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Preface
Medical ultrasound devices are widely used in clinical situations. Compared with X-
ray and magnetic resonance imaging-based tests, the medical ultrasound test has less
hardware costs, is non-invasive, and offers real-time imaging and superior portability.
However, the resolution and reliability of the technique are limited. Improvements to
the accuracy and the resolution are strongly desired, as they may improve the accuracy
of medical diagnoses. The medical ultrasound probe normally consists of multiple ul-
trasound elements, and therefore, investigation of the array signal processing technique
should be a key to overcoming the shortages of the medical ultrasound test.

The two-dimensional medical ultrasound image is called the B-mode image. B-mode
imaging consists of multiple one-dimensional signal intensity profiles, which are dis-
played as brightness of the image. A non-adaptive time-delay process which makes
focal points is widely used in the clinical devices. However, the lateral resolution of the
non-adaptive process is determined by the aperture size of the probe. Although several
adaptive beamforming techniques have been proposed to further improve the lateral res-
olution, these adaptive beamforming techniques have a high computational cost because
of the difference between the theoretical model of the adaptive beamforming and the
actual conditions. A narrow-band signal is used as the theoretical model for the adaptive
beamforming; however, in B-mode imaging a wide-band signal is used. Reduction of
the computational complexity is a critical problem, because the real time imaging aspect
is one of the strong points of the medical ultrasound test.

In addition to B-mode imaging, ultrasonic array probes are also used in the quantita-
tive ultrasound (QUS) devices used to evaluate the quality of bone. The QUS methods
have been developed for screening and early-stage detection of osteoporosis, which is
known as a serious disease of aged people. The QUS method for bone evaluation was
first proposed in the 1980s. Compared with traditional medical ultrasound imaging de-
vices, this field is a newer area of research. Bone mineral density (BMD) is currently
used as the medical index for making diagnoses, and at present, BMD is measured by
X-ray devices. Thus, for the same reason as for B-mode imaging, the development of
QUS devices is also desired. Furthermore, QUS devices can estimate the information
that cannot be estimated by X-ray-based methods.

The propagation of the ultrasound wave is determined by the elastic and geometrical
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conditions of the medium. Therefore, the ultrasonic signal that propagates along the
bone contains information on the bone properties, such as the elastic stiffness, thickness,
porosity, and mineralization. Up until now, bone QUS devices have not been very widely
used in the clinical situation, but the technique has strong potential to be a gold standard
for bone quality diagnosis, and development of the bone QUS technique is important.

An array probe is used in the cortical bone assessment, with the method being referred
to as axial transmission. Because the cortical bone, which exists at the outer part of the
bone, supports the body load, the accurate assessment is required to maintain the quality
of patients’ lives. In the most axial transmission technique, the ultrasonic guided waves
propagating along the cortical bone are analyzed. The cortical bone is locally recog-
nized as a transversely isotropic plate, and thus the ultrasonic guided waves propagate.
The wavenumbers and phase velocities of the guided waves reflect the properties of the
propagation medium, and estimation of the wavenumber and phase velocity leads to the
characterization of the cortical bone.

The wavenumber and phase velocity is estimated according to the difference of the
phase and amplitude of the received signals at multiple elements. The basic methodol-
ogy is the same as that used in the adaptive beamforming technique utilized in B-mode
imaging. However, the conditions and requirements are different. In the wavenumber
analysis, the narrow band signal theory is satisfied, which is not the case in B-mode
imaging. Additionally, in B-mode imaging the intensity profile is required to make an
image. However, for the axial transmission technique, the values of the wavenumber
and phase velocity are required, not the profile.

In this thesis, we first propose a low-computational-complexity adaptive beamform-
ing technique for B-mode imaging with a linear array, by focusing on the difference
between the narrow-band and wide-band based adaptive beamforming methods. We sec-
ond apply an adaptive beamforming technique for the axial transmission technique and
propose a technique that can directly estimate the values of the wavenumber and phase
velocities. We next propose a new algorithm for the axial transmission technique with
a low computational complexity. This method is then investigated by a bone-mimicking
transversely isotropic plate. We finally propose a low-cost technique that characterizes a
homogeneous isotropic plate with just one transmitter and two receivers as a pilot study
for the axial transmission technique.
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List of acronyms and abbreviations

Following acronyms and abbreviations are used in this thesis.

1D one dimensional
2D two dimensional
A anti-symmetric
AH asymptotic homogenization
AIB apparent integrated backscatter
AT axial transmission
BMD bone mineral density
BS beam-space
BUA broadband ultrasound attenuation
CPU central processing unit
cSOS cortical speed of sound
DAS delay-and-sum
dB decibel
DL diagonal loading
DOA direction of arrival
DXA dual X-ray absorptiometry
ES element-space
ESPRIT estimation of signal parameters via rotational invariance technique
FAS first arriving signal
FDTD finite-difference time-domain
FFT fast Fourier transform
fps frames/sec
GPU graphics processing unit
LLMS linear least-mean-squares
MDL minimum description length
MRI magnetic resonance imaging
Np neper
QUS quantitative ultrasound
RAS ultrasound spectroscopy
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RF radio frequency
RMSE root mean square error
ROI region of interest
S symmetric
SNR signal-to-noise ratio
SOS speed of sound
S-SVD sparse SVD
STA synthetic aperture
SVD singular-value decomposition
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List of common symbols

Following symbols are commonly used in this thesis. Each chapter also introduces their
meaning at the first usage. Some symbols have more than one usage; their meaning is
clear from the context.

(·)∗ complex conjugate
(·)T matrix transposition
(·)H matrix conjugate transposition (Hermitian matrix)
α attenuation coefficient
∆l element pitch
ε{∗,∗} strain along {∗,∗} direction
η diagonal loading factor
θ angle
κ viscosity
λ wavelength
λe eigenvalue
λL Lamé’s constant
µL Lamé’s constant
ξ Poisson ratio
ρ density
σ{∗,∗} stress along {∗,∗} direction
Φ scalar potential
an(θ) steering value
a(θ) steering vector
c propagation speed, phase velocity
cS shear wave velocity
cL longitudinal wave velocity
C{∗,∗} elastic stiffness coefficient
d thickness
E Young’s modulus
f frequency
f0 center frequency
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fd Doppler frequency
fr reference frequency
H( f ) transfer function
H vector potential
Hx,y,z vector potential along x,y,z direction respectively
I identity matrix
j pure imaginary unit
k wavenumber
M number of signals
N number of receivers
Nsub sub-array size
Nave number of spatial averaging
Ntr number of transmitters
r depth, range
r vector that represents the position
R covariance matrix
RA covariance matrix after spatial averaging
RAD covariance matrix after spatial averaging and time-delay process
s(t) signal
s signal vector
S( f ) signal in frequency domain
S0( f ) transmitted signal in frequency domain
Sr( f ) reference signal in frequency domain
S( f ) signal vector in frequency domain
t time
u particle displacement vector
ux,y,z displacement along x,y,z direction, respectively
v Doppler velocity
vx Doppler velocity along x direction
vz Doppler velocity along z direction
x axis
y axis
z axis
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Chapter 1

General Introduction

1.1 Introduction
Ultrasonic waves are elastic waves of a frequency that exceeds the audible frequency
range of human hearing. Ultrasonic waves propagate in body soft tissue with a speed of
around 1500 m/s (Cobbold, 2006; Laugier and Haïat, 2011). Because this speed is very
much slower than light, an ultrasound system can easily measure the distance to a target
and its speed in the body using a much simpler system compared to the radio wave and
light such as radar or laser based systems. Moreover, the penetration of ultrasound from
the body surface to deep inside the body is easier. Hence, it is possible to focus waves
with shorter wavelengths in the body; in other words, the resolution is higher. For these
reasons, medical ultrasound technology has been widely used in clinical situations for
diagnostic purposes to examine internal body structures.

Generally, ultrasonic waves of low frequency (about 20 kHz to 2 MHz) (Daffertshofer
et al., 2005; Schoellhammer et al., 2015) are used for treatments. Waves of frequencies
ranging from 1 to 40 MHz are used in diagnostics, whereas high frequency waves (more
than 50 MHz) are used in ultrasonic microscopes (Ito et al., 2017; Yoshida et al., 2016).
The frequency is determined according to required target depth and the resolution. For
example, 5-MHz waves are used for fetal imaging because the amniotic fluid surround-
ing the fetus is a low-attenuation propagation medium and high-resolution images are
required (Deng et al., 2001). In contrast, for quantitative ultrasound (QUS) technology
for the bone assessment, lower frequencies (around 1 MHz) are used because bone is
both a dispersive and an absorbing medium (Laugier, 2008; Laugier and Haïat, 2011).

For medical imaging, not only ultrasound is used but also X-rays (Hu et al., 2001;
Rabin et al., 2006) and magnetic field oscillating at radio frequency (RF pulses) are used
(Connell et al., 2015; Sun et al., 2016). While X-ray and magnetic resonance imaging
(MRI) techniques that use the RF pulses produce high-resolution images, they are not
suitable for daily diagnostics because of their large size, high costs, lengthy imaging
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times, and invasiveness. Medical ultrasound tests are noninvasive and are performed in
real-time with simple portable devices. From this perspective, ultrasound is superior to
X-ray and MRI. Furthermore, with ultrasonic waves, we can not only visualize inter-
nal body structures but also evaluate physical properties of the target such as elasticity
(Raum et al., 2014; Shiina et al., 2015).

Ultrasound easily undergoes refractive scattering and interference that generate ar-
tifacts. Therefore, the quality of imaging and diagnostics is highly dependent on the
ability of the operator. To solve this problem, various signal processing methods and
measurement algorithms have been proposed in recent years. In consequence, clearer
ultrasound images produced at higher frame rates are possible particularly with the im-
provements in speeds of central processing unit (CPU) and graphics processing unit
(GPU) (Moghimirad et al., 2016; Tanter and Fink, 2014). In this section, we introduce
some basics of medical ultrasound technology and signal processing methods and tech-
niques that have been developed recently.

1.2 Basics of medical ultrasound imager

1.2.1 Pulse echo method
First, we describe the fundamentals of the pulse echo method and the theory underlying
ultrasound imaging. The pulse echo method uses a wide-band signal to determine the
distance from a transmitter and a receiver to a target. The transmitted signal is reflected
at the boundaries of objects with different acoustic impedances.

When we use a single ultrasonic element as a transmitter and receiver, the delay time
t0 is given by

t0 = 2r0/c, (1.1)

where c is the speed of propagation and r0 is the distance from the element to the target.
The depth (range or fast time) resolution is determined by the bandwidth of the trans-

mitted pulse. The lateral resolution, ∆rxf, which is normal to the range direction, is
determined by the aperture size of the probe, N∆l, when we use a linear array probe
which composed of N elements with the pitch of ∆l; for far fields its approximate form
is

∆rxf ≈
rfλ
N∆l

, (1.2)

where λ is the wavelength of the signal and rf the focal depth. Hence, for a probe of fixed
aperture, the resolution decreases with depth (Van Trees, 2002). Therefore, depending
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Line output

(a) (b) (c)

Figure 1.1: Probe types and scanning methods: (a) linear array probe with line scanning
method, (b) linear array probe with a sector scanning method, and (c) convex
array probe with a off-set sector scanning method.

on the measurement depth, aperture size can be varied in some medical ultrasound im-
agers.

1.2.2 Basics of medical ultrasound 2D imaging system
By arranging multiple one-dimensional (1D) intensity profiles acquired by the pulse-
echo and focusing methods that form focal points by using time-delay processes, a two-
dimensional (2D) ultrasound image is generated. The intensities of the multiple 1D
intensity profiles are displayed as brightness in an image. To create the 2D image, an
ultrasonic array probe is normally used. An ultrasonic array probe consists of multiple
small ultrasonic elements used as both transmitters and receivers. Multiple 1D inten-
sity profiles are called scanning lines. There are various types of probes and scanning
methods (Fig. 1.1) (Cobbold, 2006).

Fig. 1.1 presents the schematics of two probe types (linear and convex arrays) and
two scanning methods (line and sector scanning) that are widely used in 2D medical
ultrasound imaging.

With linear scanning using the linear array, multiple scanning lines are generated by
electronically changing the group of ultrasonic elements that are used as transmitters
and receivers. For sector scanning, all elements are used simultaneously, and imaging
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Delay process

Target

Figure 1.2: Schematic presentation of delay-and-sum technique.

is performed by changing the focal positions. Since all elements are used for imaging
simultaneously, no electronic switching is required. The same resolution can be achieved
using a smaller aperture size than for a linear scan. Hence, sector scanning is used in
clinical applications when a small size probe is required to avoid obstacles that prevent
ultrasound signals from penetrating, for example, the ribs in cardiac imaging.

For the convex array, the ultrasonic elements are arranged on a convex surface of a
certain curvature. It can scan a wider imaging region than a linear array. Therefore, it is
used in the diagnostics of abdominal organs, which requires a wide imaging area, even
of organs that lie deeper within the body.

Delay and sum technique

Here, we describe a beamforming technique to establish the focal point. Classical non-
adaptive beamforming is called the delay-and-sum (DAS) method. The schematic pre-
sentation of the DAS method is shown in Fig. 1.2. This method establishes the focal
point by applying a theoretically determined time-delay value to the transmitters and
receivers (Cobbold, 2006).

Let us define vectors re,i and rf representing the positions of the i-th elements and
focal point, respectively. The associated time delay ti required to determine the focal
point is given by

ti =
|rf− re,i|− |rf|

c
. (1.3)

To generate a plane wave with the designated angle θ as for a sector scan with a linear
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array probe, the time delay given at the time of transmission is

ti =
(i−1)∆l sinθ

c
. (1.4)

To improve the resolution, a dynamic focusing method has been proposed. When the
focal point is set at a single point, the resolution improves only near the focal point;
in other places, the resolution is low. By employing multiple focal points and adding
the received signals obtained by them, it is possible to improve the resolution over a
longer depth range. Nevertheless, when multiple-point focusing occurs mechanically
with transmission and reception events, the frame rate decreases proportionally with the
number of focal points. To avoid this drawback, digital beamforming is employed at
signal reception(Jensen et al., 2006).

Synthetic aperture imaging

So far, we have described the methods of transmission and reception associated with a
fixed-size array. The synthetic aperture (STA) method is one for which the transmitter
and the receiver are driven separately and improves image resolution through the use of
images generated by various combinations of transmitters and receivers (Jensen et al.,
2006, 2016b). From the conceptual diagram of the STA method (Fig. 1.3) (Jensen et al.,
2006, 2016b), the transmitters are driven one by one, and reflected signals are recorded
by all receivers. As the beam width of a single transmitter is wide, the resolution of each
image with a single transmitter is low. By adding the generated low-resolution image, it
is possible to generate a high-resolution image.

The signal processing used in the STA method is expressed as

sRf (r) =
N

∑
j=1

Ntr

∑
i=1

sR(t(i, j), i, j), (1.5)

t(i, j) =
|r− re(i)|+ |r− rr( j)|

c
, (1.6)

where sR(t, i, j) is the received signal at the i-th transmitter and the j-th receiver, sRf (r)
is the output of the STA method, N and Ntr are the number of receivers and transmitters,
respectively, r is the vector indicating the measurement position, and re and rr are the
positions of the transmitter and receiver, respectively.

Eq. (1.5) shows that the result produced by the STA method is equivalent to the result
when we perform dynamic focusing on all imaging points at transmission and reception.
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Figure 1.3: Schematic of synthetic aperture imaging.

In other words, this STA result has the highest resolution when we use the non-adaptive
DAS method (Jensen et al., 2006). In addition, adaptive beamforming can be applied to
STA to improve the resolution.

One problem with the STA method is penetration. Specifically, transmission is per-
formed with a single element. This makes it difficult to image deep regions within the
body. To solve this problem, a method that simultaneously excites multiple transmitters
(Moghimirad et al., 2016) or uses a chirp signal as a transmitted signal have been pro-
posed (O’Donnell, 1992). Another problem is the computational complexity. However,
with recent improvements in computing speeds of CPUs and GPUs, the implementation
of the STA method has become possible in commercial imagers. Note that reducing the
computational complexity remains an obstacle in making low-cost measurement sys-
tems. Moghimirad et al. (2016) proposed a method that creates a virtual source using
multiple transmitters and replaces the time delay at transmission and reception by a 2D
fast Fourier transform (FFT) analysis. The amount of calculations was reduced by 1/20
without any deterioration in resolution.

6



(a) (b)

Figure 1.4: Comparison of transmission schemes: (a) plane-wave transmission with a
single-angle compound, (b) plane-wave transmission with multiple-angle
compound.

Plane wave imaging

In recent years, ultrafast imaging using plane-wave transmission has been proposed and
attracts strong attention (Tanter and Fink, 2014). Ultrafast imaging refers to an imaging
method with a fast frame rate. Fig. 1.4 shows an overview of plane-wave transmission.
The plane-wave transmission technique involves transmitting a plane-wave signal over
a wide imaging area simultaneously and employs on reception the digital beamforming
technique. Thus the technique does not require time for changing the transmitter and
receiver groups and can increase the frame rate. When we consider the DAS image
generated by a linear array probe using a linear scanning method and consisting of 128
lines and 4 dynamic focusing points, the frame rate is about 25 frames/sec (fps) (Tanter
and Fink, 2014). Single angle plane-wave imaging such as Fig. 1.4(a) achieves about
18000 fps because the plane-wave transmission technique does not require time to switch
the transmitter group to change the focal position(Tanter and Fink, 2014). However, the
resolution is low.
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To improve the resolution, a compound method that adds the generated images with
different transmitting angles has been widely used (Fig. 1.4(b)) (Tanter and Fink, 2014).
Because the compound method increases the resolution by summing up the images with
different transmission angles, the frame rate decreases. The frame rate is about 1000 fps
with 17 angles and about 350 fps with 40 angles. Plane-wave imaging can be applied
not only to B-mode imaging but also to Doppler velocity estimations of blood flow
(Hasegawa and Kanai, 2008) and elastography, which measures tissue quality (Shiina
et al., 2015).

1.2.3 Doppler velocity measurement
Ultrasonic Doppler diagnostics is a technology by which blood flow velocity can be es-
timated as well as the velocities of displaced tissue, which enables a non-invasive eval-
uation of tissue quality. The continuous-wave Doppler method was developed initially
and used in the clinical situation (Berger et al., 1985; Currie et al., 1985). However,
the method does not provide any depth (range) resolution. In contrast, the pulse-wave
Doppler method has depth resolution and is now used widely. Color and power Doppler
methods that display simultaneously real-time 2D images and Doppler information have
been developed and are widely employed in commercial devices (Chang et al., 2009;
Kasai et al., 1985).

If we assume the target moves with velocity v as shown in Fig. 1.5, the frequency of
the received signal is expressed as

f =
c+ vz
c− vz

f0 (1.7)

≈
{
1+2vz

c

}
f0, (1.8)

where f0 and f are the central frequency and received signal frequency and vz is the
velocity of the target projected along the direction of gaze (Jensen et al., 2016a). The
approximation, vz ≪ c, is used in the latter equation. The Doppler shift fd is defined as
fd = f − f0.
As shown in Eq. (1.7), when we measure the Doppler velocity from one location

with a simple algorithm, only the velocity along the direction of gaze can be obtained.
However, the measurement of multi-directional blood flow is important in medical di-
agnostics. We next introduce methods to estimate blood flow velocities along more than
one direction.
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Multi-beam method

If we consider blood flowing at an angle θb and measure the Doppler velocity with
a transmission beam angle of θt and reception beam angle of θr, the Doppler shift is
obtained from

fd =
|v|cos(θt−θb)+ |v|cos(θr−θb)

c
f0, (1.9)

which can be rearranged to give

vz(cosθt+ cosθr)+ vx(sinθt+ sinθr) = c fd/ f0, (1.10)

where vx = |v|sinθb and vz = |v|cosθb (Jensen et al., 2016a).
To measure the 2D blood flow velocity, at least two beams are required; see Fig. 1.5(a).

When we measure the Doppler velocity with multiple beams with multiple angles, the
Doppler velocities and shifts are related by

c
f0


fd11
fd21
...

fdNbtNbr

=


cosθt1+ cosθr1 sinθt1+ sinθr1
cosθt2+ cosθr1 sinθt2+ sinθr1

...
...

cosθtNbt + cosθrNbr sinθtNbt + sinθrNbr

[
vz
vx

]
, (1.11)

where θt,ri is an i-th transmission and reception beam angle, fdi j denotes the Doppler ve-
locity of the i-th transmitting and j-th receiving beam angle combination, Nbt and Nbr are
the number of beam angles corresponding to transmission and reception, respectively.

In the matrix form, Eq. (1.11) becomes

uv = Avvv. (1.12)

Therefore, the 2D velocities can be estimated by solving the least squares problem,

vv = (AT
vAv)

−1AT
vuv. (1.13)

Transverse oscillation

The transverse oscillation method estimates the Doppler velocity along the transverse di-
rection (x direction) by generating the transversely oscillated field (Jensen, 2001; Jensen
and Munk, 1998). The field is generated by combining two ultrasound fields formed by
the two apodization settings. The apodization technique employs weighting functions
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Figure 1.5: Schematics for 2D Doppler velocity estimation: (a) multi-beam method, (b)
transverse oscillation method.

such as the Gaussian function at transmission or reception and controls the beam pat-
tern. Normally, the function increases at the central part of the aperture and decreases at
the edge. The relationship between the oscillation field and the apodization function at
the focal point is given by the Fourier transform (Udesen and Jensen, 2006). Therefore,
if we do not employ the apodization function, the field is a sinc function with many
sidelobes. This is the reason why the apodization function normally decreases at the
edge.

The transverse oscillation method forms a transversely oscillated field to estimate the
blood flow velocity along x direction; see Fig. 1.5. The transverse oscillation method
forms an oscillation field, Fv(x), such as

Fv(x) = cos(2πx/λx)rect(Lv), (1.14)

where rect(Lv) is a rectangular window with a lateral length Lv, and λx is a spatial wave-
length along the transverse direction. The inverse Fourier transform of Eq. (1.14) con-
sists of two sinc functions with a certain distance. The employment of the field given in
Eq. (1.14) is similar to the quadrature detection and sampling with an interval λx along
the transverse direction.
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For simplicity, if we can acquire the two ideal fields, cos(2πx/λx) and sin(2πx/λx),
the received signals with blood flow velocities of vx and vz are given by

Fc(nT) = cos(θx(nT))exp(jθz), (1.15)

Fs(nT) = sin(θx(nT))exp(jθz), (1.16)

where nT is the number of pulse repetitions, θx and θz are the phase components that are
determined by the velocity, θx(nT) = 2πvxnTT/λx, and θz(nT) = 2πvznTT/λz. Note that
we omit the component that is related to the amplitude.

The differences in the phases with respect to the pulse repetitions are given by

∆θx,z = 2πvx,znTT/λx,z. (1.17)

Using Eqs. (1.15) and (1.16), we obtain the following signals:

F1(nT) = Fc(nT)+ jFs(nT) = exp{j(θz(nT)+θx)} , (1.18)

F2(nT) = Fc(nT)− jFs(nT) = exp{j(θz(nT)−θx)} , (1.19)

the phase differences being

∆θz(nT)+∆θx(nT) = ∠{F∗
1 (nT)F1(nT+1)} , (1.20)

∆θz(nT)−∆θx(nT) = ∠{F∗
2 (nT)F2(nT+1)} , (1.21)

where (·)∗ denotes the complex conjugate. Therefore, with these two equations, the
velocities of the two directions can be estimated. This method can be used in combina-
tion with plane-wave imaging, which has been verified in in-vivo measurements and can
accurately estimate the velocity (Lenge et al., 2015).

