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Abstract

Artificial Intelligence (AI) is the field of science that deals with creating machines that

mimic the activities and behaviour of living beings especially humans. The objective is to

either produce machines that are indistinguishable from living beings (strong AI) or those

that only behave like living beings but not look like them (weak AI). Natural Language

Processing (NLP) is a sub-field of Artificial Intelligence which deals with enabling com-

puters to produce and understand human text and speech. Machine Translation (MT) is

an application of NLP that focuses on the automatic translation between languages.

Machine Translation is quite valuable, both, at a personal level as well as at the busi-

ness level. Advancements in technology have enabled people all over the world to travel

to various countries and interact with each other. Due to inevitable language differences

a mechanism for automatic language translation is crucial for smooth tourism as well as

for conducting successful business. Google Translate, the world’s most popular online

translation service, is one of the many automatic translation services and is used to trans-

late over 100 billion words1 per day (as of 2016). With the recent advancements in deep

learning, the translation quality for languages such as French, English and Japanese has

improved to a point where the translations are practically indistinguishable [132] from

translations produced by humans in most cases. The abundance of resources in terms

of parallel corpora is one of the driving factors behind the quantum leaps in translation

quality.

However, most languages do not benefit from the abundance of data and thus it is still

difficult to obtain high quality translations for languages such as Hindi, Marathi, Hausa

and Tamil. Moreover, in many cases, the amount of data for domain specific translation

will be scarce and simply using data from an unrelated domain is not the best solution.

In this thesis we focus on various methodologies that rely on transferring translation

knowledge in a multilingual setting for improving the quality of machine translation in

resource scarce scenarios. This thesis also documents a transition from one paradigm of

MT (Phrase Based) to another (Neural).

1https://googleblog.blogspot.jp/2016/04/ten-years-of-google-translate.html
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Multilingualism is gradually becoming ubiquitous in the sense that more and more re-

searchers have successfully shown that using additional languages help improve the results

in many Natural Language Processing tasks. Knowledge Transfer, also known as Transfer

Learning, enables one to transfer (translation) knowledge from a resource rich scenario to

a resource poor scenario. While transfer learning for machine translation itself does not

rely on multilingualism it can be used to its fullest potential in a multilingual scenario,

especially, in a deep learning scenario. This thesis is thus a compilation of studies on ex-

ploiting multilingualism and knowledge transfer for low resource machine translation. Our

aim is twofold: Firstly, to determine the impact of using multiple languages using tech-

niques of low complexity on translation quality and secondly, to analyze the effectiveness

of techniques that make use of knowledge transfer to improve machine translation.

In Chapter 1, we give an overview of machine translation where we outline the major

paradigms and the methods of evaluation along with relevant background knowledge. We

detail on Phrase Based Statistical MT (PBSMT) and Neural MT since this thesis revolves

around these two paradigms.

Chapter 2 is a case study of leveraging small multilingual corpora for Phrase Based

Statistical MT (PBSMT) using many pivot languages. Here we show how it is possible

to improve the quality for Japanese-Hindi machine translation using additional helping

languages in a pivot language MT setting.

In Chapter 3, we expand on our experiences in pivot language based PBSMT and

apply them to large scale dictionary construction. We show how our combination of

pivot based techniques, statistical significance pruning (a technique to reduce noise in

translation tables) and neural network features yield large Chinese-Japanese dictionaries

of high quality.

Following the success of using features obtained from neural networks we explored

domain adaptation for MT using neural networks. Chapter 4 is a case study of various

simple but effective transfer learning based domain adaptation techniques for Neural Ma-

chine Translation (NMT) to improve the domain specific translation quality of Chinese to

Japanese and Chinese to English.

In Chapter 5 we explore various transfer learning techniques (similar to the ones we

used for domain adaptation) for NMT in a multilingual scenario where we focus on how

linguistic similarity impacts the effectiveness of knowledge transfer from a resource rich

language pair to a resource poor language pair. We explore several black box techniques

in an attempt to figure out a simple and all purpose technique for high quality MT.

Chapter 6 is about our work on Multi-Source NMT using a simple black box approach

where we use the same sentence in multiple languages to improve the translation quality.
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Furthermore we show that single source models can benefit from the multi-source models

by transfer learning and thereby yield translations of higher quality. We also show how

the multi-source models can be used for extracting multilingual dictionaries.

We conclude this thesis in Chapter 7 with a discussion on how our work will impact

further research in the field of Machine Translation. We also give an overview of future

work especially in the context of recent advancements in NMT architectures that rely on

feed-forward networks and thereby abandon recurrent networks.
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Chapter 1

Introduction

Machine Translation (MT) is the field of Natural Language Processing (NLP) and Artificial

Intelligence (AI) which deals with empowering a machine with the ability to translate

a sentence from one language to another. Presently, since there is a huge amount of

knowledge on the web published in a variety of languages, MT, which will ensure that all

knowledge will be available to all people in the language they understand, is the need of

the hour. Before going any further, an overview of the History of Machine Translation

is needed which follows. The content is summarized from the book: An Introduction to

Machine Translation [60].

1.1 History of Machine Translation

Machine Translation has its roots in the speculations by Descartes and Leibnitz, in the 17th

century, on the creation of mechanical dictionaries to overcome language barriers. This

led to 2 different movements, one for the development of a universal language wherein

all of humanity could communicate easily and another for the development of means for

the communication between humans speaking different languages. The prior movement

picked up momentum during the early ages, between the 17th to the 19th century, because,

although envisioned, the concept of mechanizing translation could not be visualized due

to little or no advancement in technology. The best known, proposed, universal language

was Esperanto and is in use even today. However, as time progressed, the latter mentioned

movement started picking up pace towards the mid-20th century.

In the years 1933-37 patents for mechanization of translation appeared independently

in France and Russia. George Artsrouni, a Frenchman, in 1937, demonstrated a pro-

totype of a storage device on paper tape to find the equivalent of any word in another

language. Petr Smirnov-Troyanskii, a Russian, made an even greater contribution by en-

1
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visaging machine translation having three stages namely analysis of words and syntax of

the source language, transformations of words and syntax to the target language and fi-

nally generation of words in the target language. Post-World War II, in 1951 (towards the

beginning of the Cold War between America and Russia) full-time machine translation

research began in MIT in order to intercept messages via a combination of cryptography

and machine translation mechanisms. A public demonstration of machine translation of

Russian to English in 1954 led to large-scale funding of machine translation research in

the United States. Consequently IBM (Russian-English), The RAND Corporation, The

Institute of Precision Mechanics in the Soviet Union, The National Physical Laboratory in

Great Britain, Georgetown University, (Russian-English), MIT, Harvard University, The

University of Texas, The University of California in Berkeley, The Institute of Linguistics

in Moscow, The University of Leningrad, The Cambridge Language Research Unit (CLRU)

and The universities of Milan and Grenoble joined in the fray. Their work resulted in the

development of the first generation machine translation systems which although were of

poor quality lead to considerable progress in computational linguistics, artificial intelli-

gence and linguistic theory in general.

Although the original dream was the development of fully automatic high-quality trans-

lation (FAHQT) systems producing results indistinguishable from those of human transla-

tors, it was later replaced by a less ambitious dream wherein systems making cost-effective

use of human-machine interaction should be developed. In 1964 Automatic Language Pro-

cessing Advisory Committee (ALPAC) was appointed by the sponsors of MT in US in order

to determine whether MT research should continue or not. In 1966 they reported that

“there are no immediate or predictable prospects of machine translation”. This bought

a virtual end to machine translation research in US due to the cancellation of funds for

research. However the development of machine aids for translators, such as automatic

dictionaries, basic research in computational linguistics still continued.

Post-ALPAC research continued in Western Europe and Canada for English to French

translation. In 1968, the company called SYSTRAN1 developed systems to perform Rus-

sian to English translation for the US air force. The English to French SYSTRAN system

was up in 1970. Due to the success of these systems, English to Italian, English to Ger-

man and many other language pairs were added to SYSTRAN. In 1976 Meteo2, which

translated weather reports for daily public broadcasting, was developed. Consequently

during the late 1970s the EUTROTRA3 [3] project for multilingual translation began. An

1https://en.wikipedia.org/wiki/SYSTRAN
2https://en.wikipedia.org/wiki/METEO System
3https://en.wikipedia.org/wiki/Eurotra
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unsuccessful attempt at an Interlingua based Russian French system during this period

influenced the development of the transfer based ARIANE [14] system. Other transfer

based systems during this period were SUSY [92] of Saarbrucken Group, METAL of Lin-

guistics Research Centre (LRC) at Austin, Texas and the MU system of Tokyo University,

Japan.

Although, initially, Interlingua4 based systems [93] met with failure, the success of

transfer based methods led towards deeper research into these kinds of systems towards the

1980’s. The argument in support of Interlingua was that, in order to perform high-quality

translation“meaning” must be understood which is the very heart of these systems. Con-

sequently the DLT system at Utrecht based on a modification of Esperanto, the Rosetta

system at Phillips (Eindhoven) [38] experimenting with Montague semantics as the basis

for an interlingua and ATLAS-2 [58] at Tokyo University, Japan which used conceptual

structure as an interlingua were developed. The 1980s also saw a large number of commer-

cial machine translation systems being developed and sold. The American products from

ALPSystems, Weidner and Logos were joined by many Japanese systems from computer

companies (Fujitsu, Hitachi, Mitsubishi, NEC, Oki, Sanyo, Sharp, and Toshiba). These

were later joined by Globalink, PC-Translator, Tovna and the METAL system5 developed

by Siemens from earlier research at Austin, Texas. There have been a number of in-house

systems, like the Spanish and English systems developed at the Pan-American Health

Organization (Washington, DC), and the systems designed by the Smart Corporation for

Citicorp, Ford, and the Canadian Department of Employment and Immigration. Many

of the Systran installations were tailor-made for particular organisations (Aerospatiale,

Dornier, NATO, and General Motors). Nearly all these operational systems depended

heavily on post-editing to produce acceptable translations.

In 1981, Example Based Machine Translation (EBMT) [96] was conceptualized which

proposed a machine translation approach that relied on translating by analogy. It was

one of the first, if not the first, approaches to suggest that translation can be performed

by learning translation analogies between languages using parallel corpora (data). EBMT

sought to reduce the error propagation in Rule-based systems by reducing the amount of

fundamental analysis required. This work also motivated the development of an EBMT

system that relied on tree-to-tree machine translation [63].

The 1990s saw a lot of improvement in computing technologies which, coupled with

the Internet (thereby having massive amounts of data), led towards the development of

Statistical Machine Translation (SMT). The first steps towards SMT were achieved by

4https://en.wikipedia.org/wiki/Interlingua
5https://en.wikipedia.org/wiki/METAL MT
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the development of word based machine translation models. These models are also known

as IBM models [16] which worked on surface words without any linguistic analyses. The

central aspect of these models is word alignment which is the process of determining which

word in the source sentence is a translation of which word in the target sentence. These

word alignments are learned using co-occurrence counts from a parallel corpus. The word

based models made no assumptions about the nature of languages being translated and

this marked the beginning of an era of machine translation where linguistics would be

gradually separated from the mathematical models.

Human beings do not translate sentences at the word level but at the level of phrases.

As such, phrase based statistical machine translation (PBSMT) systems were proposed

[77] which use word alignments to learn probabilistic translation tables which contain

phrase pairs. The PBSMT Systems, which use a direct translation approach are fast and

robust, guarantee decent translations only when the amount of data available is very large.

Over time certain linguistic features were introduced into the PBSMT models leading to

Factored PBSMT models [75]. Another competitive phrase based approach was hierar-

chical machine translation [21] which resembled EBMT. However, towards 2014 PBSMT

started reaching its peak and improvements to translation required highly sophisticated

mechanisms.

In late 2014, for the very first time, a Neural Machine Translation (NMT) architecture

[6] was proposed and evaluated. NMT is a pure end-to-end approach which proved to be

superior to PBSMT and has now become the de-facto baseline for most MT evaluation

activities. Moving towards the present day wherein technology has improved by leaps

and bounds a large number of neural machine translation systems have been developed.

Today, Google Translate is the worlds leading provider of translation services and employs

GNMT [132] for all its 103 languages. We will now explain the major MT approaches in

necessary detail with special focus on PBSMT and NMT since this thesis is based on these

MT paradigms.

1.2 Approaches to Machine Translation

The Vauquois [125] triangle (see figure 1.1) is a pictorial depiction of the different types of

Machine Translation. The Vauquois Triangle has two parts to it namely the Source Side

text and the Target Side text. The figure indicates the different ways to get to the target

side. As we move towards the tip of the triangle the steps taken are called as Analysis steps

and the ones when we move away from the tip are called Generation steps. For analysis

we use linguistic information to obtain more information about the source text and for
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Figure 1.1: Vauquois Triangle

generation we use these features to generate the target language. The base of the triangle

is an indicator of the distance between the source text (language) and the target text

(language). In order to get to the target side we perform the act of “Transfer”6 wherein

we substitute aspects of source side by the aspects of the target side. Thus translation

consists of three major tasks: Analysis, Transfer and Generation.

The point at which we perform “Transfer” indicates the type of MT technique we use.

There are 3 major MT techniques:

1. Interlingua Based Machine Translation

2. Transfer or Rule Based Machine Translation (RBMT )

3. Direct or Statistical Machine Translation (SMT )

1.2.1 Interlingua Based Machine Translation

The best way to eliminate ambiguities is to understand more. By analyzing a sentence

up to a level where we can understand its meaning we are in a position wherein we no

longer have to transfer structures from source language to target language. This is because

meaning is the same in all languages. This forms the base for Interlingua Based Machine

6This transfer has a different meaning compared to the word transfer in transfer learning.
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Translation. This MT technique sits at the tip of the Vauquois Triangle where no transfer

is performed. This can be achieved by performing a rigorous analysis of the source text

by having a massive collection of analysis rules. Along with this universal representation

for the analyzed text is required. One popular approach for universal representation

is known as Universal Networking Language (UNL) [13]. Recently, Abstract Meaning

Representation (AMR) [7] has become more popular since it does away with a number

of limitations of UNL. Once meaning is obtained generation of sentences of high-quality

on the target language side is not difficult however getting to this point is the hard part.

Although this MT technique sits higher than the transfer based technique it was envisioned

and worked on even before the latter however difficulties in achieving the prior lead to the

scientists settling for the latter technique. An example of interlingua based MT is ATLAS-

2 [58].

1.2.2 Transfer: Rule Based Machine Translation (RBMT)

Back in the earlier days of MT Parallel Corpora and powerful machines weren’t available

and thus the Rule Based Approaches prevailed. The concept behind these approaches is

that the source language text must be analyzed to determine various features of its con-

stituents. These features would be at the level of words and at the level of the sentence.

By doing so, we reduce the amount of ambiguity in the source text. The task of identifying

word features is a combination of Morphological Analysis and Parts of Speech Tagging.

The task of identifying the structure of the sentence is called Parsing (also called Chunk-

ing at the basic level). Thus we move upwards in the Vauquois Triangle and the distance

between the source and the target language reduces. At this level source language struc-

tures and words have their equivalents in the target language side. Rules are specified to

perform these mappings which use dictionaries for word substitution. The amount of am-

biguities present at this level of analysis is significantly lesser than those present initially.

The mappings performed are called as “Transfers” and thus this translation mechanism

is called Transfer Based Machine Translation. It is interesting to note that these rules of

transfer need not be specified by linguists but can be learned if we have parallel corpora of

analyzed structures on both sides. A very good example of such an approach is Example

Based Machine Translation (EBMT) [63].

1.2.3 Direct: Corpus Based Machine Translation

This MT technique is one in which source language words are substituted by target lan-

guage words without any analysis and thus is not bound by rules of language. Source
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language to target language word mappings can be obtained by applying Machine Learn-

ing techniques. In effect the systems using this MT method mimic human translation as

much as possible by learning translation patterns without attempting to abstract them.

The upside to this is that there is not much need of linguistic knowledge and such systems

can be developed by computer scientists with little or no knowledge of the languages they

deal with. Of course, absolutely no understanding of language can turn to be a disadvan-

tage at times. Another thing to note is that these systems can be developed quickly, give

fast results and are quite robust. The downside to this is that the amount of data that is

required for Machine Learning is large. The data required is known as Parallel Corpora.

Although, training the translation systems takes time, translation results can be obtained

quickly.

Currently there are two major approaches to corpus based MT approaches: Phrase

Based Statistical Machine Translation (PBSMT) and Neural Machine Translation (NMT).

We will explain these approaches in the following sections.

1.3 Phrase Based Statistical Machine Translation

Phrase based SMT was the state-of-the-art approach to machine translation till late 2014.

PBSMT models [77] are based on the IBM word-models [17]. Consider the case of English

to Hindi translation where the best Hindi translation (hbest) for an English sentence (e) is

defined as:

hbest = arg maxh P (h|e)

= arg maxh P (e|h) P (h) (1.1)

There are two major components, namely, P (e|h) which is a translation probability and is

a part of the “translation model” and P (h) which is a n-gram probability and is a part of

the “language model”. The translation model represents the adequacy and is responsible

for meaning transfer whereas the language model represents fluency is responsible for

grammatical correctness and natural sentence formation. The translation model is often

coupled with a reordering model which handles the order in which phrases are translated

for fluent outputs.

1.3.1 Translation Model

Translation models are the first major component of PBSMT systems and are essentially

a collection of phrase pairs mined from a parallel corpus. These pairs are accompanied
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by conditional probabilities at the phrasal and word level. First, IBM models are learned

to obtain high-probability word alignments as shown in Figure 1.2, for each sentence pair

in the parallel corpus. Then the aligned phrase pairs that are consistent with the word

alignment are extracted (Figure 1.3).

Ram   ate   rice   with   a   spoon

राम    ने     च�मच   से    चावल    खाए 

Figure 1.2: Word-alignment using IBM models
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Ram                            राम ने
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a spoon                      च�मच 
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ate                                खाए 
rice                             चावल

with                            से
a spoon                      च�मच 
ate rice                       चावल खाए

ate rice with               से चावल खाए 

rice with                     से चावल 

rice with a spoon        च�मच से चावल 

  

ate rice with a spoon  च�मच से चावल खाए

Figure 1.3: Phrase to phrase correspondence

After collecting the phrase pairs, they can be used to estimate the phrase translation

probability distribution P (ē|h̄) between a foreign English phrase ē and Hindi phrase h̄.

This probability is estimated as:

P (ē|h̄) =
count(ē, h̄)∑
ē count(ē, h̄)

(1.2)
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1.3.2 Language Model

The language model [88, 68, 56] is the second half of a PBSMT system and is necessarily

a n-gram model7. Language models help capture the fluency aspect of MT by recording

probabilities of words given the previous n-words. These probabilities are learned from

a monolingual corpus for the target language. Since monolingual corpora are orders of

magnitude larger than bilingual (parallel) corpora it is possible to learn powerful language

models for highly fluent translations.

Language models have been typically modeled as (n−1)th order Markov models where

a sentence is modeled as products of conditional probabilities of each word in the sentence

given the previous (n-1) words before that word. Formally speaking the probability of a

sentence (which is a sequence of words) x1, x2..., xn is written as:

P (x1, x2..., xn) =
n∏

i=1

P (xi|x1..., xi−1)

≈
n∏

i=0

P (wi|wi−n+1..., wi−1) (1.3)

Typical values of “n” for n-gram models can range from 3, for resource deprived lan-

guages, to 6 for resource rich languages. A large value of “n” often leads to n-gram sparsity

which can be handled with smoothing techniques like modified Kneser-Ney [100, 70] and

Stupid Backoff [15]. It must be noted that Stupid Backoff is very naive and should only

be applied for languages like French, German, Japanese and Chinese which have corpora

in the order of billions of lines. N-gram language modeling can also be performed using

feed-forward neural networks [10] but have limited potential8.

Recently, recurrent language models [94] have been proposed which do not learn n-

grams but learn to represent entire sentences. These are inherently more powerful and

can capture long range context much better than their n-gram counter parts. However,

it is extremely difficult to integrate these into the traditional PBSMT architecture due

to the differences in their working principles. PBSMT does not use continuous space

representations whereas deep learning models do and hence are incompatible.

7There have been recent efforts towards integrating non n-gram models (recurrent neural models) but

these have been passed over in favor of end to end neural MT models which we shall describe soon.
8https://github.com/bburns/LanguageModels/blob/master/docs/report/report.pdf
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1.3.3 Reordering Model

For languages like English-Spanish where the word orders are more or less identical, it is

reasonable to translate words (or phrases) in sequential order with certain exceptions where

the adjective noun order is inverted. However for distant language pairs like Japanese-

English one has to consider going from SOV word order9 (Subject-Object-Verb) to SVO

word order (Subject-Verb-Object). To deal with this a reordering model [12] needs to be

learned.

For translation between linguistically close European languages it is reasonable to

consider the simplest reordering model known as the linear distortion model. This model

has only one parameter which considers the distance between phrases and hence determines

the probability of swapping them. It is also possible to consider a monotonic translation

model and let the language model deal with the fluency issues.

For translation from Japanese to English, however, a slightly more sophisticated ap-

proach known as lexical distortion is more effective. Linear distortion considers only

swapping but lexical distortion considers: swapping, monotone and discontinuous. In the

same way as translation models, this model too can suffer from data sparsity and does not

handle long distance reorderings well. There have been works on developing more sophis-

ticated lexical distortion models that add additional types of distortions for linguistically

distant language pairs [50].

There has been research on eliminating the need for reordering during translation by

first pre-ordering [49] input sentences before translation or by post-ordering [48, 47] the

translations after considering monotonic translations.

1.3.4 Decoding and Post Editing

In order to translate an input sentence, the translation model, reordering model and

language model must be combined in order to search over the space of possible translations

to obtain the translation e∗ with the highest probability. This process is known as decoding

and needs highly sophisticated to ensure translations of best quality.

Most decoders use beam search to prevent the explosion of candidate translations and

to reduce the amount of time required to translate. At each stage the decoder maintains

“n” candidate translations (along with relevant probability information) and creates “n2”

candidates of which it selects the best “n”. Advanced decoders consider techniques such

as cube pruning to select the most likely of the “n2” candidates.

On top of this decoders also need to consider tuning of hyper parameters which are the

9https://en.wikipedia.org/wiki/Word order
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weights assigned to the translation, reordering and language models. A tuning method

requires a set of parallel sentences not as yet seen (known as the development set) and

repeatedly translates the sentences and adjusts the weights in order to maximize the

translation score. One of the most popular tuning algorithms is MIRA [55, 127]. Recent

decoders also enable the integration of multiple models trained on different corpora. We

exploit this in a number of experiments in Chapters 2 and 3.

Most often, decoding produces translations which are far from perfect and thus in

professional settings decoding is followed by one or two stages of post processing. Post

processing aims at reducing the amount of mistranslations and disfluencies, either auto-

matically or through the aid of professional translators.

Typically, the decoder outputs are post-processed in order to obtain one last improve-

ment in translation quality without actually modifying them. Such post-processing tech-

niques usually take the form of n-best list reranking. Decoders often produce a list of “n”

candidate translations along with various features (and their values) used to decide their

rank in the list. It is often possible to augment these lists with additional features and

rerank them. As a result, a translation of better quality which was initially lower in the

list can be selected as a best according to new criteria imposed as a result of the additional

features. Some sources of such additional features can be cognate similarity (for Euro-

pean languages) and character similarity (for Chinese and Japanese) which are heuristic

in nature. Researchers have also employed NMT and Recurrent Language Models to yield

features that have helped in recovering translations of higher quality from n-best lists.

System combination is an advanced form of post-processing where the outputs of mul-

tiple translation systems (or decoders) are combined in order to obtain high quality trans-

lations. System combination can be viewed as a kind of ensembling where weaker systems

are combined to give a strong system. This approach relies on the diversity of outputs

produced by different systems. System combination can is of two types: compositional

and non-compositional. Compositional system combination involves the combination of

the raw outputs of multiple systems. Non-compositional system combination involves

generating outputs by combining the decisions given by each system. We have used non-

compositional system combination by max-voting for improved pronoun prediction [33]

and compositional system combination by multi-engine machine translation (MEMT) [57]

for improved machine translation in our research10

The results of post-processing are subjected to post-editing which can be manual or

automatic. Automatic post-editing [85] techniques involve single word substitution to cor-

rect minor disfluencies. The DISCOMT task [54, 128] focuses on improving the translation

10We do not include these works since they are not completely relevant to the theme of this thesis.
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of pronouns for European languages like German, French, English and Spanish. This task

is somewhat artificial and rather simple but it has been shown that having correct pronoun

translations has a significant impact on human evaluations of the translation [62].

Most often post editing done by humans is the most reliable despite being costly and

time consuming. Recent efforts have been made towards high quality automatic post

editing methods so that the cognitive load on human post editors is minimum thereby

ensuring cheaper, faster and higher quality professional translations. This is also useful in

the construction of multilingual corpora such as Europarl which spans 21 languages.

1.3.5 Phrase-Based Models versus Neural Models

Despite claims that phrase based models are linguistically motivated, the reality is that

they are not. Their formulation, which relies on words and not their inherent properties,

prevents the data from being exploited for high quality translation. Following are some

limitations of phrase-based models which can be overcome by neural models11:

Generalization

Problem: Because of no generalization, the phrase based model is unable to learn trans-

lations of the words and phrases that do not occur in the data. The model does not know

anything about morphology, and fails to connect different word forms (e.g., inflection forms

of a lemma). When a form of a word does not occur in the training data, translation sys-

tems are unable to translate it. This problem is severe for the languages which are highly

inflective, and in cases where only small amount of training data is available.

Solution: Neural models also face problems when there are unknown words just as phrase

based models do. However, they are suited to work at a character level [66, 87, 31] and thus

are known to generalize well, especially, when there is an abundance of data. They do so

by converting surface level representations (words, phrases, sentences and documents) into

continuous space representations (vectors of real numbers). Continuous space representa-

tions are the intermediate vectors obtained during the process of matrix multiplications

which form the backbone of neural networks. Such continuous space representations are

able to capture several properties of languages, both linguistic as well as non-linguistic12.

This is one reason why neural networks tend to give better performance as compared to

11Although we mostly discuss about machine translation models, these limitations are applicable to

language models as well.
12By this we mean that current linguistic theories are unable to explain these properties. It could be

the case that the neural network simply learns some unconventional relationships between words so as to

maximize the score of the training objective function.
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phrase based models. In order for phrase based models to accomplish the same, very high

order n-gram language models will be required which is not feasible in practice.

Not end-to-end

Problem: Phrase based models are not end to end and rely on combining components

like: translation models (phrase tables), reordering models (reordering tables or linear

distortion) and language models (n-gram tables). A major issue with this is that every

time any of the components is updated, the entire translation system needs to to be tuned

in order to accommodate the changes. Although there is limited scope for incremental

training, most attempts have only yielded modest improvements. Eventually, training

from scratch gives the best results.

Solution: Neural models are end-to-end because they avoid alignment, phrase tables,

language models and reordering models. In order to train a neural model all one needs to

do is feed the source and target information and rely on forward and backward propagation.

As such, problems such as multiplicative error propagation do not exist.

Limited potential for language interaction

Problem: Phrase based models have limitations for exploiting linguistic similarity be-

tween languages because they do not work at a high level of abstraction. PBSMT models

mostly work with words at a surface level and thus it is difficult to enable interaction

between languages that share linguistic features. To be more specific, PBSMT is not at-

tractive if one wishes to have a single model to translate between multiple language pairs.

This prevents us from exploiting related resource rich languages to enhance the translation

quality in a resource poor scenario. Theoretically, it is possible to work at a character level

but it would require more sophisticated translation and language models which would be

resource intensive.

Solution: Neural models convert surface level word forms into continuous space repre-

sentations which can be viewed as abstractions. Furthermore, it is possible to work at

the level of characters where generalizations of word forms can be obtained by means of

convolutional neural networks [79, 31]. Visualizations of word embeddings have shown

that neural networks are able to capture several linguistic properties. Multilingual models

are known to generate similar representations for concepts with the same meaning [65].

We will show in Chapters 5 and 6 that using related languages to train a multilingual

translation model is better than using unrelated ones. Furthermore, they enable several

languages and to share parameters by means of shared embeddings and recurrent lay-
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ers. This is not only limited to text processing and thus it is possible to have a single

multi-modal neural network which can process text, images and speech.

Limited potential to integrate different components:

Problem: The problematic nature of phrase based models is that they use a n-gram

approach which, in the case of translation, impacts the fluency. It is possible for these

models to benefit from post processing by re-ranking of n-best lists using a recurrent

language model. This is a good argument for integrating recurrent language models into

the phrase based architectures but it is very difficult to do so because of the differences in

the underlying principles behind them. Thus far there have been no reports of successful

attempts.

Solution: Neural models mostly need pre and post processing in the form of tokenization.

These models being end-to-end, eliminate the need for additional post processing like

reranking. Furthermore, in the case of neural machine translation, it is possible to integrate

neural language models by adding additional recurrent layers whose parameters can be

learned separately on monolingual data and then fine tuned on the bilingual data.

Owing to these limitations of PBSMT and of n-gram based approaches, researchers

explored deep learning approaches and this led to the development of Neural Machine

Translation (NMT). NMT is more intuitive as compared to SMT and is superior when

compared to the latter in a resource rich scenario. The next section covers NMT in

necessary detail.

1.4 Neural Machine Translation

Neural Machine Translation (NMT) [6, 24, 121] is an end to end deep learning approach for

learning a model which can translate from one language to another. The basic component

of a NMT model is an artificial neuron which approximates a biological neuron. The

artificial neuron takes in weighted inputs, adds them and applies an activation function

(linear or non linear) to produce a single output. For n inputs [x1, x2..., xn], weights

[w1, w2..., wn] and an activation function f the output y of a neuron is given by:

y = f(
n∑

i=1

wi ∗ xi) (1.4)

A neural model is a collection of several (millions in many cases) neurons and is es-

sentially a collection of matrices. The matrix coefficients are also known as the weights of



1.4. NEURAL MACHINE TRANSLATION 15

the neural network. Training a neural model is all about learning these weights through

forward and back-propagation. Forward propagation is the process of performing a pre-

diction using the existing weights. Back-propagation13 [102] is the process of updating the

weights. During back-propagation gradients are computed, which are used to update the

weights. We will elaborate more on this gradually.

NMT models are also known as sequence to sequence models and the translations

are generated by combining matrix multiplications with non linear functions which yield

a probability distribution for the word sequences to be generated. Most NMT models

are deep in the sense that they are comprised of several layers of neurons and that they

process sequences of input by means of recurrent layers. Simply put, a NMT model

consists of a coupled “encoder” and “decoder”. An encoder converts the word sequences

into continuous space representations and the decoder processes these representations to

generate probability distributions of words of which the words with highest probability

are selected as the output. The coupling takes place by means of a mechanism known

as attention which is the neural equivalent of alignment in PBSMT, often known as soft

alignment.

Training such a NMT model is computationally expensive and time consuming, espe-

cially when there is a large amount of data. Owing to massive improvements in Graphics

Processing Units (GPUs) technology and the reduction in their costs, researchers have

managed to exploit them for parallelizing the matrix multiplications and thereby reduce

the amount of time required for training and decoding deep learning models. This has

also enabled the design and evaluation of larger and deeper neural networks.

