audio scene
analysis: speech enhancement and posture estimation that are robust against
the dynamic configuration and partial occlusion of microphones.

7.1.1 Speech Enhancement

A speech enhancement method robust against both the dynamic configuration
and partial occlusion of microphones was presented in Chapter 3. The proposed
method called Bayesian RNTF works on the magnitude spectrogram instead of
using phase information, which is sensitively affected by the array layout. By
assuming speech and noise spectrograms to be sparse and low-rank, respectively,
the Bayesian RNTF works without training data of both the noise and speech. It
can also cope with the partial occlusion of microphones by estimating the speech
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gain at each microphone. The Bayesian RNTF was extended to a mini-batch
method so that the enhancement is conducted in a real-time. The experimental
results showed that the noise signals were successfully suppressed regardless
of SNR conditions and the layout of microphones and sources although the
method often failed to extract speech in the severely low-SNR conditions. The
results also showed that the method outperformed conventional multichannel
methods even when half of the microphones are occluded.

To improve the enhancement performance, a prior distribution of speech sig-
nals based on a deep generative model was introduced in Chapter 4. Instead of
using the simple sparse speech model, speech signals were modeled with a vari-
ational autoencoder (VAE) that is trained in advance with a sufficient amount
of clean speech. The noise signal was modeled by assuming the low-rank struc-
tures as in the Bayesian RNTF. These two models were combined into a single
probabilistic model called VAE-NMF, and a unified inference algorithm based on
a Markov chain Monte Carlo (MCMC) algorithm was derived. The experimental
results datasets of urban noise signals showed that VAE-NMF outperformed a
method based on low-rank and sparse decomposition. In addition, VAE-NMF
outperformed the conventional supervised DNN-based method in unseen noisy
environments. It was also experimentally confirmed that the enhancement per-
formance of VAE-NMF for a hose-shaped rescue robot was higher than that of
the single-channel low-rank and sparse decomposition method when the SNR
was relatively high.

7.1.2 Posture Estimation

An audio-based method that can deal with the dynamic configuration of mi-
crophones was presented in Chapter 5. A 2D time-varying posture was tracked
by estimating the posture change rate and predicting the current posture. The
conventional gyroscope-based method increased the estimation error monoton-
ically over time [56]. The experiments using a 3 m moving hose-shaped robot
showed that the audio-based method successfully suppressed the estimation
error under 0.2 m. It was also revealed that the purely audio-based method of-

94



7.2. REMAINING ISSUES AND FUTURE DIRECTIONS

ten confuses mirror-symmetrical postures, depending on the initial value of the
estimation. It is experimentally confirmed that the mirror-symmetrical problem
of a moving robot is reduced by estimating the posture change rate.

For dealing with the partial occlusion of microphones, the audio-based
method was extended to a 3D posture estimation method based on microphones
and accelerometers in Chapter 6. The partial occlusion was tackled by integrat-
ing the TDOAs obtained from microphones and the tilt angles obtained from
accelerometers. The proposed method excludes TDOAs distorted by obstacles
and covers the lack of the TDOA measurements with the tilt information. It was
experimentally confirmed that the method successfully reduced the tip position
errors of the initial states to about 0.2 m even when the robot was placed in
rubble-containing environments. When the initial errors of initial states are less
than 20 %, the method can estimate the correct 3D posture in real-time.

7.2 Remaining Issues and Future Directions

The author concludes by presenting some directions for future research.

7.2.1 Remaining Issues

The Bayesian RNTF presented in Chapter 3 will be further improved by putting
the VAE-based deep prior distribution on speech signals. The speech model
with the sparse assumption in the Bayesian RNTF can extract only the speech
component clearly appeared in a noisy amplitude spectrogram. The VAE-based
speech model can restore the missing speech part overlapped by ego-noise be-
cause it represents the joint distribution of a speech signal over frequency bins.
Since the source signal models and their mixing system were separately for-
mulated in VAE-NMF, the mixing system can be replaced for the multichannel
scenario. The VAE-NMF currently has two drawbacks. One is its low sup-
pression performance of noise signals. The VAE-NMF presented in Chapter 4
outputs parts of noise signals as speech in low-SNR conditions. The VAE-based
speech model would be improved by introducing a sparse constraint. The other
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is its high computational time due to the Metropolis algorithm. Its inference will
be accelerated by using the encoder of a VAE and the Hamiltonian Monte-Carlo
(HMC) algorithm [62].

For tracking a 3D time-varying posture, the future work includes the integra-
tion of the audio-based and gyroscope-based methods. Although the gyroscope
is robust against external environments and has high time resolution, it accu-
mulates its errors as time passes [56]. As presented in Chapters 5 and 6, the
integration of microphones and accelerometers can avoid the accumulative error
problem even when the robot is in rubble-existing environments or moves. The
audio-based method, however, has the mirror-symmetrical problem although
it can be reduced by estimating the posture change rate. By integrating these
sensors and estimating the drift errors of the gyroscopes, these problems can be
complementarily solved.

Evaluation in real or simulated disaster environments is important future
work. There are several stations where rescue robots can be evaluated in simu-
lated disaster environments. International Rescue System Institute in Kobe, for
example, provides a collapsed house simulation facility [24]. Disaster City in
Texas, USA provides many kinds of disaster sites such as piles of rubble and
collapsed buildings [27]. It is also important to ask a real rescue team to use the
robot in such environments, and evaluate the usability of speech enhancement
and posture estimation in rescue missions.

7.2.2 Use of Posterior Estimates

All the methods presented in this thesis provide posterior distributions of the
latent variables (e.g., speech signals and posture). The operator of a hose-shaped
rescue robot can use this information as reliability of each output. A user inter-
face that effectively visualizes the reliability would be useful for the operator.
The posterior estimates can also be used for planning actions automatically [160].
The posture estimation, for example, can reduce the frequency for submitting
the reference sound. The loud sounds for posture estimation prevent the oper-
ator from searching for victims. By monitoring the posterior distribution of the
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posture, the reference sound can be submitted only when the estimated posture
becomes unreliable.

7.2.3 Higher-Level Audio Scene Analysis

Speech enhancement and posture estimation addressed in this thesis enable
the higher-level audio scene analysis as discussed in Chapter 1. The Bayesian
RNTF can be extended to localize a victim by using the estimated posture. Since
the Bayesian RNTF calculates a simple distribution of estimated speech gain at
each microphone, it would be able to roughly estimate the location of a victim
by using the gain differences across microphones. The operator of the robot
currently has to manually detect the speech included in the enhancement results.
Voice activity detection should be tackled to improve the usability of this system.
The robot movements can be predicted and controlled from the current posture
information [161]. These techniques will enable the robot to find and approach
victims automatically by detecting and localizing the victim’s speech sound. It
is also important to develop an auditory display that effectively visualizes the
audio scene in the complex rubble-containing environments.

7.2.4 Applications for Other Rescue Robots

Application for other rescue robots is another interesting direction for future
research. Speech enhancement and posture estimation are important problems
not only for a hose-shaped rescue robot. Drone robots, for example, have large
and continuous flight noise [20]. Most of ground robots generate ego-noise from
their wheels or actuators [34]. The proposed enhancement methods have the
portability to adapt various robots because they not only allow the dynamic
configuration and partial-occlusion of microphones but also work without the
array layout and training data of the noise signals. On the other hand, there are
various robots having flexible and soft bodies that have no joints [162–164]. Since
the proposed posture model is formulated as a simple link model, it will be easily
extended for such robots. The speech enhancement and posture estimation for
these robots will also enable the higher-level audio scene analysis for the robots.
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