Speckle tracking

In blood flow, red blood cells scatter the transmitted signals. These cells can be rec-
ognized as point targets that are randomly and densely distributed. The intensity of
the reflected signals from the blood cells is weak and these weak signals interfere with
each other. Indeed, they form a B-mode image with a unique interference pattern called
speckle (Yamaguchi et al., 2000).
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The speckle reflects the distribution of scatters. Therefore, if we assume that the
distribution of the blood cells does not change significantly within a short duration, we
can estimate the blood flow velocity by tracking the speckle of the image (Hein and
O’Brien, 1993; Yeung et al., 1998). When speckle tracking is employed to estimate the
blood flow velocity, an ultrasound contrasting agent is sometimes used and injected into
the blood to improve the signal-to-noise ratio (SNR) (Abe et al., 2013).

1.3 Quantitative ultrasound technology for bone
assessment

So far, we introduced the theories for the medical ultrasound imaging. In this section,
we introduce the QUS technologies for bone quality assessment. Osteoporosis is defined
as follows (International Osteoporosis Foundation, 2002):

Osteoporosis is a disease in which the density and quality of bone are re-
duced, leading to weakness of the skeleton and increased risk of fracture,
particularly of the spine, wrist, hip, pelvis and upper arm.

Recently, the population has begun to age rapidly and the number of osteoporosis pa-
tients is thus also likely to increase. A technique that can detect osteoporosis in its early
stages and can also assess the risk of bone fracture is therefore highly desirable.

In clinical scenarios, osteoporosis diagnosis is performed on the basis of the bone min-
eral density (BMD). The BMD is generally estimated using dual X-ray absorptiometry
(DXA) (Simonelli et al., 2008). DXA is the gold standard method for BMD estimation;
however, the DXA method is not suitable for screening use because of its invasiveness
in terms of X-ray emissions. Additionally, the BMD does not represent all the physical
parameters of bone. For example, bone fractures can occur in patients with good BMDs
(Schuit et al., 2004). In particular, X-ray-based methods cannot estimate certain impor-
tant physical and elastic parameters of bone such as the longitudinal and shear wave
velocities. Therefore, for accurate osteoporosis diagnosis, evaluation methods for bone
quality estimation have recently attracted considerable attention. The “bone quality”
properties include (Laugier and Haïat, 2011; Pothuaud et al., 2000):

The bone geometry, the cortical properties, the trabecular micro-architecture,
the bone tissue mineralization, the quality of the collagen and hydroxyapatite
crystals, and the presence of microcracks in the bone.

QUS methods have been developed to estimate bone quality. QUS methods are supe-
rior to X-ray based techniques because they offer equipment portability, a non-invasive
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Figure 1.6: Photograph showing cortical and cancellous bone tissues.

measurement capability, and low cost. Langton et al. (1984) proposed a technique that
measures the frequency-dependent attenuation of an ultrasonic signal after it propagates
through a patient’s heel. Many studies have shown that this method outputs results
that are strongly correlated with those of DXA and clinically investigated (Marín et al.,
2006). Unfortunately, QUS method is not widely used in clinical applications at present.
However, the method has strong potential to provide an alternative and improved method
for assessment of osteoporosis.

1.3.1 Overview of bone structure
From the macro (mm) scale viewpoint, bone is composed of two different types of bone
tissue, which are called cancellous bone and cortical bone (Laugier and Haïat, 2011).
Fig. 1.6 shows a photograph of a section of a bovine femur. Cancellous bone exists
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Figure 1.7: Schematic illustrations of available QUS methods. (a) Transverse transmis-
sion method. (b) Backscatter method. (c) Axial transmission method.

in the inner part of the bone and is constructed from the thin cylinder and plate-like
bones, which are called trabecular bones. These trabecular bones form honeycomb-like
structures and the cancellous bone is highly porous. The vacancies in the trabecular bone
are filled by the bone marrow. Because of its high porosity, cancellous bone is both light
in weight and flexible. Quantitative evaluation of the cancellous bone is crucial for early
stage diagnosis of osteoporosis because this bone type is susceptible to the structural
changes that reflect the presence of osteoporosis.

Cortical bone is the hard type of bone tissue that exists at the outer surface of the
bone. It has a dense structure and its porosity is lower than that of cancellous bone. The
cortical bone structure supports the body load and plays an important role in body parts
that require both strength and stiffness, such as arm and leg. When a bone fracture is
caused by osteoporosis in the cortical bone, the quality of the patient’s life decreases
acutely and the patient is likely to become bedridden. In addition, studies have been
reported that show the importance of cortical bone assessment (Kanis et al., 2001; Raum
et al., 2014; Riggs et al., 1981).

1.3.2 Transverse transmission
Fig. 1.7 shows a schematic illustration of the currently available QUS methods. These
methods are introduced in more detail in the following sections.
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Attenuation

First, we would like to explain the units used for the attenuation. The decibel (dB) and
the neper (Np) are widely used to express attenuation numerically (Rose, 1999). The
received signal, S( f ), that has passed through the absorbing medium is expressed as
follows:

S( f ) = S0( f )exp(−α( f )d), (1.22)

where S0( f ) is the transmitted signal, α( f ) is the frequency-dependent attenuation co-
efficient, and d is the propagation distance.
The units Np and dB are defined using the following equations:

αnp = ln(S( f )/S0( f )), (1.23)

αdB = 20log(S( f )/S0( f )), (1.24)

where αnp and αdB are the attenuation coefficients in Np and dB, respectively.
The following relationship therefore exists between the dB and the Np.

αdB =
20

ln(10)
αnp (1.25)

≊ 8.68αnp. (1.26)

BUA and SOS

The broadband ultrasound attenuation (BUA) and the speed of sound (SOS) are the ini-
tial indexes that were developed for use with the QUS method. The BUA was proposed
by Langton et al. (1984). The method transmits a wide-band ultrasonic wave and ana-
lyzes the signal after it has passed through a patient’s heel, as shown in Fig. 1.7(a). The
attenuation is calculated using the signal intensity in the frequency domain, as follows:

α( f )d = 8.68ln
Sr( f )
S( f )

, (1.27)

where Sr is the signal that has passed through a reference material with known attenua-
tion and d is the thickness of the bone. Note that when the existence of the soft tissue is
ignored, the bone thickness at the heel is easy to measure because it is equivalent to the
distance from the transmitter to the receiver.

The BUA is then calculated by applying a linear regression fitting process in the lower
frequency range, e.g., from 0.2 to 0.6 MHz. This lower frequency range is selected
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Figure 1.8: Fast and slow waves: (a) with high-density bone, and (b) with low-density
bone. (Reproduction from Otani (2005); Copyright (2005), The Japan Soci-
ety of Applied Physics.)

because the signals in the high-frequency range are strongly attenuated and the SNR
is not sufficient for estimation of bone quality. There are many different sources of
attenuation, such as refraction and reflection, but this method averages and takes all of
these attenuation sources into account.

The SOS is a measure of the velocity of an ultrasonic wave that has passed through
bone. Because we already know the thickness of the bone, estimation of the SOS is
performed by detecting the peak position of the received waveform. This technique has
been implemented in commercial medical equipment. When these QUS measurement
methods have been used to analyze cancellous bone, they have shown high correlation
with the results of BMD-based in several studies (Haïat et al., 2005; Rossman et al.,
1989).

1.3.3 Fast and slow waves
Overview of the fast and slow wave phenomena

The above method recognizes the received ultrasonic wave that has passed along the
bone as a single wave, despite the fact that there are multiple propagation media avail-
able, including tissue, skin, bone marrow, cortical bone, and cancellous bone. Tech-
niques that focus on the differences between these propagation media have also been
proposed.
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Figure 1.9: Relationships between the amplitudes and propagation speeds of the slow
and fast waves. Amplitudes of (a) fast and (b) slow waves. Propagation
speeds of (c) fast and (d) slow waves. (Reproduction from Otani (2005);
Copyright (2005), The Japan Society of Applied Physics.)

Hosokawa and Otani (1997) reported experimental observation of the two-wave (fast
and slow wave) propagation phenomenon when an ultrasonic signal propagated along
the cancellous bone, as shown in Fig. 1.8 (Otani, 2005). This phenomenon was predicted
theoretically using Biot’s theory (Biot, 1956a,b, 1962).

When a signal propagates along cancellous bone, there should be two types of prop-
agation medium: the bone marrow and the trabecular bone. The propagation speeds of
ultrasonic waves in the bone marrow and the trabecular bone are approximately 1450
and 3000–4000 m/s, respectively (Laugier and Haïat, 2011). The propagation speed in
bone marrow is similar to that in the surrounding tissue and that in water. The speed
difference between the two media is large and thus causes the two-wave propagation
phenomena. The propagation speeds of the slow and fast waves should correspond with
the speeds in the bone marrow and the trabecular bone, respectively.

Fig. 1.9 (Otani, 2005) shows the correlation between the parameters of the two-wave
phenomenon and the bone volume fraction (bone volume/total volume, or BV/TV).
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Otani (2005) showed that the amplitude and velocity of the fast wave show positive
and high correlation, while the amplitude of the slow wave has a negative correlation.
As shown in Fig. 1.9(d), the slow wave velocity does not show this correlation because
the velocity of the slow wave corresponds to that in the bone marrow and it is not depen-
dent on either the patient or the measurement point. In other words, Fig. 1.9(d) shows
the strong possibility that the slow wave propagation medium is the bone marrow.

A medical device that uses this phenomenon was developed and has been used in
clinical scenarios (Mano et al., 2006). The practical device measures the two waves that
propagate along the patient’s forearm.

Characterization of the fast and slow waves

As shown in Fig. 1.8, the separation of the two waves is important for accurate bone
quality estimation. However, when the fast and slowwaves overlap strongly, it is difficult
to estimate the wave velocities and amplitudes. Therefore, separation techniques that use
the following theoretical model have been proposed and investigated.

The theoretical model of the fast and slow waves is given by the following (Nelson
et al., 2011; Wear, 2014):

S( f ) = S0( f ) [H1( f )+H2( f )] , (1.28)

where H1 and H2 are the transfer functions of the fast and slow waves, respectively.
These transfer functions are expressed as:

Hi( f ) = Ar
i exp

[
−αi f d+ j

{
2π f d
ci( f )

− 2π f d
cW

}]
, (1.29)

1
ci( f )

− 1
ci( fr)

=−αi

π2 ln
(

f
fr

)
, (1.30)

where i= 1 and 2 indicate the fast and slow waves, respectively. Ar
i is the signal ampli-

tude parameter, αi is the slope of the attenuation, d is the bone specimen thickness, ci is
the phase velocity, cW is the speed of sound in water, and fr is a reference frequency.

A separation method that uses an adaptive beamforming technique has been devel-
oped recently (Taki et al., 2017, 2015a). This method uses a fitting procedure with the
modified theoretical model.

S( f ) = S0( f ) [H1( f )exp(−jθ r
1)+H2( f )exp(−jθ r

2)] , (1.31)

where θ r
1,2 is the phase rotation factor that is used to consider the effects of the finite

aperture size of the transducer. When we receive an ultrasonic signal at a transducer
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of finite size, the wavefront arrival time at the transducer has a distribution and the
transducer sums these wavefronts.

The propagation process is analyzed in detail using finite-difference time-domain
(FDTD) numerical simulations and experiments (Nagatani et al., 2008). The numerical
simulation models are mainly constructed using the X-ray imaging method. Realistic
simulation models can thus be constructed.

1.3.4 Backscatter method
In Sects. 1.3.2 and 1.3.3, we introduced the method that uses two transducers and an-
alyzes signals that penetrate the bone. In this section, we introduce a method based on
a single transducer, as shown in Fig. 1.7(b). This technique is called the backscatter
method because it analyzes the signal that is backscattered from the bone(Hoffmeister
et al., 2006).

Because the backscatter method uses only a single transducer, the method can easily
measure the signals from several different parts of the body, such as the hip and the spine
(Liu et al., 2015). Because the bones that exist around the hip and the spine are sensitive
to osteoporosis, the position-free measurement capability of the method is strongly ad-
vantageous. In addition to this advantage, as well as the transverse transmission method,
the backscatter method can not only measure the information related to the BMD but
can also measure the physical information (Ta et al., 2008; Wear, 2008).

Many indices have been proposed to evaluate the received signal. In this thesis, we
introduce the apparent integrated backscatter (AIB) as an index because it does not re-
quire any information other than the received signal and the reference signal that passed
through the reference material. The AIB compares the signal spectrum before and after
application of the time-gate window that removes the signal that was reflected at the
bone surface (Roux et al., 2001). The AIB shows high correlation with the BMD and
is related to the ultimate strength of the bone (Liu et al., 2015; Riekkinen et al., 2007).
AIB is given as ∫ f2

f1
ln SSOI( f )

Sr( f )
d f

f2− f1
, (1.32)

where f1,2 is the frequency range used for the estimation process, and SSOI is the spec-
trum of the backscattered signal of interest.

To identify SSOI, an appropriate time window design is required because the backscat-
tered signal contains the reflected signals from both the surface of the bone and the
cortical bone, where the latter has a higher intensity. The performance of the method is
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dependent on the time-gating window design and a study of appropriate filter design has
thus been reported (Liu et al., 2015).

1.3.5 Axial transmission technique
Thus far, we have introduced methods for analysis of the cancellous bone. In this section,
we focus on the assessment of the cortical bone, which is one of the main topics of this
thesis. The schematic illustration of the axial transmission (AT) technique is shown in
Fig. 1.7(c). In the AT technique, a probe is attached to the surface of the body, e.g., on
the arm or the leg, using impedance-matching gel and the ultrasonic guided waves that
propagate within the cortical bone along the axial direction is analyzed.

A previously reported method measures the speed of the first arriving signal (FAS)
(Sasso et al., 2008). Fig. 1.10 shows the guided waves that propagate along the plate
and were received by multiple receivers at multiple locations. We used a numerical
simulation to calculate these received signals (Nguyen and Naili, 2012, 2013). The
solid arrow in Fig. 1.10 represents the FAS. The FAS is measured and analysis shows
that its speed and amplitude will be effective when performing the osteoporosis assess-
ment. However, it is not possible to measure all the elastic parameters of the propagating
medium by measuring the FAS alone and the accuracy of this method is not sufficiently
high. To enable estimation of more information about the bone quality, such as the elas-
tic parameters, a technique that analyzes the multimodal ultrasonic guided waves has
also been reported (Minonzio et al., 2010; Tran et al., 2014a,b; Xu et al., 2016a,b). For
example, the phase velocity of the elastic homogeneous isotropic material is determined
using shear wave velocity cS, longitudinal wave velocity cL, and thickness d. That of
the transversely isotropic material is characterized by d, three elastic stiffness values and
the density. Therefore, these techniques estimate the phase velocity or the wavenumber
of the guided waves to determine the properties of the medium. The ultrasonic guided
waves are described in detail below in Sect. 1.4.

The estimation of the stiffnesses is important because it related to the porosity of the
bone. Granke et al. (2011) revealed the relationship between the elastic properties and
the porosity of the cortical bone. They used resonant ultrasound spectroscopy (RUS)
and estimated the elastic parameters of the medium accurately. Note, however, that RUS
cannot be used in clinical situations or for in-vivo experiments because the technique
requires a small cube-shaped target material and involves an invasive process. In Granke
et al. (2011), an elastic model of asymptotic homogenization (AH) was used. Given the
fact that the investigation was limited to elderly patients, they experimentally showed
that the elastic stiffness values of the bone were strongly dependent on the porosity.

The technique that is used to analyze the guided waves uses the frequency range from
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Figure 1.10: Guided waves and first arriving signals.

around 0 to 2.0 MHz, i.e. lower frequency range, because the bone is an absorbing
material and shows an almost linear change in attenuation with frequency. In contrast, a
method that operates at a center frequency of 3.0 MHz has also been proposed (Suetoshi
et al., 2016). This technique does not use the ultrasonic guided waves that propagate
inside the bone, but instead uses the leaky longitudinal wave that propagates along the
bone’s surface. In this scenario, the velocity of the leaky wave approaches that of the
longitudinal wave (Rose, 1999). This velocity is called the cortical SOS (cSOS). The
cSOS shows correlation with the cortical BMD and the porosity with an absolute value
for the regression of more than 0.8 and is thus expected to be used as the new diagnosis
index.

Most AT techniques estimate the bone quality based on the assumption that the probe
is positioned parallel to the bone surface. However, in realistic situations, the probe tends
to be tilted by the tissue. To compensate for the resulting slope, the techniques which use
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Figure 1.11: Measurement configuration for the AT technique. (a) Bi-directional trans-
mission. (b) Slope compensation with beamforming.

two transmitter array sets and a single receiving array set, as shown in Fig. 1.11(a) have
been proposed (Talmant et al., 2009); this method is called the bi-directional method that
compensates the effect from tissues by comparing the received signals at two receiving
linear arrays. The device that measures the cSOS uses a beamforming technique with
the linear array transmitters to estimate and compensate for the slope, as shown in Fig.
1.11(b).

1.4 Ultrasonic guided waves

1.4.1 Theoretical background
Physics

To explain the behavior of the guided waves, we first introduce the basic theory of the
physics (Rose, 1999). When we consider a homogeneous isotropic box, as shown in Fig.
1.12, and stretch this box with a stress of σxx, the strain along the x direction is given
through use of the 1D Hooke’s law, as follows:

σxx = Eεxx, (1.33)

where E is the Young’s modulus (the modulus of longitudinal elasticity) and εxx is the
strain along the x direction. The stress along the x direction also causes strain along the
y and z directions and this effect is called the Poisson effect.
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When we consider the stresses of σxx, σyy, and σzz, the corresponding strains are given
as follows:

εxx = {σxx−ξ (σyy+σzz)}/E, (1.34)
εyy = {σyy−ξ (σzz+σxx)}/E, (1.35)
εzz = {σzz−ξ (σxx+σyy)}/E, (1.36)

where ξ is the Poisson ratio.
The stresses are expressed as follows in a similar manner:

σxx =
(1−ξ )εxx+ξ (εyy+ εzz)

(1+ξ )(1−2ξ )
E, (1.37)

σyy =
(1−ξ )εyy+ξ (εzz+ εxx)

(1+ξ )(1−2ξ )
E, (1.38)

σzz =
(1−ξ )εzz+ξ (εxx+ εyy)

(1+ξ )(1−2ξ )
E, (1.39)

Here, we define the stresses along the transverse (shear) direction, which are given
by:

σi j = 2µLεi j, (1.40)

where i ̸= j and µL is the shear modulus (which is also called the Lamé’s constant, the
modulus of transverse elasticity and the modulus of rigidity).
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To expand this basic theory to a generalized material, the stiffness matrix is generally
used. This matrix is given by:

σxx
σyy
σzz
σyz
σzx
σxy

=


C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66




εxx
εyy
εzz
εyz
εzx
εxy

 , (1.41)

whereC{∗,∗} is the elastic stiffness coefficient.
The stiffness matrices of a homogeneous isotropic material, such as a copper plate,

and a transversely isotropic material, such as cortical bone, are given by:

Ch =


C11 C12 C12 0 0 0

C11 C12 0 0 0
C11 0 0 0

C55 0 0
C55 0

C55

 (1.42)

=


λL+2µL λL λL 0 0 0

λL+2µL λL 0 0 0
λL+2µL 0 0 0

2µL 0 0
2µL 0

2µL

 , (1.43)

Ct =


C11 C12 C13 0 0 0

C11 C13 0 0 0
C33 0 0 0

C55 0 0
C55 0

C11−C12
2

 , (1.44)

whereCh andCt are the stiffness matrices of the homogeneous isotropic and transversely
isotropic materials, respectively, and λL is the Lamé’s constant. In the homogeneous
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isotropic material, λL and µL are expressed as follows:

λL =
2µLξ
1−2ξ

=
Eξ

(1+ξ )(1−2ξ )
, (1.45)

µL =
λL(1−2ξ )

2ξ
=

E
2(1+ξ )

. (1.46)

Governing equations in a homogeneous isotropic medium

In this section, we introduce the theories of wave propagation in a homogeneous isotropic
medium. The wave equation in the solid is given by Navier’s equation, which is ex-
pressed as follows:

(λL+µL)∇(∇ ·u)+µL∇2u= ρ
∂u2

∂ t2
, (1.47)

where u is the particle displacement vector, and ρ is the density of the medium. The
particle displacement vector u in the plate is given by the following equation when using
the Helmholtz theorem:

u= ∇Φ+∇×H, (1.48)

where Φ is the scalar potential, and H is the vector potential. The potentials represented
by Φ andH are called the longitudinal and shear wave potentials, respectively (Viktorov,
1967).

By substituting Eq. (1.48) into Eq. (1.47), we obtain the following equation.

∇
[
(λL+2µL)∇2Φ−ρ

∂ 2Φ
∂ t2

]
+∇×

[
µL∇2H−ρ

∂ 2H
∂ t2

]
= 0. (1.49)

As the potential is virtual quantity, Eq. (1.49) does not have a unique solution. It is
possible to postulate that they satisfy following relations:

∇2Φ =
ρ

(λL+2µL)

∂ 2u
∂ t2

, (1.50)

∇2H=
ρ
µL

∂ 2u
∂ t2

. (1.51)

When we respectively ignore the first and second terms on the right side of Eq. (1.48),
we respectively obtain the following two equations:

∇2u=
ρ
µL

∂ 2u
∂ t2

, (1.52)
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∇2u=
ρ

(λL+2µL)

∂ 2u
∂ t2

. (1.53)

Eqs. (1.52) and (1.53) represent the propagation of the rotational and dilatational waves
with velocities of cS =

√
µL/ρ =

√
C55/ρ and cL =

√
λL+2µL/ρ =

√
C11/ρ , respec-

tively. cS and cL are the shear (or transverse or secondary) wave and longitudinal (or
primary or pressure) wave velocities, respectively.

1.4.2 Lamb wave
Lamb wave in a homogeneous isotropic free plate

When we consider an elastic homogeneous isotropic plate with a finite thickness d, as
shown in Fig. 1.12, with the wave propagating along the x direction, the components of
u along the x and z directions, ux and uz, are given by:

ux =
∂Φ
∂x

+
∂Hy

∂ z
, (1.54)

uz =
∂Φ
∂ z

−
∂Hy

∂x
, (1.55)

where Hy is the vector potential along the y direction, uy = 0, and ∂
∂y = 0.

The Lamb wave does not depend on the y axis. Therefore, the Lamb wave satisfies
the following wave equation.

∂ 2Φ
∂x2

+
∂ 2Φ
∂ z2

− k2LΦ = 0, (1.56)

∂ 2Hy

∂x2
+

∂ 2Hy

∂ z2
− k2SHy = 0, (1.57)

where kL = 2π f
√

ρ/(λL+2µL) = 2π f/cL, and kS = 2π f
√

ρ/µL = 2π f/cS.
To satisfy the above wave equation, we can express the solution in the following form:

Φ = {Ac
1 cos(

√
k2L− k2z)+Ac

2 sin(
√

k2L− k2z)}exp(jkx), (1.58)

Hy = {Ac
3 sin(

√
k2S− k2z)+Ac

4 cos(
√
k2S− k2z)}exp(jkx), (1.59)
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where Ac
1, A

c
2, A

c
3, and A

c
4 are arbitrary constants and k is the wavenumber.