Although, the attention based NMT approach is the one that gives the best results, it is

important to understand the origins of this approach. We will briefly explain the recurrent

language model followed by its bilingual extension which was the first NMT model. We

will then explain the limitation of this approach which was addressed by attention based

NMT.

1.4.1 Recurrent Neural Network Based Language Modelling

The main problem with n-gram based language models (and translation models) is that

they model context as a collection of phrases. For efficiency purposes the phrase sizes are

set to a value between 3 and 7, beyond which the data sparsity starts affecting the quality.

Modeling long distance relationships often involve additional pre and post processing by

means of dependency parsers and reordering mechanisms. To address this, a recurrent

13Also known as backward propagation.
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neural network can be used. Simply put, a recurrent neural network generates continuous

space representations for a sequence of any arbitrary length. It does so by maintaining and

updating a memory (also known as its state) when processing each word in a sequence.

These representations which are able to learn long distance relationships in sequences can

then be used to accurately predict the next word in the sequence. Refer to Figure 1.4 for

an overview of a Recurrent Neural Network Language Model (RNNLM) [94]. The equation

for the probability of a sentence “X” which is a sequence of n words “x1, x2..., xn” is:

P (X) = P (x1, x2..., xn)

=
n∏

t=1

P (xt|x1..., xt−1) (1.5)

The equations for the steps to predict the next word, xt+1, given the the current word,

xt, and the previous words, x1..., xt−1, are:

xt+1 = argmaxxt+1(P (xt+1|x1..., xt))

= argmaxxt+1(pt)

pt = softmax(yt)

yt = h1
tWo

h1
t = tanh([h0

t ;h
1
t−1]Wh)

h0
t = xtE (1.6)

A RNNLM processes one word at each time step “t” in order to predict the next

word in the sequence. The mathematical formulations are given in 1.6. Assume that the

vocabulary size is “V” and all hidden layer representations are of size “M”. xt is the word

at the current time step (t) and is converted into its continuous space representation by

indexing into the embedding matrix E giving h0
t . The embedding xt can be considered

as a vector of size V (size of vocabulary) which contains a “1” in index position of the

current word and a “0” for all other positions. This is also known as a one-hot vector.

Thus, the embedding can be obtained by multiplying the one-hot vector of size 1xV with

the embedding matrix of size VxM.

The RNNLM maintains a memory in the form of a hidden state which is h1
t−1 known

as the previous state. For the first word in the sequence, the previous state can be a

vector of all zeros14. The previous state is concatenated with the embedding h0
t and

then converted into the hidden state for the current time step, h1
t , by multiplying this

14This is the simplest way. It is possible to parameterize this by learning a linear function to generate

an optimal initial state but this is beyond the scope of this thesis.
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Figure 1.4: A recurrent neural network language model.

concatenated vector with the matrix Wh of size 2xMxM followed by applying a non-linear

function such as “tanh”. This new hidden state is also known as the current state and

becomes the previous state for the next word in the sequence. h1
t is then used to predict

the next word by first projecting it to a vector yt of size N by multiplying it with the

matrix Wo. This vector contains real numbers known as logits. In order to convert the

logits into probability values we apply a softmax15 function which gives the vector pt. The

word to be predicted, xt+1, is the one corresponding the index position with the highest

probability value.

In the above explanation, the components Wh, h1
t−1 and the non-linearity “tanh” rep-

resent the recurrent aspect of the neural network. This is the simplest kind of recurrent

layer but it does not perform well for language modeling and this led to better recurrent

layers such as LSTMs (long short term memories) [59] and GRUs (gated recurrent units)

[23] both of which we used in the experiments described in this thesis.

This process of starting with xt and obtaining xt+1 represents one time step and order

to update the parameters of the neural network we need to compute the prediction error.

The prediction error can be computed using the cross-entropy between pt (the predictor

for the next word, xt+1) and the actual next word xt+1. The cross-entropy is calculated

as
∑

i log(pt[i]) ∗ xt+1[i]. This cross-entropy16 is also known as the loss. The loss for each

time step is accumulated and once the entire sequence is processed the forward pass of

15https://en.wikipedia.org/wiki/Softmax function
16https://en.wikipedia.org/wiki/Cross entropy
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Figure 1.5: Sequence generation using RNNLM

the neural network computation is complete. For the backward pass, the total loss is used

to compute the errors which are back-propagated through time. This is known as back-

propagation through time (BPTT) [129]. We will discuss the specifics of weight updating

later. Due to limited computational resources, the back-propagation is performed after

a fixed number of steps instead of processing entire sequences. This process is known

as limited back-propagation through time. The result of training with a large amount

of monolingual corpus gives a RNNLM which can be used for many sequence processing

tasks, especially sequence generation and sequence representation learning.

Figure 1.5 shows how a sequence can be generated by providing an initial word as

input. In this figure we do not show the embedding and softmax layers explicitly. The

first input word is “i” and the most probable word is “am” which is fed as the next input

word (indicated by the dotted line). This eventually generates the sentence “i am a very

good boy .”. The full-stop is the end of sentence marker. Typically an explicit token like

“EOS” is added to the training data just in case end of sentence punctuation markers are

missing. In the figure we show how to generate a sentence by choosing the word with the

highest probability, which is known as greedy generation. Instead of choosing the most

probable word at each time step, choosing the top-N most probable words and thereafter

selecting the top-N most probable sequences can help in generating better sequences. This

approach is known as beam search generation and incurs an additional computational cost.
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Figure 1.6: Encoder-Decoder model using RNNLM where the last encoder state is used

to initialize the decoder.

It is important to note that during training, the correct label is fed as the input at each

time step and thus processing a sequence during training is always faster than generating

a sequence. It is also important to note that the last state of the RNN after the final token

has been processed is the continuous space representation of the whole sentence. These

two properties of an RNNLM can now be used to perform neural machine translation by

a slight modification to the procedure.

1.4.2 Encoder-Decoder Based Neural Machine Translation

In Figure 1.5, the training data is monolingual. Consider a sentence pair from a parallel

corpus: “i am a boy .” and “je suis un garcon .”. We can convert this into a single

sentence as “i am a boy . BOS je suis un garcon . EOS”. Here the tokens “BOS” and

“EOS” mean beginning of sentence and end of sentence. Now we can train a RNNLM

with the modification that the next word prediction and loss computation is done for all

tokens after “BOS” is processed by the recurrent layer. Refer to Figure 1.6 for a visual

overview. During testing time, the predicted target language words are used as the input

for the next step (dotted arrows) but during training, the correct target language words

are used as an input for the next step. The part of the model before the “BOS” token is
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Figure 1.7: Encoder-Decoder model using RNNLM where the last encoder state is fed to

each decoding step of the decoder.

taken as the input is called the encoder and the remainder is called the decoder and hence

the approach is known as the encoder-decoder approach.

In order to translate a new sentence like “i am a girl .”, it will first be converted to “i

am a girl . BOS” and fed to the RNNLM. After processing “BOS” we can compute the

softmax to predict the next word which “je”. This can then be fed as the input for the

next step which should eventually generate the sequence “je suis une fille . EOS”. The

“EOS” token can be used to stop generating.

This approach is known to work well for short sequences but breaks down for longer

sequences [6, 23]. This is because the target language generation depends on a single

state generated by the encoder. Although, RNNs are designed to generate continuous

space representations of long sequences they are prone to making mistakes and thus any

error will lead to really bad translations. Furthermore, any mistake in generating a target

word will lead to further breakdown of the generation process. Figure 1.7 shows a slightly

modified model where the last encoder state is considered as an input to the RNN along

with the current input word will help reduce the number of errors. This allows the decoder

to rely on the encoder information for all decoding steps in case of an error in predicting

the previous target word.

Although this modification leads to slightly better performance, it still performs badly
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for long sequences because only the final state of the encoder is used. In PBSMT, align-

ment helps in connecting source words to target words. However, alignment is a binary

function and in practice is quite erroneous. Thus, researchers directed their efforts towards

first separating the encoder and the decoder and then incorporating a kind of alignment

mechanism into the neural network architecture. This eventually led to the development

of the attention mechanism which has shown to be successful for all sequence to sequence

tasks.

1.4.3 Encoder Decoder With Attention

The Encoder-Decoder model with an attention mechanism [6] was the very first NMT

model that managed to achieve state-of-the-art (SOTA) results for various MT tasks. The

model we describe here is also known as “rnnsearch”. Figure 1.8 describes the rnnsearch

model [6], which takes in an input sentence and its translation and updates its parameters

by minimizing the loss on the predicted translation. The main contribution of this model

is the attention mechanism which is a soft-alignment mechanism. Attention couples the

encoder and the decoder by allowing the decoder to perform random access lookup of the

encoder states in order to generate target language words.

In the original paper, the recurrent unit that was used was the GRU but in the figure

we have used LSTM because it is more powerful than the GRU despite being slower than

it. Most recent NMT models are slight variations of “rnnsearch”. The model consists of 3

main parts, namely, the encoder, decoder and attention model. In the figure, the notation

“<1000>” means a vector of size 1000. The vector sizes shown here are the same as in

the original paper. The probability of a target sentence Y given a source sentence X is

given by the conditional distribution P (Y |X). Consider that Y is a sequence of n words,

y1, y2..., yn, and X is a sequence of m words, x1, x2..., xm. The conditional distribution is

factorized as:

P (Y |X) = P (y1, y2..., yn|x1, x2..., xm)

=
n∏

t=1

P (yt|y1, y2..., yt−1, x1..., xn) (1.7)
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Y which is the best translation for the input sentence X is given by:

Y = argmaxY P (Y |X)

= argmaxY

n∏
t=1

P (yt|y1, y2..., yt−1, x1..., xn)

= argmaxY

n∑
t=1

log(P (yt|y1, y2..., yt−1, x1..., xn)) (1.8)
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The equations for the steps to predict the next target word, yt+1, given the the cur-

rent target word, yt, previously generated target words, y1..., yt−1and the source words

x1, x2..., xm are divided into two groups. The equations for the decoder are as follows:

yt+1 = argmaxyt+1(P (yt+1|y1, y2..., yt, x1..., xn))

= argmaxyt+1(pt)

pt = softmax(otWo)

ot = maxout([eyt ; ct; st])

eyt = ytEy

st, rt = LSTM([et; ct], st−1, rt−1)

ct =
m∑
i=1

hi ∗ wit

wit =
exp(αit)∑m
j=1 exp(αjt)

αit = tanh(st−1Wa + hiUa)v
′

a (1.9)

The equations for the encoder are as follows:

hi = [
−→
hi ;
←−
hi ]

−→
hi ,
−→gi = LSTMfwd(exi

,
−−→
hi−1,

−−→gi−1)
←−
hi ,
←−gi = LSTMbwd(exi

,
←−−
hi+1,

←−−gi+1)

exi
= xiEx (1.10)

Encoder

The encoder consists of a word embedding mechanism to obtain continuous space repre-

sentations of the input words. Assume that the source language vocabulary is of size “V”.

The word embedding for the source word at the i’th position in the sentence, represented

by a one-hot vector xi (1xV), can be obtained by indexing into the embedding matrix Ex

(VxM). The embeddings by themselves do not contain information about relationships

between words and their positions in the sentence. Using a RNN layer, long short term

memory (LSTM) in this case, the word relation and position information can be obtained.

The LSTM takes an M dimensional vector as the input and two N dimensional vectors

representing the cell and the hidden states, and generate M17 dimensional vectors as the

17The output size can be different from the input size but most works assume the same sizes for

simplicity.
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output. In RNNLMs the recurrent information is computed from left to right. However,

unidirectional processing can lead to several problems. Fortunately, the source sentence

is always available and thus two types of context can be computed, namely, left to right

and right to left.

There are 2 LSTM layers, forward and backward, to model relationships for the current

word given past as well as future words. By using both forward and backward recurrent

information we can obtain a continuous space representation for a word given all words

before as well as after it. The continuous space representation for the current word xi

given all previous words is indicated by
−→
hi whereas the representation for the word given

all future words is indicated by
←−
hi .
−→
hi and

←−
hi are computed using forward and backward

LSTMs denoted by LSTMfwd and LSTMbwd respectively18. By concatenating
−→
hi and

←−
hi we obtain hi which is the hidden state for the whole sentence centered around the

i’th source word. This way of generating hidden states for each source word increases

the robustness of the system. It is possible to stack LSTM layers on top of one another

in order to obtain better representations. Although, this slows down the training and

decoding process it leads to a significant improvement in translation quality.

Decoder with attention mechanism

The decoder is conceptually a RNNLM with its own embedding mechanism, a LSTM layer

to remember previously generated words and a deep softmax layer to predict a target word.

The encoder and decoder are coupled using an attention mechanism which computes a

weighted average of the recurrent representations generated by the encoder. The attention

mechanism thereby acts as a soft alignment mechanism. Assume that the vocabulary for

the target language is of size “V”19. Note that it is possible to share the embeddings

between the encoder and the decoder. At each time step, t, the current target word yt

(1xV) is first converted into its embedding, eyt, by indexing into the embedding matrix

Ey (VxM). In order to compute the hidden state for the next word to be generated the

context vector, ct needs to be determined. This is where the attention mechanism comes

into play.

Simply put, the attention mechanism is a feed-forward neural network. First, the

weights for each encoder hidden state, hi are generated using the previous hidden state

18LSTMs generate two kinds of outputs, a hidden state (h) and a cell state (g). Although, both these

states are used to compute the next state, only the hidden state is used to compute information such as

attention weights, context and maxout for the decoder.
19Here we assume that the vocabulary sizes for the source and target languages are the same but in

practice they can differ.
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of the decoder’s LSTM, st−1
20. The simplest way of computing these weights is by taking

the dot product of st−1 with each hi giving the coefficients αit. Applying softmax to

these coefficients yields the weights wit. wit can be interpreted as the probability that

the (t+1)’th target word, yt+1, is aligned to the i’th source word. A sophisticated way of

computing αit is by taking a linear combination of st−1
21 and hi

22, taking the dot product

of the resultant vector with another vector v
′
a and then applying a tanh non linearity to

the result. Finally, the context vector, ct, is computed by taking a weighted average of all

hi using the weights wit.

ct is concatenated with eyt and then fed to the decoder LSTM along with its previous

hidden and cell states, st−1 and rt−1 respectively, to produce the next decoder state, st.

This LSTM takes an input vector of size 2xN+M, hidden and cell state vectors of size N

respectively and produces a vector of size N. This state is then concatenated with ct and

eyt which is passed to the deep softmax layer. The deep softmax layer contains a maxout

layer [45] followed by a softmax layer. The maxout layer is a feed-forward layer with

max-pooling which takes in a vector od size N and gives a vector of size K. The output of

this, ot is given to a softmax layer which first generates the logits by performing a linear

projection23 by multiplying ot with a matrix Wo (KxV) to generate a vector of the size

of vocabulary. The softmax function applied to the logits vector to give the probability

distribution vector, pt. The word corresponding to the index position with the highest

probability in pt is chosen as the predicted word yt+1.

Training a model

Data preparation: The input data is first cleaned and tokenized. Tokenization is im-

portant for languages like Japanese, Chinese, Korean and Thai which are written without

any spaces. In order to reduce the computational costs, the source and target vocabularies

are set to a size like 32,000. This is done by keeping the top 32,000 most frequent words

in the corpora and replacing the rest by a token called “UNK” which represents unknown

words. Unknown words are problematic and thus tokenization is usually followed by a sub-

word encoding step. One such sub-word encoding method is Word Piece Modeling [111]

which enables an infinite vocabulary. A sub-word model can be trained on the original

vocabulary to obtain a subword vocabulary of a specified size, typically around 8,000 to

20For the decoder LSTM we denote the hidden state using the letter “s” and the cell state using the

letter “r” in order to distinguish them from encoder states.
21By multiplying with Wa.
22By multiplying with Ua.
23In case of shared vocabularies and similar hidden layer dimensions for the encoder and the decoder it

is possible for the embedding and softmax layers to use the same weights.
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32,000. Sub-word models split unknown words into smaller units, all of which are present

in the vocabulary. This leads to a slight increase in the length of sequences which is not

detrimental.

Batching:

Processing one example at a time is quite time consuming. On the other hand the limita-

tions of computational resources prevent the processing of all examples before performing

weight updating. As such it is a common practice to perform batch processing. In the case

of NMT, 64 to 256 training instances are grouped into a batch and processed together. The

sentences in a single batch should be of the same length and thus sentences with similar

lengths are accumulated and then padded with dummy tokens to ensure equal lengths.

Weight updating:

The NMT model is trained in the same way as an RNNLM. For each predicted target

word, yt+1, the cross-entropy of the softmax distribution, pt, is computed against the ac-

tual target word, yt+1
24. The cross-entropy is calculated as

∑
i log(pt[i]) ∗ yt+1[i]. This

cross-entropy, which is also the loss, is accumulated for all target language words at which

point the forward pass is complete. The derivative of the loss gives gradients which are

used to update the weights of the model. Various gradient descent algorithms can be used

to do so. Processing one example at a time is quite time consuming because the gradients

are very imprecise. On the other hand the limitations of computational resources prevent

the processing of all examples. As such it is a common practice to perform batch pro-

cessing. In the case of NMT, 64 to 256 training instances are grouped into a batch and

processed together. The resulting gradient descent approach is stochastic and this the

simplest weight updating method is known as Stochastic Gradient Descent (SGD) [34].

According to SGD, the weights are updated using the following formula:

wt+1 = wt − α ∗ gt (1.11)

wt+1 are the weights for the next batch, wt are the weights for the current batch, α is

the learning rate and gt are the gradients for the current batch. Since the learning rate

is fixed, a small learning rate will lead to slow convergence whereas a large learning rate

will prevent convergence. As such, adaptive gradient update algorithms are more useful.

The most popular algorithm is ADAM [67] because it adjusts its learning rate dynamically

using the previous gradients. As such, training a neural model using ADAM is known to

speed up training drastically.

Advanced training strategies:

24During training, the correct input word is provided as the input at each decoding step.
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During late stages of training, adaptive optimization algorithms like ADAM tend to exhibit

overfitting which prevents the training process from converging. As such it is better to

switch to an optimizer like SGD after a certain number of batches have been processed

using ADAM. Furthermore, it is also a good idea to lower the learning rates of SGD

over time, a process known as annealing. All these approaches have been shown to yield

state-of-the-art results [132].

In order to reduce overfitting, regularization approaches like dropout [120] and weight

decay [80] are also effective. Dropout makes the neural network more robust to noise and

thereby forces it to learn better weights. It prevents overfitting because it randomly drops

out parts of the representations which acts as noise. On the other hand weight decay

like L2 regularization places constraints on the weights. Typically, dropout is chosen in

favor of weight decay and although it is possible to combine them, dropout tends to give

the bulk of the improvements. Dropout can be combined with annealing and optimizer

switching for better results.

Finally, it is possible to speed up the training process by model and data parallelism. In

model parallelism, different layers of a neural network can be split over different machines.

This approach can help in the training of very large models because the effective com-

putational capacity increases. In data parallelism, multiple machines can process batches

independently using copies of the same model and then update the parameters by unify-

ing gradients. This also leads to an effective increase in the computational capacity and

enable the processing of large batches which reduces the stochasticity of gradient descent

optimization. Model and data parallelism can be further combined to quickly train very

large models.

We will now talk about low resource machine translation where we give the motivations

behind the work presented in this thesis.

1.4.4 Phrase Based SMT versus Neural MT

Table 1.1 summarizes the pros and cons of PBSMT and NMT and where they appear in

this thesis.

1.5 Thesis Overview: Low Resource Machine Trans-

lation

This thesis focuses on 3 main points: multilingualism, transfer learning and low resource

scenarios. Multilingualism (Chapters 2, 3, 5 and 6) and on transfer learning (Chapters 3,
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Phrase Based SMT Neural MT

Performs well in low resource as well Better than PBSMT in resource rich scenarios

as resource rich scenarios and has high potential in low resource scenarios

Uses phrase tables, language models Uses deep neural networks which are a

and reordering models combination of feed forward and recurrent networks

Not end-to-end End-to-end

Potential for abstraction is limited Potential for abstraction is very high

Pivot Based SMT part of thesis (Chapter 2 and 3) Transfer Learning part of thesis (Chapter 4, 5 and 6)

Table 1.1: Phrase based SMT versus Neural MT

Figure 1.9: Overview of this thesis.

4 and 5) in a low resource scenario. We show that multilingualism is beneficial by experi-

menting with using multiple languages in a single translation model. We show how transfer

learning by means of parameter sharing, parameter transfer and data synthesis leads to

significant improvements in translation quality. As such the title of our thesis is “Exploit-

ing Multilingualism and Transfer Learning for Low Resource Machine Translation”. Refer

to Figure 1.9 for a visual overview of this thesis.

1.5.1 Why Low Resource Machine Translation?

Low resource machine translation (LRMT) focuses on techniques for improving translation

quality whenever there is a scarcity of training data. Both phrase based and neural
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approaches give high quality translations whenever there is an abundance of training

data. Moreover, in a resource rich scenario, neural approaches are significantly better

than phrase based approaches. The abundance of training data enables better translation

modeling. However, in a resource poor scenario, both vanilla PBSMT and NMT perform

badly with the former being as good as or better than the latter. [135]. In this thesis we

focus on solving the LRMT problem for both NMT and PBSMT.

It is well known that French-English is a resource rich language pair, but in the context

of the domains it can be a resource poor language pair. To be precise, there is an abundance

of French-English news data but a scarcity of French-English slang data. Although, it

is possible to use translation models trained on news data to translate French slang to

English, the translation quality will be quite low. To give a more concrete example,

The news domain Chinese-English parallel corpus contains 1 million training instances

whereas the spoken domain Chinese-English parallel corpus only contains 200,000 training

instances. From this perspective, all language pairs face the low resource problem. In

the future, if we solve the Marathi-English (a language pair that is truly resource poor)

translation problem, the translation of Marathi dialects like Samavedi25 will be the next

problem.

As such it is important to consider the following question: “How can high quality do-

main specific translation be performed?”. This problem is challenging because it encour-

ages us to be efficient with all available resources and dive deeper into the understanding of

languages and its relationship with machine learning. In this thesis we attempt to address

this by the following approaches:

• Chapter 2: Using a small multilingual corpus to obtain additional translation

knowledge through pivot language MT in a PBSMT setting.

• Chapter 3: Combining pivot language MT with noise control and post processing

in a PBSMT setting for high quality technical term dictionary extraction.

• Chapter 4: Combining resource rich and resource poor corpora for different do-

mains in a NMT setting for a single translation model with improved performance

for the resource poor domain.

In chapters 2 and 3, our focus is on increasing the amount of translation modeling

information by using intermediate languages. The approaches in chapter 2 revolve around

remedying the dearth of large source-pivot and pivot-target parallel corpora by using

multiple intermediate languages. We show that the benefit of using different languages is

25https://en.wikipedia.org/wiki/Marathi-Konkani languages#Samavedi
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in their ability to induce different kinds of translation modeling information. This way of

using multiple languages is one of the ways to overcome the limitations of poor translation

models which are a byproduct of LRMT.

In contrast, chapter 3 assumes a single intermediate language and large source-pivot

and pivot-target corpora and the novel aspect of this work is the incorporation of noise

reduction and neural network based post-processing. Noise reduction is important because

not only does it help in reducing the number of noisy phrase pairs in the translation models

but also reduce the overall size of the pivoted models26. Furthermore, translation hypoth-

esis re-ranking as a post-processing step helps in boosting translation quality. Although,

we focused on a dictionary extraction task our work is not task specific.

One aspect of these works is that all the corpora belong to the same domain. Such a

setting is not always possible and thus, in chapter 4, we explored methods to use a large

out-of-domain corpus to remedy the problem of a small in-domain corpus. We focused

on approaches to transfer translation knowledge from the resource rich domain to the

resource poor domain. Because of the success of neural re-ranking in the previous chapter,

we decided to invest in neural machine translation (NMT). For completeness we conducted

an empirical comparison of several techniques and showed how it is possible to develop a

single multi-domain neural translation system quickly with minimal effort. In this chapter

we also show that NMT can surpass PBSMT which motivated us to continue with NMT

for the rest of the thesis.

1.5.2 Why Multilingualism?

The neural approaches developed for domain adaptation will work for a language pair like

French-English which is fortunate enough to have large domain specific corpora. However,

languages like Marathi-English are truly resource scarce because large domain specific cor-

pora don’t even exist. As such, it is important to invest in methods where we can use

a resource rich language pair like French-English to improve Marathi-English translation.

Furthermore, in cases like Hindi and Marathi which share cognates, grammar and orthog-

raphy, it should be possible for Marathi-English translation to benefit greatly from the

Hindi-English data since Hindi-English is relatively resource rich language pair. In neural

MT, since the recurrent layers tend to learn some form of grammar, it is possible to work

on source languages which have similar grammar but different orthographies (Hindi and

Japanese). On the other hand it is also possible for source languages with highly similar

26Pivoted models are obtained by combining the source-pivot and pivot-target models and thus are

known to grow in size dramatically.
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or equivalent orthographies but different grammars (Chinese and Japanese) to help each

other.

Owing to our successful attempts at transfer learning knowledge in a NMT setting

without much modification to the underlying model architectures, in chapter 4 we decided

to perform a full scale investigation of various ways in which translation knowledge can

be transferred across languages. In particular we asked ourselves: “What are the simplest

and best ways to transfer translation knowledge across languages and how does the choice

of languages affect this transfer?” We attempt to address this by the following approaches:

• Chapter 5: Explored the language relatedness phenomenon in a variety of trans-

fer learning settings for NMT using bilingual and synthetic corpora obtained using

monolingual corpora.

• Chapter 6: Explored a black-box approach for multi-source NMT, showed how

using related languages help and how translation knowledge can be transferred from

multi-source and multilingual models to single source models.

In chapter 5, we focused on how using related languages in a multilingual NMT model

results in better transfer learning for low resource languages. Since we had access to

corpora spanning over 20 languages we were able to conduct an extensive empirical eval-

uation of cross-lingual transfer learning approaches for over 6 low resource languages. In

this chapter we also show how the vanilla NMT architecture is extremely flexible because

it can be used to train a multilingual model without any modifications to the architecture.

We also showed how NMT can be used for self-learning where it can generate synthetic

corpora from monolingual corpora which can be used to further reinforce the baseline

system.

The success of our black-box approaches motivated our work on multi-source NMT

where we compared a simple black-box approach and showed its effectiveness against

other approaches that rely on the modification of the NMT architecture. In chapter 6, we

evaluate our methods in resource poor as well as resource rich scenario using a multilingual

corpus. We then show that multilingual models, including our multi-source models, can be

used for transfer learning. We also show how multi-source models can be used to extract

a multilingual dictionary.

1.5.3 Why Transfer Learning?

Although, the key aspect of why multilingualism works is that there is a transfer of trans-

lation knowledge, there are two additional aspects which are as follows:
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• Transfer learning promotes the principle of “reduce, reuse and recycle”. A single

multilingual model, which relies on implicit transfer learning by sharing parame-

ters, can save the amount of storage space. On the other hand, explicit parameter

initialization can help cut training time.

• Transfer learning can be used to augment resources. Synthetic data generated by

models that have improved performance as a result of transfer learning are of much

higher quality when compared by the vanilla systems. This synthetic data can be

potentially used to augment the vanilla systems. This leads to an endless cycle of

generation and improvement.

Although, in chapters 4, 5 and 6 we have shown the benefits of transfer learning, we have

not truly delved deep into the working of the NMT models. As such, we can only make

conjectures about what is happening and thus follow-up research should involve a study

of the changes in the internal workings of the NMT models because of transfer learning.

1.5.4 The crux of this thesis:

The contributions of this thesis are as follows:

• This thesis is collection of exhaustive empirical studies of low resource machine

translation approaches which focus on multilingualism and knowledge transfer.

• This thesis focuses on quantitatively showing how language relatedness matters in

phrased based as well as neural approaches.

• This thesis shows how using N-lingual corpora, despite their limited size, can lead

to unexpected benefits in phrase based and neural MT.

• This thesis documents and motivates a transition from phrase based to neural ma-

chine translation by showing how neural approaches can surpass phrase based ap-

proaches even in a low resource scenario.

The next chapter covers our work on low resource machine translation using multiple

pivot languages.



Chapter 2

Multiple Pivot Language SMT

Our first step towards an investigation of how multilingualism can be useful for low resource

MT started out with the following questions:

1. In the framework of phrase based statistical machine translation, does the choice of

an intermediate (pivot) language affect the translation quality?

2. Is there any real benefit in using multilingual parallel corpora where the same sen-

tences are available in multiple languages?

To answer these questions we considered a case study of Japanese-Hindi translation

in the Bible (language) domain for which a small multilingual corpus spanning over 50

languages is available.

In this chapter we present our work on leveraging multilingual parallel corpora of small

sizes for Statistical Machine Translation between Japanese and Hindi using multiple pivot

languages. In our setting, the source and target part of the corpus remains the same,

but we show that using several different pivots to extract phrase pairs from these source

and target parts lead to large BLEU improvements. Although there have been previous

works on pivot language based machine translation, this work is the first of its kind to

attempt the simultaneous utilization of 7 pivot languages at decoding time. We focus on a

variety of ways to exploit phrase tables generated using multiple pivots to support a direct

source-target phrase table1. Our main method uses the Multiple Decoding Paths (MDP)

feature of Moses, which we empirically verify as the best compared to the other methods

we used. We compare and contrast our various results to show that one can overcome the

limitations of small corpora by using as many pivot languages as possible in a multilingual

setting.

1The translation model extracted on the source-target parallel corpus

34
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2.1 Introduction

With the increasing size of parallel corpora it has become possible to achieve very high

quality translation. However, not all language pairs are blessed with the availability of

large parallel corpora in the sizes of millions of lines. With the exception of the major

European languages and a few Asian languages like Chinese and Japanese, other languages

have parallel corpora in the sizes of a few thousands of lines. Since translation quality

is related to the size of the parallel corpus, it is impossible to achieve the same level of

translation quality as that in the case of resource rich languages. To remedy this scenario,

an intermediate resource rich language can be exploited.

Although, finding a direct parallel corpus between source and target languages might

be difficult, there are higher odds of finding a pair of parallel corpora: one between the

source language and an intermediate resource rich language (henceforth called pivot2) and

one between that pivot and the target language. Using the methods developed for Pivot

Based SMT [130] [123] one can use the source-pivot and pivot-target parallel corpora to

develop a source-target translation system (henceforth called as pivot based system 3) .

Moreover, if there exists a small source-target parallel corpus then the resulting system

(henceforth called as direct system4) can be supported by the pivot based source-target

system to significantly improve the translation quality. Note that in the context of this

work we use the terms “translation system” and “phrase table” interchangeably since

the phrase table is the main component of the translation system. Reordering tables are

supplementary and can usually be replaced by a simple distortion model.

Major problems arise when source-pivot and pivot-target corpora belong to different

domains leading to rather poor quality translations. Even if the individual corpora are

large, one will run into domain adaptation problems. In such a scenario the availability of

a small size multilingual corpus of a few thousand lines belonging to a single domain can

be beneficial. The setting of this work is:

1. We suppose the existence of a multilingual corpus with sentences aligned across N 5

different languages.

2. We show using other languages as additional pivots leads to the construction of

better phrase tables and better translation results.

2In most cases this is English.
3The phrase table will be known as the pivot phrase table.
4The phrase table will be called as direct phrase table and the corpus will be the direct parallel corpus.
5The construction of a multilingual corpus has already the benefit that each new language added to it

will allow direct translation with a SMT system for N new language pairs.
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Note that this setting is realistic and differs from the majority of existing work on pivot

languages, in which the source-pivot and pivot-target corpora are unrelated (or at least

do not have equivalent sentences). In addition to the well-known Europarl corpus, many

other similar multilingual corpora exist. For example, a multilingual parallel corpus for 9

major Indian Languages belonging to the Health and Tourism domain of approximately

50000 lines was used to develop basic SMT systems [82]. For our experiments we used the

Bible domain multilingual parallel corpus [109] for a large number (over 50) of languages

(other than Indian) including Japanese and Hindi (Japanese to Hindi translation being

our focus) of approximately 30000 lines. We chose this setting because we feel that this

multilingual approach is especially important for low-resource language pairs.

Typically system combination methods like linear interpolation are used to combine

the direct and pivot phrase tables by modifying the probabilities of phrase pairs leading

to the modification of the underlying distribution which affects the resultant translation

quality. The Multiple Decoding Paths [11] (MDP) feature has been used to combine two

source-target phrase tables of different domains for domain adaptation [78] but not so

extensively in a pivot language scenario, especially when multiple pivots are involved (7

in our case). Our work is different from other related works in the following ways:

• We work on a realistic low resource setting for translation between Japanese and

Hindi in which we use small sized multilingual corpora containing translations of a

sentence in multiple languages.

• We focus on the impact of using a relatively large number of pivot languages (7 to

be precise) to improve the translation quality and compare this to when only one

pivot language is used.

• Most works focus on obtaining pivot based phrase tables on relatively larger corpora

than the ones used for the direct phrase table. We use the same corpora sizes for

the pivot as well as direct tables.

• We verify that Multiple Decoding Paths (MDP) feature of Moses is much more

effective than plain linear interpolation, especially when more pivot languages are

used together.

• We show that simply varying the pivot language leads to additional phrase pairs

being acquired that impact translation quality.

The rest of the chapter is organized as follows: We briefly cover the related work follow-

ing which we describe the techniques for phrase table triangulation and combination. This
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is followed by the languages we experimented with and the details of the corresponding

corpora. We then describe the various experimental settings and give results, observa-

tions and discussions. We then conclude this chapter with some important lessons that

we learned along with implications that our work could have on future research.

2.2 Related Work

[123] developed a method (sentence translation strategy) for cascading a source-pivot and

a pivot-target system to translate from source to target using a pivot language. Since

this results in multiplicative error propagation [131] developed a method (triangulation)

in which they combined the source-pivot and pivot-target phrase tables to get a source-

target phrase table. They then combine the pivoted and direct tables by linear interpo-

lation whose weights were manually specified. There is a method to automatically learn

the weights [112] but it requires reference phrase pairs not easily available in resource

constrained scenarios like ours. Work on translation from Indonesian to English using

Malay and Spanish to English using Portuguese [99] as pivot languages worked well since

the pivots had substantial similarity to the source languages. This is one of the first works

to use MDP in the pivot based SMT scenario. [107] and [108] showed that English is not

the best pivot language for many language pairs, including Japanese and Hindi. This was

reason enough for us to not consider English as a pivot in our experiments.

None of the above works focus on the utilization and impact of more than 2 pivots in

their experiments which was one of our main objectives. Related to multilingual trans-

lation are works by [53, 36, 110, 74]. Work on multi source translation [105] which is

complementary to our work must also be noted. In Chapter 6 we explore multi-source MT

as well but from the point of view of neural networks.

In the related field of information retrieval, pivot languages were employed to translate

queries in cross-language information retrieval (CLIR) [44, 69]. [22] retrieved feedback

terms from documents written in the pivot languages (after translating back from the

pivot), and augmented source queries leading to improvements in information retrieval.

We now talk about the languages, corpora and experiments conducted.



38 CHAPTER 2. MULTIPLE PIVOT LANGUAGE SMT

F
ig

u
re

2.
1:

M
u
lt

i-
p
iv

ot
ap

p
ro

ac
h

fo
r

S
M

T
u
si

n
g

m
u
lt

il
in

gu
al

m
u
lt

iw
ay

co
rp

or
a



2.3. OUR APPROACH 39

2.3 Our Approach

Refer to figure 2.1 for an overview of the approach we followed to leverage multiple pivot

languages to improve translation for Japanese-Hindi. The steps we followed are:

• Obtain a phrase table between the source and target languages using the direct

parallel corpora between them.

• Choose several pivot languages and train source-pivot and pivot-target phrase tables

for each pivot language.

• Pivot the two phrase tables in the previous step in order to obtain a phrase table

for the source target language.

• Combine the direct and pivoted phrase tables in order to translate from source to

target.

2.3.1 Phrase Table Triangulation

We implemented the phrase table triangulation method [130] using JAVA as the program-

ming language. The phrase table has 4 main scores: forward and inverse phrase translation

probabilities (equations 2.1 and 2.2) accompanied by forward and inverse lexical transla-

tion probabilities (equations 2.3 and 2.4). The formulae for generating them using pivots

are:

Θ(f |e) =
∑
pi

Θ(f |pi) ∗Θ(pi|e) (2.1)

Θ(e|f) =
∑
pi

Θ(e|pi) ∗Θ(pi|f) (2.2)

Pw(f |e, a) =
∑
pi

Pw(f |pi, a1) ∗ Pw(pi|e, a2) (2.3)

Pw(e|f, a) =
∑
pi

Pw(e|pi, a2) ∗ Pw(pi|f, a1) (2.4)

Here a1 is the alignment between phrases f (source) and pi (pivot), a2, the alignment

between pi (pivot) and e (target) and a the alignment between f (source) and e (tar-

get). Note that the lexical translation probabilities are calculated in the same way as the

phrase probabilities. Our results might improve even more if we used more sophisticated

approaches like cross-language similarity method or the method which uses pivot induced

alignments [130].
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2.3.2 Phrase Table Combination

There are 3 ways to combine phrase tables: linear interpolation, fillup interpolation and

multiple decoding paths. Linear interpolation is performed by merging the tables and

computing a weighted sum of phrase pair probabilities from each phrase table giving a

final single table. Typically, the direct phrase table is given a significantly higher weight

than the pivot based table.

Θ(f |e) = α0 ∗Θdirect(f |e) +
∑
li

αli ∗Θli(f |e)

subject to α0 +
∑
li

αli = 1 (2.5)

Typically α0 is 0.9 [131] and the pivot languages are collectively given a weight of 0.1.

Θli(f |e) is the inverse translation probability for language li. In our experiments we set

the α’s according to the ratio of the BLEU scores, on the test set, of the translations

using the individual phrase tables. It is possible to learn optimal weights but this requires

a collection of reference phrase pairs which would not be readily available in a resource

constrained scenario.

Fillup interpolation does not modify phrase probabilities but selects phrase pair

entries from the next table if they are not present in the current table. The priority of the

phrase tables should be specified which we do by ranking them according to the BLEU

scores on a test set.

Multiple Decoding Paths (MDP) method of Moses which uses all the tables si-

multaneously while decoding ensures that each pivot table is kept separate and translation

options are collected from all the tables. Increasing the number of pivot languages slows

the decoding process drastically but the existence of powerful machines negates this lim-

itation. For the sake of completeness we also experimented with a combination of both,

linear and MDP, methods by: Firstly, combining the pivot based phrase tables into a single

table using equation 2.5 (using the ratio of BLEU scores as interpolation weights) followed

by using this table to support the direct phrase table by MDP. Note that the right way

would be to use the BLEU scores on the tuning set but our objective was to show that

even in the best case scenario (also called Oracle6 scenario) this method is still inferior

compared to only using the MDP method. In the context of neural machine translation

MDP resembles model ensembling whereas interpolation resembles model averaging.

6By Oracle scenario we mean that we already know the performance on the test sets and exploit this

information to “unfairly” boost the translation scores.
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Figure 2.2: A collection of sentences that have the same meaning in different languages.

2.4 Languages, Corpora and Experimental settings

We first describe the pivot languages and the corpora we use followed by the experimental

settings.

2.4.1 Languages involved

We performed experiments on translation between Japanese and Hindi which do not belong

to the same language group but exhibit many similarities: Japanese (J) and Hindi (H)

both have SOV order and are morphologically rich. For pivots we considered languages

like Chinese, Korean (East-Asian languages of which Korean is closer to source), Marathi,

Kannada, Telugu (Indian languages closer to target), Paite (Sino-Tibetian) and Esperanto

(relatively distant from both source and target). Increasing the number of languages

reduced the size of multilingual parallel translations available7. Our choice of languages

was initially random but led to interesting observations as will be seen later.
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2.4.2 Corpora Details

The corpora we used comes from the freely available multilingual Bible corpus8 stored

in XML files. After sentence aligning all 9 languages we got 29780 sentence tuples9. A

tuple contains 9 sentences: 1 for each language. We divided this into 29000 training tu-

ples, 280 tuning/development tuples and 500 testing tuples. The Japanese sentences were

segmented using JUMAN [84]. The Chinese and Korean (Hangul blocks were space sep-

arated) sentences were directly available in their character segmented form. The corpora

of the other languages were left morphologically and syntactically unprocessed. Refer to

Table 2.2 for an example from the bible corpus.

2.4.3 Experimental Settings

Our experiments were centered around Phrase Based SMT (PBSMT). We used the open

source Moses decoder [76] package (including Giza++) for word alignment, phrase table

extraction and decoding for sentence translation. We also used the Moses scripts for

linear and fillup interpolation along with the multiple decoding paths (MDP) setting

(by modifying the moses.ini files). We performed MERT [103] based tuning using the

MIRA algorithm. We used BLEU [106] as our evaluation criteria and the bootstrapping

method [72] for significance testing. For the sake of comparison with previous methods,

we experimented with sentence translation strategy [123] using 10 as the n-best list size for

intermediate and target language translations. The experiments we performed are given

below. Each experiment involves either the creation of a phrase tables or combination of

phrase tables. We tune, test and evaluate these tables or combinations.

1. A src (source) to tgt (target) direct phrase table.

2. For piv in Pivot Languages Set; the set of pivot languages to be used (Tables 1 and

2):

(a) src to piv and piv to tgt phrase tables. Translate the src test sentences to tgt

using the sentence translation strategy and evaluate. (Column 2)

(b) Triangulate the src-piv and piv-tgt phrase tables to get the src-piv-tgt phrase

table. (Column 3)

7It must be noted that Hebrew and Greek are most likely the languages from which the Bible sentences

were translated into the other languages.
8http://homepages.inf.ed.ac.uk/s0787820/bible/
9In order to reduce the need to write boilerplate code, we have made these scripts publicly available

for other researchers to use.
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(c) Perform linear interpolation of the src-tgt and src-piv-tgt table using 9:1 weight

ratio in equation 2.5 to get a combined table. (Column 4)

(d) Perform linear interpolation of the src-tgt and src-piv-tgt table using the ratio of

their BLEU scores as weights in equation 2.5 to get a combined table. (Column

5)

(e) Perform fillup interpolation of the src-tgt (main) and src-piv-tgt table (sec-

ondary) to get a combined table. (Column 6)

(f) Combine the src-tgt and src-piv-tgt phrase table using MDP (2 paths, 1 for

direct and 1 for pivot). (Column 7)

3. Combine all the src-piv-tgt tables into a single table using linear (weights are ratios

of BLEU scores) and fillup interpolation independently, giving the phrase tables:

linear interp all and fill interp all respectively. Table 3, rows 4 and 5.

4. Perform linear interpolation of the src-tgt and linear interp all tables using 9:1 weight

ratio in equation 2.5 to get a combined table. Table 3, row 6.

5. Perform linear interpolation of the src-tgt and all src-piv-tgt phrase tables using the

ratio of their BLEU scores as weights in equation 2.5 to get a combined table. Table

3, row 7.

6. Perform fillup interpolation of the src-tgt and all src-piv-tgt phrase tables. The

priority of the tables is given by the descending order of BLEU scores. Table 3, row

8.

7. Combine the linear interp all with the src-tgt phrase table using MDP. Repeat this

for fill interp all. Table 3, rows 9 and 10.

8. Combine all the src-piv-tgt phrase tables with the src-tgt phrase table using MDP

(8 paths, 1 for direct and 1 for each of the 7 pivots). Table 3, row 11.

9. Combine the top 3 pivot phrase tables with the src-piv-tgt phrase tables with the

src-tgt phrase table using MDP (4 paths, 1 for direct and 1 for each of the 3 pivots).

The pivot tables with the 3 highest10 standalone BLEU scores are selected. Table 3,

row 12.

10We chose 3 since our evaluation showed that the BLEU scores for the 3 pivot languages were much

larger than the remaining ones.
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Pivot Sentence Standalone Linear Linear Fill MDP

Language Strategy Interpolate (1) Interpolate (2) Interpolate With

With Direct With Direct With Direct Direct

1. Direct 33.86

2. Chinese 23.53 28.89 34.03 34.61 34.31 35.66

3. Korean 26.30 28.92 34.65 34.18 34.64 35.60

4. Esperanto 22.43 28.73 34.63 34.55 35.32 35.74

5. Paite 19.40 26.64 34.17 34.40 34.66 35.22

6. Marathi 15.68 21.80 33.88 33.80 33.83 34.03

7. Kannada 16.94 24.15 33.74 34.13 34.87 35.52

8. Telugu 14.15 21.31 33.81 33.85 34.04 34.57

Table 2.1: Japanese-Hindi Results Using Single Pivots

Pivot Sentence Standalone Linear Linear Fill MDP

Language Strategy Interpolate (1) Interpolate (2) Interpolate With

With Direct With Direct With Direct Direct

1. Direct 37.47

2. Chinese 27.93 30.97 35.90 38.47 38.41 39.49

3. Korean 30.68 32.67 35.99 38.72 38.55 39.49

4. Esperanto 26.67 30.80 36.07 37.82 37.85 39.14

5. Paite 23.37 29.17 35.89 37.73 37.39 38.19

6. Marathi 20.59 26.21 35.89 37.57 37.72 38.30

7. Kannada 23.21 26.96 35.84 38.05 37.79 38.05

8. Telugu 19.01 25.22 37.25 36.98 37.11 37.04

Table 2.2: Hindi-Japanese Results Using Single Pivots

2.5 Results and Discussions

BLEU scores obtained after testing the tuned tables are reported. Scores in bold are

statistically significant (p<0.05) over the baseline which is the system trained using a

direct src-tgt parallel corpus.

2.5.1 Results

The Japanese-Hindi direct translation system gave a BLEU of 33.86 whereas the Hindi-

Japanese one gave 37.47. For the rest of the chapter these will be the baselines, unless

mentioned otherwise.

The evaluation scores are split into 3 tables. Table 1 contains the scores for Japanese

to Hindi (Table 2 for Hindi to Japanese) translation using each pivot separately and has
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Combination Type Jap-Hin Hin-Jap

1. Direct phrase table (baseline) 33.86 37.47

2. Best result using single pivot 35.74 (Esp.) 39.49 (Kor.)

3. Combine All Pivots using MDP 34.49 37.02

4. A - Linear Interpolate All Pivot tables (BLEU score ratio) 32.50 35.65

5. B - Fill Interpolate All Pivot tables (Priority according to BLEU score) 32.12 34.44

6. Linear Interpolate (9:1 ratio) Direct with All Pivot tables 34.56 38.60

7. Linear Interpolate (BLEU score ratio) Direct with All Pivots 35.24 39.08

8. Fill Interpolate Direct with All Pivots (Priority according to BLEU score) 35.28 38.70

9. Combine Direct and A using MDP 36.40 39.85

10. Combine Direct and B using MDP 36.67 40.07

11. Combine Direct and All Pivots tables using MDP 38.42 40.19

12. Combine Direct and Top 3 (BLEU) pivot tables using MDP (Oracle) 38.22 41.09

Table 2.3: Results Using Multiple Pivots With Different Combination Methods

7 columns whose details are given in Section 2.4.3 from 2.a to 2.f. Table 3 contains the

scores for Japanese to Hindi (and vice versa) translation using all 7 pivots together in

various ways. Each row is self explanatory. In row 6, we mean that the direct phrase table

has a weight of 0.9 and the remainder 0.1 is distributed amongst the pivot phrase tables

in the ratio of their standalone BLEU scores which can be seen in column 3 of tables 2.1

and 2.2. It is quite clear that sentence translation strategy is the most inferior technique.

2.5.2 Observations

Below, we give an explanation of the observed scores from various points of views.

On the Pivots Used

It is logical to consider that the closeness of a pivot language to the source or target is an

important factor in the improvement of translation quality, since Korean helps Japanese-

Hindi translation. Of all the scores, the ones obtained using Korean and Chinese as pivots

stand out as the best and it is known that Korean and Japanese share many similarities.

Although this gives reason to believe that languages belonging to the same language group

should act as good choices of pivots, the languages Kannada, Telugu and (especially)

Marathi should have helped improve Hindi to Japanese translation. Moreover, languages

like Paite and Esperanto which are relatively distant from both Hindi and Japanese gave

better performance than the Indian Languages.
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Note, that the Chinese and Korean corpora were character segmented11 and that Es-

peranto and Paite are not so morphologically rich. The Indian pivot languages have

agglutinative features which is one of the main causes of poor quality SMT. This clearly

indicates that morphological similarity to source and target is another equally important

aspect that affects the translation quality. Had this not been the case, the Indian Lan-

guages would have acted as good pivots. This shows that experiments involving forcing

the morpheme to morpheme ratio, of the source to pivot to target sentences, to be the

same, must be conducted. Henceforth, it is to be expected that the most significant im-

provements will be obtained when Chinese, Korean and Esperanto (in a number of cases)

are used as pivots.

On the Linear and Fill Interpolation Methods

Single pivots: All the interpolation methods (columns 4, 5 and 6 of Tables 2.1 and

2.2) gave small improvements in BLEU in most cases compared to the baselines for both

language pairs. The results do not show drastic improvements, which is expected since

the baseline and pivots based phrase tables are constructed from the same multilingual

training instances (29000 tuples - see section 2.4.2). Typically the interpolation methods

are shown to give substantial performance boosts when the direct source-target phrase

table is obtained using relatively smaller corpora sizes compared to those used for the

source-pivot and pivot-target tables. In case of linear interpolation with a 9:1 weight

ratio, the scores improve slightly in some cases for Japanese-Hindi but degrade in case of

Hindi-Japanese. However, in the case of linear interpolation where the BLEU score ratio

is used as the weight ratio, the improvements are much better12.

Fill based interpolation also gives improvements in some cases, mostly when Chinese

and Korean are used as pivots. An overall comparison shows that there is no consistency

when a single pivot language is used and no conclusive comment can be made on the

efficacy of these interpolation methods.

Multiple Pivots: However in Table 2.3, rows 6 to 8 show that using all the pivots

together, result in a significant improvement over the direct phrase tables. Linear in-

terpolation with BLEU score ratio gives 35.24 BLEU (33.86 for direct phrase table) for

Japanese-Hindi and 39.08 BLEU (37.47 for direct phrase table). Rows 4 and 5 show the

scores of the linear and fill interpolation of only the pivot based phrase tables. It is inter-

esting to see that in case of Japanese-Hindi the BLEU scores rival that of the direct phrase

table (32.50/32.12 v.s. 33.86). This is similar in the case of Hindi-Japanese: 35.65/34.44

11Hangul blocks were space separated in the Korean case.
12Expected as we use test set evaluation information.
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v.s. 37.47. The following points must be noted:

a. Since the setting is multilingual and improvements, however slight, are observed in

some cases it must be the case that, through pivoting, additional (and possibly improved)

phrase pairs are induced which are not extracted using the direct source-target parallel

corpus. This also gives reason to believe that every pivot induces a different set of phrase

pairs thereby overcoming the limitations of poor alignment (and effectively phrase extrac-

tion) on small corpora. Even if there is no alignment error, pivoting still introduces new

phrase pairs which improves MT performance.

b. The pivot based phrase tables already have an incomplete probability space with re-

spect to the phrase pair distribution. Linear interpolation tends to violate the overall

probability mass since the phrase pair distribution gets changed. Fill interpolation just

adds additional phrase pairs from the next phrase table when not available in the current

one which leads to poor mixing of different probability models giving poorer performance

in-spite of additional phrase pairs being available.

c. Since some pivot languages are obviously bad, their probability scores would drastically

affect the overall probability mass. They should be excluded or given low weights, which

we do by considering the BLEU score ratio. However, this is not a good idea because

the scores for Telugu, a bad pivot for Hindi-Japanese translation, degraded to a lesser

extent when the Telugu based phrase table was linearly combined with the direct phrase

table. Sennrich (2012) gave a method to learn these weights, but in a resource constrained

scenario such a method is difficult to apply.

This motivated us to try the Multiple Decoding Paths (MDP) feature of Moses.

On using MDP

Single pivots: Since log linear combination does not modify the probability space it

should lead to definitive increase in translation scores. This claim is validated by the last

columns of Tables 2.1 and 2.2. For Japanese-Hindi: barring Marathi, the combination of

the direct and pivot phrase table leads to significant improvement over the direct phrase

tables. A similar situation occurs for Hindi-Japanese except that Telugu behaves as a bad

pivot.

Multiple pivots: Row 3 of Table 2.3 indicates that the log linear combination of all

the pivot tables using MDP for Japanese-Hindi gives a BLEU of 34.49, an improvement

(p<0.05) over the direct table (BLEU 33.86). For Hindi-Japanese, although the equivalent

BLEU score (37.02) is not an improvement over that of the direct table (37.47), it does

show that multiple pivots can be used to achieve translation quality similar to the quality

obtained by a direct table.
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Direction Common Direct Chi Kor Esp Pai Kan Mar Tel

1. Jap-Hin 0.032 1.404 20.74 18.65 16.06 23.85 26.56 30.92 26.84

2. Hin-Jap 0.034 1.528 26.20 20.26 18.06 28.83 29.90 36.98 31.23

Table 2.4: Unique phrase pairs in each table (in millions of pairs)

Since it was observed that the interpolation of all the pivot tables into a single one

gave scores close to the direct tables we decided to try the combination of the all pivots

interpolated table with the direct table using MDP. Rows 9 and 10 show that there is

a significant improvement compared to the scores of the direct tables alone. But this

method of linear + log linear combination would still suffer from the limitation of linear

interpolation which led to the final 2 experiments which use only log linear combination.

Row 11 shows that the method of combining the direct and all the pivot tables using

MDP (one for each table) outperforms all the methods so far. The reason is simple: Only

good translation options are collected from all tables during hypothesis expansion, the

bad ones are automatically pruned. For Japanese-Hindi the BLEU is 38.42 which is an

improvement of 4.56 (13% relative) over the BLEU of the direct phrase table (33.86). For

Hindi-Japanese the BLEU of 40.19 is an improvement of 2.72 (7.25% relative) over that of

the direct table (37.47). The increment is lesser because of the premise we established in

section 2.5.2. This points to an interesting observation that pivot languages induce better

phrase pairs in a multilingual setting which are not present in the direct phrase table.

This is quite beneficial when the corpora sizes are small which lead to poor quality phrase

tables.

To test whether exclusion of bad performing pivots leads to improvements in BLEU

we performed another oracle experiment in which we only included the pivot phrase tables

having significant standalone BLEU difference compared to the others. Korean, Chinese

and Esperanto were the ones that stood out. The last row shows that for Japanese-Hindi

the BLEU (38.22) does not significantly increase over the situation when all pivots are used

together (38.42). However for Hindi-Japanese the BLEU is 41.09 which is a significant

(p<0.05) increase compared to when all the pivots are used together (40.19 - 2.2% relative).

Note that this leads to an absolute BLEU difference of 3.62 (9.66% relative) compared

to the BLEU of the direct phrase table. The improvements for Japanese-Hindi were

already so large (13%) that more significant improvements would need deeper inspection

and improved methods. We believe that further significant improvements are possible and

advanced methods to effectively select multiple pivots need to be studied and implemented.
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Direction >0 >0.1 >0.2 >0.3 >0.4 >0.5 >0.6 >0.7

1. Jap-Hin 267 108 36 12 6 4 2 0

2. Hin-Jap 275 124 60 24 12 4 1 1

Table 2.5: Number of improved translations (out of 500) using sentence level BLEU dif-

ference at various cutoffs

On the number of new phrase pairs induced

Based on the cutoff of 0.001 for the inverse translation probability, Table 2.4 contains the

statistics of the unique phrase pairs in each pivot table (Columns 4 to 10) and the direct

table (Column 3) along with the number of phrase pairs common (Column 2) to all. It is

quite obvious that each pivot13 induces its own set of unique phrase pairs.

On the improvement in translations

Table 2.5 gives the count of improved translations, out of 500 tested sentences, over the

direct using sentence level BLEU difference at various cutoffs. On an average 50% of the

sentences showed increase in BLEU and the number of improved sentences decreases with

increasing cutoff. We manually verified a random sample and found that the improve-

ments were commensurate with the reported differences. Finally, consider examples of

improvements in Japanese to Hindi translation and vice versa.

Japanese to Hindi translation

Input: それ から 、 ヨハネ の 弟子 たち が きる 、 死体 を 引き取る 葬る 。 そし

て 、 イエス の ところ に 行く 報告 する 。 (Sore kara, Yohane no deshi-tachi ga kiru,

shitai o hikitoru homuru. Soshite, iesu no tokoro ni iku hokoku suru.)

English equivalent: After that, John’s disciples came and took his corpse away, buried

it and then went to Jesus to give him the news.

Direct translation: tb y� hàA k� c�lo\ n� aAkr us kF loT l� gyA aOr usk� pAs

jAkr btA EdyA (Tab yohanna ke chelo ne aakar uss ki lotha le gaya; aura uske paas

jaakar bata diya)

Best translation using MDP: tb y� hàA k� c�lo\ n� aAkr us kF loT ko l� jAkr

gAY EdyA aOr jAkr yFf� ko smAcAr EdyA (Tab yohanna ke chelo ne aakar usa ki

lotha ko le jaakar gaad diya aura jakar yesu ko samachara diya)

Analysis: Note that in the direct translation the part about “burying the corpse” (gaad

13For each language we use their first 3 characters of their names as the shortened versions.
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diya) and “Jesus” (yesu) is missing which is present in the MDP translation. Also the

verb forms indicating the sequence of actions like “came and” (aakar) and “took his corpse

away” (usa ki lotha ko le jaakar) are much better in the MDP translation. Instead of

“samachara diya” (gave news) the preferred translation is “samachara di”.

Hindi to Japanese translation

Input: aOr gdh� sAY� tFs hjAr Ejn m�\ s� iksW yhovA kA kr Whr� (Aur gadhe sade

tees hajar, jin me se eksath yahowa ka kar there)

English equivalent: And the asses were thirty thousand and five hundred; of which the

LORD’s tribute was threescore and one.

Direct translation: ろば は 三十 人 の うち に 、 主 は iksW なければ なら ない

。 (Ruba wa san ju nin no uchi ni, juu wa iksat nakereba naranai)

Best translation using MDP: ろば は 三万五百 、 そのうち から 主に みつぎ と し

た もの である 。 (Ruba wa san man go hyaku, sono uchi kara juu ni mitsugi to shita

mono dekiru)

Analysis: In the direct translation “thirty thousand and five hundred” is incorrectly

translated as “thirty people” but the MDP translation handles this correctly. Although in

the direct translation, “sixty one” is not translated, it is still present as an untranslated

word which can be handled by post processing. In the MDP version this word is incorrectly

translated as “is (to be)” but despite failing to translate that one word it does capture the

essence of the original sentence. Moreover, the MDP translation is more fluent compared

to the direct translation.

These are just a couple of the many examples where we saw actual improvememts in

translation quality. Not only is there an improvement in fluency but also in the amount

of meaning that is transferred into the target language.

2.6 Conclusions and Future Implications

In this chapter we described our work on leveraging a small sized multilingual parallel

corpus using 7 pivot languages for SMT between Japanese and Hindi. Our main objective

was to augment a phrase table on direct parallel corpus using many pivot language based

phrase tables constructed from the same multilingual corpus. We confirmed that this

induces additional and improved phrase pairs which, under the Multiple Decoding Paths

setting (MDP), leads to substantial improvements over the direct phrase tables. More

importantly, we showed that using multiple pivot languages simultaneously lead to large
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improvements in BLEU compared to the when a single pivot is used; which is the novel

aspect of our work. This opens up many further research questions like a. How can one

choose a set of good pivot languages among available choices? b. Does this multilingual

leveraging help in a situation where we have large size corpora like Europarl corpora? c.

How much of an impact can treatment (morphological or syntactic) of the pivot language

help in improving translation quality? d. Can good reordering information be extracted

by pivoting? e. Can multi source and multi pivot setting further enhance quality? f.

How can the noise induced by pivoting be controlled by methods other than probability

cutoffs? and finally g. Can simpler but more effective methods compared to triangulation

be exploited in a multilingual scenario?

We explored the question on language selection by conducting various multilingual

experiments which we describe in Chapters 5 and 6. Unfortunately we observed that our

method is effective in low resource situations simply because using pivot languages to

extract additional phrase pairs in a multilingual multiway parallel corpus setting because

it helps offset the poor alignment quality which leads to poor phrase pair extraction. In

resource rich situations, alignment is much better and thus the quality of phrase tables

is also much higher. In our experiments on the Europarl corpus we did not observe any

significant improvements in translation quality with our approach.

This study was conducted on a particular language domain (Bible) rather than a generic

one since in most cases one requires a domain specific machine translation system rather

than a general purpose one. Given that domain specific corpora are small in size, this

work also acts as a motivation for our work on domain adaptation in Chapter 4 along with

being loosely related to transfer learning for low resource machine translation where we

try to leverage related resource rich corpora.

Although we were not able to find satisfactory solutions to some of the questions above

(at the time) we decided to pursue the last question regarding reduction of noise in pivoted

phrase tables. We also realized that it is possible to obtain further improvements by post

processing. Around this time, neural machine translation was beginning to gain traction

and there was growing interest in utilizing features from neural networks for post processing

the outputs of an SMT system. For this we considered a task involving Japanese-Chinese

technical term dictionary construction where we applied phrase table filtering mechanisms

in a pivot language setting followed by post processing. The next chapter is about our

work on the same.



Chapter 3

Dictionaries, Pivoting, Pruning and

Re-ranking

In the previous chapter we showed how pivot language based SMT is quite effective in a

multilingual situation. The most useful aspect of pivot language approaches is that they

can be employed in resource rich situations as well. However, as corpora sizes increase,

pivoting techniques introduce noisy phrases and lead to massive phrase tables which are

an impediment to fast decoding and thus impact the practical usability of SMT systems.

We thus decided to investigate methods to reduce noise in pivoted phrase tables. Since

our focus was also on practicality we also investigated simple but effective methods for

post processing that utilize features from neural networks. This chapter summarizes our

work on large-scale Japanese-Chinese bilingual dictionary construction via pivot-based

statistical machine translation.

In particular we try to answer the following questions:

1. Can a translation based approach yield dictionaries of reasonable quality?

2. What is the best noise reduction strategy in order to ensure phrase tables of high

quality?