We then solve the equation using the boundary condition where the stress in the z
direction at the surface and at the bottom of the plate (z = ±d/2) is zero. Substituting
Eqs. (1.54) and (1.55) into Eqs. (1.41) and (1.43) means that the stress is given by the
following:

σzz = λL

(
∂ux
∂x

+
∂uz
∂ z

)
+2µL

∂uz
∂ z

, (1.60)

= λL

(
∂ 2Φ
∂x2

+
∂ 2Φ
∂ z2

)
+2µL

(
∂ 2Φ
∂ z2

−
∂ 2Hy

∂x∂ z

)
= 0, (1.61)

σzx = µL

(
∂ux
∂ z

+
∂uz
∂x

)
, (1.62)

= µL

(
2

∂ 2Φ
∂x∂ z

−
∂ 2Hy

∂x2
+

∂ 2Hy

∂ z2

)
= 0, (1.63)

where strain εzx is given by ∂σz/∂x. The direction of σ{∗,∗} is shown in Fig. 1.12.
Here, we separately consider the first and second terms of Eqs. (1.58) and (1.59).

When we consider the first terms of Eqs. (1.58) and (1.59), we obtain the following
equation:

Φ = Ac
1 cos(

√
k2L− k2z)exp(jkx), (1.64)

Hy = Ac
3 sin(

√
k2S− k2z)exp(jkx). (1.65)

We see that the displacement which is described by Eq. (1.64) is symmetrical with
respect to z= 0. Therefore, this mode is called the symmetric (S) mode.

When we substitute Eqs. (1.58) and (1.59) into Eqs. (1.60) and (1.62) with the def-
inition kL = 2π f

√
ρ/(λL+2µL), kS = 2π f

√
ρ/µL, i.e., kS/kL =

√
(λL+2µL)/µL,

following equations are obtained(Rose, 1999; Viktorov, 1967).

(k2S−2k2)cos(
√
k2L− k2d/2)Ac

1+2jk
√
k2S− k2 cos(

√
k2S− k2d/2)Ac

3 = 0,(1.66)

2jk
√
k2L− k2 sin(

√
k2L− k2d/2)Ac

1− (2k2− k2S)sin(
√

k2S− k2d/2)Ac
3 = 0,(1.67)

27



By using Eqs. (1.66) and (1.67), the following relationship is obtained.

(k2S−2k2)2 cos


√

k2L− k2d

2

sin


√

k2S− k2d

2

 (1.68)

−4k2
√

(k2L− k2)(k2S− k2)sin


√

k2L− k2d

2

cos


√

k2S− k2d

2

 = 0,

We can use the remaining components to obtain the equation for the anti-symmetric
(A) mode in a similar manner. Finally, we obtain the following two equations.

tan(kαd/2)
tan(kβd/2)

+
(k2− k2β )

2

4kαkβk2
= 0 (S mode), (1.69)

tan(kβd/2)
tan(kαd/2)

+
(k2− k2β )

2

4kαkβk2
= 0 (A mode), (1.70)

where k2α = k2L−k2, k2β = k2S−k2, and k= (2π f )/c. This relationship is called Rayleigh-
Lamb equation.

When we focus on the equation for the S mode (Eq. (1.69)), the numerator of the
second term is always positive and has a real value. Therefore, new roots (k = 0) ap-
pear when kαd/2 = nπ/2 and kβd/2 = 2nπ (n = 1,2, · · ·), i.e., these new roots appear
when f d = ncS and f d = ncL/2. These frequencies are called critical frequencies. The
corresponding quantities for the A mode can be calculated in the same manner.

As shown in Eqs. (1.69) and (1.70), the solutions to equations k and c at the measure-
ment frequency f are dependent on cS, cL, and d. Therefore, estimation of k or c leads
to the estimation of these three parameters.

An example of the phase velocities of the Lamb wave is shown in Fig. 1.13. A and S
denote the antisymmetric and symmetric modes, respectively. The numbers denote the
propagation orders.

Lamb wave in a viscoelastic plate

In this section, we consider a viscoelastic medium. There are two well-known mod-
els for viscoelastic medium: the Maxwell model and the Kelvin-Voight model. The
schematic illustrations of these two models are shown in Fig. 1.14. Fig. 1.14(a) and (b)
represents Maxwell and Kelvin-Voight model respectively. In the Kelvin-Voight model,
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Figure 1.13: Theoretical phase velocities of the Lamb wave.

we consider a spring and a dashpot that are in parallel locations. On the other hand, in
the Maxwell model, the dashpot and spring are serially connected. The time constants
of these two models are different because the spring of the Maxwell model is directly
affected by the stress, where that of the Kelvin-Voight model slowly responds to the
stress.

In this thesis, we introduce the Kelvin-Voigt model. The stress at the spring, denoted
by σ1, is given by Hooke’s Law as (Rose, 1999):

σ1 = Eε. (1.71)

Note that for simplicity here, we consider a 1D problem. At the dashpot, σ2 is given by
Newton’s Law as:

σ2 = κ
dε
dt

, (1.72)

where κ is the viscosity. Finally, the total stress is given by σ = σ1+σ2. When we
consider the wave propagation, σ and ε can then be rewritten as follows:

ε ′ = εej2π f t , (1.73)

σ ′ = σej2π f t . (1.74)

As a result, the total stress can also be rewritten as follows:

σ ′ = (E+ j2π fκ)ε (1.75)
= C∗ε, (1.76)
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Figure 1.14: Schematic illustration of (a) the Maxwell and (b) the Kelvin-Voigt model.

where C∗ represents a modified and complex stiffness. Therefore, when we consider an
isotropic viscoelastic plate, the longitudinal and shear wave velocities are given by the
following (Naili et al., 2010):

c∗S,L =

√
C∗
55,11

ρ
(1.77)

=

√
C55,11+ j2π fκS,L

ρ
, (1.78)

where c∗S,L are the shear and longitudinal wave velocities with complex components, and
κS,L are the viscosities in the shear and longitudinal directions. As shown in Eq. (1.78),
the wave propagation in the viscoelastic medium can be expressed using the same form
as that used for the elastic plate but with the complex components.

Along with the stiffness component and the velocities, the wavenumber also has a
complex component in the viscoelastic medium.

k∗ = k− jα( f ), (1.79)

where k∗ is the modified wavenumber, and α( f ) is the frequency-dependent attenuation.
As shown in Eq. (1.79), the real and imaginary parts of the wavenumber represent the
propagation and the power loss, respectively. Use of the modified wavenumber means
that the phase velocity, c∗ = 2π f/k∗, can be written as

c∗( f ) =
(

1
c( f )

− j
α( f )
2π f

)−1

. (1.80)
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When we consider the condition where (2π f )≫ αc, the modified phase velocity can
be rewritten as

c∗( f )≈ c+ j
αc2

2π f
. (1.81)

By comparing Eq. (1.78) with Eq. (1.81), the viscosity and the attenuation factor along
the shear and longitudinal directions, which are expressed using κS,L and αS,L, are given
by the following:

κS,L =
2αS,L( f )c3S,Lρ

(2π f )2
. (1.82)

As shown in Eq. (1.81), the real part of the phase velocity of the Lamb wave is
constant, with a small attenuation that satisfies the condition where 2π f ≫ αc. The
attenuation component of the Lamb wave is determined by solving the Rayleigh–Lamb
equation with the complex wavenumber. Because the real part remains constant, we
can solve the Rayleigh–Lamb equation separately. The solution for the Lamb wave in
viscoelastic media is given as follows:

tan(k∗αd/2)
tan(k∗βd/2)

+
(k∗2− k∗2β )2

4k∗αk∗βk
∗2 = 0 (S mode), (1.83)

tan(k∗βd/2)

tan(k∗αd/2)
+

(k∗2− k∗2β )2

4k∗αk∗βk
∗2 = 0 (A mode), (1.84)

where k∗2β = (2π f )2/c∗2S − k∗2, k∗2α = (2π f )2/c∗2L − k∗2, k∗ = (2π f )/c− jα( f ), c∗2S =

c2S+ j(2π f )κs/ρ , and c∗2L = c2L+ j2π fκL/ρ .

Coupling effects of fluids

When we consider bone with soft tissue, we need to consider the coupling effect between
the two. When compared with the bone, the attenuation and elasticity properties of the
soft tissue are both small and can be neglected; thus, in this section, we regard the soft
tissue as water.

When we consider the existence of the water layer between the plate and the probe,
the number of modes increases because the numbers of multiple reflections and multiple
refractions also increase.

The theoretical model is given in Yapura and Kinra (1995). Fig. 1.15 shows a com-
parison between the phase velocities of the single elastic plate and the elastic plate with
a water layer. The parameters used in the calculations are follows: cL = 4650 m/s,
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Figure 1.15: Coupling effects of the water. The red cross marks represent the phase
velocity of the water with the plate. The black solid and dotted lines that
respectively represent the A and S mode show the phase velocity of the
single isotropic plate.

cS = 2260 m/s, plate thickness d = 2 mm and the water layer thickness is 2 mm. The
densities of the plate and the water are 8.94 and 1.0 g/cm3, respectively.

As shown in Fig. 1.15, some modes have almost the same phase velocities as the
single plate; however, several additional modes appear when the coupling effects are
considered.

1.5 Theory of adaptive beamforming techniques
In this section, we introduce the conventional non-adaptive and adaptive beamforming
techniques.

1.5.1 Signal model
When we consider M wide-band signals with multiple different directions of arrival
(DOA), the received signal at the n-th linear array receiver with the receiver pitch of ∆l
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Figure 1.16: Signal model and adaptive signal processing.

is given in the time and frequency domains by:

sn(t) =
M

∑
m=1

s1(t− (n−1)∆l sin(θm)/c), (1.85)

Sn( f ) = S1( f )
M

∑
m=1

exp(−j2π f (n−1)∆l sin(θm)/c), (1.86)

where sn(t) and Sn( f ) are the respectively time and frequency domain signals at n-th
receiver, θm is the direction of arrival of the m-th wave, see Fig. 1.16. Note that t again
denotes the time along the range domain, i.e., the measurement depth, range, or distance,
and r is given by r = ct/2.

When we assume that the signal is a narrow-band signal with a center frequency of
f0, the signal in the time domain can be re-defined as an analytic signal as:

sn(t) = s1(t)
M

∑
m=1

exp(−j2π f0(n−1)∆l sin(θm)/c), (1.87)

= s1(t)
M

∑
m=1

an(θm), (1.88)

where an is the steering value at the n-th receiver.

1.5.2 Narrow band beamforming
Initially, we introduce the conventional narrow-band DAS beamforming technique. This
is equivalent to a time-delay process that is used to form a focal point from a narrow-
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band signal.
PDAS(θ) = |aH(θ)s|2, (1.89)

where s = [s1 · · ·sN]T is a signal vector, a(θ) = [a1(θ) · · ·aN(θ)]T is a steering vector,
and N is the number of receivers. Here, (·)H and (·)T denote the matrix conjugate trans-
position and matrix transposition, respectively.

Next, we introduce a classical adaptive beamforming technique called the Capon
method (Capon, 1969). The Capon method is an adaptive signal processing method
that suppresses the interference contribution by calculating an optimal weighting vector,
as shown below. The schematic illustration is shown in Fig. 1.17(a).

min
W

(Pout =
1
2
WHRW) subject to aT(θ)W∗ = 1, (1.90)

where R is a covariance matrix and W is a weighting vector. This problem can then be
solved using the Lagrange multiplier methodology.

The estimated spectrum as shown in Fig. 1.17(b), denoted by P(θ), is given by:

P(θ) =
1

aH(θ)R−1a(θ)
. (1.91)

To enable use of the adaptive beamforming technique, it is necessary to estimate the
covariance matrix. The conventional estimate of this matrix is expressed as follows:

R= E[ssH], (1.92)

where E represents the averaging process for the ensemble average. To obtain the en-
semble average, individual data samples are required. When the signals are incoherent,
the ensemble average can be achieved by time-averaging of the snapshots under the
assumption of ergodicity (Hashimoto et al., 2016).

1.5.3 Beamforming techniques for B-mode imaging
Comparison of radio wave imaging with ultrasound imaging

When we apply adaptive beamforming techniques that were originally designed for radio
wave sensing applications to medical ultrasound signals, it is very important to consider
the differences between the two signals.

First, the propagation speeds of the two waves are quite different. The speed of light
(for the radio waves) is 299792458 m/s, whereas the speed of sound in water and in soft
tissue is approximately 1500 m/s and the corresponding speed in bone is approximately
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Figure 1.17: Schematic illustration of the Capon method. (a) Interference suppression
using optimized weighting vector. (b) Estimated spectrum.

3000 m/s (Laugier and Haïat, 2011). Second, the fractional bandwidths that are used for
these measurements are also different. The fractional bandwidth employed for the radio
wave is usually less than 10% (Fukao et al., 1985; Sakamoto et al., 2016), whereas that
employed for the medical ultrasound signal is normally more than 50% (Moghimirad
et al., 2016). In medical 2D ultrasound imaging in particular, wider bands with band-
widths of more than 100% of the signal bandwidth are sometimes used to improve the
range resolution. Finally, the signal type is different. In some applications of radio wave
measurements such as wind velocity estimation, the desired and undesired signals are
independent of the measurement time and are not correlated. Therefore, time-averaging
for covariance matrix estimation is generally effective. In contrast, in most ultrasound
imaging applications, the time-averaging process is not appropriate because the target
is stable, high-frame-rate imaging is required, and/or the desired signals and undesired
signals are strongly correlated. To estimate the covariance matrix accurately, spatial
averaging, which is introduced below, is thus required in most ultrasound imaging ap-
plications apart from Doppler velocity measurements.

Covariance matrix estimation for coherent signals

In addition to ultrasound imaging, measurement of coherent signals is sometimes re-
quired in radio wave measurements, e.g., when the undesired signal is a multi-path ver-
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sion of the desired signal, these signals are strongly correlated.
To overcome this problem, the sub-array (spatial) averaging technique has been pro-

posed (Takao and Kikuma, 1987). The spatial averaging technique situates small sub-
arrays within the larger array and averages the signals to suppress their correlations.

RA =
1

Nave

Nave

∑
n=1

Rn, (1.93)

Rn = snsHn , (1.94)

where RA is an averaged covariance matrix, sn = [sn · · ·sn+Nsub−1], Nsub is the sub-array
size, and Nave is the number of averaging steps. The number of receivers contained in
the full-size array is N = Nsub+Nave−1.

This process can be used to estimate the covariance matrix accurately because we do
not need to assume ergodicity in this case. However, we sacrifice the image resolution
because the aperture size of the array is reduced from N = Nsub+Nave−1 to Nsub when
using this process. The accuracy of the covariance matrix estimation is dependent on the
number of averaging steps, and thus there is a trade-off between the image resolution
determined using a sub-array of size Nsub and the accuracy of the covariance matrix
estimation, which is determined by the number of averaging steps Nave, see Fig. 1.18.

Wide-band Capon method

As shown in Eqs. (1.90) and (1.91), the original Capon method assumes that the signal is
a narrow-band signal. The constraint condition used in the Capon method was designed
for narrow-band signals and cannot constrain wide-band signals. Therefore, to approx-
imate the narrow-band signal, a time-delay process is used (Synnevåg et al., 2009), see
Fig. 1.19.

When the time-delay process that forms a focal point at the measurement point is
used, the constraint vector does not include the phase rotation with the narrow-band
assumption. The estimated spectrum at measurement point (x,z), P(x,z), is then given
by:

P(x,z) =
1

1TR−1
AD(x,z)1

, (1.95)

where 1= [1 · · ·1] and RAD(x,z) is the covariance matrix that is formed from the signal
after the time-delay and spatial averaging process. Note that use of the time-delay pro-
cess can also help to overcome the differences between the near-field calculations and
the far-field calculations.
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Figure 1.18: Schematic illustration of the spatial averaging technique with two exam-
ples. (N,Nsub,Nave) = (6,4,3) and (N,Nsub,Nave) = (6,2,5).

Fig. 1.20 shows a comparison of the DOA spectra of the narrow-band and wide-band
Capon methods with conventional non-adaptive beamforming techniques. We assume
that these signals arrived with DOAs of 0 and 20 degrees, respectively. In the narrow-
band DAS technique, we compensate the phase rotation at the center frequency. The
fractional bandwidths of the narrow and wide-band signals are 1% and 50%, respec-
tively.

When we apply the adaptive and non-adaptive beamforming techniques to narrow-
band signals, the adaptive beamforming technique can estimate the DOA accurately
with high resolution. However, when we apply the conventional adaptive beamform-
ing technique to a wide-band signal, the resolutions that can be determined decrease
severely.

37



+

Change 
focal points

Apply Capon method

Figure 1.19: Schematic illustration of the Capon method for wide-band signals.

1.5.4 Beamforming techniques for axial transmission
In this subsection, we introduce the similarities between medical ultrasound imaging
and the AT technique from a signal processing viewpoint. The signal model for the AT
technique is given by:

Sn( f ) = S1( f )
M

∑
m=1

exp(−j2π f (n−1)∆l/cm( f )), (1.96)

where cm is the phase velocity of the m-th propagation wave, see Fig. 1.21. Comparison
of Eqs. (1.85) and (1.96) shows that the forms of these equations are very similar.
Therefore, to estimate the phase velocity or the wavenumber of the guided waves, we
can use a straightforward beamforming technique.
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Figure 1.20: Performance dependences of beamforming techniques on the received sig-
nal bandwidth. The fractional bandwidths of the narrow and wide band
signals are 1% and 50%, respectively.
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Chapter 2

Computational complexity
reduction techniques for real-time
and high-resolution medical
ultrasound imaging using the
beam-space Capon method

2.1 Introduction
In Sect. 1.5.3, we introduced the wide-band Capon method. The Capon method is
effective to improve the lateral (Synnevåg et al., 2009) and depth resolution (Taki et al.,
2013, 2012). However, the computational complexity of the method for lateral resolution
improvement is high and do not suitable for the real-time imaging.

The conventional Capon method for ultrasound imaging is based on element-space
(ES) signal processing (Mehdizadeh et al., 2012; Synnevåg et al., 2009; Wang et al.,
2005). As shown in Eq. (1.95), ES signal processing requires the inversion of large
matrices, such as 64× 64, many times, which severely increases the complexity. To
reduce the complexity associated with calculating inverse matrices, the beam-space (BS)
Capon method has been reported (Nilsen and Hafizovic, 2009; Okumura et al., 2015a,b).

The method uses a few orthogonal beams to reduce the matrix size. The BS Capon
method reduces complexity compared with the original ES Capon method. However,
further reduction is required for real-time imaging. Because ultrasound imaging typi-
cally employs wide-band signals, both ES and BS Capon methods employ a large num-
ber of time-delay processes to create focal points in the region of interest (ROI) and
to estimate the covariance matrix. In addition, compared with the ES Capon method,
the BS Capon method requires an additional calculation associated with the transforma-
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tion from ES signal processing to BS signal processing (Nilsen and Hafizovic, 2009). To
achieve real-time imaging, reductions are required in the number of the above-mentioned
processes.

When the time-delay value to generate a focal point is small, the time-delay process
can be approximated by multiplying a steering vector with a covariance matrix (Oku-
mura et al., 2015a). Thus, we propose a method that reduces the number of processes
by using this approximation. Additionally, an accurate estimation of the intensity is
required in medical ultrasound imaging. The spatial averaging technique is widely em-
ployed to stabilize the estimation of the intensity when using the Capon method (Kimura
et al., 2009; Takao and Kikuma, 1987; Taki et al., 2013, 2015b). A larger sub-array size
Nsub achieves higher resolution and low stability, whereas a smaller Nsub achieves lower
resolution and high stability. Therefore, we first employ a larger Nsub for high-resolution
imaging and estimate the position at which the target should exist. Next, we use a
smaller Nsub to compensate the intensity. In this work, to evaluate the proposed method,
we conducted a numerical simulation and an experiment.

2.2 Materials and methods

2.2.1 Original beam-space Capon method for medical
ultrasound imaging

We introduce the original BS Capon method for medical ultrasound imaging that is the
basis of the proposed method (Nilsen and Hafizovic, 2009). The BS method first multi-
plies the Butler matrix, B, to the signal vector after a time-delay process, sd(t), to form
orthogonal beams. Because the spatial energy distribution of transmitted ultrasound is
determined by the position of the transmitted beam, we can select a few useful beams
that contain signals returned from the desired direction, see Fig. 2.1 (Nilsen and Hafi-
zovic, 2009; Okumura et al., 2015a,b). When we use a N-element linear array with the
element pitch of a half-wavelength at the center frequency, the received signal vector in
the BS, sBS(t), is given by

sBS(t) = Bsd(t), (2.1)

B= [b−(Nb−1)/2 · · ·b0 · · ·b(Nb−1)/2]
T, (2.2)

[bq]p = exp(j2π pq/N)/
√
N, (2.3)
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where Nb is the number of the selected beams, p, q are the element indexes of the matrix,
and (·)T denotes the transpose. In this chapter, we assume N is an even number and use
Nb = 3 to follow previous studies (Nilsen and Hafizovic, 2009; Okumura et al., 2015a,b).

The BS Capon method then computes the optimal weighting vector by solving

min(Pout =WH
BSRABSWBS/2) subject to WH

BSaB = 1, (2.4)

RABS = BsRADBH
s , (2.5)

aB = Bs[1 · · ·1]T, (2.6)

where Pout is the output power of the BS Capon, WBS is the BS weighting vector, (·)H
denotes the Hermitian transpose, Bs is the Butler matrix for the sub-array, aB is the steer-
ing vector for BS Capon method, RAD is the covariance matrix after spatial averaging
and time-delay processes which is introduced in Sect. 1.5.3, and RABS is the covariance
matrix in the BS. The output power is expressed as

Pout = 1/
{
aHB(RABS+ηI)−1aB

}
, (2.7)

where η is the diagonal loading (DL) factor used to stabilize the estimated intensity and
I is the identity matrix. The DL factor determines the sensitivity of the Capon method.
When we use a large DL factor, the output power approaches that of the DAS technique.
Conversely, a small DL factor results in a high-resolution image and a large estimation
error of the output power.

Compared with the ES Capon method, the BS method reduces the computational
complexity associated with the inversion of the covariance matrix. However, additional
reduction of complexity is desired for clinical use. In addition, both accurate estimation
of intensity and high-resolution imaging are required. We thus employ the following
three steps.

2.2.2 Computational cost reduction using a steering vector
To reduce the computational complexity, we replace the time-delay process by the mul-
tiplication of a steering vector with an estimated covariance matrix. We first divide the
ROI into sub-ROIs, as shown in Fig. 2.2. The output powers at the measurement points
in a sub-ROI are estimated using a covariance matrix at the center of the sub-ROI with
steering vectors. That is, we approximate the time-delay process that is focused on the
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Figure 2.1: Schematic illustration of the BS Capon method.

measurement point with a steering vector and time-delay processes that is focused at the
center of the sub-ROI.

The output power at (x,z) in sub-ROI i, Pouti(x,z), is estimated by the proposed BS
Capon method using the steering vector a′i(x,z):

Pouti(x,z) = 1/
{
a′i(x,z)

H(RABS(xfi,z)+ηI)−1a′i(x,z)
}
, (2.8)

C′
i(x,z) = B[exp(jθ1) · · ·exp(jθNsub)]

T, (2.9)

θm = 2π f0(ri,n− rx,n)/c, (2.10)

where RABS(xfi,z) is the covariance matrix when the beam is focused at the center of
the sub-ROI (xfi,z), i is the sub-ROI index, c is the speed of sound, f0 is the center
frequency, and ri,n and rx,n are the distances from the n-th element in the sub-array to the
focal points (xfi,z) and (x,z), respectively. When we reduce the number of time-delay
processes, the transformation from ES signal processing to BS signal processing is also
simplified because we can reuse the BS covariance matrix in the sub-ROI.