3. How useful are neural network features in a post processing scenario in PBSMT?

In this Chapter we show how we utilized statistical significance pruning to control

noisy translation pairs that are induced by pivoting. We show how we tried to utilize

paraphrasing as a means of augmenting the phrase tables but were unsuccessful in obtain-

ing any useful improvements. We constructed a large bilingual technical term (and hence

domain specific) dictionary for Chinese and Japanese which we manually verified to be of

a high quality. We then used this dictionary and a parallel corpus to learn bilingual neural

52
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network language models to obtain features for reranking the n-best list, which leads to

an absolute improvement of 5% in accuracy when compared to a setting that does not

use significance pruning and reranking. We also attempted to incorporate paraphrasing

information into this framework but were unsuccessful in doing so.

3.1 Introduction

Pivot-based statistical machine translation (SMT) [130] has been shown to be a possible

way of constructing a dictionary for the language pairs that have scarce parallel data

[122, 28]. The assumption of this method is that there is a pair of large-scale parallel data:

one between the source language and an intermediate resource rich language (henceforth

called pivot), and one between that pivot and the target language. We can use the source-

pivot and pivot-target parallel data to develop a source-target term1 translation model for

dictionary construction.

Pivot-based SMT uses the log linear model as conventional phrase-based SMT [76]

does. This method can address the data sparseness problem of directly merging the

source-pivot and pivot-target terms, because it can use the portion of terms to generate

new terms. Small-scale experiments in [122] showed very low accuracy of pivot-based SMT

for dictionary construction.2 Despite the low quality, this approach is fairly attractive since

it is one of the fastest ways of obtaining usable dictionaries.

Refer to Figure 3.1 for a high level visual description of our work. In this chapter

we describe our work on constructing a large-scale Japanese-Chinese (Ja-Zh) scientific

dictionary, using large-scale Japanese-English (Ja-En) (49.1M sentences and 1.4M terms)

and English-Chinese (En-Zh) (8.7M sentences and 4.5M terms) parallel data via pivot-

based SMT. We generate a large pivot translation model using the Ja-En and En-Zh

parallel data. Moreover, a small direct Ja-Zh translation model is generated using small-

scale Ja-Zh parallel data. (680k sentences and 561k terms). Both the direct and pivot

translation models are used to translate the Ja terms in the Ja-En dictionaries to Zh and

the Zh terms in the Zh-En dictionaries to Ja to construct a large-scale Ja-Zh dictionary

(about 3.6M terms).

We address the noisy nature of pivoting large phrase tables by statistical significance

pruning [64]. In addition, we exploited linguistic knowledge of common Chinese characters

[29] shared in Ja-Zh to further improve the translation model. Large-scale experiments on

scientific domain data indicate that our proposed method achieves high quality dictionaries

1In this work, we call the entries in the dictionary terms. A term consists of one or multiple tokens.
2The highest accuracy evaluated based on the 1 best translation is 21.7% in [122].
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Figure 3.1: Our work in a nutshell.

which we manually verify to have a high quality.

Reranking the n-best list produced by the SMT decoder is known to help improve

the translation quality given that good quality features are used [104]. We thus used

bilingual neural network language model features for reranking the n-best list produced

by our most successful approach (pivot-based system which uses significance pruning),

and achieve a 2.5% (absolute) accuracy improvement. Compared to a setting which uses

neither significance pruning nor n-best list reranking the improvement in accuracy is about

5% (absolute). We also use character based neural MT to eliminate the out-of-vocabulary

(OOV) terms, which further improves the quality.

The rest of this chapter is structured as follows: Section 3.2 reviews related work.

Section 3.3 presents our dictionary construction using pivot-based SMT with significance

pruning. Section 3.4 describe the bilingual neural language model features using a parallel

corpus and the constructed dictionary for reranking the n-best list. Experiments and

results are described in Section 3.5, and we conclude this chapter in Section 3.6.

3.2 Related Work

As mentioned in the previous chapter, many studies have been conducted for pivot-based

SMT [123, 131]. Phrase-based SMT has been shown appropriate for dictionary construc-
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tion, because the bilingual terms in the dictionary are naturally contained in the phrase

table [89]. In the phrase table triangulation approaches the best performance is achieved

by combining various tables and while it is possible to use fixed weights, there is a method

to automatically learn the interpolation weights [112] but it requires reference phrase pairs

which are not easily available and thus we rely on using multiple decoding paths [76] as

in the previous chapter to combine multiple tables which avoids interpolation. The issue

of noise introduced by pivoting has not been seriously addressed and although statistical

significance pruning [64] has shown to be quite effective in a bilingual scenario, it has never

been considered in a pivot language scenario.

[122] was the first work that constructs a dictionary for language pairs that are resource

poor using pivot-based SMT, however the experiments were performed on small-scale data.

Chu et al. [28] conducted large-scale experiments and exploited the linguistic knowledge

of common Chinese characters shared in Japanese-Chinese [29] to improve the translation

model. Paraphrasing by pivoting bilingual phrase tables [8] has been used as a mechanism

to augment SMT performance by indirectly adding extra phrase pairs. We attempted

to combine this with pivot based PBSMT to see if there can be further improvements in

translation quality. We include this portion of the work as a brief appendix to this chapter

since it did not yield satisfactory results.

N-best list reranking [104, 121] is known to improve the translation quality if good

quality features are used. Recently, [24] and [6] have shown that recurrent neural networks

can be used for phrase-based SMT whose quality rivals the state of the art. Since the neural

translation models can also be viewed as bilingual language models, we use them to obtain

features for reranking the n-best lists produced by the pivot-based system.

3.3 Dictionary Construction via Pivot-based SMT

Figure 3.2 gives an overview of our construction method. Phrase-based SMT [76] is the

basis of our method. We first generate Ja-Zh (source-target), Ja-En (source-pivot) and

En-Zh (pivot-target) phrase tables from parallel data respectively. The generated Ja-Zh

phrase table is used as the direct table. Using the Ja-En and En-Zh phrase tables, we

construct a Ja-Zh pivot phrase table via En. The direct and pivot tables are then combined

and used for phrase-based SMT to the Ja terms in the Ja-En dictionaries to Zh and the

Zh terms in the Zh-En dictionaries to Ja to construct a large-scale Ja-Zh dictionary. In

addition, we use common Chinese characters to generate Chinese character features for

the phrase tables to improve the SMT performance.
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Figure 3.2: Overview of our dictionary construction method.

3.3.1 Pivot Phrase Table Generation

We follow the phrase table triangulation method to generate the pivot phrase table

[130].Although, we have already described them in the previous chapter, the formulae

for generating the inverse phrase translation probabilities and direct lexical weightings,

φ(f |e) and lex(f |e) are given below. Inverting the positions of e and f give the formulae

for the direct probabilities and weightings, φ(e|f) and lex(e|f).

φ(f |e) =
∑
pi

φ(f |pi) ∗ φ(pi|e) (3.1)

lex(f |e, a) =
∑
pi

lex(f |pi, a1) ∗ lex(pi|e, a2) (3.2)

where a1 is the alignment between phrases f (source) and pi (pivot), a2 is the alignment

between pi (pivot) and e (target) and a is the alignment between e (target) and f (source).

Once again, the lexical weightings are calculated in the same way as the phrase proba-

bilities and we prune all pairs with inverse phrase translation probability less than 0.001.

This manually specified threshold is simple, and works in practice but is not statistically

motivated which was the reason why we decided to pursue other pruning methods.
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3.3.2 Combination of the Direct and Pivot Phrase Tables

To combine the direct and pivot phrase tables, we make use of the MDP method of the

phrase-based SMT toolkit Moses [76], which has been shown to be an effective method [99]

in the previous chapter. MDP, which uses all the tables simultaneously while decoding,

ensures that each pivot table is kept separate and translation options are collected from

all the tables.

3.3.3 Exploiting Statistical Significance Pruning for Pivoting

The motivation for statistical significance pruning stems from the fact that co-occurrence is

a good indicator of phrase pair importance. Consider a source-pivot phrase pair (X,Y) and

a pivot-target phrase pair (Y,Z). If Y is a bad translation of X and Z is a bad translation

of Y, then the induced pair (X,Z) will also be a bad pair. The phrase pair extraction

processes in phrase-based SMT often result in noisy phrase tables, which when pivoted

give even noisier tables. Statistical significance pruning [64] is known to eliminate a large

amount of noise and thus we used it to prune our tables before pivoting.

Let C(X), C(Y), be the counts of the phrase X and Y respectively. Let C(X,Y) be the

co-occurrence count of the phrase pair (X,Y) and N be the size of the parallel corpus used

to compute these values. Computing statistical significance value (also known as p-value)

for this phrase pair requires the calculation of the probability of the co-occurrence count

C(X,Y). C(X,Y) follows a hypergeometric distribution and its probability is calculated as:

p(C(X, Y )) =

(
C(X))
C(X,Y )

)
·
(

N−C(X)
C(Y )−C(X,Y )

)(
N

C(Y )

) (3.3)

This value is then used to compute the p-value according the following equation which

simply sums up the co-occurrence probabilities for (X,Y) for all possible co-occurrence

counts.

p− value =

 ∞∑
k=C(X,Y )

p(k)

 (3.4)

All phrase-pairs with a significance value greater than or equal to a particular threshold

are retained. We used the α + ε threshold which is based on the parallel corpus size and

shown to be optimal. α is simply the p-value for when C(X), C(Y) and C(X,Y) are all

equal to one and is equal to 1
N

. What this implies is that if a phrase pair has appeared

exactly once as did the individual phrases then such a pair is highly unreliable. ε is a tiny
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fractional value (usually 0.001) that makes sure that all the single occurrence phrase pairs

are eliminated.

Although the optimal thresholds for a pivot based MT setting might be different,

currently we consider only the α+ ε threshold which is determined to be the best by [64].

Exhaustive testing using various thresholds could be beneficial but such hyperparameter

search is not within the scope of our research since we only want to show that significance

pruning is beneficial. The negative log probability of the p-value (also called significance

value) of the phrase pair is computed and the pair is retained if this exceeds the threshold.

Such significance pruning, although beneficial for reducing phrase table sizes, comes

with its own risk, especially in a pivot language scenario. Pivoting phrase tables often help

induce phrase pairs which might not be available in a direct parallel corpus. As such, it is

possible that all phrase pairs for a source phrase might be pruned (because of their absence

in the parallel corpus) leading to an out-of-vocabulary (OOV) problem. To remedy this

we retain the top 5 phrase pairs (according to inverse translation probability) for such

a phrase. We tried 3 different settings: Prune source-pivot table only (labeled “Pr:S-

P”), Prune pivot-target table only (labeled “Pr:P-T”) and Prune both tables (labeled

“Pr:Both”). We discuss the effects of each setting in Section 3.5.2.

3.3.4 Chinese Character Features

Ja-Zh shares Chinese characters. Because many common Chinese characters exist in Ja-

Zh, they have been shown to be very effective in many Ja-Zh natural language processing

(NLP) tasks [29]. In this work, we compute Chinese character features for the phrase

pairs in the translation models, and integrate these features in the log-linear model for

decoding. In detail, we compute following two features for each phrase pair:

CC ratio =
Ja CC num+ Zh CC num

Ja char num+ Zh char num
(3.5)

CCC ratio =
Ja CCC num+ Zh CCC num

Ja CC num+ Zh CC num
(3.6)

where char num, CC num and CCC num denote the number of characters, Chinese

characters and common Chinese characters in a phrase respectively. The common Chinese

character ratio is calculated based on the Chinese character mapping table in [29]. We

simply add these two scores as features to the phrase tables and use these tables for tuning

and testing.

A combination of pivoting, statistical significance pruning and Chinese character fea-

tures is used to construct the high quality large scale dictionary. One can use this dic-
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Figure 3.3: Using neural features for reranking.

tionary as an additional component in an MT system. In our case we use it to generate

features for N-best list reranking (next section).

3.4 N-best List Reranking using Neural Features

The motivation behind n-best list reranking is simple: It is quite common for a good

translation candidate to be ranked lower than a bad translation candidate. However, it

might be possible to use additional features to rerank the list of candidates in order to

push the good translation to the top of the list. Figure 3.3 gives a simple description

of the n-best list reranking procedure using neural features. Using the Ja-Zh dictionary

constructed using the methods specified in Section 3.3 and the Ja-Zh ASPEC corpus we

train 4 neural translation models. For each translation direction we train a character based

model using the dictionary and corpus separately (2 directions and 2 corpora lead to 4

models). It is important to note that although the dictionary is automatically created

and is noisy, neural networks are quite robust and can regulate the noise quite effectively.

This claim will be validated by our results (see Section 3.5.2). We use the freely available

toolkit for neural MT, GroundHog3, which contains an implementation of the work by

[6]. After training a neural machine translation model (NMT) it can be used either to

translate an input sentence or it can be used to produce a score given an input sentence

and a candidate translation. In the latter case, the neural translation model can be viewed

3https://github.com/lisa-groundhog/GroundHog
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Figure 3.4: The detailed working of the NMT feature based re-ranking procedure. The

correct translation for the test set is maked in red.

as a bilingual language model. For details on the architecture and working of these

NMT models kindly refer to Chapter 1.

One major limitation of neural network based models is that they are very slow4 to

train in case of large vocabularies. With smaller vocabularies (which are needed in case of

lack of computational resources) we run into the problem of out of vocabulary words and

thus it becomes necessary to back off to characters. It is possible to learn character based

models but such models, aside from being slower to train than word based models, are not

suited for extremely long sequences. Ultimately, character based MT is always worse than

word based MT and so, in this work we only use the character based neural MT models

to obtain features for n-best list reranking. We also use these models to perform character

based translation of untranslated words and avoid OOVs5.

Refer to Figure 3.4 for a detailed overview of reranking using only one neural feature.

The procedure we followed to perform reranking is described below. A decoder always

4This was a limitation of the recurrent architectures because of their auto-regressive nature and is

no longer an issue in the context of feed forward models [124]. However, such fast architectures were

conceived only recently, roughly two years after this work was conducted.
5Characters are not the only way of enabling an infinite vocabulary in the context of NMT. Byte Pair

Encoding which leads to a sub-word vocabulary is another way of having an infinite vocabulary
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gives n-best lists when performing tuning and testing. To learn reranking weights, we use

the n-best list, for the tuning/development set, corresponding to the run with the highest

evaluation metric score (BLEU in our case).

1. For each input term in the tuning set:

(a) Obtain 4 neural translation scores for each translation candidate.

(b) Append the 4 scores to the list of features for the candidate.

2. Use kbmira6 to learn feature weights using the modified n-best list and the references

for the tuning set.

3. Charater level BLEU as well as word level BLEU are used as reranking metric.

4. For each input term in the test set:

(a) Obtain 4 neural translation scores for each translation candidate and append

them to the list of features for that candidate.

(b) Perform the linear combination of the learned weights and the features to get

a model score.

5. Sort the n-best list for the test set using the calculated model scores (highest score

is the best translation) to obtain the reranked list.

We also try another reranking method by treating it as a classification task using the

support vector machine (SVM) toolkit.7 When evaluating dictionaries, the translation is

either correct or incorrect which is unlike sentence translation evaluation. We thus learn a

SVM using the development set n-best list and the references to learn a classifier which is

able to differentiate between a correct and an incorrect translation. The method we used

for reranking is:

1. For each input term in the tuning set:

(a) Obtain 4 neural translation scores for each translation candidate.

(b) Append the 4 scores to the list of features for the candidate.

(c) Generate classification label for candidate by comparing it with the reference.

2. Learn SVM classifier using the constructed training set.

6We used the K-best batch MIRA in the Moses decoder to learn feature weights.
7https://www.csie.ntu.edu.tw/cjlin/libsvm/
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3. For each input term in the test set:

(a) Obtain 4 neural translation scores for each translation candidate and append

them to the list of features for that candidate.

(b) Use the SVM model to perform classification but give the probability scores

instead of labels.

4. Sort the n-best list for the test set using the calculated probability scores (highest

score is the best translation) to obtain the reranked list.

If there are any OOVs in the reranked n-best list then we replace them with the

translation obtained using the above mentioned character based neural models (in the

Ja-Zh direction).

3.5 Experiments

We describe the data sets, experimental settings and evaluations of the results below.

3.5.1 Training data

We used following two types of training data:

• Bilingual dictionaries: we used general domain Ja-En, En-Zh and Ja-Zh dictionaries

(i.e. Wikipedia title pairs and EDR8), and the scientific dictionaries provided by

the Japan Science and Technology Agency (JST)9 and the Institute of Science and

Technology information of China (ISTIC)10 (called the JST dictionary and ISTIC

dictionary hereafter), containing 1.4M , 4.5M and 561k term pairs respectively. Table

3.1 shows the statistics of the bilingual dictionaries used for training.

• Parallel corpora: the scientific Ja-En, En-Zh and Ja-Zh corpora we used were also

provided by JST and ISTIC, containing 49.1M , 8.7M and 680k sentence pairs re-

spectively. Table 3.2 shows the statistics of parallel corpora used for training. Among

which ISTIC pc was provided by ISTIC, and the others were provided by JST.

8https://www2.nict.go.jp/out-promotion/techtransfer/EDR/J index.html
9http://www.jst.go.jp

10http://www.istic.ac.cn
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Language Name Domain Size

Ja-En

wiki title general 361,016

med dic medicine 54,740

EDR general 491,008

JST dic science 550,769

En-Zh

wiki title general 151,338

med dic medicine 48,250

EDR general 909,197

ISTIC dic science 3,390,792

Ja-Zh

wiki title general 175,785

med dic medicine 54,740

EDR general 330,796

Table 3.1: Statistics of the bilingual dictionaries used for training.

3.5.2 Evaluation

Tuning and Testing data

We used the terms with two reference translations11 in the Ja-Zh Iwanami biology dic-

tionary (5,890 pairs) and the Ja-Zh life science dictionary (4,075 pairs) provided by JST.

Half of the data in each dictionary was used for tuning (4,983 pairs), and the other half

for testing (4,982 pairs). The evaluation scores on the test set give an idea of the quality

of the constructed dictionary.

Settings

In our experiments, we segmented the Chinese and Japanese data using a tool proposed

by [119] and JUMAN [84] respectively. For decoding, we used Moses [76] with the default

options. We trained a word 5-gram language model on the Zh side of all the En-Zh

and Ja-Zh training data (14.4M sentences) using the SRILM toolkit12 with interpolated

Keneser-Ney discounting. Tuning was performed by minimum error rate training which

also provides us with the n-best lists used to learn reranking weights.

As a baseline, we compared following three methods for training the translation model:

• Direct: Only use the Ja-Zh data to train a direct Ja-Zh model.

11Different terms are annotated with different number of reference translations in these two dictionaries.
12http://www.speech.sri.com/projects/srilm
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Language Name Size

Ja-En

LCAS 3,588,800

abst title 22,610,643

abst JICST 19,905,978

ASPEC 3,013,886

En-Zh

LCAS 6,090,535

LCAS title 1,070,719

ISTIC pc 1,562,119

Ja-Zh ASPEC 680,193

Table 3.2: Statistics of the parallel corpora used for training (All the corpora belong to

the general scientific domain, except for ISTIC pc that is a computer domain corpus).

• Pivot: Use the Ja-En and En-Zh data for training Ja-En and En-Zh models, and

construct a pivot Ja-Zh model using the phrase table triangulation method.

• Direct+Pivot: Combine the direct and pivot Ja-Zh models using MDP.

We further conducted experiments using different significance pruning methods described

in Section 3.3.3 and compared the following:

• Direct+Pivot (Pr:S-P): Pivoting after pruning the source-pivot table.

• Direct+Pivot (Pr:P-T): Pivoting after pruning the pivot-target table.

• Direct+Pivot (Pr:Both): Pivoting after pruning both the source-pivot and pivot-

target tables.

We also conducted additional experiments using the Chinese character features (labeled

+CC) (described in 3.3.4), but we only report the scores on Direct+Pivot (Pr:P-T), which

is the best setting (thus labeled BS) for constructing the dictionary. Finally, using the

BS, we translated the Ja terms in the JST (550k) dictionary to Zh and the Zh terms

in the ISTIC (3.4M) dictionary to Ja, and constructed the Ja-Zh dictionary. The size

of the constructed dictionary is 3.6M after discarding the overlapped term pairs in the

two translated dictionaries. We then used this dictionary along with the Ja-Zh ASPEC

parellel corpus to rerank the n-best list of the BS using the methods mentioned in Section

3.4. The following scores are reported:

• BS+RRCBLEU: Using character BLEU to rerank the n-best list.

• BS+RRWBLEU: Using word BLEU to rerank the n-best list.
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Accuracy w/ OOV Accuracy w/o OOV

Method BLEU-4 OOV term 1 best 20 best MRR 1 best 20 best MRR

Direct 40.64 26% 0.3697 0.5255 0.4258 0.4978 0.7082 0.5736

Pivot 52.32 8% 0.4938 0.7258 0.5730 0.5361 0.7880 0.6220

Direct+Pivot 53.69 8% 0.5088 0.7360 0.5902 0.5522 0.7987 0.6405

Direct+Pivot (Pr:S-P) 52.30 12% 0.4944 0.6881 0.5649 0.5589 0.7779 0.6386

Direct+Pivot (Pr:P-T) 55.44 8% 0.5267 0.7278 0.5990 0.5716 0.7898 0.6500

Direct+Pivot (Pr:Both) 49.71 12% 0.4591 0.6766 0.5391 0.5189 0.7649 0.6094

Direct+Pivot (Pr:P-T)+CC = [BS] 55.86 8% 0.5303 0.7260 0.6005 0.5755 0.7878 0.6517

BS+OOVsub 55.38 0% 0.5325 0.7300 0.6033 0.5325 0.7300 0.6033

BS+RRCBLEU 57.78 8% 0.5568 0.7260 0.6222 0.6042 0.7878 0.6752

BS+RRWBLEU 58.55 8% 0.5566 0.7260 0.6218 0.6040 0.7878 0.6748

BS+RRSVM 55.28 8% 0.5472 0.7260 0.6147 0.5938 0.7878 0.6670

BS+RRCBLEU+OOVsub 57.25 0% 0.5590 0.7300 0.6249 0.5590 0.7300 0.6249

BS+RRWBLEU+OOVsub 58.00 0% 0.5588 0.7300 0.6246 0.5588 0.7300 0.6246

BS+RRSVM+OOVsub 54.85 0% 0.5494 0.7300 0.6174 0.5494 0.7300 0.6174

Table 3.3: Evaluation results.

• BS+RRSVM: Using SVM to rerank the n-best list.

This is followed by substituting the OOVs with the character level translations using the

learned neural translation models (which we label as +OOVsub).

Evaluation Criteria

Following [122], we evaluated the accuracy on the test set using three metrics: 1 best, 20

best and Mean Reciprocal Rank (MRR)[126]. In addition, we report the BLEU-4 [106]

scores that were computed on the word level.

Results of Automatic Evaluation

Table 3.3 shows the evaluation results. We also show the percentage of OOV terms,13

and the accuracy with and without OOV terms respectively. In general, we can see that

Pivot performs better than Direct, because the data of Ja-En and En-Zh is larger than

that of Ja-Zh. Direct+Pivot shows better performance than either method. Note that

all the results are obtained by using both corpora and dictionary for training since more

data (Corpus+Dictionary) is better ( than only Dictionary). Although we do not mention

them explicitly, Chinese character features can further improve the accuracy.

Different pruning methods show different performances, where Pr:P-T improves the

accuracy, while the other two not. To understand the reason for this, we also investi-

13An OOV term contains at least one OOV word.
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gated the statistics of the pivot tables produced by different methods. Table 3.5 shows

the statistics. We can see that compared to the other two pruning methods, Pr:P-T keeps

the number of source phrases, which leads a lower OOV rate. It also prunes the number

of average translations for each source phrase to a more reasonable quantity, which allows

the decoder to make better decisions. Although the average number of translations for the

Pr:Both setting is the smallest, it shows worse performance compared to Pr:P-T method.

We suspect the reason for this is that many pivot phrases are pruned by Pr:Both, leading to

fewer phrase pairs induced by pivoting. Augmenting with +CC leads to further improve-

ments, and substituting the OOVs using their character level translation gives slightly

better performance. Clearly, the best setting (henceforth called BS) is the one in which

the pivot-target phrase table is significance pruned before pivoting it with the source-pivot

phrase table following which the combined direct and pivoted tables are augmented with

Chinese characters. This baseline was further used for reranking experiments including

generating the first iteration of the large Chinese-Japanese dictionary (3.6M entries) which

is used to train two out of the 4 NMT models.

The most noteworthy results are obtained when reranking is performed using the bilin-

gual neural language model features. BS+RRCBLEU, which uses character BLEU as a

metric, performs almost as well as BS+RRWBLEU which uses word BLEU. There might

be a difference in the BLEU scores of these 2 settings but the crucial aspect of dictionary

evaluation is the accuracy regarding which there is no notable difference between them.

We expected that since reranking using SVM, which focuses on accuracy and not BLEU,

would yield better results but it might be the case that the training data obtained from

the n-best lists is not very reliable. Finally, substuting the OOVs from the reranked lists

further boosts the accuracies and although the increment is slight the OOV rate goes

down to 0%. It is important to understand that the 20 best accuracy is 73% in the best

case which means that if reranking is perfect then it is possible to boost the accuracies by

approximately 15%.

The implication of the reranking work above is that reranking can help improve the

quality of a dictionary by about 2.5%. This means that if we perform the same kind

of reranking on the N-best list of the Chinese-Japanese dictionary obtained from the

3.4M Chinese terms and the 550K Japanese terms, we can further improve the quality of

the large dictionary. This can be repeated any number of times but is computationally

expensive since a new NMT model needs to be trained each time which is time consuming.

To determine if such an iterative process is even worth it or not we decided to check the

performance of the following character level NMT models on the test sets:

• Model trained on ASPEC
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Data used for model 1 best 20 best MRR

ASPEC 0.0821 0.1873 0.1097

Original Dictionary 0.3185 0.5255 0.3836

Reranked Dictionary 0.3282 0.5301 0.3910

Table 3.4: Evaluation of the test set to check whether or not the large dictionary using

reranking is better than the one that does not use reranking.

Method Size # src phrase # avg trans

w/o pruning 29G 24,228 10,451

Pr:S-P 16G 19,502 7,058

Pr:P-T 5.5G 24,226 1,744

Pr:Both 2.8G 19,502 1,069

Table 3.5: Statistics of the pivot phrase tables (for tuning and test sets combined).

• Model trained on the 3.6M Chinese-Japanese dictionary obtained using BS (Original

dictionary)

• Model trained on the 3.6M Chinese-Japanese dictionary obtained using BS + RRCBLEU

+ OOVsub (Reranked dictionary)

Table 3.4 shows the results of our additional experiment. It can be seen that the char-

acter NMT model trained on ASPEC data isn’t suitable for dictionary term translation

by itself since it gives a 1-best accuracy of 8.21%. However, the character NMT models

using the Original and Reranked dictionaries are significantly better, giving accuracies of

31.85% and 32.82%. It can be seen that the reranked dictionary NMT model gives a 1-best

accuracy that is 1% higher on the test set than that given by the original. Although, it

can be argued that the reranked dictionary has far fewer OOVs as compared the original,

referring to Table 3.3 shows that the OOV substitution procedure only increases the ac-

curacies by up to 0.3%. This means that the bulk of the improvement is a result of the

reranking. Thus repeatedly using the previously generated bilingual dictionary to train a

NMT model which can then be used to rerank it to yield the next iteration of the bilingual

dictionary can eventually lead to a dictionary which is of sufficiently high quality. Before

committing to this task we also decided to perform manual analysis to determine how

many repetitions might be sufficient.
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Results of Manual Evaluation

We manually investigated the test set terms, whose top 1 translation was evaluated as

incorrect according to our automatic evaluation method. Based on our investigation,

nearly 75% of them were actually correct translations. They were undervalued because

they were not covered by the reference translations in our test set. Taking this observation

into consideration, the actual 1 best accuracy is about 90%. Automatic evaluation tends

to greatly underestimate the results because of the incompleteness of the test set.

3.5.3 Evaluating the Large Scale Dictionary

As mentioned before the setting Direct+Pivot (Pr:P-T)+CC was used to translate the Ja

terms in the JST (550k) dictionary to Zh and the Zh terms in the ISTIC (3.4M) dictionary

to Ja so as to construct the Ja-Zh dictionary. The size of the constructed dictionary is 3.6M

after discarding the overlapped term pairs in the two translated dictionaries. Since we had

no references to automatically evaluate this massive dictionary, we evaluated its accuracy

by humans. We asked 4 Ja-Zh bilingual speakers to evaluate 100 term pairs, which were

randomly selected the constructed dictionary. Figure 3.5 shows the web interface used for

human evaluation. It allows the evaluators to correct errors and well as leave subjective

comments, which can be used to refine our methods. The evaluation results indicate that

the 1 best accuracy is about 90%, which is consistent with the manual evaluation results

on the test set. This means that the large bilingual dictionary which also consists of

technical terms (just as the test set) is of a very high quality and can be used as is in

other NLP tasks including machine translation. Due to lack of computational resources

and time constraints we decided not to pursue the repetitive task of iteratively improving

the dictionary and instead chose to focus on other, more interesting problems like Domain

Adaptation and Transfer Learning.

3.6 Conclusion and Future Work

In this Chapter, we presented a dictionary construction method via pivot-based SMT with

significance pruning, chinese character knowledge and bilingual neural network language

model based features reranking. Large-scale Ja-Zh experiments show that our method is

quite effective. Manual evaluations showed that 90% of the terms are correctly translated,

which indicates a high practical utility value of the dictionary. We plan to make the

constructed dictionary (of roughly 3.6M Chinese-Japanese technical terms) available to

the public in near future, and hope that crowdsourcing could be further used to improve
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Figure 3.5: Human evaluation web interface.

it.

We observed that the weights learned for the neural features and found out that the

highest weight was assigned to the feature obtained using the model learned using this

dictionary. And since reranking did improve the accuracies on the test set, it is quite

evident that this dictionary is of a fairly high quality.

This work serves to show just how powerful neural networks are since using neural net-

work features itself was enough to boost the quality of dictionary extraction by roughly

2.5%. This was a strong reason for us to invest into fully end-to-end NMT models, espe-

cially in a low resource scenario. In this work we were fortunate enough to obtain domain

specific data but in most cases such data is either small or non existent. We thus decided

to pursue two lines of research: a. Using large out of domain data with small in domain

data to help improve domain specific translation quality (Chapter 4) and b. Transferring

knowledge from corpora for a resource rich language pair to help improve the performance

of a resource poor language pair (Chapter 5).



Chapter 4

Effective Domain Adaptation for

Neural MT

In the previous chapter we have shown how Neural Machine Translation (NMT) can be

used to obtain features to improve the quality of Phrase Based Statistical Machine Trans-

lation (PBSMT). Around the time our dictionary extraction efforts were being carried

out, NMT was relatively new. It was shown that NMT yielded impressive results in re-

source rich situations and although it was shown to be useful for dictionary extraction it

was known to perform poorly for low resource scenarios. However, work done on trans-

fer learning [135] showed that NMT has the ability to leverage resource rich models to

improve performance in resource poor scenarios which spurred us to fully investigate this

phenomenon.

In the case of Japanese-Chinese technical term dictionary extraction we were fortunate

enough to have in domain data (technical domain parallel corpora between Japanese,

Chinese and English) but it is not always the case for many language pairs. More often

than not, the quality of NLP processing is higher when the systems are designed for a

specific scenario or use case. As such, it is crucial to have models that truly represent

the domain for which translation is being performed. Such domain specific models can

then be used to greater effect for a variety of tasks not limited to dictionary translation.