Because the steering vector C′
i compensates for the phase rotation at the center fre-

quency, the large distance from the focal point to the measurement point ri,n−rx,n should
deteriorate the image quality of the proposed method. As shown in Fig. 2.2, we mitigate
the deterioration with a filter, wi(x), that amplifies the output power calculated at the
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center of the sub-ROI:

wi(x) = {sin [3π(x− xfi)/xs+π]+1}/4 for xfi− xs/2≤ x≤ xfi− xs/6, (2.11)
wi(x) = 0.5 for xfi− xs/6≤ x≤ xfi+ xs/6, (2.12)
wi(x) = {sin [3π(x− xfi)/xs]+1}/4 for xfi+ xs/6≤ x≤ xfi+ xs/2, (2.13)
wi(x) = 0 for else, (2.14)

where xs is the sub-ROI size and the interval of xfi is xs/3. In this chapter, we set the
distance threshold, xs/3, to be is almost equal to the main beam width.

The output power with the filter, P′
outi(x,z), is given by

P′
out(x,z) =

NR

∑
i=1

wi(x)Pouti(x,z), (2.15)

where NR is the number of sub-ROIs.

2.2.3 Sensing target position with peak detection and
refocusing

Since the large distance from the focal point to the measurement point causes false im-
ages, we must make new focal points and recalculate the intensity at positions nearer
to where the targets exist. To select the points, we first search the peaks in P′

outr(x,z)
because the target is most likely to exist at a position where the estimated intensity is
high. In this chapter, we select peaks where the slopes of the peaks exceed the threshold
εth.

The false image may appear near the actual target position. Thus, when the lateral
distance of adjacent peaks is less than a threshold distance, xc, we consider the peaks to
be originating from a single target and these peaks are classified into the same cluster.
After clustering, we designate a focal point at the center of each cluster and recalculate
the intensity at xl − xre/2 < xl < xl + xre/2, where xl is the position of the center of the
cluster l and xre is the lateral length of recalculation. If the peaks appear again in the
region of recalculation, the targets are assumed to exist at the peaks’ positions.

2.2.4 Power compensation technique
In the previous step, we estimated the target position, xk, accurately. In the next step, we
acquire an accurate approximation of the intensity at xk. When a small Nsub is used for
the Capon method, the output power approaches the intensity estimated by DAS method
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(Kimura et al., 2009; Takao and Kikuma, 1987; Taki et al., 2013, 2015b). Because
the large distance from the focal point to the measurement point also deteriorates the
accuracy of intensity estimation, we set focal points at all xk. Then we calculate the
output power using a small sub-array size for power compensation N′

sub, that is, a large
Nave. Finally, we linearly interpolate the intensity of the measurement points P′

out(x) in
the range of xk− xc < x< xk+ xc, where we adjust the intensity at the target position to
the above-mentioned estimated intensity.

2.2.5 Simulation settings
To demonstrate the effectiveness of the proposed method, we used a numerical simu-
lation employing the Field II simulation package (Jensen, 1996; Jensen and Svendsen,
1992). We used a 96-element probe with a center frequency of 2.0 MHz and a fractional
bandwidth of 50% to simulate the experimental setting. The element pitch was half of
the wavelength at the center frequency, that is, 0.375 mm. The two scatterers were posi-
tioned at depths of 20 and 50 mm with a lateral interval of 1.0 mm. The lateral pixel size
∆x was 0.050 mm and threshold εth was 0.02 W/mm, where the intensity was normal-
ized to the highest intensity. The lateral imaging width was from −3.0 to 3.0 mm. The
sub-ROI size, xs, was 2.25 mm, the length for recalculation, xre, was 0.55 mm, and the
length for clustering, xc, was 0.30 mm. The distance threshold, xs/3, was almost equal
to the main-lobe width at the depth of 35 mm. The sub-array size for imaging, Nsub,
and the sub-array size for compensation, N′

sub, were 64 and 32, respectively, and the DL
factors for imaging, η , and compensation were −60 and −40 dB of the received signal
intensity, respectively.

2.2.6 Experimental settings
We conducted an experimental study to investigate the performance of the proposed
method. Figs. 2.3(a) and (b) show a photograph and a schematic of the experimental
system, respectively. We placed two copper wire targets with a lateral interval of 1.0 mm
in a water tank. The diameter of the wire was 0.20 mm. For simplicity, we evaluated the
performance of the proposed technique in a 2D problem. We used a JPR 10-CN (Japan
Probe, Tokyo, Japan) ultrasound device that can export raw RF data (Taki et al., 2015c).
The sampling frequency was 20 MHz. Because the JPR 10-CN that exports the RF data
uses two separate elements to transmit and receive, we employed the STA technique
to simulate plane wave transmission (Hasegawa and Kanai, 2012; Jensen et al., 2006;
Takahashi et al., 2014). We changed the target depth by scanning down the probe. Fig.
2.3(b) shows the data-acquisition procedure. The target depths were 21, 31, 41, and 51
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Figure 2.2: Schematic illustration of proposed method.(Reproduction from Okumura
et al. (2016); Copyright(2016) The Japan Society of Applied Physics.)

mm. The conventional BS Capon method employed a sub-array size of 64 and DL factor
of −40 dB to follow the conventional study (Taki et al., 2015b). The ROI size at each
scanning depth was 15 mm× 10.4 mm. The other parameters are the same as those used
in the numerical simulation study.

We evaluated the proposed method using five indicators: the first side-lobe level, the
−6 dB beam width, the intensity estimation error, the number of operations, and the
calculation time. The first side-lobe level was calculated from the intensity at the center
of the two wire targets. The−6 dB beam width is the lateral width of the region centered
on the target position where the estimated intensity has decreased by less than −6 dB
relative to the estimated peak intensity. The intensity estimation error was calculated as
the difference between the estimated intensity and the intensity estimated using the DAS
method at the target position. We dismissed the running time of loading the experimental
data. In the evaluation, we averaged the first side-lobe level, −6 dB beam width, and the
intensity estimation error at each lateral position where the estimated intensity is highest
in the ROIs.

2.3 Simulation and experimental results

2.3.1 Simulation results
The intensities estimated by the DAS method and the proposed method at the depths of
20 and 50 mm are shown in Figs. 2.4(a) and (b). The dotted lines shown in Fig. 2.4 are
the estimated intensity, P′

out, obtained by the proposed BS Capon method with only the
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Figure 2.3: (a) Photograph of experimental setup, and (b) schematic illustration of the
measurement system with two wire targets in the water tank. (Reproduction
from Okumura et al. (2016); Copyright(2016) The Japan Society of Applied
Physics.)

complexity reduction technique. The false images appeared at lateral distances of around
−0.50 and 0.50 mm. The arrows show the detected peaks in output power P′

out. The
solid black line in Fig. 2.4 shows the output power obtained using both the complexity
reduction technique and compensation technique. The numbers of processes associated
with the time-delay and the transformation of the conventional method and the proposed
method were 121 and 12, respectively. The estimation errors of the proposed method at
the target locations are 1.2 and 2.0 dB at depths of 20 and 50 mm, respectively. These
results show that the proposed method successfully yielded high-resolution and high-
contrast images with accurate intensity estimation and low computational complexity.

2.3.2 Experimental results
Fig. 2.5 shows the images acquired by the three methods: (a) the DAS method, (b)
the conventional BS Capon method with a sub-array size of 64, and (c) the proposed
method. The dynamic range in the figure is 60 dB. Figs. 2.6(a), (b), (c), and (d) are
cross–sectional views of Fig. 2.5 at 21.4, 31.4, 41.4, and 51.4 mm depths, where the
B-mode image acquired by the DAS method has maximum intensity. Table 2.1 shows
the evaluation indicators. The first side-lobe levels of the DAS method, conventional BS
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Figure 2.4: Intensity estimated by DAS method, BS Capon method with complexity re-
duction, and proposed method at the depths of (a) 20 and (b) 50 mm. (Re-
production from Okumura et al. (2016); Copyright(2016) The Japan Society
of Applied Physics.)

Figure 2.5: Experimental results of B-mode images of wire targets obtained by (a) the
DASmethod, (b) the conventional BS Capon, and (c) the proposed BS Capon
method. The lateral intervals of the targets were 1.0 mm. (Reproduction
from Okumura et al. (2016); Copyright(2016) The Japan Society of Applied
Physics.)
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Figure 2.6: Experimental result of cross-sectional images at the target depth obtained by
the DAS method, the conventional BS Capon, and the proposed BS Capon
method. The lateral interval of the targets was 1.0 mm and the target depths
were (a) 21.4, (b) 31.4, (c) 41.4, and (d) 51.4 mm. (Reproduction from Oku-
mura et al. (2016); Copyright(2016) The Japan Society of Applied Physics.)

Capon method, and the proposed BS Capon method with the compensation technique
were −5.3, −15, and −17 dB, respectively. The −6 dB beam widths of these methods
were 1.7, 0.7, and 0.36 mm, respectively. The estimation errors of these methods in
echo intensity were 0, 3.2, and 1.6 dB, respectively. The numbers of operations for
the conventional method and the proposed method were 7800 and 532, respectively.
The computational complexity of the proposed technique was less than 7% that of the
conventional method.

To evaluate the calculation time required to make a 300×26 pixel image, we used a
Linux workstation with an Intel(R) Core(TM) i7 CPU (Intel Corp., Santa Clara, CA).
The calculation times were 656 ms by the conventional BS Capon method and 81 ms
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Table 2.1: Experimental results of (a) the DAS method, (b) the conventional BS Capon
method, and (c) the proposed BS Capon method. Each value is the average of
four measurements at each depth.

First side-
lobe level
(dB)

−6 dB beam
width(mm)

Intensity estima-
tion error (dB)

Number of
operations

Calculation
time (ms)

(a) −5.3 1.7 – – –
(b) −15 0.7 3.2 7800 656
(c) −17 0.36 1.6 532 81

by the proposed BS Capon method. The proposed method reduced the calculation time
by 88% compared with the conventional BS Capon method. Because in the proposed
method the intensity at each depth is calculated individually, we can employ parallel
calculations.

2.4 Discussion
The reduction in the number of processes associated with the time-delay and transfor-
mation from ES signal processing to BS signal processing is determined by the sub-ROI
size. In this experiment, we used ∆x of 0.05 mm and sub-ROI size of 2.25 mm, i.e.,
the sub-ROI size was 45 pixels. The interval of the focal point used in this chapter
was 15 pixels. Theoretically, the number of operations in the proposed method might
be almost 6.7% of that in the conventional method when we dismiss the recalculation
process. Indeed, the number of processes in the proposed method is 6.8% of that in the
conventional method even when we take into account of recalculation processes. How-
ever, as shown in Sect. 2.3.2, the calculation times for the conventional method and
the proposed method were 656 and 81 ms, respectively. The reduction in the calcula-
tion time is smaller than the expected reduction. Both conventional and proposed BS
Capon methods require an analytic signal at each element. Thus, the RF signals must
be transformed into analytic signals. The process is employed by both methods and the
calculation time associated with the process is 32 ms. When we dismiss this calculation
time, the calculation times for the conventional method and the proposed method are
624 and 50 ms, respectively. The proposed method reduced the calculation time by 92%
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of the whole calculation time under this situation.
The error caused by the approximation is small at deeper areas because the distance

from the focal point to the measurement point ri,n−rx,n for deep areas is smaller than that
at shallow areas. The proposed method of using a large sub-ROI size may yield accurate
images of deep areas. Further reduction in complexity may be possible by optimizing
the sub-ROI size at each depth.

Theoretically, the imaging performance of the proposed method without power com-
pensation is almost the same as that of the conventional BS Capon method when we use
the same sub-array size for both methods. As shown in Table 2.1, the proposed method
improves the first side-lobe level and beam width. These improvements were brought
about by the power compensation technique.

2.5 Summary and concluding remarks
In this chapter, we proposed techniques that reduce the computational complexity of
medical ultrasound imaging by the BS Capon method. A reduction in the number of
time-delay processes and a transformation from ES to BS signal processing were re-
quired. We replaced the time-delay process by a simpler multiplication of a steering
vector and a covariance matrix to reduce the number of processes. Additionally, to
achieve accurate echo intensity estimation, we employed a compensation technique of
using a small sub-array size.

In an experimental study using a 2.0 MHz center frequency, the proposed method
successfully depicted two closely positioned targets with a lateral interval of 1.0 mm. In
the proposed method, the number of processes was reduced from 7800 to 532, the first
side-lobe level was suppressed from −15 to −17 dB, and the estimation error in echo
intensity was decreased from 3.2 to 1.6 dB. The calculation time required for generating
a 300× 26 pixel image by the proposed method was less than 13% of the time required in
the case of the conventional BS Capon method. These results indicate that the proposed
method may have the potential to implement adaptive signal processing for real-time
medical ultrasound imaging.
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Chapter 3

Phase velocity estimation
technique based on adaptive
array signal processing for
ultrasonic guided waves
propagating along cortical long
bones

3.1 Introduction
As shown in Sect. 1.3.5, several recent studies have used the AT technique, which
emits wide-band signals and analyzes the ultrasonic guided waves propagating along the
cortical bone. The cortical bone has been described as a transversely isotropic absorbing
plate with a finite thickness (Dong and Guo, 2004; Haïat et al., 2009; Naili et al., 2010).
The ultrasonic guided waves propagating in cortical bone consist of multiple propagation
modes, and their frequency dependent wavenumbers represent the elastic properties of
the medium. Thus, many techniques for frequency-phase velocity ( f–c) or frequency-
wavenumber ( f–k) analysis have been reported.

The two-dimensional (2D) Fourier-transform technique provides a means to estimate
the f–c relationship of the signals (Alleyne and Cawley, 1991). This technique is equiv-
alent to the non-adaptive beamforming technique, i.e. DAS beamformer for the narrow
band signal. Therefore, as well as the non-adaptive DAS beamformer, the resolution
strongly depends on the size of the probe; indeed, a larger probe and a larger number
of receivers are required for higher resolutions and broader frequency ranges in estima-
tions.
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Sasso et al. (2008) proposed a technique based on singular-value decomposition (SVD),
a matrix algorithm for nonsquare matrices, for data obtained with a probe consisting
of multiple numbers of transmitters and receivers. Minonzio et al. (2010) extended
this SVD-based method and succeeded in estimating the phase velocity of Lamb waves
propagating in a copper plate. They applied the technique to in-vivo cortical bone and
demonstrated a good estimation of phase velocities for different modes (Vallet et al.,
2016). However, the measurement frequency range shown in the conventional study is
limited (Minonzio et al., 2010). The number of existing modes, the required resolution,
and the SNR for the phase velocity estimation of Lamb waves depend on the frequency
of the signal. These difficulties limit the measurement frequency range of the conven-
tional method.

In this chapter, we employ estimation of signal parameters via rotational invariance
techniques (ESPRIT) (Haardt and Nossek, 1995; Roy and Kailath, 1989). The ESPRIT
algorithm is a classical high-resolution beamforming technique. As shown in Sect. 1.5.4,
the basics of the beamforming technique for DOA estimation and phase velocity estima-
tion is the same, so we can directly apply the ESPRIT algorithm to the AT technique.
In the ESPRIT algorithm, phase velocity is directly and numerically estimated without
peak search process. In the inversion process that estimates the elastic properties of a
specimen (Bochud et al., 2017; Foiret et al., 2014), the values of the wavenumbers or
phase velocities are required. To estimate the values from the intensity profile, the de-
termination of parameters such as thresholds for intensity and prominence is required.
Thus, the ESPRIT algorithm should be effective for the wavenumber or phase velocity
estimation.

Both SVD and ESPRIT algorithms require the number of existing modes at the mea-
surement frequency. However, this is difficult to determine because it depends on the
frequency. Additionally, ESPRIT algorithm assumes that the arrival waves do not cor-
relate with each other (Haardt and Nossek, 1995; Roy and Kailath, 1989; Takao and
Kikuma, 1987). However, the propagation modes of Lamb waves correlate with each
other.

To suppress this correlation, the spatial averaging technique is widely known and
conventionally used with the ESPRIT algorithm. Spatial averaging, which is introduced
in Sect. 1.5.3, situates sub-arrays in the whole receiver array and averages the received
signals. The receiver size after spatial averaging determines not only the correlation
suppression performance but also the resolution of the adaptive beamforming technique
and the SNR. That is, there is a trade-off between resolution and SNR, making it difficult
to determine the optimal size. When a large sub-array is used, the resolution of the
estimation increases, but the SNR decreases.
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In this chapter, we propose a new algorithm that does not require a specific sub-array
size or the estimation of the number of existing modes. We first estimate phase velocity
using multiple sub-arrays of different sizes for spatial averaging and multiple different
numbers of existing modes for the ESPRIT algorithm with one transmitter and multiple
receivers. We evaluate the correspondence of the estimated phase velocities with the
different sub-arrays and modes. If an inappropriate number is used, false phase velocities
are estimated. Additionally, we propose a false-phase-velocity rejection technique using
a particular feature of Lamb waves.

We evaluated this method using a copper plate of known thickness and shear and
longitudinal wave velocities. We conducted the experiments and numerical simulation
(Nguyen and Naili, 2012, 2013) and herein present our results.

3.2 System model
Fig. 3.1 shows the system model employed in this chapter. The wave associated with
each mode propagates along the x direction with a certain phase velocity that is deter-
mined by its shear and longitudinal wave velocities and plate thickness. For a copper
plate, the longitudinal and shear wave velocities are 4650 and 2260 m/s, respectively.

The signal model is shown in Eq. (1.96). With the vector and matrix form, the vector
corresponding to the received signal S( f ) in the frequency domain is given by

S( f ) = [S1( f ) · · ·SN( f )]T, (3.1)
= Ac( f )St( f ), (3.2)
= [ac( f ,c1) · · ·ac( f ,cM)][St1( f ) · · ·StM( f )]T, (3.3)

ac( f ,cm) = [exp{ jΨ1( f ,cm)}· · ·exp{ jΨN( f ,cm)}]T, (3.4)
Ψn( f ,cm) = −2π f n∆l/cm( f ), (3.5)

where f is the measurement frequency, Sn( f ) is the received signal at the n-th element,
cm( f ) is the phase velocity of the m-th propagation signal, ∆l is the pitch of the receiver,
ac is the steering vector for f − k analysis, M is the number of modes, and Stm( f ) is the
amplitude of the m-th propagation signal. The sizes of the matrix Ac( f ) and vector S( f )
are N×M and N×1, respectively.
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Figure 3.1: System model of axial transmission technique. (Reproduction from Oku-
mura et al. (2017); Copyright(2017) The Japan Society of Applied Physics.)

3.3 Materials and methods

3.3.1 Estimation of phase velocity using the ESPRIT algorithm
Here, we briefly explain the phase velocity estimation using the ESPRIT algorithm that
forms the basis of the proposed method. By the ESPRIT method, we estimate the phase
velocity by comparing the received signals at two arrays shown in Fig. 3.2. When there
is a propagation signal, i.e., M = 1 in the previous section, with the phase velocity of
c1( f ), the relationship between the received signal vectors of array 1 and 2 is shown as

S2( f ) = S1 exp(−j2π f∆l/c1( f )), (3.6)
S1( f ) = [S1( f ) · · ·SN−1( f )]T, (3.7)

S2( f ) = [S2( f ) · · ·SN( f )]T, (3.8)

where S1( f ) and S2( f ) are the received signal vectors of arrays 1 and 2, respectively.
As shown in Eq. (3.6) and Fig. 3.2, a single phase velocity of a single signal is es-

timated by comparing two arrays. The ESPRIT algorithm expands this principle to
multiple signals using the eigenvalue decomposition, as shown in Fig. 3.2. The ESPRIT
algorithm applies eigenvalue decomposition to the covariance matrix of the received sig-
nal to separate signals and noises. After the separation of signals, the ESPRIT algorithm
estimates the phase velocity by comparing two arrays. The detail of this algorithm is
shown in Haardt and Nossek (1995); Roy and Kailath (1989).

Spatial averaging is performed in 2D ultrasound imaging using an adaptive beam-
forming technique (Okumura et al., 2016; Taki et al., 2012). This technique situates the
sub-arrays in the whole array and averages the covariance matrices of these sub-arrays
(Fig. 3.3) (Takao and Kikuma, 1987). The covariance matrix obtained using the spatial
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Figure 3.2: Schematic of the ESPRIT algorithm.(Reproduction from Okumura et al.
(2017); Copyright(2017) The Japan Society of Applied Physics.)

averaging technique for AT technique is given by

RA( f ) =
1

Nave

Nave

∑
n=1

Rn( f ), (3.9)

Rn( f ) = Sn( f )Sn( f )H, (3.10)
Sn( f ) = [Sn( f ) · · ·Sn+Nsub−1( f )]T, (3.11)

where Nave is the number of averaging steps. The sub-array size Nsub is given by Nsub =
N−Nave+1. The technique controls the resolution of the ESPRIT algorithm and SNR.
Note that a small Nsub achieves a low resolution because the number of usable elements
is small. In contrast, because the number of averaging steps is large, the SNR increases.
The maximum number of modes that the ESPRIT algorithm can estimate is Nsub−1 and
note that the algorithm requires the number of existing modes, M.
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Figure 3.3: Schematic illustration of spatial averaging. (Reproduction from Okumura
et al. (2017); Copyright(2017) The Japan Society of Applied Physics.)

3.3.2 High-accuracy phase velocity estimation
In this section, we describe the proposed method. To estimate phase velocity, the estima-
tion of the number of modes present at the measurement frequency,M, is required. Con-
ventional studies determine the number through its dependence on eigenvalue, which
related to the intensity. However, when we determine the number in this manner, we
cannot extract modes with small eigenvalues. Thus, we propose an alternative technique
to obtain a better estimate M.

The ranges of longitudinal and shear wave velocities and thicknesses of cortical bone,
which determine the phase velocities of bone, are limited. Thus, we can roughly estimate
the maximum number of existing modes. The maximum number of estimation modes is
determined by the number of receivers. In this chapter, we propose the technique with
the sufficient number of receivers that is more than or equal to the maximum number of
existing modes over the measurement frequency range.

When we overestimate M, false estimates of phase velocity occur because the ES-
PRIT algorithm estimates the phase velocity of noise. To correctly estimate the number
of modes, a technique to exclude false estimates of phase velocity is required. In the
application to Lamb waves, we remove noise by exploiting certain features of the phase
velocity associated with false estimates.
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Because different sizes of sub-arrays vary the number of averaging steps and the SNR,
when we employ a sub-array of different size, Nsub, the estimated phase velocity of noise
is also changed. Therefore, with a different sub-array size, the falsely estimated phase
velocity appears randomly. In contrast, the estimated phase velocity that represents a
real mode remains almost unchanged even when we change Nsub. The phase of the
noise that determines the phase velocity should have a random value from 0 to 2π . The
estimated phase velocity of noise is given by

cN( f ) =−2π f∆l/ϕN, (3.12)

where ϕN is the randomly distributed phase of the noise and cN is the phase velocity of
the noise. Thus, with a random value of ϕN, the phase velocity of the noise appears to
spread randomly at higher phase velocities and more densely at lower phase velocities.
We remove false velocities using the following two conditions.