Domain Adaptation, the task of obtaining such domain specific models, is a low resource

machine translation task. It is relatively new in the case of NMT and thus in this chapter

we explore the following question: “What are the fastest and most effective strategies for

leveraging monolingual and bilingual data to obtain domain specific NMT models?”

We conduct a comprehensive empirical comparison of methods in both categories while

proposing a novel domain adaptation method named mixed fine tuning, which combines

two existing methods namely fine tuning and multi-domain NMT. For domain adaptation

70
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using in-domain monolingual corpora, we compare two existing methods namely language

model fusion and synthetic data generation. In addition, we propose a method that com-

bines these two categories of approaches. We discuss the merits and demerits of all the

solutions we explored and thereby set the road for further work in domain adaptation.

4.1 Introduction

One of the most attractive features of neural machine translation (NMT) [6, 24, 121] is

that it is possible to train an end to end system without the need to deal with word align-

ments, translation rules and complicated decoding algorithms, which are a characteristic

of statistical machine translation (SMT) systems [76]. As can be seen in Chapters 3 and 4,

obtaining optimal results involve the combination of multiple components such as transla-

tion models1, language models and reordering models followed by system combination or

re-ranking. Although, NMT has shown to yield impressive results for the French-English-

German datasets, it is reported that NMT works better than SMT only when there is an

abundance of parallel corpora. In the case of low resource domains, vanilla NMT is either

worse than or comparable to SMT, due to overfitting on the small size of parallel corpora

[135].

Since PBSMT leads to large models (phrase and reordering tables and language models)

it is very unattractive, especially because it cannot lead to the development of models that

are end to end. Although we were able to extract Chinese-Japanese technical dictionaries

of high quality, our overall framework became even bulkier than before. Moreover, PBSMT

systems are not naturally suited for leveraging additional corpora (and hence translation

models) since they do not work on high level abstractions of sentences. We noticed that

the NMT models could be trained reasonably quickly with sufficient computing power

(GPUs) in an end to end manner. Moreover, NMT models rely on continuous space

representations which are able to capture certain aspects of language that PBSMT models

cannot. Although, in the case of Japanese-Chinese technical term dictionary extraction we

were fortunate enough to have in domain data (technical domain parallel corpora between

Japanese, Chinese and English) it is not always the case for many language pairs. As such,

it is crucial to have models that truly represent the domain for which translation is being

performed and is a strong argument for domain adaptation.

Domain adaptation has been shown to be effective for low resource NMT, and two

categories of approaches have been proposed. Refer to Figure 4.1 for an overview. There

1Moreover these translation models sometimes require noise control methods which involve computa-

tionally expensive techniques such as statistical significance pruning.
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Figure 4.1: Overview of all domain adaptation approaches we explored for NMT.

are two categories of methods:

The first category is adaptation using out-of-domain parallel corpora, for which we

conducted an empirical comparison of a number of simple but effective approaches. The

conventional method in this category is fine tuning, in which an out-of-domain model

is further trained on in-domain data [91, 114, 118, 41]. However, fine tuning tends to

overfit quickly due to the small size of the in-domain data. Multi-Domain NMT [71] is

another method in this category, which involves training a single NMT model for multiple

domains. This method adds tags “<2domain>” to the source sentences in the parallel

corpora to indicate domains without any modifications to the NMT system architecture.

We decided to combine both these approaches and proposed a new domain adaptation

method called mixed fine tuning, where we first train an NMT model on an out-of-domain

parallel corpus, and then fine tune it on a parallel corpus that is a mix of the in-domain and

out-of-domain corpora [27]. This work was also motivated by a recent study on transfer

learning for neural networks [95] showed that it is possible to train a neural network on

a resource rich natural language processing (NLP) task followed by training on a mix of

resource rich and poor tasks, leading to significant gains especially for the resource poor

NLP task. Fine tuning on the mixed corpus instead of the in-domain corpus can address

the overfitting problem.

The second category of approaches is adaptation using in-domain monolingual cor-

pora, and two methods have been proposed namely language model (LM) fusion [52] and



4.1. INTRODUCTION 73

synthetic data generation [114]. The LM fusion method trains an in-domain recurrent

neural network (RNN) LM on target in-domain monolingual data, and uses the trained

LM for the NMT decoder via fusion [52]. The synthetic data generation method generates

synthetic parallel data by back translating target in-domain monolingual data, and uses

the generated synthetic data for training NMT models [114]. In addition, we propose

a method that combines these two categories of approaches, which uses the mixed fine

tuned NMT model for back translation to generate synthetic data and further uses the

generated data for mixed fine tuning. The reason that we combine with mixed fine tuning

is that it shows the best performance among the three domain adaptation methods using

out-of-domain parallel corpora

In this chapter, we compare and contrast all the methods under the two categories in

order to be as thorough and comprehensive as possible because we expect that our work

will act as a starting point for researchers interested in exploring domain adaptation.

We compare all the methods in two different corpora settings on two different language

pairs:

• Manually created resource poor corpus (Chinese-to-English translation): Using the

out-of-domain NTCIR parallel data (patent domain; resource rich) [46] and the in-

domain monolingual data from the QED corpus [2] to improve the translation quality

for the IWSLT data (TED talks; resource poor) [19].

• Automatically extracted resource poor corpus (Chinese-to-Japanese translation):

Using the out-of-domain ASPEC parallel data (scientific domain; resource rich) [98]

and the in-domain monolingual data from Wikipedia to improve the translation qual-

ity for the Wiki data (resource poor). The Wiki data was automatically extracted

from Wikipedia [26].

We observed that mixed fine tuning works significantly better than methods that use fine

tuning and domain tags separately. The combination of the two categories of approaches

can further improve the performance, but it is sensitive to the quality of the synthetic

data. Our contributions are twofold:

• We propose novel methods that combine the best of existing approaches and show

that they are effective.

• To the best of our knowledge this is the first work on a comprehensive empirical

comparison of various domain adaptation methods.
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Figure 4.2: The rnnsearch model [6].

4.2 Related Work

Fine tuning has also been explored for domain adaptation for other NLP tasks using neural

networks (NN). [95] used fine tuning for both equivalent/similar tasks but with different

data sets, and different tasks but share the same NN architecture. They found that the

effectiveness of fine tuning depends on the relatedness of the tasks. Tag based NMT has

also been shown to be effective for other sub tasks of NMT. [113] tried to control the

politeness of translations by appending a politeness tag to the source side language that

uses honorific. [65] mixed different language pairs by appending a target language tag to

the source text of each language for training a multilingual NMT system. Monolingual

corpora are widely used for SMT. In SMT, they are used for training a LM, and the LM

is used as a feature for the decoder in a log-linear model [76].

Domain adaptation research for SMT can be divided into 3 categories: self-training,

data selection, and data weighting [20]. Self-training shares the same concept of synthetic

data generation but uses the generated synthetic data for SMT. Data selection focuses

on either parallel or monolingual in-domain data selection from general-domain data, and

various selection methods such as LM and topic model based ones have been developed

[5]. Data weighting method clusters general-domain data into several sub-corpora, and

combines the models trained on these sub-corpora to the in-domain one by giving different

weights to these models [20].
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4.3 Neural Machine Translation

Although we have already explained NMT in detail we once again explain it in brief for

the reader’s convenience.

NMT is an end-to-end approach for translating from one language to another, that

relies on deep learning, to train a translation model [6, 24, 121]. We use an encoder-decoder

model with attention [6] for our experiments. This model is also known as rnnsearch.

Figure 4.2 describes the rnnsearch model [6], which takes in an input sentence and its

translation and updates its parameters by minimizing the loss on the predicted translation.

The model consists of 3 main parts, namely, the encoder, decoder and attention model. An

abundance of parallel corpora are required to train an NMT system to avoid overfitting,

due to the large amounts of parameters in the encoder, decoder, and attention model.

The encoder consists of an embedding mechanism to convert words into their contin-

uous space representations. These embeddings by themselves do not contain information

about relationships between words and their positions in the sentence. Using a RNN layer,

long short term memory (LSTM) [59] in this case, this can be accomplished. A RNN main-

tains a memory (also called a state or history) which allows it to generate a continuous

space representation for a word given all past words that have been seen. There are 2

LSTM layers which encode forward and backward information. By using both forward

and backward recurrent information one obtains a continuous space representation for a

word given all words before as well as after it. The decoder is conceptually a RNNLM

with its own embedding mechanism, a LSTM layer to remember previously generated

words and a deep softmax layer (maxout followed by softmax) to predict a target word.

The encoder and decoder are coupled by using an attention mechanism which computes a

weighted average of the recurrent representations generated by the encoder thereby acting

as a soft alignment mechanism. This weighted averaged vector, also known as the context

or attention vector, is fed to the decoder LSTM along with the embedding of the previ-

ously predicted word to produce a representation that is passed to the deep softmax layer2

to predict the next word.

2The deep softmax layer contains a maxout layer which is a feedforward layer with max pooling.

It takes in the attention vector, the embedding of the previous word and the recurrent representation

generated by the decoder LSTM and computes a final representation, which is fed to a simple softmax

layer.
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Figure 4.3: Fine tuning for domain adaptation.

4.4 Methods for Comparison

All the methods that we compare are simple and do not need any modifications to the

NMT system.
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Figure 4.4: Mixed fine tuning with domain tags for domain adaptation (The section in

the dotted rectangle denotes the multi-domain method).

4.4.1 Adaptation With Out-Of-Domain Parallel Corpora

Fine Tuning

Fine tuning is the conventional way for domain adaptation, and thus serves as a baseline

in this study. In this method, we first train an NMT system on a resource rich out-

of-domain corpus till convergence, and then fine tune its parameters on a resource poor

in-domain corpus (Figure 4.3). The main reason for choosing method is its simplicity

and the short amount of time required to train a high quality in-domain model. The fine

tuning approach for NMT is the same as the transfer learning approach proposed by [135].

The out-of-domain model can be called as the parent model and the in-domain model can
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be called as the child model. This transfer learning task is simpler because the source

languages for the parent and child languages are the same.

Multi-Domain

The multi-domain method is originally motivated by [113], which uses tags to control

the politeness of NMT translations. The overview of this method is shown in the dotted

section in Figure 4.4. In this method, we simply concatenate the corpora of multiple

domains with two small modifications:

• Appending the domain tag “<2domain>” to the source sentences of the respec-

tive corpora.3 This primes the NMT decoder to generate sentences for the specific

domain.

• Oversampling the smaller corpus so that the training procedure pays equal attention

to each domain.

Both these modifications are motivated by the work on zero-shot NMT [65]. We

can further fine tune the multi-domain model on the in-domain data, which is named as

“multi-domain + fine tuning.”

Mixed Fine Tuning

The proposed mixed fine tuning method is a combination of the above methods (shown in

Figure 4.4). The training procedure is as follows:

1. Train an NMT model on out-of-domain data till convergence.

2. Resume training the NMT model from step 1 on a mix of in-domain and out-of-

domain data (by oversampling the in-domain data) till convergence.

By default, we utilize domain tags, but we also consider settings where we do not use them

(i.e., “w/o tags”). We can further fine tune the model from step 2 on the in-domain data,

which is named as “mixed fine tuning + fine tuning”.

Note that in the fine tuning method, the vocabulary obtained from the out-of-domain

data is used for the in-domain data; while for the multi-domain and mixed fine tuning

methods, we use a vocabulary obtained from the mixed in-domain and out-of-domain

data for all the training stages. Although, it might seem that using the out-of-domain

3We verified the effectiveness of the domain tags by comparing against a setting that does not use

them, see the “w/o tags” settings in Tables 4.1 and 4.2.
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Figure 4.5: Language model shallow fusion.

vocabulary for the in-domain data might increase the OOV rate for the in-domain model,

this should not impact the translation quality because sub-word segmentation eventually

maximizes the vocabulary overlap because of its ability to back-off to smaller sub-word

units. Regarding development data, for fine tuning, an out-of-domain development set

is first used for training the out-of-domain NMT model, then an in-domain development

set is used for fine tuning; For multi-domain, a mix of in-domain and out-of-domain

development sets are used; For mixed fine tuning, an out-of-domain development set is

first used for training the out-of-domain NMT model, then a mix of in-domain and out-

of-domain development sets are used for mixed fine tuning.

4.4.2 Adaptation With In-Domain Monolingual Corpora

Language Model Fusion

One technique of adaptation with in-domain monolingual data is to train an in-domain

RNNLM for the NMT decoder and combine it (also known as fusion) with any NMT model

[52]. Fusion can either be shallow (i.e., ensembling the NMT and RNNLM models) or deep

(i.e., integrating the RNNLM into the NMT architecture). In this study, we compare with

shallow fusion, but leave the comparison of deep fusion as future work. Shallow fusion

is an approach where LMs trained on large monolingual corpora following which they

are combined with a previously trained NMT model [52]. The combination is essentially

the same as ensembling. In order to simplify our experiments we simply converted a

monolingual corpus into a bilingual corpus where the source side sentences are dummy

tokens. A NMT model trained using this corpus is essentially the same as a RNNLM.

We then simply ensemble this LM (RNNLM as a NMT model) with an in-domain NMT

model to perform shallow fusion. This ensembling technique is a kind multi-source NMT

approach where one of the sources is an empty sentence. Figure 4.5 shows the flowchart

of this method.
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Figure 4.6: Synthetic data generation for NMT.

Synthetic Data Generation

As NMT itself has the ability of learning LMs, target monolingual data also can be used

directly for the NMT system after back translating them to generate a synthetic parallel

corpus [114]. Figure 4.6 shows the flowchart of this method. It has been shown that

synthetic data generation is very effective for domain adaptation [114]. However, in [114],

they only used a single MT system for back translation. The back translation quality can

be crucial in this method, and thus we compare different MT systems for back translation

in this study. In particular, we compared the performance difference of using the vanilla

and mixed fine tuned NMT systems for back translation, which are named as “synthetic

data by vanilla NMT” and “synthetic data by mixed fine tuning.” Once synthetic data

has been generated, we use it for training NMT systems.

4.4.3 Combination

Treating synthetic data as in-domain parallel data, we can use it for training a out-of-

domain parallel corpora adapted system. Here, we propose a method that combines syn-

thetic data generation with mixed fine tuning with the following steps:

1. Generate synthetic data using the mixed fine tuned NMT model.

2. Resume training the NMT model trained on out-of-domain data on a mix of in-

domain, out-of-domain, and synthetic data till convergence. The in-domain data is

oversampled, and we appended the same “<2in-domain>” tag to the source sen-

tences of the synthetic data.

This method is named as “mixed fine tuning with synthetic data” or “synthetic corpus for

mixed fine tuning”.

4.5 Experimental Settings

We conducted NMT domain adaptation experiments in two different corpora settings. We

also compared our results with SMT.
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4.5.1 High Quality In-Domain Corpus Setting

We focused on Chinese-to-English translation for the high quality in-domain corpus set-

ting. We utilized the resource rich patent domain (out-of-domain) parallel data and in-

domain monolingual data to augment the resource poor spoken language parallel (in-

domain) data. The patent MT task at the NTCIR-10 workshop4 [46] focused on the

Chinese-English (NTCIR-CE) language pair as one of the sub-tasks. The NTCIR-CE

task uses 1,000,000, 2,000, and 2,000 sentences for training, development, and testing,

respectively. For in-domain monolingual data, we used the English monolingual corpus

of about 2.5M sentences from the QED corpus5 [2]. The QED corpus is an educational

domain corpus, which is a collection of small bilingual and monolingual corpora for 20

languages. We chose the QED corpus because just like the IWSLT corpus it contains

transcriptions in the spoken language domain. Furthermore, QED corpus belongs to the

technical and educational domain, which is similar to many TED talks contained in the

IWSLT corpus.

The TED talk MT task at the IWSLT 2015 workshop [19] focused on spoken do-

main MT for Chinese-English (IWSLT-CE) as one of the sub-tasks. The IWSLT-CE task

contains 209,491 sentences for training. We used the dev 2010 set for development, con-

taining 887 sentences. We evaluated all methods on the 2010, 2011, 2012, and 2013 test

sets, containing 1570, 1245, 1397, and 1261 sentences, respectively.6

4.5.2 Low Quality In-Domain Corpus Setting

Chinese-to-Japanese translation was the focus of the low quality in-domain corpus setting.

We utilized the resource rich scientific out-of-domain parallel data and the monolingual

in-domain data from Wikipedia to augment the resource poor Wikipedia (essentially open)

in-domain parallel data. The scientific domain MT was conducted on the Chinese-Japanese

paper excerpt corpus (ASPEC-CJ)7 [98], which is one subtask of the Workshop on Asian

Translation (WAT)8 [97]. The ASPEC-CJ task uses 672315, 2090, and 2107 sentences

for training, development, and testing, respectively. For the monolingual in-domain data,

we downloaded the Japanese Wikipedia database dump (20120916).9 We used a Python

4http://ntcir.nii.ac.jp/PatentMT-2/
5http://alt.qcri.org/resources/qedcorpus/
6We filtered the English sentences containing in the development and testing sets from the English

QED data used for adaptation.
7http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
8http://orchid.kuee.kyoto-u.ac.jp/WAT/
9http://dumps.wikimedia.org/jawiki
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script10 to extract and clean the text from the dump, obtaining 10 million Japanese sen-

tences. From which we randomly selected 3 million sentences,11 and used them for domain

adaptation. The Wikipedia domain MT task was conducted on a Chinese-Japanese corpus

automatically extracted from Wikipedia (WIKI-CJ) [26] using the ASPEC-CJ corpus as

a seed. The WIKI-CJ task contains 136,013, 198, and 198 sentences for training, develop-

ment, and testing, respectively.12

4.5.3 MT Systems Settings

For NMT, we used the KyotoNMT system13 [32]. The NMT settings were the same as

[32] except that we used a vocabulary size of 32,000 for all the experiments, and did not

ensemble independently trained parameters. The sizes of the source and target vocabu-

laries, the source and target side embeddings, the hidden states, the attention mechanism

hidden states, and the deep softmax output with a 2-maxout layer were set to 32,000,

620, 1000, 1000, and 500, respectively. We used 2-layer LSTMs for both the source and

target sides. ADAM was used as the learning algorithm, with a dropout rate of 20% for

the inter-layer dropout, and L2 regularization with a weight decay coefficient of 1e-6. The

mini batch size was 64, and sentences longer than 80 tokens were discarded. We early

stopped the training process when we observed that the BLEU score of the development

set converges. For testing, we ensembled the three parameters of the best development

loss, the best development BLEU, and the final parameters in a single training run. Beam

size was set to 100. The maximum length of the translation was set to 2, and 1.5 times of

the source sentences for Chinese-to-English, and Chinese-to-Japanese, respectively.

We trained NMT models to simulate RNNLMs for Japanese and English using the

procedure mentioned in Section 4.4.2. For generating synthetic data, we trained English-

to-Chinese and Japanese-to-Chinese NMT systems with the same settings, but we used

a beam size of 12 for decoding in order to translate a huge number of sentences with

both sufficient speed and accuracy. The maximum length of the translation was set to

10http://code.google.com/p/recommend-2011/source/browse/Ass4/WikiE-

xtractor.py
11Typically, the number of sentences of monolingual corpora used for language modeling is an order

of magnitude larger than the number of sentences of parallel corpora used. We could have chosen to

work with the all 10 million monolingual sentences, but for the chosen model size, 3 million sentences

is sufficient to saturate it. Previous works also show that beyond a certain corpus size the gains reduce

significantly. Moreover, it takes a substantially longer time to train a model on larger corpora.
12We filtered the Japanese sentences containing in the development and testing sets from the selected

Japanese Wikipedia data used for adaptation.
13https://github.com/fabiencro/knmt
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2, and 1.5 times of the source sentences for English-to-Chinese, and Japanese-to-Chinese,

respectively.

For performance comparison, we also conducted experiments on phrase based SMT

(PBSMT). We used the Moses PBSMT system [76] for all of our MT experiments. For

the respective tasks, we trained 5-gram LMs on the target side of the training data using

the KenLM toolkit14 with interpolated Kneser-Ney discounting, respectively. In all of our

experiments, we used the GIZA++ toolkit15 for word alignment; tuning was performed

by minimum error rate training [103], and it was re-run for every experiment.

For both MT systems, we preprocessed the data as follows. For Chinese, we used Ky-

otoMorph16 for segmentation, which was trained on the CTB version 5 (CTB5) and SCTB

[30]. For English, we lowercased and tokenized the sentences using the tokenizer.perl script

in Moses. Japanese was segmented using JUMAN17 [84]. The in-domain monolingual En-

glish and Japanese data were preprocessed with the same methods.

For NMT, we further split the words into sub-words using byte pair encoding (BPE)

[116], which has been shown to be effective for the rare word problem in NMT. Another

motivation for using sub-words is that it enables different domains to share more vocabu-

lary, which is important, especially for the resource poor domain. For the Chinese-English

tasks, we trained two BPE models on the Chinese and English vocabularies, respectively.

For the Chinese-Japanese tasks, we trained a joint BPE model on both of the Chinese

and Japanese vocabularies, because Chinese and Japanese could share some vocabularies

of Chinese characters. The number of merge operations was set to 30,000 for all the tasks.

4.6 Results

Tables 4.1 and 4.2 show the translation results on the Chinese-to-English and Chinese-to-

Japanese tasks, respectively. The entries with SMT and NMT are the baseline PBSMT

and NMT systems, respectively. The remaining entries represent the systems trained using

the methods specified in Section 4.4. To be specific the other NMT systems are:

1. “Fine tuning” denotes the systems that used the parameters obtained from the out-

of-domain data as the initial parameters for training the in-domain data. “Multi-

Domain” denotes the systems trained on the mixed in-domain and out-of-domain

data, with the domain tags for each domain. “Mixed fine tuning” denotes the sys-

14https://github.com/kpu/kenlm/
15http://code.google.com/p/giza-pp
16https://bitbucket.org/msmoshen/kyotomorph-beta
17http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
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tems that used the parameters obtained from the out-of-domain data as the initial

parameters for training the mixed out-of-domain and in-domain data.

2. “Multi-Domain w/o tags” and “Mixed fine tuning w/o tags” denote the systems

same as “Multi-Domain” and “Mixed fine tuning”, respectively, but did not specify

the domain tags.

3. “Mixed fine tuning” denote the systems that are trained using the novel approach

we propose.

4. “Multi-Domain + Fine tuning” and “Mixed fine tuning + Fine tuning” denotes the

systems first trained with “Multi-Domain” and “Mixed fine tuning”, respectively,

and then fine tuned on the in-domain data.

5. “LM fusion” denotes the systems where we ensembled the in domain NMT model

with the in domain neural LM (this neural LM is an NMT system where the source

sentence is empty).

6. “Synthetic data by vanilla NMT” denotes the systems where the synthetic data used

to train them are obtained by translating monolingual corpora using the baseline

NMT system.

7. “Synthetic data by mixed fine tuning” denotes the systems where the synthetic data

used to train them are obtained by translating monolingual corpora using the mixed

fine tuning NMT system.

8. “Mixed fine tuning with synthetic data” denotes the systems where we used mixed

fine tuning except that the in-domain data is now a combination of the original

in-domain data and the synthetic in-domain data obtained using mixed fine tuning.

In both tables, the numbers in bold indicate the best system and all systems that were

not significantly different from the best system. The significance tests were performed

using the bootstrap resampling method [72] at p < 0.05.

We can see that without domain adaptation, the SMT systems perform significantly

better than the NMT system on the resource poor domains, i.e., IWSLT-CE and WIKI-CJ;

while on the resource rich domains, i.e., NTCIR-CE and ASPEC-CJ, NMT outperforms

SMT. Directly using the SMT/NMT models trained on the out-of-domain data to translate

the in-domain data gives BLEU scores that are substantially lower than those given by

using the in-domain models. With our proposed “mixed fine tuning” and “mixed fine

tuning with synthetic data” domain adaptation methods, NMT significantly outperforms

SMT on the in-domain tasks.
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IWSLT-CE

System NTCIR-CE test 2010 test 2011 test 2012 test 2013 average

IWSLT-CE SMT - 12.73 16.27 14.01 14.67 14.31

IWSLT-CE NMT - 6.75 9.08 9.05 7.29 7.87

NTCIR-CE SMT 29.54 3.57 4.70 4.21 4.74 4.33

NTCIR-CE NMT 37.11 2.23 2.83 2.55 2.85 2.60

Fine tuning 17.37 13.93 18.99 16.12 17.12 16.41

Multi-Domain 36.40 13.42 19.07 16.56 17.54 16.34

Multi-Domain w/o tags 37.32 12.57 17.40 15.02 15.96 14.97

Multi-Domain + Fine tuning 14.47 13.18 18.03 16.41 16.80 15.82

Mixed fine tuning 37.01 15.04 20.96 18.77 18.63 18.01

Mixed fine tuning w/o tags 39.67 14.47 20.53 18.10 17.97 17.43

Mixed fine tuning + Fine tuning 32.03 14.40 19.53 17.65 17.94 17.11

LM fusion - 4.87 6.51 6.23 4.67 5.45

Synthetic data by vanilla NMT - 10.07 15.36 12.36 11.92 12.19

Synthetic data by mixed fine tuning - 10.88 15.88 13.60 12.85 13.04

Mixed fine tuning with synthetic data 38.00 14.46 20.39 17.81 17.72 17.27

Table 4.1: Domain adaptation results (BLEU-4 scores) for IWSLT-CE using NTCIR-CE.

4.6.1 Adaptation With Out-of-domain Parallel Corpora

Out of all the domain adaptation methods using out-of-domain parallel corpora, “mixed

fine tuning” shows the best performance. We believe the reason for this is that “mixed fine

tuning” can address the over-fitting problem of “fine tuning.” We observed that both fine-

tuning and mixed fine-tuning tends to converge after 1 epoch of training, and thus we early

stopped training soon after 1 epoch. After 1 epoch of training, fine-tuning overfits very

quickly, while mixed fine-tuning does not overfit. In addition, “mixed fine tuning” does not

worsen the quality of out-of-domain translations, while “fine tuning” and “multi-domain”

do. One shortcoming of “mixed fine tuning” is that compared to “fine tuning,” it took

longer for the fine tuning process, as the time until convergence is essentially proportional

to the size of the data used for fine tuning. Note that training “fine tuning” models for

the same number of iterations as the “mixed fine tuning” models are trained is not helpful

because it leads to overfitting.

“multi-domain” performs either as well as (IWSLT-CE) or worse than (WIKI-CJ)

“Fine tuning,” but “mixed fine tuning” performs either significantly better than (IWSLT-

CE) or is comparable to (WIKI-CJ) “fine tuning.” We believe the performance difference

between the two tasks is due to their unique characteristics. As WIKI-CJ data is of

relatively poorer quality, mixing it with out-of-domain data does not have the same level

of positive effects as those obtained by the IWSLT-CE data.

The domain tags are helpful for both “multi-domain” and “mixed fine tuning.” Es-
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System ASPEC-CJ WIKI-CJ

WIKI-CJ SMT - 36.83

WIKI-CJ NMT - 18.29

ASPEC-CJ SMT 36.39 17.43

ASPEC-CJ NMT 42.92 20.01

Fine tuning 22.10 37.66

Multi-Domain 42.52 35.79

Multi-Domain w/o tags 40.78 33.74

Multi-Domain + Fine tuning 22.78 34.61

Mixed fine tuning 42.56 37.57

Mixed fine tuning w/o tags 41.86 37.23

Mixed fine tuning + Fine tuning 31.63 37.77

LM fusion - 17.06

Synthetic data by vanilla NMT - 13.96

Synthetic data by mixed fine tuning - 37.30

Mixed fine tuning with synthetic data 39.67 41.37

Table 4.2: Domain adaptation results (BLEU-4 scores) for WIKI-CJ using ASPEC-CJ.

sentially, further fine tuning on in-domain data does not help for both “multi-domain”

and “mixed fine tuning.” We believe that there are two reasons for this. Firstly, the

“multi-domain” and “mixed fine tuning” methods already utilize the in-domain data used

for fine tuning. Secondly, fine tuning on the small in-domain data overfits very quickly.

Actually, we observed that adding fine-tuning on top of both “multi-domain” and “mixed

fine tuning” overfits at the beginning of training.

“mixed fine tuning” performs significantly better on the out-domain NTCIR-CE test

set without tags as compared to with tags (39.67 v.s. 37.01). We believe the reason for

this is that without tags the IWSLT-CE in-domain data can contribute more to the out-of-

domain NTCIR-CE data. With tags, the NMT training tends to learn a model that pays

equal attention to each domain. Without tags, the NMT training pays more attention to

the NTCIR-CE data as it contains much longer sentences, although we oversampled the

IWSLT-CE data. As the IWSLT-CE data is TED talks, there could be some vocabulary

and content overlaps between the IWSLT-CE the NTCIR-CE data, and thus appending

the IWSLT-CE data to the NTCIR-CE data can benefit for the NTCIR-CE translation.

In the case of WIKI-CJ and ASPEC-CJ, due to the low quality of WIKI-CJ, appending

WIKI-CJ to ASPEC-CJ does not improve the ASPEC-CJ translation.
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Source 有一天，洛杉的作家Ｓｔｅｖｅ　Ｌｏｐｅｚ走在洛杉大街上听到一曲美妙的曲。

Reference one day, los angeles times columnist steve lopez was walking along the streets of downtown los angeles when he heard

beautiful music.

IWSLT-CE NMT and one day, the los angeles of los angeles, los angeles, had a very clear understanding of what was going on in the

middle of the night.

Fine tuning one day, the autobiographers of los angeles, steve lopez, wrote a beautiful piece of music in los angeles.

Multi-Domain one day, l.a. county’s columnist, steve petranz, walked the streets of los angeles and heard a beautiful piece of music.

Mixed fine tuning one day, the los angeles times column, steve lopez, was walking on the streets of los angeles and heard a beautiful pie-

ce of music.

LM fusion and at the end of the day, there was a friend of los angeles, who was at the end of the 19th century, and you know what

was going on in the middle of the night.

Synthetic data by vanilla NMT one of the early days of los angeles, lewis carroll, was to hear a wonderful dwelling in the streets of paris.

Synthetic data by mixed fine tuning one day, the <br/> commentators of the los angeles <br/> walked on the streets <br/> on the streets of los angeles.

Mixed fine tuning with synthetic data and one day, the los angeles times column writer, steve lozz, walked on the streets of los angeles to hear a beautiful

song.

Table 4.3: A Chinese-to-English translation example in the IWSLT-CE test set.

4.6.2 Adaptation With In-domain Monolingual Corpora

Unfortunately, LM shallow fusion using ensembling reduces the translation quality con-

trary to our expectation. In the original approach for shallow fusion, the LM was given a

very low weight while ensembling [52], but in our approach we give equal weights. More-

over, it was not shown to be effective in most cases [52]. In fact there were cases where

shallow fusion caused a drop in translation quality, which is an observation in line with

ours. In the future, we will experiment with various weighting approaches to control the

impact that an LM has on the translation quality.

For synthetic data generation, we can see that the effectiveness of this method signifi-

cantly differs on back translation methods (i.e., vanilla NMT and mixed fining tuning) and

data sets (i.e., IWSLT-CE and WIKI-CJ). To understand the reason for this, we investi-

gated the back translation quality of the methods on the two data sets. The average BLEU

scores on the IWSLT-CE data sets for English-to-Chinese translation are 11.51, and 13.08

for vanilla NMT, and mixed fining tuning, respectively. The BLEU scores on the WIKI-CJ

data sets for Japanese-to-Chinese translation are 15.52, and 33.00 for vanilla NMT, and

mixed fining tuning, respectively. We can see that the BLEU scores on the generated

synthetic data closely correlates with the BLEU scores of back translation. Therefore, we

conclude that the effectiveness of synthetic data generation significantly depends on the

back translation quality.