(i) We first estimate phase velocity with sub-arrays of different sizes from N1 to N2.
We set the number of modes present as Nsub−1, that is, the maximum number of modes
when we use the sub-array size of Nsub. We identify the isolated estimates of phase
velocity as false estimates. To identify the reliable estimates, we set the following con-
ditions:

|ce,m′( f ,n′)− ce,m( f ,n)|< cth, (3.13)

where ce,m( f ,n) is the m-th estimated phase velocity with a sub-array size of n, n′ ̸=
n,m′ ̸= m,N1 ≤ (n,n′) ≤ N2, 1 ≤ (m,m′) ≤ n− 1, and cth is the critical threshold. We
consider reliable phase velocities, ce,m( f ,n), as those that can provide more than one
different estimated phase velocity, ce,m′( f ,n′), that satisfies Eq. (3.13).

(ii) At this point, we have removed some of the false estimates at higher phase veloc-
ities. We next propose the condition to remove lower false phase velocities by using a
feature of the phase velocity of Lamb waves. The A0-mode has the lowest phase ve-
locity and is dominant at lower frequencies. Therefore, when we select the mode with
the highest estimate of power at lower frequencies, the phase velocity of the A0-mode
is estimated. We therefore estimate its phase velocity and remove all phase velocities
below the A0-mode phase velocity.

We estimate the A0-mode phase velocity, cA0( f ), using the expression

cA0( f ) =
1

N2−N1+1

N2

∑
n=N1

ce,1( f ,n), (3.14)

where ce,1( f ,n) is the estimated phase velocity having the highest estimated intensity
with a sub-array size of n. We remove the estimated phase velocities lower than cA0( f )−
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cth2. cth2 is the threshold for false phase velocity rejection using the A0-mode phase
velocity.

3.3.3 Simulation and experimental settings
To verify the described algorithm above, we performed a simulation and an experiment
with the same settings. We use a 2.0-mm-thick copper plate. The center frequency of the
transmitted signal is 1.0 MHz. We used a transmitter and sixteen receivers. The pitch of
the receivers is 0.75 mm and the distance from transmitter to the first receiver is 15 mm.
We use a range of sub-array sizes, N1 and N2, of 5 to 9. We used values of 20 m/s for
cth and 100 m/s for cth2. In the numerical simulation, we use the semi-analytical finite
element method (Nguyen and Naili, 2012, 2013).

3.4 Results
Figs. 3.4 and 3.5 show the numerical simulation and experimental results for a 2-mm-
thick copper plate. To show the advantage of the proposed method, we compare the
measurement frequency range of the proposed method with that of the conventional
SVD method. The dashed lines express the measurement limitation given by Minonzio
et al. (2010). We calculated the limitation using the relation 1/7= cd( f )/( f N∆l), where
cd( f ) is the limit of phase velocity at f . For comparison with the conventional study,
we plotted not only the line with N = 16 but also that with N = 14 because that study
employed fourteen receivers.

The proposed method successfully reduced the phase velocities obtained in both the
simulation and experiment. Compared with the limitations of the conventional method,
our proposed method achieves an accurate and broad estimation.

To quantitatively evaluate the proposed method, we use the index of ‘fitting error’ for
the following conventional study.

100
1

Nexp

fmax

∑
fmin

N2

∑
n=N1

n−1

∑
m=1

|c′e,m( f ,n)− ct|/ct, (3.15)

where Nexp is the number of estimated phase velocities, c′e,m( f ,n) is the estimated phase
velocity after applying all false velocity rejection techniques, ct is the theoretical phase
velocity estimated using the true thickness and longitudinal and shear wave velocities,
and fmin and fmax are respectively the minimum and maximum measurement frequen-
cies.
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Figure 3.4: Results of the numerical simulation. Red dots indicate the estimated phase
velocity using the proposed method. Black solid lines mark the theoreti-
cal phase velocity of Lamb waves. Blue and green dashed lines indicate
the measurement limits of the conventional SVD method. cth and cth2 are
20 and 100 m/s, respectively. (Reproduction from Okumura et al. (2017);
Copyright(2017) The Japan Society of Applied Physics.)

The fitting errors of the numerical simulation and experimental results are 0.26 and
1.3%, respectively. The maximum measurement frequency of the A0-mode is 2.8 MHz
in both cases, whereas that of the conventional method with fourteen receivers is only 1.4
MHz. Thus, the measurement frequency range of the proposed method is twice wider
than that of the conventional method.

3.5 Discussion
Fig. 3.6 shows the estimated phase velocities with multiple different sub-array sizes
of the experimental study after phase velocity rejection technique based on A0-mode
phase velocity. We can see that the estimated phase velocities concentrate at the true
phase velocities. Thus, the evaluation of the consistency is reasonable.

The basic ideas are similar between the conventional SVD-based technique and the
ESPRIT algorithm. Both separate the signal and noise using singular-value and eigen-
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Figure 3.5: Same as in Fig. 3.4, but for results of the experiment. (Reproduction
from Okumura et al. (2017); Copyright(2017) The Japan Society of Applied
Physics.)

value decompositions, respectively. However, in the conventional techniques, the phase
velocity is estimated using the 2D (frequency-phase velocity) intensity map. Therefore,
in addition to estimating this map, extracting the exact phase velocity is required. In
contrast, in the case of using the ESPRIT algorithm, the phase velocity is directly es-
timated. To estimate the parameters of the plate, an inversion process is required, for
which the exact phase velocity is required. Hence, the ESPRIT makes it easier to esti-
mate parameters.

We used 16 receivers and one transmitter, which differs from the conventional study
(Minonzio et al., 2010), in which 14 receivers and 3 transmitters are used. Because the
conventional technique with multiple transmitters is equivalent to the spatial averaging,
the conventional technique with three transmitters is equivalent to an eigenvalue de-
composition applying spatial averaging three times. Moreover, the difference in whole-
receiver size is 1.5 mm, the effects of which can thus be ignored.

The reported fitting error in the conventional study was around 5% (Minonzio et al.,
2010). Because the system and algorithm are different, these previous results cannot be
directly compared with the results. However, errors of the proposed method (0.26 and
1.3%) are sufficiently small for bone quality assessment.

Here, we show the performance of the proposed method with different thresholds, cth
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Figure 3.6: Estimated phase velocities of the experimental study with multiple different
sub-array sizes after the false phase velocity rejection technique based on
A0-mode phase velocity.

and cth2. Fig. 3.7 shows the experimental results with (cth, cth2)=(10 m/s, 100 m/s) and
(100 m/s, 100 m/s). cth determines the range of false phase velocity rejection. Thus,
there is a trade-off between the number of estimated phase velocities and the reliability
of estimated phase velocities. As shown in Fig. 3.7, there is a higher-order mode at 2.5
MHz with cth of 100 m/s. However, the estimation error increases. When we change
cth from 10 to 100 m/s with cth2 of 100 m/s, the fitting errors range from 1.3 to 1.6%
and the measurement frequency range is constant. The dependence of fitting error on
the threshold is small. The value should depend on the requirement of the system for
estimating bone quality using the estimated phase velocities.

Fig. 3.8 shows the experimental results with (cth, cth2)=(20 m/s, 10 m/s) and (20 m/s,
200 m/s). cth2 is the threshold that removes low false phase velocities. Thus, when we
use small values for cth2, the proposed method may remove the A0-mode phase velocity.
As shown in Fig. 3.8, the dependence of fitting error on cth2 is small. When we change
cth2 from 10 to 200 m/s with cth of 20 m/s, the fitting errors range from 1.28 to 1.35%
and the measurement frequency range is constant. A smaller value, e.g., smaller than
200 m/s, is appropriate.
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Figure 3.7: Estimated phase velocities with different threshold cth values of 10 and 100
m/s with cth2 of 100 m/s. (Reproduction from Okumura et al. (2017); Copy-
right(2017) The Japan Society of Applied Physics.)

3.6 Summary and concluding remarks
The analysis of guided waves propagating in cortical bone using the AT technique is
promising for medical applications. Wider frequency ranges and more accurate veloc-
ity estimations might bring better diagnoses. We proposed and assessed an estimation
technique based on the ESPRIT algorithm with spatial averaging. Spatial averaging
controls the resolution and SNR. We estimate the phase velocity multiple times using
different sub-array sizes and evaluate the correspondence of the results. In addition, we
proposed a method to remove false phase velocities. The simulation and experimental
results demonstrate that the fitting errors are 0.26 and 1.3%, respectively. The frequency
measurement ranges are twice as wide as those in the conventional method. We believe
that the proposed AT technique is effective in the analysis of cortical bone quality.
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Figure 3.8: Estimated phase velocities with threshold cth of 20 m/s with different cth2
values of 10 and 200 m/s. (Reproduction from Okumura et al. (2017); Copy-
right(2017) The Japan Society of Applied Physics.)
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Chapter 4

High-resolution and fast
wavenumber estimation of
ultrasonic guided waves with
adaptive array signal processing

4.1 Introduction
In the previous chapter, we proposed a technique to estimate the phase velocities of the
guided waves with the ESPRIT algorithm. In this chapter, we propose a technique with
lower computational complexity.

To avoid strictly estimating the number of signalsM, we used the multiple sub-arrays
with different sizes and iteratively calculated the eigenvalues which cost the large com-
putational complexity in the previous study. Additionally, the resolution of the previ-
ously proposed technique is limited because it is determined by the smallest sub-array
size.

To resolve these problems, in this chapter, we propose a new algorithm to estimate
the number of signals M using the information theoretic criteria without including pro-
cess that requires the large computational complexity. This estimation is effective for
using both SVD and ESPRIT methods. While many studies estimating M that employ
information theoretic criteria have been reported (Huang et al., 2012; Lombardini and
Gini, 2005; Sauer et al., 2007; Wax, 1991; Wax and Kailath, 1985), these methods were
not applied for the analysis of ultrasonic guided waves propagating along a transversely
isotropic absorbing material like cortical bone.

Several high-resolution wavenumber estimation techniques have been reported. Tran
et al. (2014b) proposed the Radon transform method, which estimates the phase velocity
at each frequency. The Radon transform method employs a single transmitter and mul-
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Figure 4.1: Theoretical wavenumbers of 4mm-thick copper plate.

tiple receivers and estimate the phase velocity using an iterative process, and produces
high-resolution estimates. However, the computational complexity is not low because
it requires the inversion of a large matrix. Xu et al. (2016a) proposed the sparse SVD
(S-SVD) method, which combines the Radon transform method proposed by Tran et al.
(2014b) and the SVD method. The method acquires super-resolution estimates by em-
ploying SVD and an iterative process. However, this method also requires the estimation
of the number of propagation modes in the received signal and multiple calculations of
a large matrix inversion.

We compared the computational complexity between the proposed method and a con-
ventional method and determined the effectiveness of the proposed method via a simple
numerical simulation and experiments with a copper plate and a bone-mimicking plate.

4.2 Materials and methods
In this chapter, we estimate wavenumbers, not phase velocities to follow the recent stud-
ies (Bochud et al., 2017; Xu et al., 2016a,b). The theoretical wavenumbers are shown in
Fig. 4.1. Because the wavenumber k is given by k = 2π f/c, the analysis of wavenum-
ber and phase velocity is theoretically same. However, in the wavenumber axis, the
resolution does not depend on the frequency.
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4.2.1 Estimation of the number of signals
Overview of the basic theory

The schematic system and signal model are the same as the Chap. 3. We first estimate
the covariance matrix with the sub-array size of Nsub with the whole array size of N as
shown in Eq. (3.9). We next apply the eigenvalue decomposition as one of the steps of
the ESPRIT algorithm.

The eigenvalues of the covariance matrix with spatial averaging, RA( f ) which is
shown in Eq. (3.9), are expressed as:

λ e
1 ( f )≥ ·· · ≥ λ e

M( f )( f )> λ e
M( f )+1( f ) = · · ·= λ e

Nsub
( f ) = σ2

n , (4.1)

where σ2
n is the noise intensity. We note that the absolute value of the eigenvalues do not

directly match the intensity of the signal, i.e. when we have two waves with the same
intensity, the eigenvalues that correspond to the signals do not have the same value.
Thus, the simple thresholding process is not suitable for the accurate estimation of the
number of signals.

In this section, we propose a technique to estimateM( f ). To estimateM( f ), methods
that use the information theoretic criteria, which is called minimum description length
(MDL), have been reported (Wax, 1991; Wax and Kailath, 1985). The evaluation index
G(m) to estimate M is given by:

G(m) =− log

∏Nsub
i=m+1λ e

i ( f )
1

Nsub−m

∑Nsub
i=m+1

λ e
i ( f )

Nsub−m

(Nsub−m)Nave

(4.2)

+
1
2
m(2Nsub−m) logNave,

where G(m) is the index, m that minimizes G(m) represents the estimated M( f ). Here,
let us define the estimated M( f ) as M′( f ).

Diagonal loading technique for AT technique

In Eq. (4.2), the numerator and denominator represent the geometric and arithmetic
means of the eigenvalues, respectively. Thus, smaller eigenvalues make the estimates
unstable. To stabilize the estimation, we employ a technique, which adds a diagonal
matrix to the covariance matrix (Huang et al., 2012; Lombardini and Gini, 2005; Sauer
et al., 2007). This is equivalent to adding an offset value to the eigenvalues.
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We propose a new scheme for the wavenumber estimation. The process is given by
the following:

R′( f ) = R( f )+ηd( f )I, (4.3)

where ηd is a DL factor for AT technique and I is the identity matrix. The process shown
in the previous equation can be rewritten as follows:

λ e′
i ( f ) = λ e

i ( f )+ηd( f ), (4.4)

where λ e′
i ( f ) is an eigenvalue that is calculated from R′( f ). Therefore, even when we

use a different DL factor with the same covariance matrix, we do not need to employ the
eigenvalue decomposition process again. In other words, we employ the DL technique
for the estimation ofM as the offset value. By replacing λ e

i in Eq. (4.2) with λ e′
i , we can

get the modified estimates of M.

Determination of the DL factor

The selection of the DL factor is important for the estimation of M. In this chapter, we
employed two DL factors that depend on the received signal intensity. The schematic
illustration of the two factors is shown in Fig. 4.2.

The DL factor is given by

ηd( f ) = η1( f )δ1( f )+η2δ2, (4.5)

δ1( f ) = tr{R( f )}, (4.6)
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δ2 =
1

f2− f1

∫ f2

f1
tr{R( f )}d f , (4.7)

where η1 and η2 are the DL factors and f1 and f2 are the frequency range used for η2.
tr{∗} represents the trace of the matrix. η2δ2 is employed for the stabilization, which is
called constant DL in Fig. 4.2, because with small signal intensity, η1( f )δ1( f ), which is
called frequency dependent DL in Fig. 4.2, approaches zero. Because η2δ2 is employed
just for the stabilization, we choose the frequency range that contains the noise only and
set the small value of η2.

To determine η1( f ) for the wavenumber estimation, we assumed that in a certain
frequency range, the optimal η1( f ) is common. This assumption was made for the
reason that as mentioned below, M′ has a step-like change with respect to η1. The
optimal η1 that gives the optimum M has a range and is not a critical value.

We change η1( f ) within the range and select the minimum η1 that gives M′( f ) that
satisfies the following condition:

max{M′( f )}<Mth, with ( f − fw ≤ f ≤ f + fw), (4.8)

where fw is the width of the frequency window, which is employed for stable estimation
andMth is a threshold value ofM that is sufficiently large for the wavenumber estimation.

4.2.2 Experimental setup
We employed an array probe that consists of a single transmitter and 28 receivers (N =
28) with an element pitch of 0.75 mm. The distance between a transmitter and the first
receiver was 18.75 mm. Note that, the aperture size is larger than the previous chapter
to follow the recent study (Xu et al., 2016a). The center frequency of the transmitted
wave was 1.0 MHz. We used two specimens: 1) a 4 mm thick copper plate (shear
wave velocity of 2260 m/s and longitudinal wave velocity of 4650 m/s), and 2) a 4 mm
thick transversely isotropic bone-mimicking plate (Sawbones, Vashon, WA). The elastic
parameters of the bone-mimicking plate were determined in previous studies (Foiret
et al., 2014; Xu et al., 2016a).

In the proposed method, we set Mth = Nsub− 1, fw = 0.5 MHz, η2 = −40 dB at the
frequency range of f1 = 4.9 MHz and f2 = 6.1 MHz, and Nsub = 15. We prepare the DL
factor with the range of η1 was −100 dB to 0 dB and interval of 10 dB.

We used Nave = 5 and Nsub = 24 in the conventional SVD method (Xu et al., 2016a).
In the previous study, they used multiple transmitters. The employment of multiple
transmitters and sub-arrays is theoretically the same.
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Figure 4.3: Estimated number of propagation modes (black line). True number of prop-
agation modes (red dotted line).

4.3 Results

4.3.1 Evaluation of the number of the propagation modes
with diagonal loading

To evaluate theM estimation using DL, we conducted a simple simulation. We assumed
that three waves with k = 1000,2000, and 3000 rad/m are propagating. The SNR was
40 dB, N = 28, and Nsub = 15. In this subsection, we prepare the DL factor with interval
of 1 dB.

The estimation result is shown in Fig. 4.3. The estimated M, M′ = 14, 3, and 0
with the −100 dB≤ η1 ≤−88 dB, −87 dB≤ η1 ≤−14 dB, and −13 dB≤ η1 ≤ 0 dB,
respectively. We can see that estimated M has a step-like change with respect to the
change of η1. The root mean square error (RMSE) at η1 =−40 dB was 0.73 rad/m.

4.3.2 Experimental results
Figs. 4.4 and 4.5 show the experimental results with the copper plate and bone-mimicking
plate, respectively. The color maps show results using the conventional SVD method.
The red dots are estimated results with the proposed method. To remove the obvious
false estimates, we removed the estimates with the c< 1200 and c> 50000 m/s. The pro-
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Figure 4.4: Estimated wavenumbers of the 4 mm copper plate using the proposed
method and conventional SVD method. Red dots show estimates of the pro-
posed method. The color intensity map shows the results of the conventional
SVD method. Solid gray lines show the theoretical curve.

posed method succeeded in depicting the wavenumber without peak search processes.
The RMSE of the estimation result of the proposed method with the copper plate and
bone-mimicking plate was 108 rad/m and 121 rad/m, respectively. The wavenumber
of the shear wave that had a larger effect on the theoretical curve than the longitudinal
wave at the center frequency (1.0 MHz) of the copper plate and bone-mimicking plate
was 2780 rad/m and 3879 rad/m, respectively. Compared with the wavenumber of the
shear wave, the RMSE was less than 4%.

The spectrum at the frequency that is denoted by a white dotted line in Fig. 4.5 is
shown in Fig. 4.6. As shown in Fig. 4.6, the proposed method has a higher resolution
than the conventional method. The estimated wavenumbers with the proposed method
were almost the same as the peak position in the SVD spectrum when the resolution of
SVD was high enough or the resolution of the ESPRIT algorithm was not enough to
separate the signals. However, it is difficult to identify some of the peaks because of
their small amplitude and poor prominence when we use the SVD method such as the
peaks with the wavenumber of around 2800 and 4300 rad/m.
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Figure 4.5: Estimated wavenumbers of the 4 mm thick bone-mimicking plate using the
proposed method and conventional SVD method. Red dots show the esti-
mates of the proposed method. The color intensity map shows the result of
the conventional SVD method. Solid gray lines show the theoretical curve.

The computational complexity related to a wavenumber or phase velocity estimation
steps that requires the relatively high computational complexity in the proposed method
are the eigenvalue decomposition of the covariance matrix with the size of Nsub×Nsub,
O(N3

sub), the SVD of the matrix of size Nsub−1×2M, O(min{(Nsub−1)2×2M,(Nsub−
1)× 4M2}), (Saarnisaari, 1997) while those in the conventional SVD method, Radon
transform method, and S-SVD method are the SVD of the matrix of size Nave×Nsub
, O(N2

ave×Nsub), inversion fo the matrix of size Nc×Nc, O(N3
c ) and inversion of the

matrix of sizeNk×Nk, O(N3
k ), respectively, whereNc andNk are the number of sampling

points in phase velocity and wavenumber axis, which is normally at least more than 64.
Therefore, the SVD method had the smallest computational complexity with the lowest
resolution. The computational complexity of the proposed method was significantly
smaller than the Radon and S-SVD method.

The calculation time not including loading time for experimental data was less than
0.5 sec with a commercial processor (Core(TM) i7, Intel(R), USA) on a workstation.
The calculation time of the conventional Radon transform was less than 60 sec as refer
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Figure 4.6: Depicted wavenumbers of the proposed method and spectrum of the conven-
tional method at 1.0 MHz. This is the cross sectional view at the white dotted
line in Fig. 4.5. The vertical blue dotted line shows the theoretical values.

to Tran et al. (2014b). Note that we do not use the same processor and machine, however,
the reduction of 99% of the calculation time is interesting. Moreover, the computational
complexity of the S-SVD method is greater than that of the Radon method.

In order to examine the effectiveness of the proposed method in determining M, we
compared the proposed method with ESPRIT method with fixed threshold. Figs. 4.7
and 4.8 show the results with a bone plate when we use the eigenvalues that are higher
than −40 and −30 dB of maximum eigenvalue. The red circles represent the result
of the proposed method. The RMSEs of the conventional methods were 184 and 143
rad/m, respectively. As shown in Fig. 4.7, small threshold makes the estimates unstable.
Contrary, the large threshold miss the weak modes. The threshold should be determined
manually and the results are severely sensitive to the threshold. Therefore it is difficult
to determine it.

4.4 Discussion
We selected a sub-array size of Nsub = 15, and we investigated the optimal size. Fig. 4.9
shows the depicted wavenumbers with Nsub = 5 and 26. The smaller sub-array missed
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Figure 4.7: Estimated wavenumbers of the 4 mm thick bone-mimicking plate using the
conventional ESPRIT algorithm with a fixed threshold of −40 dB and the
proposed method. Red dots show the estimates of the proposed method and
green cross marks show the that of the conventional method. Solid gray lines
show the theoretical curve.

weak modes and the larger sub-array caused false estimates. Fig. 4.10 shows the RMSE
with sub-array sizes of N = 28 and 32. We can see that the sub-array size Nave = N/2 is
optimum. Therefore, Nsub = 15 used in the previous section was the optimal size.

In the previous section, we used a frequency window, fw, of 0.5 MHz. The larger
value should give a stable estimate. When we employed fw of 0.1 MHz and 0.74 MHz
in the experiment with the bone-mimicking plate, the RMSE was 144 rad/m and 118
rad/m, respectively. Thus, the dependence on fw was not significant and a larger window
width provided stable estimation.

We chose a DL factor of η2 = −40 dB. Because this value was added for stabiliza-
tion, a smaller value was selected. When we used a larger value, more stable estimates
resulted but the weak modes were missed by the method.

As shown in Figs. 4.4 and 4.5, the proposed method and the conventional method both
missed some modes. The theoretical curve shows the wavenumber of the modes under
ideal conditions. However, realistic propagation depends on the excitation conditions
and each mode has a unique transfer function. Thus, we note that we cannot see all
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Figure 4.8: Estimated wavenumbers of the 4 mm thick bone-mimicking plate using the
conventional ESPRIT algorithm with a fixed threshold of −30 dB and the
proposed method. Red dots show the estimates of the proposed method and
blue cross marks show the that of the conventional method. Solid gray lines
show the theoretical curve.

modes indicated by the theoretical curve.
Figs. 4.11 and 4.12 show the results of the 2D-FFT with copper and bone mimicking

plate, respectively. When we compare Fig. 4.4 to Fig. 4.11, we can see that the proposed
method and SVD method succeeded in extracting the weak mode. For example, the
correct wavenumber is estimated by using the proposed method and SVDmethod around
0.5 MHz that corresponds to the S0-mode phase velocity, where the conventional 2D-
FFT failed to depict the wavenumbers. The curve of the S0-mode is shown in Fig. 4.1.