4.6.3 Combination

The combination method “mixed fine tuning with synthetic data” shows slightly worse

performance than “mixed fine tuning” on IWSLT-CE, while shows the best performance

on WIKI-CJ. We believe the reason for this is the translation quality of the synthetic data.
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On IWSLT-CE, the performance of “Synthetic data by mixed fine tuning” is significantly

worse than that of ‘Mixed fine tuning,” and thus combining them slightly decreases the

performance. On WIKI-CJ, as “synthetic data by mixed fine tuning” and “mixed fine

tuning” show comparable performance, combining them further improves the performance.

4.6.4 Translation Example

To further understand the performance of different methods, we investigated the trans-

lation results. We observed significant improvement by our proposed domain adaptation

methods. Table 4.3 shows a translation example from the IWSLT-CE test set of different

methods. We can see that the translation of “IWSLT-CE NMT” is very bad. Besides the

missing meaning of the source sentence, it also produces a repetition of “los angeles.” “fine

tuning” improves the translation, but with a translation mistake of “autobiographers” and

missing translations. “multi-domain” has two translation mistakes of “county’s,” and “pe-

tranz.” “mixed fine tuning” produces a good translation with a small translation mistake

that translates “columnist” to “column.” “LM fusion” completely changes the meaning

of the source sentence. “synthetic data by vanilla NMT” has many translation mistakes

especially for nouns (i.e., “lewis carroll,” “dwelling,” and “paris”). “synthetic data by

mixed fine tuning” accidentally adds <br/> tags with missing translations and a repeti-

tion. “mixed fine tuning with synthetic data” translates all the contents correctly.

4.7 Conclusion

In this chapter, we explored the problem of domain adaptation and proposed novel methods

for NMT. Our method, mixed fine tuning, uses out-of-domain parallel corpora along with

in-domain data and learns a single NMT model that dramatically improves the in-domain

translation quality while being able to give high quality out-of-domain translations as well.

A combination of mixed fine tuning and synthetic data generation that uses both out-of-

domain parallel and in-domain monolingual corpora18 gives further improvements for the

Wikipedia translation task. We empirically compared our proposed methods against the

other previously proposed methods that either use out-of-domain parallel or in-domain

monolingual corpora. We have shown that our proposed methods are effective but sensitive

to the quality of the in-domain data used. The presented methods are language and

domain independent, and thus we believe that the general observations also hold on other

languages and domains. Furthermore, we believe the contribution in this chapter can be

18By translating the monolingual corpora to give synthetic parallel corpora.
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helpful for domain adaptation of other neural network based natural language processing

tasks. In the future, we plan to study domain adaptation using parallel corpora from other

languages. We also plan to study the in-domain data selection and weighting methods that

have been used in SMT for NMT domain adaptation.

All domain adaptation techniques in this chapter are a kind of transfer learning where

translation knowledge is transferred from a resource rich domain to a resource poor domain.

However, it is not always possible to have large out-of-domain parallel corpora for the

same language pair and thus it is necessary to leverage parallel corpora where the target

language is the same but the source language is different. To be precise, it is important to

focus on approaches where Hindi-English can be used to improve Marathi-English. In the

next chapter we explore a number of cross-lingual transfer learning approaches where we

use a resource rich language pair to help a resource poor language pair where the target

language is English. We show how using different kinds of resource rich source languages

affect the translation quality for resource poor languages. We also focus on approaches

where we use monolingual corpora to improve translation between English and a resource

poor language.



Chapter 5

Transferring Knowledge in NMT

In the previous chapter we explored various transfer learning approaches for domain adap-

tation for Neural Machine Translation (NMT). A neural model is capable of outperforming

Phrase Based Statistical Machine Translation (PBSMT) for resource rich languages. Al-

though, for resource poor languages PBSMT still is much better, transfer learning [135]

can help mitigate this weakness. In the previous chapter we showed how simply initializ-

ing a resource poor NMT model with a resource rich NMT model followed by fine tuning

yields significant improvements over PBSMT. Although there have been many separate

works on transfer learning within and across languages [65, 135, 117] there has been no

empirical comparison of these approaches in a truly multilingual setting for low resource

languages. Although, most works claim that using related languages can help improve

translation quality in a low resource scenario they either revolve around PBSMT [83] or

do not experiment with a large number of languages.

In this chapter1 we explore implicit and explicit transfer learning with focus on using

related languages for transfer learning. We empirically show that language relatedness

matters when performing transfer learning. We also show that self learning by generat-

ing synthetic corpora is reasonably successful for improving translation to resource poor

languages2.

5.1 Introduction

In the case of low resource languages like Hausa, vanilla NMT is either worse than or

comparable to PBSMT [135]. However, it is possible to use a NMT model (also known

1This work was done during an internship in Google. The corpora we used for our experiments are not

publicly available but the work done is corpus independent.
2All the languages we experimented with are morphologically richer than English.
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as a parent model) that has been trained using a large parallel corpus to initialize the

parameters of another model (also known as a child model) which will be trained on a

small parallel corpus. This process is known to give significant improvements [135] for the

latter. The target language for parent and child models is the same. In this chapter the

source language of the parent model is referred to as the parent language and the source

language for the child model is referred to as the child model. This setting is different from

transfer learning for domain adaptation because the source languages for the parent and

child models are different3. It might be possible to learn a single model for two different

source languages to translate to a target language. In this case the additional target

language data will help in a better language model (decoder). This will also enable better

source language representations to be learned in cases where the two source languages are

linguistically similar. In most situations the target language is English because parallel

corpora are mainly developed with the objective of enabling translation to English. Since

NMT models are known to yield translations that are more natural (fluent), it makes sense

to use an NMT model to translate monolingual corpora and generate additional synthetic

corpora. These synthetic corpora can be used to improve the language modeling capability

of the resource poor NMT models. We explored all three possibilities quantitatively and

observed interesting results with practical applications.

In the case of translation from English to other languages, especially morphologically

rich languages, there is no other choice than to leverage monolingual corpora. Although,

integrating a recurrent language model into the original NMT architecture [52] has been

shown to be quite effective, it leads to an unwieldy architecture. Augmenting bilingual

corpora with synthetic corpora obtained by translating monolingual corpora and then

using the inflated corpora in a vanilla NMT setting has shown to be even better. However,

it might not even be necessary to generate synthetic corpora at all since the NMT model

is quite efficient in leveraging additional target language data irrespective of the source

language it is accompanied with. Although there has been a reasonable amount of research

conducted on all of the above, there is no single collection of an empirical study for a large

variety of languages.

The remainder of this chapter is about an empirical study of transfer learning for NMT

for low resource languages. The main contributions of this body of work are as follows:

• We focus on translation to and from English for the following low resource languages

which have not received substantial attention: Hausa, Uzbek, Marathi, Malayalam,

3In this case the source word embeddings are randomly mapped when performing initialization but we

will see later that the nature of the source languages has an impact on the translation quality.
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Punjabi, Malayalam. For a few experimental settings we consider Kazakh, Luxem-

bourgish, Javanese and Sundanese.

• We show how language relatedness matters when performing transfer learning, more

specifically we show that using languages from the same language family yields better

improvements in translation quality as compared to using distant languages.

• We show the efficacy of simple methods that use monolingual corpora for both

translation to and from English with focus on self learning by generating synthetic

corpora.

We will first explain some related work which is followed by an explanation of various

approaches we used. We then talk about the various experimental settings and then the

results for all settings. We conclude the chapter with a brief discussion and a conclusion

which motivates the work in the following chapter.

5.2 Related Work

As in the case of our work on domain adaptation, the work described in this chapter is

also about transfer learning for NMT [135]. Transfer learning was shown to be effective in

situations were where previously trained NMT models for French and German to English

(resource rich pairs) were used to initialize models for Hausa, Uzbek, Spanish to English

(resource poor pairs). They showed that French-English as a parent model was better than

German-English when trying to improve the Spanish-English translation quality (since

Spanish is linguistically closer to French than German) but they did not conduct an

exhaustive investigation for multiple language pairs. Multilingual models that use the

vanilla NMT architecture as a black box [65] or a highly complex, multiple encoder decoder

architecture[39] have been shown to be successful at learning multiple translation directions

spanning a variety of languages but there was no specific focus on low resource languages.

The multi target language model [35] is also related to these approaches but is one step

below the multilingual multiway model[39].

There has been limited success in developing models that incorporate recurrent lan-

guage models in the traditional NMT architecture [52]. Although such models allow lever-

aging monolingual corpora for NMT, the impact that such integration has is not equivalent

to the impact that N-gram language models have in PBSMT. Although synthetic corpora

have been shown to be useful [115], there has not been any extensive exploration of a va-

riety of truly low resource languages. Existing works simply use an artificial low resource
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setting for English to Turkish translation (using 320,000 parallel sentences) but this is not

a truly resource poor language pair.

As none of the previous works explicitly mention various kinds of transfer learning,

we felt that it is important to have further fine grained classifications of transfer learning

approaches depending whether transfer takes place because of model initialization, joint

learning or self learning.

5.3 Overview of Transfer Learning Approaches

The 3 types of transfer learning (according to us) are:

• Parameter initialization based transfer learning

• Parameter sharing based transfer learning

• Corpus synthesis based transfer learning

5.3.1 Parameter Initialization Based Transfer Learning

This kind of transfer learning stems from using the parameters learned from one data set

(or task) as the initial parameters for another data set (or task).

Refer to Figure 5.1 for an overview of the method. It is essentially the same as de-

scribed in [135] where we learn a model (parent model) for a resource rich language pair

(Hindi-English) and use it to initialize the model (child model) for the resource poor pair

(Marathi-English). Henceforth, the source languages of the parent model and child models

will be known as parent and child languages respectively and the corresponding language

pairs will be known as the parent and child language pairs respectively. The target lan-

guage vocabulary (English) should be the same for both the parent and the child models.

Following the originally proposed method we focused on freezing4 (by setting gradients to

zero) the decoder embeddings and softmax layers when learning child models since they

represent the majority of the decoder parameter space. This method can easily be applied

in cases where we wish to use the resource rich language pair to help the resource poor

language pair where the target language is usually English.

One obvious aspect of this approach is that it is essentially a form of fine tuning which

we explored in the previous chapter. The main difference is that the encoder side of

the model has to be re-learned either partially or completely since the vocabularies of

4We also tried settings where we froze the decoder LSTM layers as well but we found that they do not

perform as well.
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Figure 5.1: Transfer learning for low resource languages by initializing the parameters of

a low resource language pair with those of a resource rich language pair.

the source languages are different in most cases5 and thus the embeddings of the parent

language are randomly mapped to the embeddings of the child language. It is possible to

avoid the amount of re-learning required by transferring parameters from a multilingual

to a bilingual model but we will elaborate this in a separate chapter.

5.3.2 Parameter Sharing Based Transfer Learning

This kind of transfer learning stems from using the same parameters for two or more data

sets (or tasks).

Since, explicit parameter transfer involves training a parent model followed by a child

model one has to wait for the parent models to finish training which can take a long time for

large data sets. Moreover, it is not possible to truly claim any interplay between languages

since the models are not trained simultaneously. The work on zero resource NMT [65]

showed that it is possible to learn multiple language directions simultaneously by simply

relying on a preprocessing trick. Although they do show that learning a single model for

multiple language pairs is possible, they do not explore how language relatedness affects

5For languages like German and Luxembourgish which have significant overlaps in vocabulary it is

possible to learn a joint vocabulary. In this case the source embeddings need not be randomly mapped

and this should reduce the amount of re-learning required. We plan to explore this setting in the future.



94 CHAPTER 5. TRANSFERRING KNOWLEDGE IN NMT

Figure 5.2: Learning two language directions simultaneously

Figure 5.3: Learning multiple language directions simultaneously
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the final results. As we have mentioned before, they also do not fully explore whether

such models really help improve the translation quality in low resource situations.

We first decided to see how a resource poor language pair benefits when trained with a

resource rich language pair when the target language for both pairs is the same (English in

our case). Refer to Figure 5.2 for an example which shows how to train a single model for

Hindi-English and Marathi-English. We refer to such models as “two source to one target

models”. To do so we simply merged the Hindi-English corpus with the Marathi-English

corpus by oversampling the latter corpus because it is much smaller than the former.

This ensures that the model does not focus on the Hindi-English pair due to its relatively

larger size. We then feed this merged corpus to the NMT training pipeline to obtain a

translation model that can translate from either Marathi or Hindi to English. Since the

encoder for Hindi and Marathi is the same, they share a common vocabulary and this

can be beneficial for other language pairs like Indonesian and Malaysian or Russian and

Ukrainian which also have massive vocabulary overlaps. Similarly, Chinese and Japanese

have many common characters and can benefit from a shared representation. Note, that

our focus is on improving the translation quality for the resource poor language pair

(Marathi-English in the figure).

Two source to one target models benefit from the additional target language sentences

and it makes sense to use additional source languages because it will lead to a further

increase in target language sentences. Taking this one step further, we can learn a single

model which can translate from multiple source languages to multiple target languages.

This idea is not novel but our focus was on understanding the language relatedness phe-

nomenon and not on techniques for training multilingual models. We decided to investi-

gate whether it is better to learn a NMT model which is learned for related languages as

compared to a NMT model for unrelated languages.

Refer to Figure 5.3 which shows how to train a single model for translation to and

from English for Hauza, Uzbek, Marathi, Malayalam, Punjabi and Somali without any

modification to the NMT model architecture. We appended artificial tokens6 [65] to the

source sentences for each language direction and then merged all the corpora. As in

the case of two source to one target models we oversampled the smaller corpora so that

all language directions receive equal importance in the training procedure. This merged

corpus is fed to the training pipeline which gives a model that can translate from any of

the six languages to the other.

6In the figure we specified tokens that look like ”< 2xx >”. If the target language is Hausa then the

token will be ”< 2ha >”. Thus for each target language there should be a unique token and this token

should not be present in the original corpus.



96 CHAPTER 5. TRANSFERRING KNOWLEDGE IN NMT

Figure 5.4: Corpus synthesis based approach

5.3.3 Corpus Synthesis Based Transfer Learning

This kind of transfer learning stems from using a NMT model to generate additional

data and then use this additional data to try to improve the quality of the same or

another model. The one merit that PBSMT has over NMT (apart from speed) is that

PBSMT enables the integration of a language model which can be trained on a very

large monolingual corpora. For languages like English, French, Japanese and Chinese it is

possible to have monolingual corpora in the order of tens of billions of words. Language

models built using these corpora can help yield fluent translations. Such monolingual

corpora (and hence language models) are essential for morphologically rich languages,

especially, since the amount of parallel corpora for most language pairs is quite limited.

It is well known that NMT models tend to produce fluent translations because of their

ability to learn strong language modeling information but there is not much of exploration

on how to leverage this aspect to improve translation quality. Work on generating synthetic

corpora by translating monolingual corpora [115] has proven to be quite simple and has

been shown to be more effective compared to the work on integrating a LM into NMT

models. In this work they used source-target models to generate synthetic parallel corpora

to improve translation in the reverse direction. However, this work did not consider using

extremely large monolingual corpora (in the order of tens of millions of lines) due to lack

of computational resources. They also did not explore the possibility of self learning where
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the synthetic data generated using the source-target models is used to further improve the

source-target models.

In Figure 4.6 we show how we can use a Marathi-English model to generate additional

(synthetic) Marathi-English data which can be used to build better Marathi-English and

English-Marathi NMT models. We first use the existing Marathi-English corpus to train

a NMT model following which we translate a large number of monolingual Marathi sen-

tences. This results in a Marathi-English corpus where the English sentences are synthetic

and are typically noisy. The synthetic and non-synthetic Marathi-English corpora are

merged and then fed to the NMT training pipeline which results in a (potentially better)

Marathi-English NMT model. This according to us is a form of self learning and should

lead to better Marathi-English NMT models.

Similarly, the merged corpus can be reversed (English-Marathi) and used to train a

English-Marathi NMT model[115]. Since the Marathi side of the merged corpus is not

synthetic the translation quality should be improved. The expectation is that the large

amount of target side sentences should help the decoder learn a stronger language model.

In both cases, the additional data can help overcome overfitting by providing some amount

of regularization. It is also possible to train NMT models using the synthetic corpora only

but we do not show it in the figure for simplicity.

5.4 Experimental Settings

All of our experiments were performed using an encoder-decoder NMT system with atten-

tion for the various baselines and transfer learning experiments. We used Google’s Neural

MT (GNMT) system [132], developed using the Tensorflow [1] framework which can ex-

ploit multiple GPUs to speed up training. We use the same NMT model design as in the

original work [135]. In order to enable infinite vocabulary we use the word piece model

(WPM) [111] as a segmentation model to generate subwords. WPM is closely related to

the Byte Pair Encoding (BPE) based segmentation approach [117]. The WPM model

allows for the specification of a subword vocabulary size so as to automatically determine

the optimal number of merge operations.

We evaluate our models using the standard BLEU [106] metric7 on the detokenised

translations of the test set. We report the only the difference between the absolute BLEU

scores of the transferred and the baseline models since our focus is not on the BLEU scores

themselves but rather on the improvements by using various transfer learning approaches

7This is computed by the multi-bleu.pl script, which can be downloaded from the public implementation

of Moses [76].
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Group Languages

European French, German,

Luxembourgish

Slavic Russian

Afro-Asiatic Arabic, Hebrew, Amharic, Hausa, Somali

Turkic Turkish, Uzbek, Kazakh, Kirghiz

Austronesian Indonesian, Javanese,

Sundanese

Indo-Aryan Hindi, Marathi, Punjabi, Sinhalese, Gujarati, Nepali, Bengali

Dravidian Kannada, Malayalam, Tamil, Telugu

Table 5.1: Language groups for our experiments

and on observing the language relatedness phenomenon. Henceforth, all baseline models

are those that were trained from scratch using only the parallel corpora for the given

language pair.

5.4.1 Languages

The set of resource rich languages we considered are: Hindi, Indonesian, Hebrew, Turkish,

Arabic, Russian, German and French. The set of resource poor languages consists of:

Luxembourgish, Hausa, Amharic, Somali, Kannada, Tamil, Telugu, Malayalam, Punjabi,

Gujarati, Sinhalese, Nepali, Marathi, Bengali Uzbek, Kirghiz, Javanese, Kazakh and Sun-

danese. Table 5.1 groups the languages into language families. Since there are no standard

training sets for many of these language pairs, we use parallel data automatically mined

from the web using an in-house crawler. For evaluation, we use a set of 9K English sen-

tences collected from the web and translated by humans into each of the source languages

mentioned above. Each sentence has one reference translation. We use 5K sentences for

evaluation and the rest for development. We will now describe the languages we consid-

ered for each of the 3 categories of the transfer learning experiments along with the NMT

model hyperparameters and training schedules.

5.4.2 Parameter Initialization Based Transfer Learning Settings

In this experiment, the source languages vary but the target language is always English.

For each child model, we try around 3 to 4 parent models out of which one is mostly

learned from a linguistically close parent language pair. The source language of the parent

model is referred to as the parent language and the source language for the child model
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is referred to as the child model. Our choice of source languages was influenced by two

factors:

• We wanted to replicate the basic transfer learning results [135] and hence chose

French, German for Hausa and Uzbek.

• We wanted to compare the effects of using parent languages belonging to the same

language family as the child languages (Hindi for Marathi) as opposed to unrelated

parent languages (German for Marathi).

Following the aforementioned factors influencing our language choices we conducted

our experiments in two stages as below:

• Exhaustive experimentation on 6 child languages (Hausa, Uzbek, Marathi, Malay-

alam, Punjabi and Somali) by using 4 parent languages (French, German, Russian

and Hindi). This was done in order to verify whether there is any language relat-

edness phenomenon worth exploring or not. There is a hypothesis that a parent

language from the same or a closely related language family should be a lot more

helpful than any other parent language[135]. However, this hypothesis was explored

by considering only two parent languages and one child language. By using more

languages we wanted to cement this claim and set grounds for further studies.

• Opportunistic experimentation on 4 child languages (Kazakh, Javanese, Sundanese

and Luxembourgish) by using 3 parent languages out of which one is from the same

language family and the other two are from another language family. Turkish being

the related language for Kazakh, German for Luxembourgish and Indonesian for

Javanese and Sundanese.

The model and training details are mostly the same as that in the original work [135]

but following are some specific settings:

• Model parts frozen (only when doing transfer learning): softmax and decoder em-

beddings layers (Decoder LSTMs were retrained)

• Embeddings: 512 nodes

• LSTM: 4 layers, 512 nodes output

• Attention: 512 nodes hidden layer

• WPM vocabulary size: 16,000 for source language and 16,000 for target language.

We learned separate WPM models for the source and target languages.

• Batch size: 128

• Training steps: 5,000,000

• Optimisation algorithms: Adam for 60k iterations followed by fixed learning rate

SGD

• Learning rate annealing of SGD: Starts at 2M iterations with an initial value of 0.01
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followed by halving learning rate every 200,000 iterations for 800,000 iterations.

• Choosing the best model: Evaluate saved checkpoints on the development set and

select checkpoint with best BLEU.

Note that the target language (English) vocabulary is same for all settings and the WPM is

learned on the English side of the French-English corpus since it is the largest one amongst

all our pairs. We deliberately chose this since we wished to maintain the same target side

vocabulary for all our experiments (both baseline and transfer) for fair comparison. The

parent source vocabulary (and hence embeddings) is randomly mapped to child source

vocabulary since it was shown that NMT is less sensitive to this random mapping [135].

5.4.3 Parameter Sharing Based Transfer Learning Settings

Two Source to One Target Models

In this experiment we trained an NMT model for two source languages to one target

language. One of the source languages is resource rich and the other is resource poor. The

resource rich source languages are Turkish, Arabic and Hindi and the resource poor source

languages are Hausa, Uzbek, Marathi, Malayalam, Punjabi and Somali. The change in the

choice of resource rich languages (which can also be referred to as parent languages) was

because of some observations we made in the parameter transfer experiments which will

be discussed later. The model and training details are the same as in the previous section

in order to ensure a fair comparison. Note, that half the source vocabulary is reserved for

the resource rich parent language but as will be seen later, this does not have any negative

side effects.

Multilingual Parameter Sharing Models (Many Sources to Many Targets Mod-

els)

In this experiment we train multilingual NMT models (MLNMT) that translate from two

or more source languages to two or more target languages. We refer to such models as

either multilingual parameter sharing models or many sources to many targets models. We

trained models for various language groups in order to determine if grouping languages

by language families has any merit or not. Since a multilingual model is inherently more

complex, we decided to increase the subword vocabulary size to 32,000 and have 1024

node embeddings, LSTMs and attention hidden layers. Since the source language set

and the target language set is the same, the subword vocabulary is also the same for the

encoder and the decoder. This is different from the parameter transfer and parameter

sharing models where the vocabularies were different. Although all the language family
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specific models can translate between all the languages used to train them we only focus

on the translation to and from Englsih for Hauza, Uzbek, Marathi, Malayalam, Punjabi

and Somali.For each of the models below these languages are in bold. The models we

trained are as follows:

• Mixed language group model with 4 stack LSTMs for Hausa, Uzbek, Marathi, Malay-

alam, Punjabi and Somali.

• Indo-Aryan language group model with 6 stack LSTMs for Hindi, Marathi, Pun-

jabi, Sinhalese, Gujarati, Nepali, Urdu and Bengali.

• Afroasiatic language group model with 6 stack LSTMs for Arabic, Hebrew, Somali,

Amharic and Hausa.

• Dravidian language group model with 4 stack LSTMs for Kannada, Tamil, Malay-

alam and Telugu.

• Uzbek language group model with 6 stack LSTMs for Turkish, Uzbek, Kazakh and

Kirghiz.

The choice of the LSTM stack size was made based on the total size of the corpora

involved and the number of language directions. Since the mixed and Dravidian language

group consisted only of low resource languages, we chose 4 stack LSTMs instead of 6.

5.4.4 Corpus Synthesis Based Transfer Learning Settings

This experiment focuses on translation from English to the 6 low resource languages:

namely, Hausa, Uzbek, Marathi, Malayalam, Punjabi and Somali. The monolingual cor-

pora for these respective languages are also scraped from the open web and are filtered

so that they do not contain any sentences from the test sets. Using the best two source

to one target NMT models, we translate these monolingual corpora to obtain a synthetic

parallel corpora which we use in a variety of settings. To be precise, for English to Marathi

translation we use the best two source (one of which is Marathi) to one target (English)

NMT model to translate the Marathi monolingual corpus into English to obtain a syn-

thetic8 Marathi-English parallel corpus. For translating the sentences we use beam-search

decoding with a beam-width of size two. To speed up the translation process we rely on

using a large number of CPUs.

8The English sentences are synthetic.
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Using Synthetic Sentences On Source Side

We train the below models for translation from English to the 6 languages (which we denote

using the letter X). For each model, we indicate the row in Table 5.7 which contains the

results.

• English-X model using the non-synthetic English-X corpus (baseline).

• English-X model using the synthetic English-X corpus. (Row 2)

• English-X model by merging the non-synthetic English-X corpus and an equal num-

ber of lines from the synthetic English-X corpus which are randomly selected. (Row

3)

• English-X model by merging the non-synthetic English-X corpus and the full syn-

thetic English-X corpus. (Row 4)

• English-X model by merging the non-synthetic English-X corpus and an X-X corpus

which is a faux bilingual corpus where the target sentence is the same as the source

sentence. (Row 5)

• English-X model by merging the English-X corpus and an <> −X corpus of which

the latter is a faux bilingual corpus where the source sentence is empty. (Row 6)

• English-X model by learning an NMT model (which behaves as a language model)

using the <> −X corpus and then initializing a English-X model to simulate pa-

rameter transfer learning from a language model. (Row 7)

Using Synthetic Sentences On Target Side

We train the below models for translation to English from the 6 languages (which we denote

by the letter X) to compare with the baseline models that do not use any additional data.

For each model we indicate the row in Table 5.8 which contains the results.

• X-English model using the synthetic X-English corpus. (Rows 2 and 4)

• X-English model by merging the non-synthetic X-English and the full synthetic X-

English corpus. (Rows 3 and 5)

Due to lack of time, we only ran these two settings. Although it is quite natural to

expect that using synthetic (and hence imperfect) sentences on the target side will damage

translation quality, the results are worth analyzing.
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Child
Parent

Fr De Hi Ru

Ha +2.85 +2.17 +2.03 +2.99

Uz +0.12 +0.22 +0.46 +0.34

Mr −1.62 −0.38 +0.57* −0.55

Ml +1.31 +1.89 +2.80* +1.45

Pa +0.80 +0.67 +2.41* +0.69

So +3.17 +2.69 +2.26 +2.89

Table 5.2: BLEU scores (relative values with respect to the baseline NMT model) for

exhaustive experimentation.

Child
Parent

De Hi Tr Id

Kk +0.21 +0.40 +0.48 -

Jw +1.10 +0.44 - +2.47*

Su −0.13 +0.41 - +1.10*

Lb +8.58* +6.44 +6.01 -

Table 5.3: BLEU scores (relative values with respect to the baseline NMT model) for

opportunistic experimentation.

5.5 Results

We will first describe the results for each setting followed by observations.

5.5.1 Parameter Initialization Based Transfer Learning Settings

Table 5.2 shows the results of the exhaustive experimentation round and Table 5.3 shows

those of the opportunistic experimentation for parameter transfer models. Entries in bold

indicate the parent-child source language combination that performed the best compared

to others. Furthermore, entries that have an “*” mark represent the parent-child pair

with a BLEU difference that is statistically significant (p < 0.05) compared to the BLEU

difference of other parent-child pairs.

One thing that stood out during the exhaustive experimentation phase (Table 5.2) is

that Hindi as a parent language led to better gains (from +0.57 to +2.8) for all Indian

languages as opposed to gains (-1.62 to +1.89) due to other parents. In the case of Marathi

all other parent languages led to degradation in performance and Punjabi gained the most
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(+2.41) from Hindi as a parent where as the gains due to the others were at most +0.8.

It makes sense that Punjabi being the closest language (linguistically speaking) to Hindi

would gain the most followed by Marathi. It is also important to note that Hindi had

the least amount of data and French had the most amongst all parent languages. This

shows that beyond a certain amount the size of the training data is not the real factor

behind the gains observed due to transfer learning. Uzbek and Marathi were the most

resource abundant ones amongst the child languages and hence the gains by the transfer

learning (less than 1 BLEU point) were small. This is because the baseline systems for

these languages were relatively stronger owing to the relatively larger corpora sizes among

the resource poor languages.

Based on the results so far, we decided to quantitatively verify the hypothesis that: “A

parent language from the same (or linguistically similar) language family as the child lan-

guage will have a larger impact on transfer learning.” Table 5.3 implies that this hypothesis

is mostly true. The gain (+8.58) in the case of German as a parent for Luxembourgish is

quite striking since the latter is known to be closely related to the former. Moreover using

German gives an additional improvement of around 2 BLEU points over other parents.

Indonesian, Javanese and Sundanese are close to each other in the same way that Punjabi

is similar to Hindi. Thus Indonesian as a parent gives around 1 to 2 BLEU improvement

for these language pairs over when other parents are chosen. Indonesian, Javanese and

Sundanese use the same script but Hindi and Punjabi do not. In spite of this, Hindi still

acts as a better parent as compared to the others which means that the NMT system

does learn certain grammatical features which provide the child models with a good prior

when transferring the parameters. Finally, Kazakh received maximum benefit when using

Turkish as a parent. The baseline model for Kazakh was too strong and thus it is difficult

to draw any proper conclusion in this case since Hindi as a parent helped almost as much.

We did try a scenario where Turkish was used as a parent for Uzbek (not in the tables) but

failed to see any particular improvement over when other parents are used but it should be

noted that, linguistically speaking, Turkish is a lot closer to Kazakh than it is to Uzbek.

One of the sources of improvement in translation quality for the resource rich languages

(to English) is the abundance of target language sentences. Having additional English sen-

tences helps the decoder learn a better language model which leads to better translations.

In the case of parameter transfer models, the decoder side of the model has already learned

good priors and sequence representations for generating fluent target language sentences.

Since we get significant improvements in BLEU despite freezing the decoder embedding

and softmax layers it is clear that the target side language modelling information is the

main reason why such parameter transfer is helpful. Apart from the improvements that
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Child

w.r.t Baseline
w.r.t Parameter Initialization

Based Transfer Model

Parent

Tr Ar Hi Tr Ar Hi

Ha +2.94 +3.84 +3.00 −0.05 +0.85 +0.01

Uz +1.79 +1.25 +1.56 +1.33 +0.79 +1.1

Mr +2.21 +1.92 +2.44 +1.64 +1.35 +1.87

Ml +5.07 +4.33 +5.07 +2.27 +1.53 +2.27

Pa +3.56 +2.75 +4.29 +1.15 +0.34 +1.88

So +5.45 +5.85 +5.72 +2.28 +2.68 +2.55

Table 5.4: BLEU scores (relative values with respect to the baseline NMT model and the

best parameter initialization based transfer model) for two source to one target parameter

sharing models.