4.5 Summary and concluding remarks
In this thesis, we proposed a low-computational complexity technique to estimate the
number of propagation modes for AT device. We estimated the number of propagation
modes using the information theoretic criteria and DL technique. We proposed a method
to estimate the optimal value of DL for guided wave characterization. The proposed
method did not include processes with high computational complexity. The proposed
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Figure 4.9: Estimated wavenumbers with different sized sub-arrays. Red cross marks
and blue circles show the results with Nsub = 5 and 26, respectively.

method was experimentally evaluated using 4 mm thick copper and bone-mimicking
plates. The estimation error was less than 4% and the calculation time of the proposed
method was less than 0.5 sec with a workstation. Although the processor is not same and
faster than that used in the conventional study, the calculation time is less than 1% of the
conventional method. We believe that our proposed method has potential to accurately
characterize the elastic properties of the cortical bone.
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Figure 4.11: Spectrum of the 2D-FFT with 4 mm-thick copper plate. Solid gray lines
show the theoretical curve.
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Figure 4.12: Spectrum of the 2D-FFT with 4 mm-bone mimicking plate. Solid gray lines
show the theoretical curve.
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Chapter 5

Estimation of elastic parameters of
homogeneous plates with guided
ultrasonic waves using one
transmitter and two receivers

5.1 Introduction
As shown in Chap. 3 and 4, and in previous studies, the employment of multiple re-
ceivers, transmitters or transmissions that are equivalent to the employment of multiple
receivers have been suggested to analyze the guided waves and estimate the properties
of bone. However, the reduction of the number of ultrasonic elements would be of in-
terest in order to reduce the cost as much as possible. In this chapter, we focus on the
development of the low-cost measurement technique and try to minimize the number of
ultrasonic elements used in the system. As the pilot study of the AT technique for bone,
we characterize the homogeneous isotropic plate, which is described by a simpler model
than that used in Chap. 4.

Several studies have been reported that focus on the low-cost characterization. Tran
et al. (2014b) proposed a Radon-transform-based adaptive approach that estimates phase
velocity despite missing data. The method worked well with experimental data and
should be useful for low-cost assessment. In this chapter, we reduced further the number
of receivers. Xu et al. (2012) proposed a technique that employs a single transmitter-
receiver pair. The method accurately separates multiple modes of the Lamb wave and
estimates the thickness of the metal plate; however, it requires the determination of both
the shear wave velocity and longitudinal velocity. Sale et al. (2011) proposed a technique
that uses one transmitter and two receivers. Their method characterizes the Lamb wave
by minimizing the difference in the group velocities acquired from a semi-analytical
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finite element analysis and experimental data. They used a large separation between
the transmitter and receivers (350 mm) and between receivers (150 mm) and applied a
wavelet transformation to estimate the group velocity. A smaller probe size is desirable
when using the AT technique to assess bone quality (Bossy et al., 2004; Naili et al.,
2010).

These inversion problems have also been investigated for the air-coupled transducers
(Castaings and Hosten, 2001), and the laser-based methods (Gao et al., 2003; Harb and
Yuan, 2015, 2016). However, most techniques characterize the plate with multiple angle
transmissions (Harb and Yuan, 2015, 2016) or multiple reception events (Castaings and
Hosten, 2001; Gao et al., 2003) to eliminate the effects of the multiple modes propaga-
tion. In this chapter, to realize a low-cost measurement system, we do not change the
positions and angles of transmission and reception.

To minimize the number of elements, we use not only the wavenumbers of the propa-
gation modes but also the transfer function. In addition to the phase velocity, the transfer
function, i.e. waveform, of the Lamb wave also strongly depends on the parameters d,
cS, and cL (Viktorov, 1967). Therefore, theoretically, parameter values can be estimated
by a fitting procedure of the waveform. However, the inversion process leads to a multi-
dimensional optimization problem and requires a large computational complexity. A
reduction in the computational complexity is as important as the reduction in hardware
costs.

In this chapter, we propose a technique that estimates d, cS, and cL using a transmitter
and two receivers with a low computational complexity. We transmit a wide-band ultra-
sound signal from a transmitter. Using two receivers, we can estimate a phase velocity
of a single wave by its dependence on the difference between the phases of the received
signals. Hence, we first apply the Fourier transform and partially estimate the phase
velocity of the dominant wave within a certain frequency range. Next, we solve numeri-
cally the Rayleigh–Lamb equation for the frequency using the estimated phase velocity.
Finally, we apply the multi-linear least-mean-squares (LLMS) method with the solutions
of the previous procedure in the time domain (Taki et al., 2015a). The proposed method
is applied with success to numerical (Nguyen and Naili, 2012, 2013) and experimental
signals.
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5.2 Materials and methods

5.2.1 Partial phase velocity estimation
We first describe the procedure to estimate the phase velocity of a single mode of propa-
gation. Fig. 5.1 shows a schematic illustration of the proposed method for phase velocity
estimation with two receivers. We consider a small ultrasonic element attached to the
surface of the plate. We label the receiver nearest to the transmitter Rx1 and the receiver
furthest away Rx2. With two receivers, we can estimate a single phase velocity of a sin-
gle propagation mode. With this setup, the A0-mode is the dominant mode in the lower
frequency range. The A0-mode is the fundamental mode which shows strong dispersive
relation in the lower frequency range. Therefore, we first estimate the phase velocity of
the A0-mode within the frequency range where the A0-mode is dominant.

When measuring the phase velocity with two receivers, the received signals are taken
to have the form

Si( f ) = S0( f )exp
{
−j2π f li
c( f )

}
, (5.1)

where S0( f ) is the spectrum of the transmitted signal, Si( f ) is the Fourier-transformed
received signal at i-th receiver, li is the distance between the transmitter and i-th receiver
(l1 = ld and l2− l1 = l are used in this chapter), and c( f ) is the phase velocity. Hence,
the difference in phase ϕt( f ) between the two receivers for a single mode of propagation
is given by

ϕt( f ) = 2π f l/c( f ), (5.2)

where l is the distance between the two receivers.
In the actual measurements, the phase difference between the two receivers, ϕ( f ), is

calculated from
ϕ( f ) = ∠{S1( f )S∗2( f )}, (5.3)

where the superscripted asterisk denotes complex conjugation. The symbol ∠ repre-
sents the angle of the signal phase. To connect the ϕ( f ) smoothly along the frequency
direction, we employ the unwrap process (Hu et al., 2014).

The problem is that ϕ( f ) is not always equivalent to ϕt( f ) because ϕ( f ) ranges from
0 to 2π , i.e., ϕt( f ) can be expressed in terms of ϕt( f ) = ϕ( f )± 2π p, where p is an
integer as shown in Fig. 5.1. Therefore, we first define multiple candidate values of the
phase velocities with different values of p as follows

cp( f ) = 2π f l/(ϕ( f )+2π p), (5.4)
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Figure 5.1: Schematic of the phase velocity estimation using two receivers.

where cp( f ) is the p-th candidate of phase velocity. To estimate phase velocity of the
A0-mode, we need to determine p and the frequency range where this mode is dominant.

For that purpose, we use characteristics of the phase velocity of the A0-mode. For
an isotropic elastic plate, these characteristics are: 1) phase velocity is always positive,
2) it never exceeds cS, 3) its curve increases monotonically with increasing frequency
and 4) the slope of its curve monotonically decreases with increasing frequency. The
curve of the A0-mode phase velocity is presented in Fig. 1.13. We next select the Pc
candidate values and frequency ranges that satisfy some particular characteristics. Here
let us define the selected A0-mode phase velocities, ce1( f ), · · · ,cep( f ), · · · ,cePc( f ). The
reason why we do not use all candidate values that satisfy the condition is discussed
later in Sect. 5.4.

5.2.2 Inversion process using the Rayleigh–Lamb equations
and fitting procedures

With the aforementioned set up, the Lamb wave propagates along the axial direction of
the plate. The important point to note is that the phase velocity and transfer function are
mainly determined by cS, cL, and d (Núñez et al., 2000).

In the previous step, we obtained estimates of the A0-mode phase velocity. In general,
the phase velocities are determined using the Rayleigh–Lamb equation (Eq. (1.70)). In
this step, we numerically solve the Rayleigh–Lamb equation to find candidate values of
the parameters cS, cL, and d using cep( f ).
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When solving Eq. (1.70) with the p-th candidate for a given frequency fq by substi-
tuting cep( fq) into c( f ), the solutions trace out a curved surface in cS–cL–d space, see
Fig. 5.2(a). With different f , the solutions trace out different curved surfaces. If cep( f ) is
the exact value sought, the curved surfaces intersect at one point in this candidate space,
that point providing the parameter values of the Lamb wave, see Fig. 5.2(b). However,
in the measurement, cep( f ) is not the exact value and the surfaces do not exactly intersect
at one point, see Fig. 5.2(c).

To solve these problems, we solve Eq. (1.70) by successive approximations using
incremental values of cS, cL, and d with appropriate intervals. From Fig. 5.2(c), the
solution curves approach the “real” values of the parameters. We thus evaluate the degree
of concentration of the solution using the weighting function as follows (Illingworth and
Kittler, 1988; Sirmacek and Unsalan, 2010):

Jp(cS,cL,d) = (5.5)
Q

∑
q=1

w(cS− c′S( fq,c
e
p),cL− c′L( fq,c

e
p),d−d′( fq,cep)),

where Jp is the degree of concentration when we use cep, fq is the q-th component of fre-
quency, Q is the number of frequency components, c′S( fq,c

e
p), c

′
L( fq,c

e
p), and d′( fq,cep)

are the solutions of Rayleigh–Lamb equation Eq. (1.70) with f = fq and c= cep( fq), and
w is the weighting function. The Gaussian function is used in this chapter.

Finally, we select as candidate values where the degree of concentration exceeds a set
threshold such as 75% of the maximum degree of the concentration,

max{Jp(cS,cL,d)}× εv, (5.6)

where εv is the threshold value.
In the next step, we employ multi LLMS processes, their number being equal to the

number of parameter candidates. The dependence of cL on the phase velocity and wave-
form is considerably smaller than that of cS. Hence, we select a single cL that maximizes
v at each cS and d.

In the previous step, we acquired candidate values for cS, cL, and d. With these values,
we can calculate the transfer functions and phase velocities for the various modes of the
Lamb wave. Thereby, we finally estimate all parameter values using the fitting procedure
in the time domain.

In Sect. 5.2.1, we estimated the phase velocity of a single mode and noted that with
two receivers we cannot estimate the phase velocities of multiple propagating modes.
Nonetheless, in this step, we consider these multiple modes of propagation. We already
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Figure 5.2: Schematic illustration of the iterative process with the candidate estimates of
the A0-mode phase velocity. (a) Solution of Rayleigh-Lamb equation with
f1 in d–cS–cL space. (b) Solutions in cS–cL plane with several f . (c) Detail
of solutions. Note that the lines do not intersect at one point.

have the transfer functions and phase velocities of multiple modes of propagation using
a set of candidate parameter values. With the transfer functions and phase velocities, we
can predict the waveforms of all modes of propagation and the received signals at the
two receivers containing these multiple modes of propagation.

We modified the transfer function for the Lamb wave propagating in an isotropic
elastic plate reported by Núñez et al. (2000). We introduced a phase rotation factor,
which proved to be effective in the fitting procedure using the LLMS method (Cantrell,
2008; Taki et al., 2015a). The procedure for the estimation involves calculating the
fitting residue

Di =
∫ td

0
|soi (t,As

i,m,θ s
i,m,A

a
i,m,θ a

i,m)− s(t)|2dt, (5.7)

where Di is the fitting residue of i-th candidate, td is the time duration for the fitting
procedure, i is the candidate number, soi is the objective function of m-th candidate,
and s(t) is the received signal. The quantities As

i,m, A
a
i,m, θ s

i,m and θ a
i,m are optimized
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parameters in the LLMS, where As
i,m and Aa

i,m are the signal amplitude parameters of the
S and A modes of order m, and θ s

i,m and θ a
i,m are the phase rotation factors. Subscripts s

and a denote the S and A modes. The objective function soi (t) is given by:

soi (t,A
s
i,m,θ s

i,m,A
a
i,m,θ a

i,m) = (5.8)
M−1

∑
m=0

{ssi,m(t,As
i,m,θ s

i,m)+sai,m(t,A
a
i,m,θ a

i,m)},

ssi,m(t,A
s
i,m,θ s

i,m) = F−1[As
i,m|Hs

i,m( f )|S0( f ) (5.9)
exp{−j2π f ld/csi,m( f )+jθ s

i,m}],

where M is the number of modes of propagation used for the estimation, F−1 denotes
the inverse Fourier transform, Hi,m( f ) the transfer function of the i-th candidate given by
Núñez et al. (2000), and ld is the distance between transmitter and receiver. For receivers
Rx1 and Rx2, the duration td is respectively 20 and 40 µs. We finally select the candidate
that minimizes the fitting residue.

5.2.3 Measurement settings
Figs. 5.3 and 5.4 show a schematic and a photo of the measurement setup. We attach
a linear array probe with 128 elements (composite oscillator). We pick up an element
as the transmitter and two elements as receivers. The element width in the propagation
direction is 0.275 mm and the normal to propagation direction is 10 mm.

In the simulation, we consider an infinite isotropic elastic plate with constant thickness
and use the semi-analytical finite element method (Nguyen and Naili, 2012, 2013). We
put a point transmitter and two receivers on the plate that reside in free space. The point
transmitter and receivers are completely attached to the surface of the plate; i.e., during
transmissions, we do not consider the reflection at the surface of the plate.

The plate is characterized by four parameters: mass density, d, cS, and cL. In this
chapter, we employed a copper plate: mass density, d, cS, and cL were 8.94 g/cm3,
2.0 mm, 2260 m/s, 4650 m/s, respectively. Following previous studies, we transmit a
wide-band signal with center frequency of 1.0 MHz (Nguyen and Naili, 2012).

The distance between transmitter and Rx1 is ld = 20 mm, and between receivers is
l = 20 mm. We set the number of A0 candidates used for inversion process to Pc = 2,
the value used for the thresholding process as εv = 0.75, and the number of propagation
mode used for fitting procedure to M = 4. We solve the Rayleigh–Lamb equation with
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Figure 5.3: Schematic of the system model. The linear array probe consists of 128 ele-
ments. We use one element as a transmitter and two elements as receivers.

Figure 5.4: Photo of the experimental setup with the linear array probe.

ranges of 2000 m/s ≤ cS ≤ 2500 m/s, 3500 m/s ≤ cL ≤ 5000 m/s, and 0.5 mm ≤
d ≤ 6 mm and the incremental values of cS, cL, and d are 10 m/s, 10 m/s, and 0.1 mm,
respectively. The full-width at half-maximum of the Gaussian weighting function for cS,
cL, and d is 50 m/s, 50 m/s, and 0.1 mm, respectively. The lowest frequency, fmin, used
for the estimation of the A0-mode phase velocity in the simulation and in the experiment
are 0.2 MHz and 0.5 MHz, respectively.
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5.2.4 Algorithm flow
Here, let us summarize the algorithm flow of the proposed method.

1. Transmit a wide-band ultrasonic wave and obtain signals at two receivers at dis-
tances ld and ld+ l from the transmitter.

2. Apply Fourier-transform to the signals.

3. Prepare candidate values of the partial A0-mode phase velocity.

4. Select A0-mode candidates.

5. Solve the Rayleigh–Lamb equation for frequency with the incremental values for
cS, cL, and d with Gaussian weighting function.

6. Extract parameter values using the threshold condition.

7. Estimate exhaustively parameter values using the LLMS method.

5.3 Results
The results on the tested sample presented in Table 5.1 show the feasibility of the pro-
posed method for estimating the parameters of the plate. The estimated cS, cL, and d
include the estimation errors of ±5 m/s, ±5 m/s, and ±0.05 mm, respectively because
we set the incremental values of cS, cL, and d of 10 m/s, 10 m/s, and 0.1 mm, respec-
tively. Estimation errors of simulation study are within 0.22, 2.0, and 2.5% for cS, cL,
and d, respectively. Those of the experimental study were 0.22, 6.1, and 7.5% respec-
tively. The estimation error is given by the relation

|ctS− ceS|/ctS×100, (5.10)

where ctS is the true shear wave velocity and c
e
S is the estimated shear wave velocity. The

estimation errors of cL and d are calculated in the same way.
The calculation times for these estimates were 7.0 and 9.0 s for the simulation and

experimental study, running a single thread MATLAB program on a commercial CPU
(Intel(R) Core(TM) i7-7700K). The calculation time includes execution times for all
procedures except for loading times for the received signals and times associated with
calculating the transfer functions. Figs. 5.5 and 5.6 show the estimated phase velocities
with multiple p and cep( f ) of the simulation and experimental study, respectively. The
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Table 5.1: Estimated Lamb wave parameters (cS, cL, and d) of the proposed method.
The estimated cS, cL, and d include the estimation errors of ±5 m/s, ±5 m/s,
and ±0.05 mm, respectively because we set the incremental values of cS, cL,
and d of 10 m/s, 10 m/s, and 0.1 mm, respectively.

Fitting residue (dB) cS (m/s) cL (m/s) d (mm)
Real value 2260 4650 2.0
Simulation −10.3 (Rx1), −10.0 (Rx2) 2260 4560 2.0
Experiment −8.1 (Rx1), −6.9 (Rx2) 2260 4370 2.1
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Figure 5.5: Estimated A0-mode phase velocities in the numerical simulation study with
multiple p, cp( f ) (solid colored lines), selected phase velocities ce1( f ) (blue
crosses) and ce2( f ) (red circles) based on the A0-mode characteristics and
theoretical A0-mode phase velocity (black solid line). The vertical dotted
line shows the lowest frequency for the A0-mode phase velocity estimation.

red circles and blue crosses indicate the prepared candidate values used in the subse-
quent steps, i.e., ce1( f ) and ce2( f ). We see that one of the candidates matches well the
theoretical curve (solid black line).

With ce2( f ) obtained from the simulation and experimental results, the correspond-
ing Figs. 5.7 and 5.8 show the degree of concentration that is defined at Eq. (5.5),
J2(cS,cL,d), obtained solving numerically Eq. (1.70) for the frequency. Note that the
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Figure 5.6: Estimated A0-mode phase velocities in the experimental study with multiple
p, cp( f ) (solid colored lines), selected phase velocities ce1( f ) (blue crosses)
and ce2( f ) (red circles) based on the A0-mode characteristics and theoretical
A0-mode phase velocity (black solid line). The vertical dotted line shows
the lowest frequency for the A0-mode phase velocity estimation.

actual interval for the increment thickness is 0.1 mm. For simplicity, we show the results
with interval of 0.5 mm. We see that the degree of concentration increases around the
true parameter values marked by the black diamonds for thickness close to 2 mm.

Figs. 5.9 and 5.10 show the fitted results from the simulation and experiment, respec-
tively. The predicted waveforms matched the received signals well.

5.4 Discussion
When we calculate transfer functions for Lamb wave, we need to provide a density of
the material. However, as shown in Núñez et al. (2000), the density only affects the
amplitude. Because the LLMS procedure determines the amplitudes of the propagation
modes as shown in Eqs. (5.8) and (5.9), the provided density theoretically does not affect
the results. In other words, if we use an arbitrary value of the density for the transfer
function calculation, the proposed method will give the same estimates. Therefore the
proposed method does not require any specific information of the plate.

We succeeded in accurately estimating the received signal using theoretical transfer
function and LLMS method. The results show that using LLMS with the phase rotation
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Figure 5.7: Normalized degree of concentration for each incremented thickness obtained
from numerical simulation study. The vertical and horizontal axes corre-
spond to cS and cL, respectively. The value above each figure is the plate
thickness d [in mm]. The black diamond represents the position of true pa-
rameters.

factor shown in Eq. (5.9) is appropriate to estimate the properties of Lamb wave. In
addition, a reduction in the number of the candidates might help to accurate estimation.
When we employ a non-linear fitting procedure, there is a possibility that the fitting
result is a localized solution and the solution does not represent the true parameters.

Because we can estimate only a single phase velocity of a single propagation mode
with two receivers, we measured the characteristic of the A0-mode that dominates the
lower frequency range using two receivers. To compare the intensity of the A0-mode
with that of the other modes, we apply a 2D-FFT to the signal waveforms obtained from
simulation and the experimental study. Figs. 5.11 and 5.12 show the results of a 2D-
FFT of the simulation and experimental data. In obtaining these images, we used 78
receivers having an element pitch of 0.375 mm. Note that the A0-mode dominates at
the low frequency range in both datasets. Hence, we can estimate the A0-mode phase
velocity with two receivers. We reiterate that, in the fitting procedure, we used the higher
order modes, see Sect. 5.2.2.

In the A0-mode phase velocity selection (procedures 3 and 4 introduced in Sect.
5.2.4), we used Pc = 2. A larger value stabilizes the estimation. Fig. 5.13 shows the
estimated A0-mode phase velocity with l = 12 mm. In Figs. 5.5 and 5.13, the respective
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Figure 5.8: Normalized degree of concentration for each incremented thickness em-
ployed in the experimental study. The vertical and horizontal axes corre-
spond to cS and cL, respectively. The value above each figure is the plate
thickness d [in mm]. The black diamond represents the position of true pa-
rameters.

curves of ce2( f ) and ce1( f ) show that they match well with the theoretical curves. Thus,
a multiple selection of candidate values for the A0-mode phase velocity, i.e., Pc > 1, is
desirable for robust estimation. Using unsuitable candidates, i.e., those marked by red
circles in Fig. 5.13, the degree of concentration increases at unsuitable parameter val-
ues as shown in Fig. 5.14. With unsuitable parameter values, the predicted waveform
is completely different (Fig. 5.15) and the fitting procedure removes these unsuitable
parameters. Hence, there is no problem in selecting multiple p from the viewpoint of
robustness. However, larger values of Pc also extends the calculation time. Therefore a
trade-off is necessary that depends on the requirement of the system and application.

To assess the effect of l, we set l = 10 and 25 mm and compare the results. The results
are shown in Figs. 5.16 and 5.17, where with Eq. (5.4), the difference in cp diminishes
when we select larger value of l. This makes the selection of the “correct” A0-mode
phase velocity more difficult to reach, and a larger value of Pc is required to select multi-
ple A0-mode phase velocity candidates. Additionally, in the experimental study, SNR at
the second receiver decreases. However, when we use smaller value of l, the estimation
becomes unstable because the A0-mode is estimated from the difference between the
two signals. With l = 10 mm, we succeeded in estimating parameter values with errors
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Figure 5.9: Received signals (gray solid line) and predicted waveforms (blue dotted line)
at Rx1 (upper panel) and Rx2 (lower panel) in the numerical simulation
study. The sizes of the time windows used in the fitting process, td, were
20 and 40 µs for Rx1 and Rx2, respectively.
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Figure 5.10: Received signals (gray solid line) and predicted waveforms (blue dotted
line) at Rx1 (upper panel) and Rx2 (lower panel) in the experimental study.
The sizes of the time windows used in the fitting process, td, were 20 and
40 µs for Rx1 and Rx2, respectively.
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Figure 5.11: Results from a 2D-FFT of signals from 78 receivers in a simulation study.
The color map gives the intensity of the signal and solid red and blue lines
show theoretical curves for the A and S modes. Note the scale is in dB
units.
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Figure 5.12: Results from a 2D-FFT of signals from 78 receivers in the experimental
study. The color map gives the intensity of the signal and solid red and blue
lines show theoretical curves for the A and S modes. Note the scale is in
dB units.

of 12.5% or less, although, the error is larger. With l = 25 mm, we failed to estimate the
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Figure 5.13: Estimated A0-mode phase velocities with l = 12 mm in the simulation
study.
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Figure 5.14: Normalized degree of concentration at each thickness when using an un-
suitable A0-mode phase velocity candidate (red circles in Fig. 5.13). The
black diamond represents the position of true parameter.

parameter values. To shorten the measurement aperture, a smaller value of ld is desired.
However, with values of ld that are too small, the fitting accuracy decreases because
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Figure 5.15: Received signal at the Rx1 (gray solid line) at 20 mm, predicted waveform
with minimum fitting residue (blue dotted line), and predicted waveform
with an unsuitable parameter candidate (red line).
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Figure 5.16: Estimated A0-mode phase velocities with l = 10 mm obtained from the
experimental study.

the received signal does not include enough effects of the multiple propagation modes
with multiple different phase velocities. Thus, for the sample tested in this chapter, we
empirically determined ld = 20 and l = 20 mm.
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Figure 5.17: Estimated A0-mode phase velocities with l = 25 mm obtained from the
experimental study.

The error for the estimated slow wave velocity, cS, is smaller than that of the lon-
gitudinal wave velocity cL and thickness d. The reason is that the phase velocity and
waveform of the Lamb wave strongly depends on cS. This dependence is larger than
that for cL and d. Fig. 5.18 shows the dependence of the phase velocities on the product
of the frequency and thickness for different settings. The red solid line corresponds to
results for a copper plate; the blue solid and black dashed lines correspond to calcula-
tions using 10% smaller velocities for cS and cL, respectively, for the copper plate. Note
that the thickness d changes the scale of the abscissa. From Fig. 5.18, we see the phase
velocity has a stronger dependence on cS. In the proposed method, we calculated the cS
and cL at intervals of 10 m/s and d at intervals of 0.1 mm. However, the sensitivities of
these three parameters are different and cS has the higher sensitivity.

This is also the reason why we set a narrower range for cS candidates than for cL
candidates. When we measure a phase velocity that has a wide range of cS, the proposed
method is able to provide the same results but the calculation time should be longer.

In the A0-mode phase velocity estimation procedure, we manually determine the low-
est frequency, fmin, used for the estimation. The A0-mode is dominant in the lower fre-
quency range, however, the excitation of low frequency such as around 0.1 MHz with the
ultrasonic elements used in this chapter is difficult and the SNR decrease severely. Thus,
we use the frequency component that is higher than fmin. From Fig. 5.18, the A0-mode
has high sensitivity to changes in the elastic parameter (Rogers, 1995), i.e., a small error
in the A0-mode phase velocity estimation causes a large estimation error in the elastic
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Figure 5.18: Phase velocities with three different elastic parameter settings.
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Figure 5.19: A0-mode phase velocity estimation results with fmin = 0.2 MHz obtained
from experimental data.

parameter estimation. Therefore, selecting a frequency with a sufficiently high SNR is
required. This is why we selected fmin = 0.5 MHz in the experiments and employed an
evaluation process of degree of concentration and fitting procedure rather than using just
the A0-mode phase velocity and inversion results from the Rayleigh–Lamb equation.

To show the dependence of the proposed method on fmin, we evaluated the results
setting fmin = 0.2 MHz, see Figs. 5.19 and 5.20. This is the same parameter setting as
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Figure 5.20: Fitting results with fmin = 0.2 MHz obtained from experimental data.

used for the numerical simulation. The estimated parameter values (cS,cL,d and fitting
residues) at Rx1 and Rx2 are (2240 m/s, 4830 m/s, 2.1 mm, and −7.6 dB) and (2250
m/s, 4090 m/s, 2.3 mm, and −6.8 dB), respectively. The estimation errors are higher
than those with fmin = 0.5 MHz. However, when we select the estimated result at the
receiver with the smaller fitting residue, the estimation error is 7.5% or less.

We see that employing the lower frequency yields a lower SNR, making estimations
slightly unstable. However, when we employ a thicker plate, a lower frequency range is
required because multiple propagating modes appear even in the low-frequency com-
ponents compared with the propagation modes with a thinner plate. Figs. 5.21 and
5.22 show the experimental results for a 4-mm-thick copper plate. We see that the fre-
quency components higher than 0.5 MHz interfere through couplings among the higher-
order modes. Hence, we need to use lower fmin. With fmin = 0.2 MHz, the estimated
parameters(cS,cL,d and fitting residues) are (2270 m/s, 4670 m/s, 4.3 mm, and −10.6
dB) and (2360 m/s, 3540 m/s, 4.8 mm, and −4.3 dB), respectively. The error at the
receiver with smaller residue is 8.8% or less. The estimation is slightly unstable com-
pared with that for the thin plate; nevertheless, the estimation error remains small at the
receiver with smaller residue.

With these results, we conclude that the proposed method does not strongly depend on
the parameter settings shown in Sect. 5.2.3, but has limitations when measuring thicker
plates as we are unable to register the A0-mode at frequencies with sufficiently high
SNR.
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Figure 5.21: Estimated phase velocities for a 4-mm-thick copper plate obtained from
experimental data.
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Figure 5.22: Fitting results for a 4-mm-thick copper plate obtained from experimental
data.

In this chapter, we used the phase velocity of the A0-mode. We emphasize that there
is no limitation to the geometry and dominant mode. The one need only record the
dominant wave in certain frequency range and regardless of whether it is a symmetric or
anti-symmetric mode and it is a plate or cylinder, the proposed method might work just
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as well.

5.5 Summary and concluding remarks
A reduction in the number of transmitters and receivers and the computational com-
plexity is desired for AT devices. We reported a method that characterizes the Lamb
wave and estimates plate thickness and both longitudinal and shear wave velocities with
estimation errors of 7.5% or less, with the 2-mm-thick copper plate using a single trans-
mitter and two receivers without changing the positions and angles of elements having
small measurement aperture size. The distances between the transmitter and the first
and second receivers were 20 and 40 mm, respectively, and the central frequency of
the transmitted signal was 1.0 MHz. The calculation time when using a single thread
MATLAB platform program was 9.0 s or less. The recording aperture of the probe used
with our method is reasonable. Its advantages include requiring a minimal number of
transmitters and receivers and concurrent estimates of the parameter values obtained at
low computational complexity. The proposed method may therefore be gainfully used
in testing techniques desiring high efficiency at low computation cost. Moreover, the ex-
tension of the proposed method to other types of guided waves is straightforward. The
reduction of the calculation time is not enough for the real time assessment. However,
the calculation time would be reduced by the multi-thread computation.

In this chapter, we showed the possibility of the low-cost characterization of the
guided wave propagating in the homogeneous isotropic plate as the pilot study for the
AT technique. Because the model used in this chapter is simpler than the transversely
isotropic plate model which is used in Chap. 4, modifications are necessary to expand
this technique for the bone quality analysis. For example, the transversely isotropic plate
has the three different velocities; two longitudinal wave velocities and a shear wave ve-
locity, where the homogeneous isotropic plate has a single longitudinal velocity and a
single shear wave velocity. Additionally, to employ the fitting procedure, we need to
consider the effect of the attenuation. Therefore, in the fitting procedure, we might need
to employ higher dimensional fitting procedures. These modifications might require
higher computational complexity. However, there should be a possibility to characterize
the cortical bone with the smaller number of the receivers.
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Chapter 6

Concluding remarks

In this thesis, we have proposed array signal processing techniques for medical ultra-
sound B-mode imaging and the axial transmission technique for cortical bone assess-
ment. We focused on achieving a high-accuracy measurement technique with a compar-
atively low computational complexity and hardware cost.

In Chap. 2, we proposed a modified beam-space (BS) Capon method for high-
resolution and low-computational complexity imaging. Many of the conventional med-
ical ultrasound imaging systems using adaptive beamforming techniques involve sub-
stantial computational complexity, which is required to compensate for the difference
between the theories that assume a narrow-band signal condition and the actual situa-
tion where wide-band signals are used. To reduce the computational complexity, we
replaced the time-delay process which increases the computational complexity by the
multiplication of a steering vector and a covariance matrix. The time-delay process is
employed in the wide-band signal processing and the multiplication of the vector and
matrix is used in the narrow-band signal processing. Because the difference between
the wide and narrow-band signal processing is small when the measurement point is not
far from the focal point, the replacement is effective. In an experiment, the proposed
method was successful in separately depicting two closely positioned wire-targets, with
a faster calculation than achievable with the conventional BS Capon method.

In Chap. 3, we used a linear array probe for axial transmission technique that char-
acterizes the plate properties. Locally, the cortical bone can be recognized as the trans-
versely isotropic plate. The axial transmission technique normally estimates the wavenum-
bers of multimodal ultrasonic guided waves. To estimate the wavenumbers, we utilized
the ESPRIT algorithm, which separates multiple signals by employing eigenvalue de-
composition and estimates the wavenumber numerically, without a peak search process
along the intensity profile. The exact values of the wavenumbers, not the profile, are
required in the inversion process which estimates the properties of the bone. To em-
ploy the ESPRIT method, estimation of the number of propagation modes existing at
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the measurement frequency is required. To estimate this, we situated the multiple sizes
of sub-arrays in the whole array and evaluated the consistency of the results. We suc-
ceeded in widening the measurement frequency range and estimating the wavenumbers
accurately.

In Chap. 4, we proposed a low-computational complexity technique to estimate the
number of propagation modes for an axial transmission device. In Chap. 3, we used mul-
tiple sizes of sub-arrays in the proposed method. However, this process deteriorated the
resolution and increased the computational complexity, as the maximum resolution de-
pended on the minimum sub-array size and multiple eigenvalue decompositions, which
resulted in a high computational complexity. Thus, we estimated the number by using
information theoretic criteria. The estimation results of the information theoretic criteria
can be stabilized by the diagonal loading technique, which adds an offset value to the
eigenvalues of the covariance matrix. This estimation of the number of signals by the
information theoretic criteria has a considerably lower computational complexity than
the eigenvalue decomposition. The proposed method was evaluated in an experiment
with a bone-mimicking plate. We succeeded in accurately estimating the wavenumber
of the bone-mimicking plate with a lower computational complexity.

In Chap. 5, we tried to minimize the number of receivers and transmitters. As the
pilot study for the axial transmission technique, a characterization technique for ultra-
sonic guided waves propagating along a homogeneous isotropic elastic plate, which is
a simpler model than the model for the cortical bone was proposed. We used a single
element as the transmitter and two elements as receivers. We also reduced the calcu-
lation complexity. We used two receivers for the single wavenumber estimation of a
single propagation mode and estimated the properties of the plate by using the charac-
teristics of the ultrasonic guided waves. The conclusive characterization was conducted
by the linear least squares method, which has a low computational complexity with the
use of the modified transfer function. The method succeeded in estimating the thin plate
properties with a high accuracy and low hardware cost and computational complexity.
Compared to the proposed method showed in Chap. 4 which succeeded in characteriz-
ing the bone-mimicking plate, the proposed method shown in Chap. 5 should require
modification of the theoretical model and consideration of the attenuation to characterize
the bone quality.

The results described in this thesis demonstrate that the proposed techniques show
promise for obtaining accurate medical ultrasound measurements at a low-cost and high-
resolution. However, the results do not include in-vivo and in-vitro experiments with
real tissues. Additional experiments on real tissues and modification of the proposed
algorithm for the realistic clinical situation will be the focus of future work.

103



Bibliography

Abe, H., G. Caracciolo, A. Kheradvar, G. Pedrizzetti, B. K. Khandheria, J. Narula, and
P. P. Sengupta, 2013: Contrast echocardiography for assessing left ventricular vor-
tex strength in heart failure: a prospective cohort study. European Heart Journal–
Cardiovascular Imaging, 14 (11), 1049–1060.

Alleyne, D., and P. Cawley, 1991: A two-dimensional Fourier transform method for the
measurement of propagating multimode signals. The Journal of the Acoustical Society
of America, 89 (3), 1159–1168.

Berger, M., A. Haimowitz, A. Van Tosh, R. L. Berdoff, and E. Goldberg, 1985: Quan-
titative assessment of pulmonary hypertension in patients with tricuspid regurgitation
using continuous wave Doppler ultrasound. Journal of the American College of Car-
diology, 6 (2), 359–365.

Biot, M. A., 1956a: Theory of propagation of elastic waves in a fluid-saturated porous
solid. I. Low-frequency range. The Journal of the Acoustical Society of America,
28 (2), 168–178.

Biot, M. A., 1956b: Theory of propagation of elastic waves in a fluid-saturated porous
solid. II. Higher frequency range. The Journal of the Acoustical Society of America,
28 (2), 179–191.

Biot, M. A., 1962: Mechanics of deformation and acoustic propagation in porous media.
Journal of Applied Physics, 33 (4), 1482–1498.

Bochud, N., Q. Vallet, J.-G. Minonzio, and P. Laugier, 2017: Predicting bone strength
with ultrasonic guided waves. Scientific Reports, 7, 43 628.

Bossy, E., M. Talmant, M. Defontaine, F. Patat, and P. Laugier, 2004: Bidirectional axial
transmission can improve accuracy and precision of ultrasonic velocity measurement
in cortical bone: a validation on test materials. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 51 (1), 71–79.

104



Cantrell, C. A., 2008: Technical note: Review of methods for linear least-squares fitting
of data and application to atmospheric chemistry problems. Atmospheric Chemistry
and Physics, 8 (17), 5477–5487.

Capon, J., 1969: High-resolution frequency-wavenumber spectrum analysis. Proceed-
ings of the IEEE, 57 (8), 1408–1418.

Castaings, M., and B. Hosten, 2001: Lamb and SH waves generated and detected by air-
coupled ultrasonic transducers in composite material plates. NDT & E International,
34 (4), 249–258.

Chang, L.-W., K.-H. Hsu, and P.-C. Li, 2009: Graphics processing unit-based high-
frame-rate color Doppler ultrasound processing. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 56 (9), 1856–1860.

Cobbold, R. S. C., 2006: Foundations of biomedical ultrasound. Oxford University
Press.

Connell, I. R. O., K. M. Gilbert, M. A. Abou-Khousa, and R. S. Menon, 2015: MRI RF
array decoupling method with magnetic wall distributed filters. IEEE Transactions on
Medical Imaging, 34 (4), 825–835.

Currie, P. J., J. B. Seward, K.-L. Chan, D. A. Fyfe, D. J. Hagler, D. D. Mair, G. S.
Reeder, R. A. Nishimura, and A. J. Tajik, 1985: Continuous wave Doppler determi-
nation of right ventricular pressure: a simultaneous Doppler-catheterization study in
127 patients. Journal of the American College of Cardiology, 6 (4), 750–756.

Daffertshofer, M., A. Gass, P. Ringleb, M. Sitzer, U. Sliwka, T. Els, O. Sedlaczek,
W. J. Koroshetz, and M. G. Hennerici, 2005: Transcranial low-frequency ultrasound-
mediated thrombolysis in brain ischemia. Stroke, 36 (7), 1441–1446.

Deng, J., R. Yates, A. G. Birkett, C. F. Ruff, A. D. Linney, W. R. Lees, M. A. Hanson,
and C. H. Rodeck, 2001: Online motion-gated dynamic three-dimensional echocar-
diography in the fetus–preliminary results. Ultrasound in Medicine & Biology, 27 (1),
43–50.

Dong, X. N., and X. E. Guo, 2004: The dependence of transversely isotropic elasticity
of human femoral cortical bone on porosity. Journal of Biomechanics, 37 (8), 1281–
1287.

105



Foiret, J., J.-G. Minonzio, C. Chappard, M. Talmant, and P. Laugier, 2014: Combined
estimation of thickness and velocities using ultrasound guided waves: a pioneering
study on in vitro cortical bone samples. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 61 (9), 1478–1488.

Fukao, S., T. Tsuda, T. Sato, S. Kato, K. Wakasugi, and T. Makihira, 1985: The MU
radar with an active phased array system 1. Antenna and power amplifiers. Radio
Science, 20 (6), 1155–1168.

Gao, W., C. Glorieux, and J. Thoen, 2003: Laser ultrasonic study of Lamb waves: de-
termination of the thickness and velocities of a thin plate. International Journal of
Engineering Science, 41 (2), 219–228.

Granke, M., Q. Grimal, A. Saïed, P. Nauleau, F. Peyrin, and P. Laugier, 2011: Change
in porosity is the major determinant of the variation of cortical bone elasticity at the
millimeter scale in aged women. Bone, 49 (5), 1020–1026.

Haardt, M., and J. A. Nossek, 1995: Unitary ESPRIT: How to obtain increased esti-
mation accuracy with a reduced computational burden. IEEE Transactions on Signal
Processing, 43 (5), 1232–1242.

Haïat, G., S. Naili, Q. Grimal, M. Talmant, C. Desceliers, and C. Soize, 2009: Influence
of a gradient of material properties on ultrasonic wave propagation in cortical bone:
Application to axial transmission. The Journal of the Acoustical Society of America,
125 (6), 4043–4052.

Haïat, G., F. Padilla, R. Barkmann, S. Kolta, C. Latremouille, C.-C. Glüer, and
P. Laugier, 2005: In vitro speed of sound measurement at intact human femur speci-
mens. Ultrasound in Medicine & Biology, 31 (7), 987 – 996.

Harb, M. S., and F. G. Yuan, 2015: A rapid, fully non-contact, hybrid system for gener-
ating Lamb wave dispersion curves. Ultrasonics, 61, 62 – 70.

Harb, M. S., and F. G. Yuan, 2016: Non-contact ultrasonic technique for Lamb wave
characterization in composite plates. Ultrasonics, 64, 162–169.

Hasegawa, H., and H. Kanai, 2008: Simultaneous imaging of artery-wall strain and
blood flow by high frame rate acquisition of RF signals. IEEE Transactions on Ultra-
sonics, Ferroelectrics, and Frequency Control, 55 (12), 2626–2639.

106



Hasegawa, H., and H. Kanai, 2012: High-frame-rate echocardiography with reduced
sidelobe level. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con-
trol, 59 (11), 2569–2575.

Hashimoto, T., K. Nishimura, and T. Sato, 2016: Adaptive sidelobe cancellation tech-
nique for atmospheric radars containing arrays with nonuniform gain. IEICE Trans-
actions on Communications, 99 (12), 2583–2591.

Hein, I. A., and W. D. O’Brien, 1993: Current time-domain methods for assessing tissue
motion by analysis from reflected ultrasound echoes-a review. IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, 40 (2), 84–102.

Hoffmeister, B. K., C. I. Jones III, G. J. Caldwell, and S. C. Kaste, 2006: Ultrasonic
characterization of cancellous bone using apparent integrated backscatter. Physics in
Medicine & Biology, 51 (11), 2715–2727.

Hosokawa, A., and T. Otani, 1997: Ultrasonic wave propagation in bovine cancellous
bone. The Journal of the Acoustical Society of America, 101 (1), 558–562.

Hu, S., E. A. Hoffman, and J. M. Reinhardt, 2001: Automatic lung segmentation for
accurate quantitation of volumetric X-ray CT images. IEEE Transactions on Medical
Imaging, 20 (6), 490–498.

Hu, W., Z. Zhao, Y. Wang, H. Zhang, and F. Lin, 2014: Noncontact accurate measure-
ment of cardiopulmonary activity using a compact quadrature Doppler radar sensor.
IEEE Transactions on Biomedical Engineering, 61 (3), 725–735.

Huang, Y., L. Ferro-Famil, and A. Reigber, 2012: Under-foliage object imaging using
SAR tomography and polarimetric spectral estimators. IEEE Transactions on Geo-
science and Remote Sensing, 50 (6), 2213–2225.

Illingworth, J., and J. Kittler, 1988: A survey of the Hough transform. Computer Vision
Graphics and Image Processing, 44 (1), 87–116.

International Osteoporosis Foundation, 2002: Osteoporosis in the Workplace: the so-
cial, economic and human costs of osteoporosis on employees, employers and gov-
ernments.

Ito, K., K. Yoshida, H. Maruyama, J. Mamou, and T. Yamaguchi, 2017: Acoustic
impedance analysis with high-frequency ultrasound for identification of fatty acid
species in the liver. Ultrasound in Medicine & Biology, 43 (3), 700–711.

107



Jensen, J. A., 1996: Field: A program for simulating ultrasound systems. Medical and
Biological Engineering and Computing, 34 (Supplement 1), 351–353.

Jensen, J. A., 2001: A new estimator for vector velocity estimation. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, 48 (4), 886–894.

Jensen, J. A., and P. Munk, 1998: A newmethod for estimation of velocity vectors. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45 (3), 837–851.

Jensen, J. A., S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, 2006: Synthetic
aperture ultrasound imaging. Ultrasonics, 44 (Supplement), e5–e15.

Jensen, J. A., S. I. Nikolov, A. C. H. Yu, and D. Garcia, 2016a: Ultrasound vector
flow imaging–part I: Sequential systems. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 63 (11), 1704–1721.

Jensen, J. A., S. I. Nikolov, A. C. H. Yu, and D. Garcia, 2016b: Ultrasound vector flow
imaging–part II: Parallel systems. IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, 63 (11), 1722–1732.

Jensen, J. A., and N. B. Svendsen, 1992: Calculation of pressure fields from arbitrarily
shaped, apodized, and excited ultrasound transducers. IEEE Transactions on Ultra-
sonics, Ferroelectrics, and Frequency Control, 39 (2), 262–267.

Kanis, J. A., O. Johnell, A. Oden, A. Dawson, C. De Laet, and B. Jonsson, 2001: Ten
year probabilities of osteoporotic fractures according to BMD and diagnostic thresh-
olds. Osteoporosis International, 12 (12), 989–995.

Kasai, C., K. Namekawa, A. Koyano, and R. Omoto, 1985: Real-time two-dimensional
blood flow imaging using an autocorrelation technique. IEEE Transactions on Sonics
and Ultrasonics, 32 (3), 458–464.

Kimura, T., H. Taki, T. Sakamoto, and T. Sato, 2009: Experimental study of high-range-
resolution medical acoustic imaging for multiple target detection by frequency domain
interferometry. Japanese Journal of Applied Physics, 48 (7S), 07GJ07.

Langton, C. M., S. B. Palmer, and R. W. Porter, 1984: The measurement of broadband
ultrasonic attenuation in cancellous bone. Engineering in Medicine, 13 (2), 89–91.

Laugier, P., 2008: Instrumentation for in vivo ultrasonic characterization of bone
strength. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
55 (6), 1179–1196.

108



Laugier, P., and G. Haïat, 2011: Bone quantitative ultrasound. Springer.

Lenge, M., A. Ramalli, P. Tortoli, C. Cachard, and H. Liebgott, 2015: Plane-wave trans-
verse oscillation for high-frame-rate 2-D vector flow imaging. IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, 62 (12), 2126–2137.

Liu, C., T. Tang, F. Xu, D. Ta, M. Matsukawa, B. Hu, and W. Wang, 2015: Signal of
interest selection standard for ultrasonic backscatter in cancellous bone evaluation.
Ultrasound in Medicine & Biology, 41 (10), 2714–2721.

Lombardini, F., and F. Gini, 2005: Model order selection in multi-baseline interferomet-
ric radar systems. EURASIP Journal on Advances in Signal Processing, 2005 (20),
3206–3219.