Source Language
w.r.t Two Source

To One Target Model
w.r.t Baseline

Hausa +1.28 +5.12

Uzbek −1.09 +0.7

Marathi −1.18 +1.26

Malayalam +0.81 +5.88

Punjabi −0.38 +3.91

Somali +0.21 +2.28

Table 5.5: BLEU scores (relative values with respect to the baseline NMT model and the

best two source to one target model) for the multilingual parameter sharing models.

parameter transfer yields, it also helps cut down the training time by more than half in

most cases since more than half the model is already pre-trained.

5.5.2 Parameter Sharing Based Transfer Learning Settings

Table 5.4 shows the relative BLEU scores for the two source to one target models with

respect to the baseline models and the parameter transfer models. Table 5.5 shows the

relative BLEU scores for the multilingual (parameter sharing) seven source to seven target

model. Table 5.6 contains the relative BLEU score scores for multilingual models trained

on languages from the same language family with respect to the mixed language family

model.
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Language To English From English

Hausa +0.66 −0.28

Uzbek +2.79 +0.49

Marathi +2.88 +0.32

Malayalam +.044 +0.29

Punjabi +3.75 +0.55

Somali +0.96 +0.18

Table 5.6: BLEU scores (relative values with respect to the multilingual parameter sharing

model in which languages are not grouped according to language families) for the multi-

lingual parameter sharing models learned for languages grouped by language families.

Although training a multilingual model is more time consuming than a bilingual model

(1 week versus 1 day), it does enable better knowledge transfer because of sharing param-

eters. As can be seen in Table 5.4, there is a significant improvement in BLEU (compared

to the baseline) no matter what resource rich source language is used. Moreover, as

in the case of parameter transfer based models, using a related resource rich language

gives the best improvement9. For the Indian languages Marathi and Punjabi, using Hindi

gives a BLEU improvement which is significantly better than using either Turkish or Ara-

bic (+2.44 versus +2.21/+1.92 for Marathi and +4.29 versus +3.56/+2.75 for Punjabi).

Hindi and Punjabi are linguistically very close to each other and this reflects in the fact

that Hindi helps achieve a significant 4.29 gain in BLEU as compared to gains of 3.56 and

2.75 for Turkish and Arabic respectively.

In the case of Malayalam, both Turkish and Hindi are equally good (+5.07) and this

might seem odd but it is important to note that although Malayalam and Hindi are Indian

languages, Malayalam is a Dravidian language whereas Hindi is an Indo-Aryan language.

Both Turkish and Hindi are SVO (Subject-Verb-Object) languages but Arabic uses a mix

of VSO and SVO, and hence using Arabic as an assisting language doesn’t give the same

improvements in BLEU as the other two (+4.33 for Arabic versus +5.07 for Hindi and

Turkish). This is also applicable in the case of Uzbek which benefits the most from Turkish

(+1.79) and the least from Arabic (+1.25). This shows that if the assisting resource rich

language is not from the same language family then it is much more helpful if it has a

similar word order to the resource poor language as compared to a language that has a

different word order.

9These gains are also loosely related to the physical distance between the countries in which the relevant

languages are spoken. This also correlated with the amount of interaction between them as a result of

trade or invasions.
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It should be noted that the parameter sharing two source to one target models are

significantly better than the parameter transfer based models. This makes sense because

transferring parameters involves freezing the decoder parameters. Although such freezing

helps maintain the language modelling information learned using the resource rich language

data, an NMT model learned from scratch on larger volumes of data tends to learn a

better language model. This observation is in line with several joint learning and multi-

task approaches [37, 90, 39] which have shown to enhance the performance of low resource

tasks.

Based on these observations, we experimented with learning models for the low resource

languages by grouping them with linguistically closer languages and compared these mod-

els with those that did not follow such grouping. Table 5.5 shows that a multilingual

parameter sharing model for the 6 resource poor languages (and English as either the

source or target) is much superior to the baseline when English is the target language.

However, this model is better than the best two source to one target models only for

Hausa (+1.28), Malayalam (+0.81) and Somali (+0.21) to English. Typically, a multilin-

gual model yields translations that are slightly inferior to bilingual models [132]. However,

this is valid only in the case of multilingual models for resource rich languages whereas

low resource languages actually stand to gain from parameter sharing.

In Table 5.6 shows that for the six low resource languages, it is better to group them

with other languages that belong to the same language families and learn multilingual

NMT models. These models are also either as good as or better than the 2 source models.

The most impressive improvements are in the cases of Punjabi (+3.75 BLEU), Marathi

(+2.88) and Uzbek (+2.79). Punjabi and Marathi benefit from being grouped with Hindi,

Sinhalese, Gujarati, Nepali, Urdu and Bengal.

Marathi, Hindi and Nepali share the same script (Devanagari), which is different from

the scripts for all the other languages. In theory, out of a vocabulary of 32,000 word pieces,

about a ninth10 (roughly 3500) is reserved for Punjabi. In the case of the Punjabi+Hindi

(to English) model, roughly half of the 16000 word piece vocabulary is reserved for Punjabi.

Although, the multilingual model has half the vocabulary size of the two source to one

target model for Punjabi the size of the embeddings for the former is twice the size of the

embeddings for the latter. In terms of the number of encoder embedding parameters for

Punjabi, the multilingual model has roughly 3.58M parameters whereas the two source

to one target model has roughly 4.09M parameters. Although the multilingual model

has one and a half times as many LSTM layers (of twice the size) as compared to the

10Although in the Indo-Aryan language group there are eight languages, English is also the source and

target language for evaluation and thus the total number of languages is nine.
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Model Type Hausa Uzbek Marathi Malayalam Punjabi Somali

Synthetic Only +1.13 +0.99 +1.03 +1.59 +3.85 +1.6

Partial Synthetic

with Full Original
+1.36 +0.94 +1.05 +1.91 +2.23 +1.0

Full Synthetic

with Original
+2.14 +1.62 +2.24 +2.65 +3.48 +1.8

Full Duplicated

with Original
+1.13 −0.22 +0.4 +0.77 +0.48 +1.33

Full Empty Source

with Original
+0.23 −0.23 +0.44 +0.39 +0.11 −0.13

Transferred LM

Parameters
−0.64 −0.22 −0.25 −3.16 −0.67 −0.63

Table 5.7: A comparison of various approaches that leverage a monolingual corpus to

improve translation from English.

two source model, the two source model, has to only learn 2 language directions but the

multilingual model has to learn 16 language directions. This means that despite having

a smaller representative vocabulary per language and having to learn a large number

of language directions, the multilingual model not only outperforms the two source to

one target model but also the multilingual model that is learned on languages belonging

to different language groups. This indicates that having additional related languages is

actually useful, especially for the resource poor languages.

5.5.3 Corpus Synthesis Based Transfer Learning Settings

Table 5.7 shows the the relative BLEU scores for models that use synthetic bilingual

corpora with respect to the baseline models for translating from English to the resource

poor languages. When using synthetic corpora with the synthetic English sentences on the

source side we were able to observe how the sheer volume of data impacts the translation

quality. Table 5.7 shows that using only the synthetic corpus can give a model that beats

the baseline model (which uses the non-synthetic corpus) by a reasonable margin. The

model trained only using synthetic corpus gives translations that are 3.85 BLEU points

better than those produced by the baseline model. In the case of English to Punjabi the

synthetic corpus is roughly 6 times larger than the non synthetic (which we refer to as

original). Despite the fact that the synthetic English sentences are noisy because they were

obtained by translating Punjabi sentences, the NMT model seems to be quite tolerant to



5.5. RESULTS 109

Model Type Hausa Uzbek Marathi Malayalam Punjabi Somali

Synthetic Only

(versus baseline)
+2.51 −0.08 +2.14 +5.89 +3.83 +4.44

Synthetic and

Original

(versus baseline)

+3.88 +1.60 +2.91 +6.24 +4.91 +4.72

Synthetic Only

(versus two

source model)

−1.33 −1.87 −0.3 +0.82 −0.46 −1.41

Synthetic and

Original (versus

two source model)

+0.4 −0.19 +0.47 +1.17 +0.62 −1.13

Table 5.8: Results for using synthetic bilingual corpora with synthetic English sentences

on the target side to improve translation to English.

noise.

We thought that this improvement was mostly related to the improvement in the

decoder’s language model. We also assumed that the noisy nature of the synthetic source

sentences was detrimental and thus decided to use equal number of lines of synthetic and

non-synthetic data. As a result, the amount of target side data that was available after

such selection was significantly smaller than when the whole synthetic corpus was used.

This setting would also help reduce the amount of time required to train a model. We

believed that the non-synthetic corpus contains natural sentences on the source side and

should be more valuable but this setting did not yield impressive improvements compared

to when the complete synthetic corpus was used without any other corpus. In this setting,

for English to Punjabi, Uzbek and Somali, there were drops of 1.62, 0.05 and 0.6 BLEU,

respectively, compared to the setting where the full synthetic corpora were used.

Based on these observations we decided to use the whole synthetic corpora with the

non-synthetic corpora. As a result, except for the case of English to Punjabi, the quality

of translation to the other languages improved significantly compared to the above two

settings. In the case of English to Marathi, the improvement over the baseline is 2.65

BLEU points which is 1.21 BLEU points higher than when only the synthetic corpus is

used. In this setting, English to Punjabi translation quality is 0.37 BLEU points lower

than the synthetic corpus only setting.

From the above results it is clear that synthetic parallel corpora enable an increase

in the number of target language sentences and this is the main reason behind the im-
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provements in translation quality. As such, we were curious about the importance of the

source sentences of the synthetic corpus. Specifically, we were interested in knowing if the

source sentences were even required or not. We thus experimented with pseudo parallel

corpora where the source sentences are the same as the target or are empty. We simply

combined these pseudo parallel corpora with the original bilingual parallel corpora. Using

a duplicated pseudo parallel corpus actually helps in improving the translation quality by

a reasonable amount (+1.13 for English to Hausa and +0.48 for English to Punjabi) but

these improvements are not as impressive as compared to those obtained using the syn-

thetic parallel corpora. Using an empty source sentence is almost not helpful. Although

both empty-source and duplicated source corpora add no additional information to the

encoder, using the duplication method works better. The reason for this is unclear but we

plan to investigate this in the future.

Finally, for the sake of completeness we also performed parameter transfer learning ex-

periments by first learning a pseudo language model using the empty source pseudo parallel

corpus and then using it to initialize a model that will be trained using the original par-

allel corpus. As in the parameter transfer learning experiments, the decoder embeddings,

softmax and LSTM layers were frozen. This however ends up giving translations that are

worse than those given by the baseline models.

Table 5.8 contains the results for when the synthetic corpus is used with the synthetic

English sentences on the target side. We observed some unexpected outcomes when we

used the synthetic English sentences on the target side to improve translations to English.

In Table 5.8 using the synthetic only corpus leads to translations that are actually better

than the baseline models for all languages except for Uzbek to English. Despite the

noisiness of the English sentences, the translation quality improved. Although, this seems

counter intuitive, we hypothesize that the improvements come from the following:

• Additional synthetic corpora which stabilizes the training process and provides a

certain degree of regularization.

• The synthetic corpora were obtained using two source to one target models that

were already significantly better then the baseline.

This is also a testament to the fluency of translations generated by NMT models.

Although these results are interesting this setting has the following major flaws:

• A large amount of monolingual corpora needs to be translated which requires a lot

of time and consumes plenty of computational resources.
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• The results obtained by using this setting are not significantly better than those

obtained by the two source to one target models that are required in the first place

to generate the synthetic corpora.

• The translation quality does not surpass that what is yielded the multilingual models

which learn languages grouped by language families. (Refer to Table 5.6)

5.5.4 Discussion

Based on the experiments conducted and the observations the following lessons were

learned:

• A NMT model eventually performs better with more data which helps stabilize the

training process despite requiring more time to train.

• Parameter initialization helps retain language modelling information but merging

different corpora increases the amount of language modeling information available

especially when the target language is the same. In such cases, training a single

model without any parameter initialization is better.

• In low resource situations, grouping languages indiscriminately leads to models that

are better then basic bilingual models but grouping languages according to language

families is even better. Although, further investigation will be helpful in determining

optimal language groups it is certainly not disadvantageous to learn language family

specific models.

• Having a large subword vocabulary is not the driving factor behind translation qual-

ity as evidenced by multilingual models that incorporate 9 Indo-Aryan languages.

• The power of synthetic corpora is in its size and not so much in its quality. Despite

the noisiness of the corpora, the NMT model learns to find useful information from

them. Such corpora are better off used to improve translation to resource rich

languages.

• However, beyond a particular limit, the corpus size stops being a critical factor

behind improvement in quality as evidenced by the synthetic corpora experiments.

Doubling the corpus size gives as much improvement over the baseline as using ten

times the corpus size gives over when the corpus size is doubled. In simpler words,

there are diminishing returns with respect to increase in corpora sizes.



112 CHAPTER 5. TRANSFERRING KNOWLEDGE IN NMT

Our experiments are quite extensive. However, in the light of the recent non recurrent

models [124], it would be interesting to see if the feed-forward models are better suited

for transferring translation knowledge. The feed-forward models are attractive since they

can be trained around 10 times faster than recurrent models. This coupled with multi-gpu

computation can help train multilingual models in a matter of days instead of weeks.

5.6 Conclusions and Next Steps

In this chapter we have explored various knowledge transfer approaches for low resource

machine translation. We showed that in general, transfer learning done on a X-Y language

pair to Z-Y language pair has maximum impact when Z-Y is resource scarce and when

X and Z fall in the same or linguistically similar language family. Furthermore jointly

learning multiple language directions where the languages are grouped by language family

is the best strategy for high quality translations. Finally, synthetic corpora need to be

exploited in order to improve translations to low resource languages.

This body of work shows how simple black box approaches with minimal preprocessing

[65] are not only easy to work with but are also better than approaches which rely on

modifications to the original NMT model architectures [39]. This work also revolves around

how translation knowledge can be transferred between languages. We were interested in

determining if translation knowledge from various languages can not only be transferred

but also be jointly used to improve translation quality. Multi-source machine translation,

where two source sentences in different languages can be used to improve translation

quality, has been shown to be very successful in doing this but there has been no effective

black box approach for doing this. In the next chapter we provide a simple and effective

solution that relies on preprocessing to achieve multi-source machine translation in a low

resource NMT setting. We also show how these models can be further used to perform

transfer learning.
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Multi-Source NMT

In the previous chapter, we explored various black box approaches for low resource neural

machine translation (NMT) with special focus on transferring translation knowledge from

larger corpora. We observed that using additional helping languages leads to large im-

provements in a low resource setting. As in Chapter 2, there are scenarios where the same

sentence is available in multiple languages which opens up the possibility of “Multi-Source

Neural Machine Translation” (MSNMT). There already exist modifications to the vanilla

NMT architecture which enable MSNMT but we were interested in a black-box approach

for the same because our previous works showed that the basic NMT models are powerful

enough. In this Chapter, we ask the following question and attempt to answer it: “How

can we exploit redundancy in NMT where the redundancy is available in the form of the

same sentences in multiple languages?”

We explore a simple approach for MSNMT which only relies on preprocessing a N-way

multilingual corpus without modifying the NMT architecture or training procedure. We

simply concatenate the source sentences to form a single long multi-source input sentence

while keeping the target side sentence as it is and train an NMT system using this prepro-

cessed corpus. We evaluate our method in resource poor as well as resource rich settings

and show its effectiveness (up to 4 BLEU using 2 source languages and up to 6 BLEU using

5 source languages) and compare them against existing approaches. We also provide some

insights on how the NMT system leverages multilingual information in such a scenario by

visualizing attention.

We then show that this multi-source approach can be used for transfer learning to

improve the translation quality for single source systems without using any additional

corpora, thereby, highlighting the importance of multilingual-multiway corpora in low

resource scenarios. Furthermore, we also show how our multi-source models can be used

extract a multilingual dictionary. We devise an algorithm that uses the multi-source

113
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attention and, through manual evaluations, show that it gives multilingual dictionaries of

reasonable quality despite its simplicity.

6.1 Introduction

Even though Machine Translation is often only considered in the context of the translation

between two languages, there are many contexts where it is relevant to consider more than

two languages. This is because we can have a sentence in two different languages and want

to translate it into a third language. This is known as “Multi-Source Machine Translation”.

It can also be the case that the training corpora we have are naturally multilingual, an

aspect that can be leveraged. A well known example of this situation is the European Par-

liament Proceedings. These proceedings are multilingual corpora written in 21 European

languages, made available in the often used EuroParl corpus [73]. Furthermore, because

they are produced by successively translating the source language in 20 other languages,

an MT system could leverage the translations of the first few languages to produce better

translations of the other languages.

Multi-source machine translation is important because of the following reasons:

• Ambiguities that need to be resolved between two languages do not exist between

other languages in a number of cases. As such Word Sense Disambiguation (WSD)

becomes possible without additional context.

• Some concepts that exist between certain language pairs might not exist between

others. “Pongal”, a festival celebrated by people of Tamil descent, is a concept that

exists in Tamil as well as Thai. As such, it would be better to use Thai as an

additional language when translating from English to Tamil.

• The word order between related languages is often very similar while the word order

between distant languages might differ significantly. By using more source languages,

we can expect that among the source languages there is one with a similar word order.

• By having various translations of a pronoun in different languages the probability

of correctly translating it into the target language increases without the need to

perform anaphora resolution. In Japanese, pronouns are often dropped and this

leads to problems during translation. In this case, when translating from English to

Japanese, having an additional language like Hindi in which pronoun dropping also

exists should be beneficial.
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As we have seen in the previous chapters, Neural Machine Translation (NMT) [6, 24,

121] is well suited for leveraging multiple languages to improve translation quality. Some

work has already been done to use NMT in a multi-source context [134] but compared to

such works that design a specific model for multi-source MT, we explore a simple method

(originally proposed to use pre-translations as additional sources [101]) that can train any

single-source NMT with a multilingual corpus to produce a multi-source MT system. We

show that this technique works at least as well as the ones that use specifically designed

NMT models.

In addition, we propose a method for exploiting a multi-source (and multi-lingual)

model to improve single-source translation quality. We think this method could have a

significant impact on the way resources for low-resource languages are developed, and

therefore we focus on low-resource scenarios for a part of our evaluation .

The main contributions of this body of work are as follows:

• We exploit a simple preprocessing step that enables multi-source NMT (MSNMT)

without any change to the NMT architecture1.

• We propose a method in which we transfer parameters from a multi-source model

to a single-source model so as to improve single-source translation.

We evaluate our approaches in a resource poor as well as a resource rich setting and

compare it with two existing methods [134, 40] for MSNMT. We also perform additional

analysis by visualizing attention vectors and evaluating a dictionary extracted using the

multi-source attention.

6.2 Related Work

One of the first studies on multi-source MT [105] explored how word based SMT systems

would benefit from multiple source languages. The work on multi-encoder multi source

NMT [134] is the first multi-source NMT approach which focused on utilizing French

and German as source languages to translate to English. However their method led to

models with substantially larger parameter spaces and they did not experiment with many

languages. Multi-source ensembling using a multilingual multi-way NMT model [40] is an

end-to-end approach but requires training a very large and complex NMT model. The

work on multi-source ensembling which uses separately trained single source models [42]

is comparatively simpler in the sense that one does not need to train additional NMT

models but the approach is not truly end-to-end since it needs an ensemble function to

1One additional benefit of our approach is that any NMT architecture can be used, be it attention

based or hierarchical NMT.
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be learned. This method also helps eliminates the need for N-way corpora which allows

one to exploit bilingual corpora which are larger in size. In all cases one ends up with

either one large model or many small models for which an ensemble function needs to be

learned.

Concatenating multiple source sentences for multi-source NMT [101] was used for ex-

ploiting pre-translations generated by PBSMT systems as additional sources but not for

situations where multiple source languages (like French, German and Italian) are available.

Other related works include Transfer Learning [135] and Zero Shot NMT [65] which

help improve NMT performance for low resource languages. Finally it is important to

note works that involve the creation of N-way corpora. Some examples of N-way corpora

(ordered from largest to smallest according to number of lines of corpora) are: United

Nations [133], Europarl [73], Ted Talks [18], ILCI [61] and Bible [25] corpora.

6.3 Previously Proposed MSNMT Approaches

We will first cover two types of MSNMT approaches that either rely on modifying the

vanilla NMT architecture or on the decoding procedure. This will make our proposed

approach easier to understand. We also use these approaches as baselines for comparison.

6.3.1 Multi-Encoder Multi-Source Approach

This method was proposed by [134]. Refer to Figure 6.1 for an overview. Suppose that

the source languages are English and French and the target language is Japanese. Each

source language has a separate encoder and an attention mechanism. In order to predict

the next word, the context vectors for both the source sentences are concatenated before

feeding them to the decoder. This is a simple extension of the vanilla NMT model but

requires almost twice the number of parameters. It is possible to have a common encoder

and attention mechanism for all source languages but we do not explore this because our

focus is on using the vanilla NMT architecture as a black-box.

6.3.2 Ensembling Approaches

The first ensembling based method for MSNMT was proposed by [40] and it relies on

a single multilingual NMT model with separate encoders and decoders for each source

and target language. All encoders and decoders share a single attention mechanism.

Refer to Figure 6.2 for an overview. To perform multi-source translation for English

and French, the model is fed source sentences in different languages and the softmax are
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Figure 6.1: The multi-encoder multi-source NMT model.

averaged (ensembling) to predict a target word. This method is known as late averaging

because the information is averaged at the last step. Another method is early averaging

where the context (produced by the attention mechanism) information is averaged before

computing the softmax. It is possible to combine both late as well as early averaging but

late averaging itself is highly reliable and does not need many changes to the existing code.

Using the same model is a form of self-ensembling2 where instead of ensembling different

checkpoints, a single checkpoint is used but different logits to be combined are generated

using a different input sentence3. The advantage of such an approach is that N-lingual

corpora are not necessary. However, training a multilingual-multiway model is difficult

and time consuming.

[42] proposed using separately trained models for each source language and ensemble

them. Figure 6.3 gives an overview of this approach. First, two separate English-Japanese

and French-Japanese models are trained on bilingual corpora. However, before ensembling

these models an ensemble function is learned which needs a small trilingual corpus. This

ensemble function learns to focus on the individual models predictions in a balanced way.

This approach is light-weight but the need to learn an ensemble function means that this

process is not end-to-end. We thus decided to do without learning an ensemble function.

2In self-ensembling we usually ensemble several model checkpoints saved during the current training

phase.
3Different input sentences imply different source languages.
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Figure 6.2: The multi-source approach that relies on self ensembling a multilingual multi-

way model.

This is shown in Figure 6.4 where the only modification when compared to Figure 6.3 is

the removal of the ensemble function learning part. This can be seen as a hybrid between

the previous two approaches.

6.4 Our Approach

We will first describe our method for training a standard (single-source) NMT model

using a Multilingual Corpus to produce a multi-source NMT model. We then propose in

Section 6.4.2 an extension of this method that also leads to better single-source translation.

Finally, we describe an additional extension in Section 6.4.3 which is a simple method to

extract a multilingual dictionary with a significantly larger number of entries than the

sub-word vocabulary size.

6.4.1 Multi-Source NMT By Sentence Concatenation

Here we describe our method for training a single-source NMT model using a multilingual

corpus to produce a multi-source NMT model. Simply put we convert the multilingual

multiway corpus into a bilingual corpus. To do this, for each target sentence we con-

catenate the corresponding source sentences leading to a parallel corpus where the source
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Figure 6.3: The multi-source approach that relies on learning an ensemble function to

combine two NMT models.

sentence is a very long sentence that conveys the same meaning in multiple languages.

An example line in such a corpus would be: source: “I am a boy Je suis un garcon” and

target:“Watashiwa otokonoko desu”4. The 2 source languages (this is just an example but

in reality this is applicable for N source languages) here are English and French whereas

the target language is Japanese. In this example each source sentence is a word conveying

“I am a boy” in different languages5. One can now use this bilingual corpus to learn an

NMT model using any off the shelf NMT toolkit. Refer to the left hand side of Figure 6.5

for a visual representation.

This NMT model can then be used for multi-source translation by simply concatenating

the input sentences in the same order as when the training corpus was created. We expect

that the NMT model will be clever enough to utilize the information contained in all the

input sentences and as can be seen in Sections 6.6.1 and 6.6.1 it is indeed the case.

6.4.2 Using Multi-Source Models for Transfer Learning

The method above will give good improvements in translation quality when the input

sentences are available in multiple languages. However we find that it is possible to

4We romanize the Japanese sentence for readability.
5Note that there are no delimiters between the individual source sentences.
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Figure 6.4: The simplified ensembling based multi-source method we used where we en-

sembled individual models without learning an ensemble function.

leverage a multiway corpus to improve single source translation quality. This can be

achieved by a form of transfer learning of the multi-source model. To perform transfer

learning we use the approach proposed by [135]. We simply initialize the parameters of

a single source model with those learned for the multi-source model6. These multi-source

models are known as the parent models where as the transferred models are known as the

child models. Refer to the right hand side of Figure 6.5 for a visual representation of the

flow.

Section 6.6.2 shows that at least in the case of low resource languages the single source

translation quality improves significantly. According to us, this happens because a multi-

source model is more stable and achieves much lower perplexities compared to the single

source models which tend to overfit. This indicates that multiple input sentences act as

regularizers. We feel that this result could have some implications in the way one would

develop corpora for low resource languages: Adding an additional language to a N-lingual

corpus not only provides N additional bilingual corpora but also enables one to improve

the translation quality of single source translations for all languages.

6It is important to note that the target language vocabularies for both the models should be the same,

which they are in our setting.



6.4. OUR APPROACH 121

Figure 6.5: Our multi-source NMT approach and applying it to Transfer Learning. The left

hand side represents the flow for training a single-source NMT model using a Multilingual

Corpus to produce a multi-source NMT model (See Section 6.4.1). This model can then

be used as a parent model for transfer learning to improve the single source translation

quality (See Section 6.4.2).

6.4.3 Using Multi-Source Models for Dictionary Extraction

One major limitation of NMT for extracting dictionaries is that they work with a limited

vocabulary size by considering only the most frequent words which leads to tiny dictionar-

ies. Subword units using BPE segmentation [117] allow for infinite vocabulary sizes which

12The final multilingual dictionary.
12The keys are surface words and the values are surface word-fractional count pairs.
12This contains the source language surface word and the cumulative attention value which acts as a

fractional count. “sw” is short for sub-word. “src”, “tgt”, “curr” and “prev” are short for source, target,

current and previous respectively.
12The current line contains target subwords (line[0]) and the source subwords with attention values

(line[1:]).
12We experimented with N=5 to minimize the number of noisy entries.
12Since the last 2 characters are the delimiters.
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Result: finaldict7

finaldict = hashmap()8;

for line in file do

if line is “src sentence” or “tgt sentence” then

worddict = hashmap()9and prev-tgt-sw = “”;

else

curr-tgt-sw = line[0]10;

if “ ” is not the ending of prev-tgt-sw then

sort worddict by value;

add top N entries to finaldict using prev-tgt-sw as the key11;

prev-tgt-sw = curr-tgt-sw and worddict = hashmap();

else

if “ ” is the ending of prev-tgt-sw then

prev-tgt-sw = prev-tgt-sw[:-2] + curr-tgt-sw12;

prev-src-sw, prev-attention-value = line[1].split(”:”);

for sw-attention-pair in line[2:] do

curr-src-sw, curr-attention-value = sw-attention-pair.split(”:”);

if “ ” is not the ending of prev-src-sw then

worddict[prev-src-sw] += prev-attention-value;

prev-src-sw = curr-src-sw;

prev-attention-value = curr-attention-value;

else

if “ ” is the ending of prev-src-sw then

prev-src-sw = prev-src-sw[:-2] + curr-tgt-sw;

prev-attention-value += curr-attention-value;

end

end

end

end

end

end

end
Algorithm 1: Algorithm for dictionary extraction that uses the multilingual attention

obtained from a multi-source model that uses the concatenation approach.
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we exploit for extracting our dictionaries. We simply rely on gluing the subword units and

updating the attention values of subword units they are aligned to. This approach works

well and is able to successfully reconstruct and align words that were split into subwords in

many cases. We first force align the multi-source corpus with the target language corpus

in order to obtain the attention probabilities. We dump all the attention information to

a single file with the following format:

• Line i: source sentence (concatenated multi-source sentence)

• Line i+1: target sentence

• Lines j = i+2 to i+k+2 (where k is the number of subwords in the target sentence):

– target-sentence-subword-j

– list(attention-value:source-sentence-subword-x)

An example of what a subword looks like is: “Po ta to” for the word “Potato” where “ ”

is the delimiter that indicates that the current subword is not the end of the surface word.

We also assume that each (multi) source sentence subword is tagged with a token that

indicates the language corresponding to the source sentence that contains it. Algorithm 113

contains the detailed steps for extracting the dictionary14.

6.5 Experimental Settings

All of our experiments were performed using a recurrent encoder-decoder NMT system

with attention for the various baselines and multi-source experiments. In order to enable

infinite vocabulary and reduce data sparsity we use the Byte Pair Encoding (BPE) based

word segmentation approach [117]. We evaluate our models using the standard BLEU

[106] metric15 on the translations of the test set. Baseline models are single source models.
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corpus type Languages train dev2010 tst2010/tst2013

3 lingual Fr, De, En 191,381 880 1,060/886

4 lingual Fr, De, Ar, En 84,301 880 1,059/708

5 lingual Fr, De, Ar, Cs, En 45,684 461 1,016/643

Table 6.1: Statistics for the the N-lingual corpora extracted from the IWSLT corpus for

the languages French (Fr), German (De), Arabic (Ar), Czech (Cs) and English (En)

6.5.1 Languages and Corpora Settings

All of our experiments were performed using the publicly available ILCI16 [61], IWSLT19

[19], United Nations20 [133] and Europarl21 [73]. We use the UN corpus for a resource rich

setting whereas the others are used for a resource poor setting. We tried to use as many

datasets as possible to indicate that our work is not dataset specific.

The ILCI corpus is a 6-way multilingual corpus spanning the languages Hindi, English,

Tamil, Telugu, Marathi and Bengali was provided as a part of the task. The target

language is Hindi and thus there are 5 source languages. The training, development and

test sets contain 4,5600, 1,000 and 2,400 6-lingual sentences respectively. Hindi, Marathi

and Bengali are Indo-Aryan languages whereas Tamil and Telugu are Dravidian languages.

From the IWSLT corpus we extract a trilingual French, German and English training

set of 191,381 lines, a development set of 880 lines (called dev2010) and two test sets of

1,060 (tst2010) and 886 (tst2013) lines. English is the target language. For completeness,

we experimented with 4-lingual and 5-lingual scenarios comprising of two additional lan-

guages, Arabic and Czech. Refer to Table 6.1 for details on the 3, 4 and 4-lingual splits

of the corpora we worked on.

The UN corpus spans 6 languages: French, Spanish, Arabic, Chinese, Russian and

English. Although there are 11 million 6-lingual sentences we use only 2 million for

training since our purpose was not to train the best system but to show that our method

works in a resource rich situation as well. The development and test sets provided contain

13The algorithm assumes that each source and target sentence is delimited by an end of sentence

delimiter such as a full-stop which will ensure that all words before the delimiter will be included in the

dictionary.
14the pseudo-code is similar to the python coding style
15This is computed by the multi-bleu.pl script, which can be downloaded from the public implementation

of Moses [76].
16This was used for the Indian Languages MT task in ICON 201417 and 201518.
19https://wit3.fbk.eu/mt.php?release=2016-01
20https://conferences.unite.un.org/uncorpus
21http://www.statmt.org/europarl
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4,000 lines each and are also available as 6-lingual sentences. We chose English to be the

target language and focused on Spanish, French, Arabic and Russian as source languages.