Mano, I., K. Horii, S. Takai, T. Suzaki, H. Nagaoka, and T. Otani, 2006: Development
of novel ultrasonic bone densitometry using acoustic parameters of cancellous bone
for fast and slow waves. Japanese Journal of Applied Physics, 45 (5B), 4700–4702.

Marín, F., J. González-Macías, A. Díez-Pérez, S. Palma, and M. Delgado-Rodríguez,
2006: Relationship between bone quantitative ultrasound and fractures: A meta-
analysis. Journal of Bone and Mineral Research, 21 (7), 1126–1135.

Mehdizadeh, S., A. Austeng, T. F. Johansen, and S. Holm, 2012: Minimum variance
beamforming applied to ultrasound imaging with a partially shaded aperture. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59 (4), 683–693.

Minonzio, J.-G., M. Talmant, and P. Laugier, 2010: Guided wave phase velocity mea-
surement using multi-emitter and multi-receiver arrays in the axial transmission con-
figuration. The Journal of the Acoustical Society of America, 127 (5), 2913–2919.

Moghimirad, E., C. A. V. Hoyos, A. Mahloojifar, B. M. Asl, and J. A. Jensen, 2016: Syn-
thetic aperture ultrasound Fourier beamformation using virtual sources. IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, 63 (12), 2018–2030.

Nagatani, Y., K. Mizuno, T. Saeki, M. Matsukawa, T. Sakaguchi, and H. Hosoi, 2008:
Numerical and experimental study on the wave attenuation in bone–FDTD simulation
of ultrasound propagation in cancellous bone. Ultrasonics, 48 (6), 607–612.

Naili, S., M.-B. Vu, Q. Grimal, M. Talmant, C. Desceliers, C. Soize, and G. Haïat, 2010:
Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in
cortical bone: Application to axial transmission. The Journal of the Acoustical Society
of America, 127 (4), 2622–2634.

109



Nelson, A. M., J. J. Hoffman, C. C. Anderson, M. R. Holland, Y. Nagatani, K. Mizuno,
M. Matsukawa, and J. G. Miller, 2011: Determining attenuation properties of interfer-
ing fast and slow ultrasonic waves in cancellous bone. The Journal of the Acoustical
Society of America, 130 (4), 2233–2240.

Nguyen, V.-H., and S. Naili, 2012: Simulation of ultrasonic wave propagation in
anisotropic poroelastic bone plate using hybrid spectral/finite element method. Inter-
national Journal for Numerical Methods in Biomedical Engineering, 28 (8), 861–876.

Nguyen, V.-H., and S. Naili, 2013: Ultrasonic wave propagation in viscoelastic cortical
bone plate coupled with fluids: A spectral finite element study. Computer Methods in
Biomechanics and Biomedical Engineering, 16 (9), 963–974.

Nilsen, C.-I. C., and I. Hafizovic, 2009: Beamspace adaptive beamforming for ultra-
sound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 56 (10), 2187–2197.

Núñez, I., R. K. Ing, C. Negreira, and M. Fink, 2000: Transfer and Green functions
based on modal analysis for Lamb waves generation. The Journal of the Acoustical
Society of America, 107 (5), 2370–2378.

O’Donnell, M., 1992: Coded excitation system for improving the penetration of
real-time phased-array imaging systems. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 39 (3), 341–351.

Okumura, S., V.-H. Nguyen, H. Taki, G. Haïat, S. Naili, and T. Sato, 2017: Phase veloc-
ity estimation technique based on adaptive beamforming for ultrasonic guided waves
propagating along cortical long bones. Japanese Journal of Applied Physics, 56 (7S1),
07JF06.

Okumura, S., H. Taki, and T. Sato, 2015a: High-contrast and low-computational com-
plexity medical ultrasound imaging using beamspace Capon method. 2015 37th An-
nual International Conference of the IEEE Engineering in Medicine and Biology So-
ciety (EMBC), 6334–6337.

Okumura, S., H. Taki, and T. Sato, 2015b: Stabilization techniques for high resolution
ultrasound imaging using beamspace Capon method. 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 892–896.

110



Okumura, S., H. Taki, and T. Sato, 2016: Computational complexity reduction tech-
niques for real-time and high-resolution medical ultrasound imaging using the beam-
space Capon method. Japanese Journal of Applied Physics, 55 (7S1), 07KF07.

Otani, T., 2005: Quantitative estimation of bone density and bone quality using acoustic
parameters of cancellous bone for fast and slow waves. Japanese Journal of Applied
Physics, 44 (6B), 4578–4582.

Pothuaud, L., C. L. Benhamou, P. Porion, E. Lespessailles, R. Harba, and P. Levitz,
2000: Fractal dimension of trabecular bone projection texture is related to three-
dimensional microarchitecture. Journal of Bone and Mineral Research, 15 (4), 691–
699.

Rabin, O., J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, 2006: An X-
ray computed tomography imaging agent based on long-circulating bismuth sulphide
nanoparticles. Nature materials, 5 (2), 118–122.

Raum, K., Q. Grimal, P. Varga, R. Barkmann, C. C. Glüer, and P. Laugier, 2014: Ultra-
sound to assess bone quality. Current Osteoporosis Reports, 12 (2), 154–162.

Riekkinen, O., M. A. Hakulinen, J. Töyräs, and J. S. Jurvelin, 2007: Spatial variation of
acoustic properties is related with mechanical properties of trabecular bone. Physics
in Medicine & Biology, 52 (23), 6961–6968.

Riggs, B. L., H.W.Wahner, W. L. Dunn, R. B. Mazess, K. P. Offord, and L. J. Melton III,
1981: Differential changes in bone mineral density of the appendicular and axial
skeleton with aging: Relationship to spinal osteoporosis. Journal of Clinical Inves-
tigation, 67 (2), 328–335.

Rogers, W. P., 1995: Elastic property measurement using Rayleigh-Lamb waves. Re-
search in Nondestructive Evaluation, 6 (4), 185–208.

Rose, J. L., 1999: Ultrasonic waves in solid media. Cambridge University Press.

Rossman, P., J. Zagzebski, C. Mesina, J. Sorenson, and R. Mazess, 1989: Comparison
of speed of sound and ultrasound attenuation in the os calcis to bone density of the
radius, femur and lumbar spine. Clinical Physics and Physiological Measurement,
10 (4), 353–360.

Roux, C., V. Roberjot, R. Porcher, S. Kolta, M. Dougados, and P. Laugier, 2001: Ul-
trasonic backscatter and transmission parameters at the os calcis in postmenopausal
osteoporosis. Journal of Bone and Mineral Research, 16 (7), 1353–1362.

111



Roy, R., and T. Kailath, 1989: ESPRIT-estimation of signal parameters via rotational in-
variance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing,
37 (7), 984–995.

Saarnisaari, H., 1997: TLS-ESPRIT in a time delay estimation. 1997 IEEE 47th Vehic-
ular Technology Conference. Technology in Motion, Vol. 3, 1619–1623 vol.3.

Sakamoto, T., A. Matsuoka, and H. Yomo, 2016: Estimation of Doppler velocities from
sub-Nyquist ultra-wideband radar measurements. IEEE Sensors Journal, 16 (23),
8557–8565.

Sale, M., P. Rizzo, and A. Marzani, 2011: Semi-analytical formulation for the guided
waves-based reconstruction of elastic moduli. Mechanical Systems and Signal Pro-
cessing, 25 (6), 2241–2256.

Sasso, M., G. Haïat, M. Talmant, P. Laugier, and S. Naili, 2008: Singular value
decomposition-based wave extraction in axial transmission: application to cortical
bone ultrasonic characterization [correspondence]. IEEE Transactions on Ultrason-
ics, Ferroelectrics, and Frequency Control, 55 (6), 1328–1332.

Sauer, S., L. Ferro-Famil, A. Reigber, and E. Pottier, 2007: Physical parameter extrac-
tion over urban areas using L-band POLSAR data and interferometric baseline di-
versity. 2007 IEEE International Geoscience and Remote Sensing Symposium, 5045–
5048.

Schoellhammer, C. M., S. Srinivasan, R. Barman, S. H. Mo, B. E. Polat, R. Langer, and
D. Blankschtein, 2015: Applicability and safety of dual-frequency ultrasonic treat-
ment for the transdermal delivery of drugs. Journal of Controlled Release, 202, 93–
100.

Schuit, S. C. E., M. van der Klift, A. E. A. M. Weel, C. E. D. H. de Laet, H. Burger,
E. Seeman, A. Hofman, A. G. Uitterlinden, J. P. T. M. van Leeuwen, and H. A. P.
Pols, 2004: Fracture incidence and association with bone mineral density in elderly
men and women: the Rotterdam study. Bone, 34 (1), 195–202.

Shiina, T., K. R. Nightingale, M. L. Palmeri, T. J. Hall, J. C. Bamber, R. G. Barr, L. Cast-
era, B. I. Choi, Y.-H. Chou, D. Cosgrove, C. F. Dietrich, H. Ding, D. Amy, A. Far-
rokh, G. Ferraioli, C. Filice, M. Friedrich-Rust, K. Nakashima, F. Schafer, I. Sporea,
S. Suzuki, S. Wilson, and M. Kudo, 2015: WFUMB guidelines and recommendations
for clinical use of ultrasound elastography: Part 1: basic principles and terminology.
Ultrasound in Medicine & Biology, 41 (5), 1126–1147.

112



Simonelli, C., R. A. Adler, G. M. Blake, J. P. Caudill, A. Khan, E. Leib, M. Maricic, J. C.
Prior, S. R. Eis, C. Rosen, and D. L. Kendler, 2008: Dual-energy X-ray absorptiometry
technical issues: The 2007 ISCD official positions. Journal of Clinical Densitometry,
11 (1), 109 – 122.

Sirmacek, B., and C. Unsalan, 2010: Road network extraction using edge detection and
spatial voting. 2010 20th International Conference on Pattern Recognition, 3113–
3116.

Suetoshi, R., D. Cretin, K. Chiba, and M. Osaki, 2016: Comparison between
an axial transmission device and high resolution peripheral quantitative computed
tomography–A clinical evaluation of ultrasound for the assessment of cortical bone
quality. The Journal of the Acoustical Society of America, 140 (4), 3189–3189.

Sun, H., J. A. Fessler, D. C. Noll, and J.-F. Nielsen, 2016: Joint design of excitation
k-space trajectory and RF pulse for small-tip 3D tailored excitation in MRI. IEEE
Transactions on Medical Imaging, 35 (2), 468–479.

Synnevåg, J.-F., A. Austeng, and S. Holm, 2009: Benefits of minimum-variance beam-
forming in medical ultrasound imaging. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 56 (9), 1868–1879.

Ta, D., W. Wang, K. Huang, Y. Wang, and L. H. Le, 2008: Analysis of frequency de-
pendence of ultrasonic backscatter coefficient in cancellous bone. The Journal of the
Acoustical Society of America, 124 (6), 4083–4090.

Takahashi, H., H. Hasegawa, and H. Kanai, 2014: Echo speckle imaging of blood par-
ticles with high-frame-rate echocardiography. Japanese Journal of Applied Physics,
53 (7S), 07KF08.

Takao, K., and N. Kikuma, 1987: An adaptive array utilizing an adaptive spatial av-
eraging technique for multipath environments. IEEE Transactions on Antennas and
Propagation, 35 (12), 1389–1396.

Taki, H., Y. Nagatani, M. Matsukawa, H. Kanai, and S.-I. Izumi, 2017: Fast decompo-
sition of two ultrasound longitudinal waves in cancellous bone using a phase rotation
parameter for bone quality assessment: Simulation study. The Journal of the Acousti-
cal Society of America, 142 (4), 2322–2331.

Taki, H., Y. Nagatani, M. Matsukawa, K. Mizuno, and T. Sato, 2015a: Fast charac-
terization of two ultrasound longitudinal waves in cancellous bone using an adaptive

113



beamforming technique. The Journal of the Acoustical Society of America, 137 (4),
1683–1692.

Taki, H., T. Sakamoto, M. Yamakawa, T. Shiina, T. Sato, K. Taki, and M. Kudo, 2013:
Adaptive-beamformer with accurate intensity-estimation technique for high-range-
resolution vascular ultrasound imaging. 2013 IEEE International Ultrasonics Sym-
posium (IUS), 805–808.

Taki, H., K. Taki, T. Sakamoto, M. Yamakawa, T. Shiina, M. Kudo, and T. Sato, 2012:
High range resolution ultrasonographic vascular imaging using frequency domain in-
terferometry with the Capon method. IEEE Transactions on Medical Imaging, 31 (2),
417–429.

Taki, H., K. Taki, M. Yamakawa, T. Shiina, M. Kudo, and T. Sato, 2015b: High-
range-resolution imaging using frequency domain interferometry with stabilization
techniques for real-time vascular ultrasound. Japanese Journal of Applied Physics,
54 (7S1), 07HF05.

Taki, H., S. Tanimura, T. Sakamoto, T. Shiina, and T. Sato, 2015c: Accurate ultrasound
imaging based on range point migration method for the depiction of fetal surface.
Journal of Medical Ultrasonics, 42 (1), 51–58.

Talmant, M., S. Kolta, C. Roux, D. Haguenauer, I. Vedel, B. Cassou, E. Bossy, and
P. Laugier, 2009: In vivo performance evaluation of bi-directional ultrasonic axial
transmission for cortical bone assessment. Ultrasound in Medicine & Biology, 35 (6),
912–919.

Tanter, M., and M. Fink, 2014: Ultrafast imaging in biomedical ultrasound. IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, 61 (1), 102–119.

Tran, T. N. H. T., L. H. Le, M. D. Sacchi, V.-H. Nguyen, and E. H. M. Lou, 2014a:
Multichannel filtering and reconstruction of ultrasonic guided wave fields using time
intercept-slowness transform. The Journal of the Acoustical Society of America,
136 (1), 248–259.

Tran, T. N. H. T., K.-C. T. Nguyen, M. D. Sacchi, and L. H. Le, 2014b: Imaging ul-
trasonic dispersive guided wave energy in long bones using linear Radon transform.
Ultrasound in Medicine & Biology, 40 (11), 2715–2727.

Udesen, J., and J. A. Jensen, 2006: Investigation of transverse oscillation method. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53 (5), 959–971.

114



Vallet, Q., N. Bochud, C. Chappard, P. Laugier, and J.-G. Minonzio, 2016: In vivo
characterization of cortical bone using guided waves measured by axial transmission.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63 (9),
1361–1371.

Van Trees, H. L., 2002: Optimum array processing: Part IV of detection, estimation and
modulation theory. Wiley-Interscience.

Viktorov, I. A., 1967: Rayleigh and Lamb waves: physical theory and applications.
Plenum press.

Wang, Z., J. Li, and R. Wu, 2005: Time-delay- and time-reversal-based robust
capon beamformers for ultrasound imaging. IEEE Transactions on Medical Imaging,
24 (10), 1308–1322.

Wax, M., 1991: Detection and localization of multiple sources via the stochastic signals
model. IEEE Transactions on Signal Processing, 39 (11), 2450–2456.

Wax, M., and T. Kailath, 1985: Detection of signals by information theoretic criteria.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 33 (2), 387–392.

Wear, K. A., 2008: Ultrasonic scattering from cancellous bone: A review. IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, 55 (7), 1432–1441.

Wear, K. A., 2014: Time-domain separation of interfering waves in cancellous bone
using bandlimited deconvolution: Simulation and phantom study. The Journal of the
Acoustical Society of America, 135 (4), 2102–2112.

Xu, K., J.-G. Minonzio, D. Ta, B. Hu, W. Wang, and P. Laugier, 2016a: Sparse SVD
method for high-resolution extraction of the dispersion curves of ultrasonic guided
waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
63 (10), 1514–1524.

Xu, K., D. Ta, D. Cassereau, B. Hu, W. Wang, P. Laugier, and J.-G. Minonzio,
2016b: Multichannel processing for dispersion curves extraction of ultrasonic axial-
transmission signals: Comparisons and case studies. The Journal of the Acoustical
Society of America, 140 (3), 1758–1770.

Xu, K., D. Ta, P. Moilanen, and W. Wang, 2012: Mode separation of Lamb waves
based on dispersion compensation method. The Journal of the Acoustical Society of
America, 131 (4), 2714–2722.

115



Yamaguchi, T., H. Hachiya, K. Kato, H. Fukuda, and M. Ebara, 2000: Extraction of
quantitative three-dimensional information from ultrasonic volumetric images of cir-
rhotic liver. Japanese Journal of Applied Physics, 39 (5B), 3266–3269.

Yapura, C. L., and V. K. Kinra, 1995: Guided waves in a fluid-solid bilayer. Wave Mo-
tion, 21 (1), 35–46.

Yeung, F., S. F. Levinson, and K. J. Parker, 1998: Multilevel and motion model-based
ultrasonic speckle tracking algorithms. Ultrasound in Medicine & Biology, 24 (3),
427–441.

Yoshida, K., Z. Deng, K. Ito, J. Mamou, H. Maruyama, H. Hachiya, and T. Yamaguchi,
2016: Speed of sound, attenuation, and acoustic impedance of hepatic lobule in dis-
eased rat liver observed by scanning acoustic microscopy with 250 MHz. The Journal
of the Acoustical Society of America, 140 (4), 3138–3138.

116



Major publications

Refereed Journal Papers
1. S. Okumura, H. Taki, and T. Sato, “Computational complexity reduction tech-

niques for real-time and high-resolution medical ultrasound imaging using the
beam-space Caponmethod,” Japanese Journal of Applied Physics, 55(7S1), 07KF07,
2016

2. S. Okumura, V.-H. Nguyen, H. Taki, G. Haïat, S. Naili, T. Sato, “Phase velocity
estimation technique based on adaptive beamforming for ultrasonic guided waves
propagating along cortical long bones,” Japanese Journal of Applied Physics, 56(7S1),
07JF06, 2017

Refereed International Conferences
1. S. Okumura, H. Taki, and T. Sato, “Stabilization techniques for high resolution

ultrasound imaging using beamspace Capon method,” IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 2015.

2. S. Okumura, H. Taki and T. Sato, “High-contrast and low-computational complex-
ity medical ultrasound imaging using beamspace Capon method,” 37th Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Milan, Italy, 2015.

3. S. Okumura, H. Taki and T. Sato, “Computational complexity reduction technique
for adaptive high-contrast medical ultrasound imaging using BS Capon method,”
2nd International Conference on Ultrasonic-Based Applications: from Analysis to
Synthesis, Caparica, Portugal, 2016.

4. S. Okumura, V.-H. Nguyen, H. Taki, and T. Sato, “Accurate characterization of ul-
trasonic guided waves propagating in cortical bone acquired by a single transmit-

117



terreceiver pair using adaptive signal processing,” 6th International Conference on
the Development of Biomedical Engineering, Ho Chi Minh City, Vietnam, 2016.

5. S. Okumura, Takuro Sato, T. Sakamoto, and T. Sato, “Technique of tracking mul-
tiple pedestrians using monostatic ultra-wideband Doppler radar with adaptive
Doppler spectrum estimation,” International Symposium on Antennas and Prop-
agation, Okinawa, Japan, 2016.

6. S. Okumura, V.-H. Nguyen, H. Taki and T. Sato, “Efficient phase velocity estima-
tion of ultrasonic guided wave propagating in cortical bone using adaptive beam-
forming technique,” Symposium on UltraSonic Electronics, Busan, South Korea,
2016.

7. S. Okumura, V.-H. Nguyen, H. Taki and T. Sato, “A fast signal processing tech-
nique for characterizing Lamb wave propagation in viscoelastic cortical long bones
using one transmitter and two receivers,” 5th Joint Meeting of the Acoustical So-
ciety of America and Acoustical Society of Japan, Honolulu, HI, USA, 2016.

8. S. Okumura, A. Ueshina, T. Sakamoto, T. Sato, “Multiple target imaging using
a single monostatic ultra-wideband Doppler radar based on time domain adaptive
signal processing,” URSI General Assembly and Scientific Symposium (GASS),
Montreal, Canada, 2017.

9. S. Okumura, V.-H. Nguyen, H. Taki and T. Sato, “Low-cost Lamb wave character-
ization technique using one transmitter and two receivers: an experimental study,”
7th European Symposium on Ultrasonic Characterization of Bone (ESUCB), Bad
Staffelstein, Germany, 2017.

10. S. Okumura, H. Taki, V.-H. Nguyen and T. Sato, “Estimation of phase velocity and
attenuation of visco-elastic plate with adaptive beamforming technique for cortical
bone assessment,” IEEE International Ultrasonics Symposium (IUS), Washington,
DC, USA, 2017.

Related Journal Papers
1. T. Sakamoto, S. Okumura, R. Imanishi, H. Taki, T. Sato, M. Yoshioka, K. Inoue, T.

Fukuda, and H. Sakai, “Remote heartbeat monitoring from human soles using 60-
GHz ultra-wideband radar,” IEICE Electronics Express, 12(21), 20150786, 2015.

118



2. S. Okumura, T. Sakamoto, T. Sato, M. Yoshioka, K. Inoue, T. Fukuda, and H.
Sakai, “Comparison of clutter rejection techniques for measurement of small dis-
placements of body surface using radar,” Electronics Letters, 52(19), 1635–1637,
2016.

3. M. Anabuki, S. Okumura, T. Sakamoto, K. Saho, T. Sato, M. Yoshioka, K. Inoue,
T. Fukuda, and H. Sakai, “Ultra-wideband radar imaging using adaptive array and
Doppler separation,” IEEE Transactions on Aerospace and Electronic Systems,
53(1), 190–200, 2017.

119


	General Introduction
	Introduction
	Basics of medical ultrasound imager
	Pulse echo method
	Basics of medical ultrasound 2D imaging system
	Doppler velocity measurement

	Quantitative ultrasound technology for bone assessment
	Overview of bone structure
	Transverse transmission
	Fast and slow waves
	Backscatter method
	Axial transmission technique

	Ultrasonic guided waves
	Theoretical background
	Lamb wave

	Theory of adaptive beamforming techniques
	Signal model
	Narrow band beamforming
	Beamforming techniques for B-mode imaging
	Beamforming techniques for axial transmission


	Computational complexity reduction techniques for real-time and high-resolution medical ultrasound imaging using the beam-space Capon method
	Introduction
	Materials and methods
	Original beam-space Capon method for medical ultrasound imaging
	Computational cost reduction using a steering vector
	Sensing target position with peak detection and refocusing
	Power compensation technique
	Simulation settings
	Experimental settings

	Simulation and experimental results
	Simulation results
	Experimental results

	Discussion
	Summary and concluding remarks

	Phase velocity estimation technique based on adaptive array signal processing for ultrasonic guided waves propagating along cortical long bones
	Introduction
	System model
	Materials and methods
	Estimation of phase velocity using the ESPRIT algorithm
	High-accuracy phase velocity estimation
	Simulation and experimental settings

	Results
	Discussion
	Summary and concluding remarks

	High-resolution and fast wavenumber estimation of ultrasonic guided waves with adaptive array signal processing
	Introduction
	Materials and methods
	Estimation of the number of signals
	Experimental setup

	Results
	Evaluation of the number of the propagation modes with diagonal loading
	Experimental results

	Discussion
	Summary and concluding remarks

	Estimation of elastic parameters of homogeneous plates with guided ultrasonic waves using one transmitter and two receivers
	Introduction
	Materials and methods
	Partial phase velocity estimation
	Inversion process using the Rayleigh–Lamb equations and fitting procedures
	Measurement settings
	Algorithm flow

	Results
	Discussion
	Summary and concluding remarks

	Concluding remarks