Due to lack of computation time constraints we only worked with the following source

language combinations: French and Spanish, French and Russian, French and Arabic and

Russian and Arabic.

The Europarl corpus spans over 20 languages but is not multi-lingual multi-way. For

our experiments, we simulate a low resource scenario by using a 200,000 line, 5-lingual

training subset of the full corpus spanning French, German, Spanish, Italian and English.

We use 5-lingual, dev and test sets of 4,000 lines each which are disjoint from the train-

ing set. We performed the transfer learning and dictionary extraction and evaluation

experiments on the Europarl corpus only.

6.5.2 NMT Model Settings

For training various NMT systems, we used the open source KyotoNMT toolkit22 [32].

KyotoNMT implements an Attention based Encoder-Decoder [6] with slight modifications

to the training procedure. We modify the NMT implementation in KyotoNMT to enable

multi encoder multi source NMT [134]. In the case of multiple encoders, one for each

language, each encoder has its own separate vocabulary and attention mechanism. Since

the NMT model architecture used in [134] is slightly different from the one in KyotoNMT,

the multi encoder implementation is not identical (but is equivalent) to the one in the

original work. The model and training details are as below. Unless mentioned otherwise

these settings remain the same throughout the chapter.

• BPE vocabulary size of 8,000 (separate models for source and target) for ILCI and

IWSLT corpus setting and 16,000 for the UN corpus setting. When training the

BPE model for the source languages we learn a single shared BPE model. In case of

languages that use the same script this allows for cognate sharing thereby reducing

the overall vocabulary size requirement. In the case of multiple encoders, one for

each language, each encoder has its own separate vocabulary.

• Model architecture: Same as that in [6] except that we use LSTMs instead of GRUs

and we use 500 node hidden layer for attention.

• Maximum sentence length threshold during training: For all settings we set this

to 100 for all single source models and N*100 for multisource models that use the

concatenation approach. In the ILCI setting the maximum sentence length in the

training corpus is less than 100 and thus for a 5 source model a maximum sentence

22https://github.com/fabiencro/knmt
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length threshold of 500 ensures that the complete training data is used.

• Training steps: 10k23 for 1 source, 15k for 2 source and 40k for 5 source settings

when using the IWSLT and ILCI corpora. 200k for 1 source and 400k for 2 source

for the UN corpus setting to ensure that in both cases the models get saturated

with respect to heir learning capacity. The increased number of iterations for the

multi-source models is to compensate for the smaller batch sizes that we used.

• Batch size: 64 for single source, 16 for 2 sources and 8 for 3 sources and above for

ILCI corpus setting. 32 for single source and 16 for 2 sources for the UN corpus

setting. Because, longer sequences require more GPU memory for training we used

smaller batch sizes to compensate. It might seem unfair that different models (sin-

gle source versus multi source) use different batch sizes for training but based on

preliminary experiments, smaller batch sizes only affected the time taken to reach

optimal performance and not the final BLEU scores24.

• Optimization algorithms: Adam with a default initial learning rate of 0.01

• Gradient clipping threshold: 1.0 for all settings. This value was is used in most

existing works for NMT.

• Choosing the best model: Evaluate the model on the development set and select the

one with the best BLEU [106] after reversing the BPE segmentation on the output

of the NMT model. This is also called early stopping.

• Beam size for decoding: 16 for all settings. We performed evaluation using beam

sizes 4, 8, 12 and 16 but found that the differences in BLEU between beam sizes 12

and 16 are small and gains in BLEU for beam sizes beyond 16 are insignificant.

• Number of steps in decoding: 1.5 times the source sentence length for all settings.

For the multi-source models that use the concatenation approach 1.5 times seems

overkill but our decoder automatically stops generating new tokens when the ”end

of sentence (EOS)” token is generated.

23We observed that the models start overfitting around 7k-8k iterations
24Recent research seems to indicate that models trained with larger batch sizes are better than those

trained with smaller batch sizes. By this logic our multi-source models that use smaller batch sizes are

already at a natural disadvantage. Despite this it will be seen that the multi-source models beat the single

source models.
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6.5.3 NMT models

Multi-Source Models

We train and evaluate one source to one target (baselines) and N-source to one target

models using the following 3 methods: Ours, Multi-Encoder [134]25 and Ensembling [40]26.

The latter two methods are for comparison. For the 2-source models in the ILCI corpus

setting we considered all possible source language pairs. In the IWSLT corpus setting

there is only one possibility: French+German to English model. However, in the UN

corpus setting we only tried the following one source one target models: French-English,

Russian-English, Spanish-English and Arabic-English. The two source combinations we

tried were: French and Spanish, French and Arabic, French and Russian, Russian and

Arabic. The target language is English.

Single source Transferred Models

Our transfer learning experiments are performed using the Europarl corpus. The BPE

vocabulary size is 12,000 for both source and target languages, irrespective of single or

multi-source models. The embedding, LSTM and attention hidden layer sizes are 512

each. We use a batch size of 32 for single source models and 8 for the multi-source models.

We train the following 4 source models: French+Spanish+Italian+German to English,

French+Spanish+Italian+English to Spanish and French+Spanish+Italian+English to

German. For each of these 4 source models we also train corresponding single source mod-

els as baselines. For instance we train French-English, Spanish-English, Italian-English

and German-English corresponding to French+Spanish+Italian+German to English. We

train 3 additional models (corresponding to each of the multi-source models) using corpora

obtained by merging all the corpora of the 4 individual language pairs. These multilingual

models are essentially the same as the ones in Zero Shot NMT [65] except that there is only

one target language and thus we do not use any tokens to indicate the target language. We

call these models as the 4S1T models which can only translate single source sentences. We

use both the 4 source and 4S1T models to initialize the single source models for transfer

learning. Unlike the original work [135] we do not perform any regularization by freezing

parts of the model while training.

We used the French, Spanish, Italian and German (4 source to one target) to English

model to extract multilingual dictionaries using our algorithm proposed in Section 6.4.3.

25To be specific we implemented the technique where attentions are computed for both source languages

and concatenated before feeding then to the decoder to predict a target word.
26We use the multi-source ensembling approach mentioned in 6.3.2.
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We extracted dictionaries for the Europarl corpus by force decoding (to obtain attention

values) the training set multi-source sentences using the target reference sentences. The

multi-source sentences comprised of concatenated Spanish, French, Italian and German

sentences and the target sentences are English sentences. We manually evaluated the

dictionaries obtained for the 100 most frequent English words in the Europarl corpus.

Our reason for choosing these languages is that these are the easiest to manually evaluate

given the number of resources available online. We leave the evaluation of dictionaries for

other language pairs as future work.
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Language

Pair
BLEU

Source

Combination

BLEU

our ens me

Es-En 49.20 Es+Fr 49.93* 46.65 47.39

Fr-En 40.52 Fr+Ru 43.99 40.63 42.12

Ar-En 40.58 Fr+Ar 43.85 41.13 44.06

Ru-En 38.94 Ar+Ru 41.66 43.12 43.69

Table 6.4: UN corpus results for multi-source models: BLEU scores for the single

source and 2 source settings using the UN corpus. The languages are Spanish (Es), French

(Fr), Russian (Ru), Arabic (Ar) and English (En). We give the BLEU scores for for

the test set. The highest score is the one in bold. All BLEU score improvements are

statistically significant (p <0.001) compared to those obtained using either of the source

languages independently. The train, dev, test split sizes are 2 million, 4,000 and 4,000

lines respectively.

6.6 Results

We divide our results into two subsections: Section 6.6.1 for the evaluation of our multi-

source method and Section 6.6.2 for the evaluation of our work on transfer learning using

the multi-source models.

6.6.1 Evaluation of Multi-Source Models

For the ILCI corpus setting, Table 6.2 contains the BLEU scores for all the multi-source

models and the lexical similarity scores for all combinations of source languages, two at a

time. The last row of Table 6.2 contains the BLEU score for all the multi source settings

which uses all 5 source languages. The caption contains a complete description of the

table. Refer to Table 6.4 for the results of the UN corpus setting, and to Table 6.3 for the

IWSLT corpus setting.

Main findings

From Tables 6.2, 6.3 and Table 6.4 it is clear that our simple source sentence concatena-

tion based approach (under columns labeled “our”) is able to leverage multiple languages

leading to significant improvements compared to the BLEU scores obtained using any

of the individual source languages. The ensembling (under columns labeled “ens”) and

the multi-encoder (under columns labeled “me”) approaches also lead to improvements in

BLEU. Note that in every single case, gains in BLEU are statistically significant regardless
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of the methods used. It should be noted that in a resource poor scenario ensembling gen-

erally outperforms all other approaches but in a resource rich scenario our method as well

as the multi-encoder method are much better. However, the comparison with the ensem-

bling method is unfair to our method since the former uses N times more parameters than

the latter. However, one important aspect of our approach is that the model size for the

multi-source systems is the same as that of the single source systems since the vocabulary

sizes are exactly the same. The multi-encoder systems involve more parameters whereas

the ensembling approach does not allow for the source languages to truly interact with

each other.

Correlation between linguistic similarity and gains using multiple sources

We calculated the lexical similarity27 between the languages involved in using the Indic

NLP Library28. The objective behind this is to determine whether or not lexical similarity,

which is also one of the indicators of linguistic similarity and hence translation quality [81],

is also an indicator of how well two source languages work together.

In the case of the ILCI corpus setting, Table 6.2, it is clear that no matter which source

languages are combined, the BLEU scores are higher than those given by the single source

systems. Marathi and Bengali are the closest to Hindi (linguistically speaking) compared

to the other languages and thus when used together they help obtain an improvement of

4.39 BLEU points compared to when Marathi is used as the only source language (24.63).

However it can be seen that combining any of Marathi, Bengali and Telugu with either

English or Tamil lead to smaller gains. There is a strong correlation between the gains in

BLEU and the lexical similarity. Bengali and English which have the least lexical similarity

(0.18) give only a 1.56 BLEU improvement whereas Bengali and Marathi which have the

highest lexical similarity (0.46) give a BLEU improvement of 4.42 using our multi-source

method. This seems to indicate that although multiple source languages do help, source

languages that are linguistically closer to each other are responsible for maximum gains (as

evidenced by the correlation between lexical similarity and gains in BLEU). Finally, the

last row of Table 6.2 shows that using additional languages lead to further gains leading

to a BLEU score of 31.3 which is 6.5 points above when only Marathi is used as the only

source language and 2.11 points above when Marathi and Bengali are used as the source

languages. As future work it will be worthwhile to investigate the diminishing returns in

BLEU improvement obtained per additional language.

27https://en.wikipedia.org/wiki/Lexical similarity
28http://anoopkunchukuttan.github.io/indic nlp library
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Performance in resource rich settings

In the UN corpus setting, Table 6.4, where we used approximately 2 million training

sentences, we also obtained improvements in BLEU. In the case of the single source sys-

tems we observed that the BLEU score for Spanish-English was around 9 BLEU points

higher than for French-English which is consistent with the observations in the original

work concerning the construction of the UN corpus [133]. Furthermore, combining French

and Spanish together leads to a small (0.7) improvement in BLEU (over Spanish-English)

that is statistically significant (p <0.001) which is to be expected since the BLEU for

Spanish-English is already much better than the BLEU for French-English. Since the

BLEU scores for French, Arabic and Russian to English are closer to each other we can

see that the BLEU scores for French and Arabic, French and Russian and Arabic and

Russian to English are around 3 BLEU points higher than those of their respective single

source counterparts. The multi-encoder approach seems to work better than the con-

catenation approach when the source languages are linguistically dissimilar (French and

Arabic, Arabic and Russian). In the case of closer languages the reverse appears to be true

(French and Spanish, French and Russian). This might be because sharing an encoder

for linguistically different languages puts an additional burden on it leading to reduced

performance. Further experiments would help cement this claim but we did not pursue

this line of investigation because of the lack of resources and time.

Regarding sequence lengths and vocabulary size limits

In Section 6.5.2 we mentioned that we learn a shared subword vocabulary for all source

languages. A subword vocabulary leads to a slight increase in the length of sentences but

eliminates the problem of unknown words. There are two related important aspects that

must be considered: combinations of languages and maximum number of source languages

that can be combined in order to obtain maximal improvements in translation quality. In

theory it is possible to combine any number of source languages but from a practical point

of view two to three is sufficient.

In a setting where the source languages use the same script, the sizes (in terms of

number of characters per subword) of subword units that can be learned is significantly

larger than in the case of languages that use completely different scripts. Shorter subwords

lead to vocabularies that approach characters and the traditional NMT approach is known

to perform poorly when using character sequences. Moreover, increasing the number

of source languages also causes the subword vocabulary to approach a character level

vocabulary. In Table 6.2 it can be seen that using more languages does lead to an increase
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in translation quality but such a case is not practical. This leads to a situation where

unnecessarily longer sequences are used for little gain. As such, it is better to use two to

three source languages that are linguistically closer because they also increase the chances

of script sharing and cognate sharing. Cognate and script sharing also leads to larger

subword units for rarer words. Whether this is a good thing or not should be verified

experimentally, something we leave for future work.

In the case of languages like Chinese and Japanese in which the number of basic

characters (which form the initial subword vocabulary) is extremely high, the sequences

tend to be much longer if a smaller vocabulary size is specified. Using Chinese and Japanese

as sources together is much better than using either of them with other languages like

English or Hindi. The reason for this is that Chinese and Japanese scripts contain a

large number of similar characters and this increases the possibility of cognate sharing

and thereby larger subwords for rarer words. But if Chinese or Japanese is combined with

English then half the subword vocabulary quota will be allotted to English which pushes

the Chinese subwords towards character levels. This also increases the effective lengths of

input sequences which makes training NMT models more difficult.

As a rule of thumb it would be better to consider using more number of source languages

if they are linguistically closer and share scripts and cognates. In other situations it

would be better to use two or three source languages and avoid the problem of subwords

vocabularies that approach character level vocabularies which also leads to extremely long

sequences.

Studying Multi-Source Attention

To study multi-source attention, we obtained visualizations for the attention vectors for

a few sentences from the test set. Refer to Figure 6.6 for an example. Note that, in the

figure, we use a horizontal line to separate the languages but the NMT system receives a

single, long multi-source sentence. The words of the target sentence in Hindi are arranged

from left to right along the columns whereas the words of the multi-source sentence are

arranged from top to bottom across the rows. Note that the source languages (and lexical

similarity scores with Hindi) are in the following order: Bengali (0.52), English (0.20),

Marathi (0.51), Tamil (0.30), Telugu (0.42).

It can be seen that the attention mechanism focuses on each language but with varying

degrees of focus. Bengali, Marathi and Telugu are the three languages that receive most

of the attention (highest lexical similarity scores with Hindi) whereas English and Tamil

(lowest lexical similarity scores with Hindi) barely receive any. Building on this observation

we believe that the gains we obtained by using all 5 source languages were mostly due to
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Bengali, Telugu and Marathi whereas the NMT system learns to practically ignore Tamil

and English. However there does not seem to be any detrimental effect of using English

and Tamil.

From Figure 6.7 it can be seen that this observation also holds in the UN corpus setting

for French and Spanish to English where the attention mechanism gives a higher weight

to Spanish words compared to French words since the Spanish-English translation quality

is about 9 BLEU points higher than the French-English translation quality. It should

be noted that the attention can potentially be used to extract a multilingual dictionary

simply by learning a N-source NMT system and then generating a dictionary by extracting

the words from the source sentence that receive the highest attention for each target word

generated.

6.6.2 Evaluation of Transfer Learning using Multi-Source mod-

els

Table 6.5 contains the results for the transfer learning experiments on the Europarl corpus.

Regardless of the target language, there is a statistically significant improvement in BLEU

using both the multi-source as well as the 4S1T models as parent languages. In a number

of cases the multi-source model acts as a better parent than the 4S1T model.

German-English is the only language pair that fails to improve via transfer learning. We

believe that this happens because German is different from the other source languages it

was grouped with because French, Italian and Spanish are romance languages and German

is not. In the future we plan to conduct experiments with various language families and

verify whether or not grouping languages according to language families is beneficial to

transfer learning.

It must be noted that we do not use any regularization by freezing parts of the model,

as in [135], while training and hence the transferred model learns and overfits quickly. By

using proper regularization methods, we believe that we can obtain further improvements

in the translation quality as a result of transfer learning.
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Figure 6.6: Attention Visualization for ILCI corpus setting for Bengali, English, Marathi,

Tamil and Telugu to Hindi.
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Figure 6.7: Attention Visualization for UN corpus setting for French and Spanish to

English.
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In order to investigate why such transfer learning works well we investigated the learn-

ing curves of our various models. Consider the following lowest achieved per word devel-

opment set losses:

• French, Spanish, Italian and German (multi-source) to English: 1.76

• 4S1T model (4-source to one target model for French, Spanish, Italian, German to

English): 2.17

• French-English: 2.31

• Spanish-English: 2.25

• Italian-English: 2.44

• German-English: 2.32

Moreover, we noticed that the single source baseline exhibited a certain amount of

overfitting which happens in low resource scenarios. However, the multi-source and 4S1T

models did not overfit at all and could achieve significantly lower losses. Low loss is an

indicator that the decoder is able to predict target words much better. Thus, using the

multi-source model, which has the least loss, helps in improving translation quality.

This shows that while large bilingual corpora can be used for transfer learning, there

is a substantial amount of untapped potential in multilingual, multiway corpora. Large

bilingual corpora with English as the target language might be abundant but large bilingual

corpora with Hindi or Marathi as target languages are not as abundant and thus such

multilingual, multiway corpora can be beneficial.

6.6.3 Evaluation of Multilingual Dictionaries Extracted using

Multi-Source models

Evaluation Procedure

We manually evaluated the dictionaries generated for the 100 most frequent English words.

We evaluate at both a bilingual as well as a multilingual level. Our method extracts

multilingual dictionary tuples but at the bilingual level we only care about the accuracy of

two languages at a time. The reference translations for these English words are obtained

from Google translate which is completely reliable for single word translations for European

languages. We report the 1-best, 2-best and 5-best accuracies for the same. A multilingual

dictionary is a collection of N-tuples and an N-tuple counts towards the top 1 accuracy

if the topmost entries for each of the bilingual dictionaries is correct. A valid example of

a 5-tuple is (Mr, Señor (Spanish), Monsieur (French), Herr (German), Signor (Italian)).

A 5-tuple counts towards the top 5 accuracy (but not the top 1 accuracy) if the valid

translation of the English word in any of the languages is fifth highest entry (according to



140 CHAPTER 6. MULTI-SOURCE NMT

frequency) in the respective bilingual dictionary.

Observations

Table 6.6.3 contains the top 1, top 2 and top 5 accuracies for English-XX bilingual dictio-

nary (where XX is one of Italian, French, Spanish and German). We also give the same

accuracies for a 5-tuple dictionary (a multilingual dictionary entry) for the 5 languages

involved.

One important point to note is that although the BPE sub-word vocabulary size we

chose for English is 12,000 and the shared vocabulary size for the four source languages

is also 12,000 which means that the vocabulary size for each languages is approximately

3,000. However, the total number of dictionary entries we obtained was around 55000

which means that our method is able to successfully reconstruct surface words from sub-

words. As can be seen in Table 6.6.3, despite the simple approach, the quality of the

bilingual dictionaries extracted for the 100 most frequent words is reasonably high (all

85% and above for top 1 accuracy and above 90% for the top 2 accuracy). Moreover the

top 1 accuracy for the 5 lingual (multilingual) dictionary is 74%.

Following are some examples of multilingual dictionary entries not in the list of 100

entries we evaluated:

• ignorance (English), ignorancia (Spanish), ignorare (italian), unkenntnis29 (Ger-

man), ignorance (French)

• college (English), colegio (Spanish), college (French) kollegium (German), collegio

(Italian)

• Moreira (English), Moreira (Italian), Moreira (French), Moreira (German)

The most encouraging finding was that, although all the words above were segmented

into 2 to 3 sub-word units after BPE segmentation, our method managed to correctly

generate and align the surface forms. For example: Moreira is split as “Mor ei ra” and

appears only 7 times in the corpus of 200000 lines. Similarly, unkenntnis is split as “unk

enn tnis” and occurs only 14 times. Our method manages to correctly align proper

names in most cases we investigated despite their infrequent occurrences. This leads us to

believe that our approach will definitely allow for high quality dictionary entries for rare

words as well.

We believe that further modifications to our algorithm and appropriate post processing

techniques will lead to even higher accuracies. The next step will be the evaluation of

29This was the Top 2 entry. The Top 1 entry was Geschichtliche which is wrong
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Language

Pair

Accuracy

Top 1 Top 2 Top 5

It-En 85 93 93

Es-En 86 91 94

Fr-En 96 99 100

De-En 95 98 99

5 lingual 74 82 87

Table 6.6: The results of the evaluation of a dictionary extracted using the method in

Section 6.4.3. We give the top 1, 2 and 5 accuracies for the bilingual English-XX and 5

lingual dictionaries extracted for the 100 most freuqent words in the Europarl corpus. The

languages involved are English (En), French (Fr), German (De), Italian (It) and Spanish

(Es).

dictionaries for rare words which we leave as future work but we expect reasonably high

quality dictionaries.

6.7 Conclusion and Future Work

In this chapter, we have explored a simple approach for “Multi-Source Neural Machine

Translation” by using the vanilla NMT architecture as a black-box. The multi-source

models obtained using our approach can be used to improve single source translation. We

have evaluated our approach in a resource poor as well as a resource rich setting using

the ILCI and UN corpora. We have compared our approach with two other previously

proposed approaches and showed that it gives competitive results with other state of the

art methods while using less than half the number of parameters (for 2 source models). It

is domain and language independent and the gains are significant. We also observed, by

visualizing attention, that NMT focuses on some languages by practically ignoring others,

indicating that language relatedness is one of the aspects that should be considered in a

multilingual MT scenario. Finally, we have explored how multilingual, multiway corpora

can be leveraged for improving single source translation quality by using transfer learning.

All of this points to unexpected advantages in developing multiway corpora for low

resource languages. We have also proposed a simple method for the extraction of dictio-

naries using the multi-source model and evaluated the dictionaries extracted. We show

that the dictionaries obtained are of sufficiently high quality despite the limitations of the

application of the attention mechanism for word alignment purposes. Future work will
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involve further exploration of the language relatedness phenomenon by considering even

more languages. It will also be interesting to explore approaches to train models that can

translate both single and multi-source inputs.

With the findings in this chapter and the ones before it, we were able to quantita-

tively and satisfactorily verify the importance of multilingualism and transfer learning for

machine translation. The next chapter gives a retrospective summary of this thesis and

enumerates the venues of research that may become important in the future.



Chapter 7

Conclusion

7.1 Overview

The aim of this thesis was to explore how multilingualism and knowledge transfer (trans-

fer learning) can be exploited to improve the quality of MT, especially in a low resource

scenario. Multilingualism for MT implies using three or more languages to build a trans-

lation system. On the other hand, knowledge transfer or transfer learning for MT involves

reusing existing translation knowledge or sharing it between multiple tasks and languages.

It can also involve using existing models to overcome the lack of translation data by gen-

erating synthetic corpora. These two methods are complimentary and can be used to

improve translation quality significantly in a low resource scenario.

We showed the advantages of multilingualism by experimenting with a variety of lan-

guages and empirically verified that using additional languages, especially ones that are

linguistically similar, leads to an improvement in translation quality. We also showed how

translation knowledge can be transferred from one language pair or domain to another

leading to better translations for languages that are resource poor. By doing so we pro-

mote the reuse of already acquired translation knowledge which we believe will become a

trend in the coming future. Furthermore, our interest was in determining the most effec-

tive approaches for transferring translation knowledge and how using additional languages

can help boost translation quality.

We have mostly focused on simple and easily reproducible approaches instead of com-

plex ones and have found that simplicity, especially in the deep learning paradigm yields

reasonable results. To obtain answers to several questions we were faced with through-

out our research we have performed several empirical studies comparing our approaches

with existing ones using a variety of frameworks like Moses (Phrase Based Statistical MT

system), Kyoto NMT and Groundhog (Neural MT systems).
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This thesis documents our transition from PBSMT to NMT and the approaches we have

explored can be roughly divided into two major categories: a. multilingual pivot language

based approaches in a PBSMT setting for low resource MT and dictionary extraction

(Chapters 2 and 3) and b. transfer learning based approaches in a NMT setting for

multilingual MT and domain adaptation (Chapters 4, 5 and 6).

In Chapter 2, we started out with an exploration of pivot based techniques where we

used up to 7 languages as intermediates between Japanese and Hindi and showed that by

translating through other languages we manage to access additional translation knowledge

and thereby improve the quality of translation. Although this method works well in a low

resource setting it does not yield a proportionate amount of improvements in a resource

rich scenario.

One thing that we noticed in our research on pivot language based MT was that piv-

oting through an intermediate language leads to translation tables (phrase tables) that

are quite noisy and thus explored an effective solution to denoising said tables in Chapter

3. We combined pivoting and statistical significance pruning to obtain high quality tech-

nical term dictionaries for Chinese-Japanese and then showed that reranking translation

candidates using neural network features leads to further improvements in quality. We

attempted to incorporate additional sources of information by utilizing paraphrases but

were unable to confirm an effective solution.

In Chapter 4 we explored neural network approaches that involved transfer learning

for domain adaptation. We proposed some effective solutions to improve Chinese-English

and Chinese-Japanese translation and empirically confirmed that our approaches were

superior to existing ones. We noted that, in the long run, it is indeed better to have a

single multi-domain translation model

In Chapter 5 we considered various approaches for transfer learning across languages

where we studied how language relatedness affects the amount of knowledge that is trans-

ferred. We were able to work on a large variety of low resource languages like Hauza,

Uzbek, Marathi, Malayalam and Somali and focused on translating to and from English.

In the long run, we showed how grouping languages according to their language fami-

lies and learning a single multilingual NMT model is the most effective solution for low

resource MT. We also explored some approaches for self learning where we augmented

existing data with synthetic data generated from the NMT models but were unable to

reach a satisfactory conclusion.

Finally in Chapter 6, we considered using redundancy in the form of multiple languages

to improve translation quality. We trained multi-source NMT models in which the input

sentences are the concatenation of the same sentence in two languages and showed that
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the attention mechanism is able to leverage information from both source languages to

improve translation quality by significant amounts. We also confirmed that it is possible to

transfer translation knowledge from multi-source to single source models leading to single

source models which give translations of higher quality than the ones which did not use

transfer learning. We also showed how our concatenation approach enables the extraction

of a multilingual dictionary of a reasonable quality.

While high quality dictionaries and translation models that have been learned using

either pivoting or transfer learning based approaches have direct applications in general

purpose speech and text translation, creation of multilingual resources that are the back-

bone of such approaches is important. All our approaches that lead to improved trans-

lations can help reduce post-editing efforts. As such, it should be possible to accelerate

the pace of resource construction. Each part of this thesis can be useful in increasing the

quantity of multilingual resources which we have shown to be useful and thus our work

can be used to improve itself.

7.2 Future Work

7.2.1 Expanding on our Findings

It is clear that multilingualism and transfer learning work well in helping improve the

quality of translations. We were able to show in a variety of situations how additional and

related languages led to a substantial improvement in translation quality.

However, pivot language based approaches are still largely unexplored, especially in

the context of NMT. We expect that in the coming years as NMT begins to reach its

peak, pivoting through additional languages will be essential in pushing the state-of-the-

art. As such it will be worthwhile to pursue methods that will allow for harnessing various

individual languages in a deep learning setting. Pivoting will also help enable zero resource

translation which still needs plenty of attention and research.

Another interesting aspect of NMT is that unlike PBSMT it does not rely on linguis-

tic information like morphological analyses or syntactic and semantic parses. We have

shown that language similarity does impact transfer learning but have not explicitly used

linguistics in our experiments. Although there has been work on showing that jointly

learning parsing and translation models help improve translation quality there is still no

official consensus on this topic and believe that an effective method to exploit linguistic

information will certainly help push NMT research to the next level.

Finally, one major issue with NMT approaches is that NMT models are essentially
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black boxes and there is very little possibility of knowing why something works or does

not work due to a lack of a deeper understanding of the working of such models. We

believe that it is crucial to invest in research on understanding these deep neural networks

by means of visualization. According to us, having a mechanism to track and explain the

effect of a change to the model architecture not only at the level of the model outputs

but at the inner layers (where the computation takes place) will help revolutionize this

field. This area is beginning to receive quite a bit of attention1 and could be an exciting

direction for future research.

7.2.2 On the Latest NMT Architectures

Since the RNN based approaches are quite slow, newer models that rely on CNNs [43] and

Feed-forward NN layers [124] have been proposed. These models are non auto-regressive

(they do not rely on the previously generated word while decoding) during training time

but are auto-regressive during decoding time. These models can be trained an order of

magnitude faster than their RNN counterparts and this is extremely useful when it comes

to working with transfer learning. Transfer learning can be time consuming, especially,

when multilingual models are to be trained and thus faster methods can be a boon for

both resource poor and resource rich scenarios.

However, these approaches still do not solve the problem of slow decoding that NMT

suffers from. Recently, there has been work done on non auto-regressive NMT [51] where

encoding and decoding both takes place in pseudo constant time regardless of the sequence

length. This approach borrows ideas such as fertility and local word reordering from

PBSMT which illustrates that a lot of PBSMT approaches can be used to improve NMT.

However, this approach is still new and does not perform as well as the auto regressive

NMT models. We believe that over time the limitations of these models will be addressed.

Since, PBSMT and NMT tend to be equally good in low resource scenarios, it is important

to invest into research which aims to incorporate PBSMT techniques into NMT. By doing

do, NMT will be superior to PBSMT in terms of speed and translation quality.

Recent works on unsupervised NMT [4, 86] shows that large parallel corpora might

not be required for high quality MT. These works used only monolingual corpora and

showed that neural networks cause similar concepts across languages to have equivalent

representations without the need for parallel corpora. Furthermore, a small amount of

parallel data causes the translation quality to increase drastically. It is clear that, such

approaches are extremely important for low resource languages and thus deserve more

1No pun in ten did.
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attention. Understanding such unsupervised NMT models could also help us understand

why human beings can master multiple languages without reading plenty of parallel texts.

7.2.3 Final Thoughts

Our main hypothesis is that multilingualism and knowledge transfer are the key factors

behind improving translation quality, especially in a low resource scenario. We have con-

ducted our experiments without significant modifications to the MT model architectures

since we believe that the basic architectures are often the best. We believe that we are

moving towards a situation where translation models which combine linguistics and ma-

chine learning approaches will eventually form the state-of-the-art and such models will

not only be able to harvest linguistic information but also explain and expose several lin-

guistic phenomena. Recent work on Quantum Language Modeling (QLM) [9] leads us to

believe that Quantum Machine Translation is next on the horizon. Since Quantum Physics

implies that particles of matter can be entangled Quantum Machine Translation can help

uncover deeper relationships between words. In low resource scenarios, uncovering such

relationships will help us learn better abstractions which is useful in improving translation

quality. This should also help advance our understanding of language itself and of how

human beings understand and acquire languages without much training.
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