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We investigated the spinning process of a polymeric material by using a multiscale simulation method which
connects the macroscopic and microscopic states through the stress and strain-rate tensor fields, by using Lagrangian
particles (filled with polymer chains) along the spinning line. We introduce a large number of Lagrangian fluid particles
into the fluid, each containing N,-Hookean-dumbbells to mimic the polymer chains (N, = 10%), which is equivalent to
the upper convected Maxwell fluid in the limit that N, — co. Depending on the Reynolds number Re, we studied the
dynamical behaviors of fibers for the (a) Re — 0 and (b) finite Re cases, for different draw ratios Dr, ranging from 10
to 30, and two typical Deborah numbers De = 10~ and De = 107. In the limit Re — 0 (a), as the Deborah number De
increases, the elastic effect makes the system stable. At finite Re (b), we found that inertial effects play an important
role in determining the dynamical behavior of the spinning process, and for Dr = 107 the system is quite stable, at least
up to a draw ratio of Dr = 30. We also found that the fiber velocity and cross section area are determined solely by the
draw ratio. By comparing the velocity and cross section area profiles with the end-point distribution for the dumbbell
connective vectors, for dumbbells located in Lagrangian particles along typical places along the spinning line, we show
that our multiscale simulation method successfully bridges the microscopic state of the system with its simultaneous
macroscopic flow behavior. It is also confirmed that the present schemes gives good agreements with the results
obtained by the Maxwell constitutive equation.
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1. INTRODUCTION

chain and crystallization of semi-crystalline polymer on

Polymeric products have contributed to various industrial
fields such as architecture, automotive, acrospace and medical
fields. To produce the desired products, it is important to
develop appropriate polymer processing technologies,
whereby one can control the specific properties of these
products. One of the most common methods to manufacture
a polymeric fiber is the melt-spinning process (see Fig. 1)."”
After the pioneering study of Kase and Matsuo®” for
spinning processes of Newtonian fluids, a large number of
theoretical and numerical studies on the process have been
performed by many researchers.”®"""*'>'¥ At present, the
simulation techniques of melt spinning processes have been
developed and applied to industrial problems, but there still
remains unsolved problems, if specifically say, predictions
of the microscopic state of polymer chains during spinning
processes, such as the degree of orientation of polymer
chains, position dependent entanglements density along a

spinning line, entanglement distribution on a single polymer
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spinning process.”” In most studies, a macroscopic approach
using the Cauchy momentum equation with a constitutive
equation to obtain the excess stress for the polymeric
material has been commonly used. However, it has been
recognized that the stress obtained by such a constitutive
equation does not always predict the rheological properties
of the target polymeric liquid correctly. One may consider
to simply use a molecular dynamics method to solve the
macroscopic flow problem, however, the numerical cost of
such an approach is prohibitive. To overcome this problem,
we propose and develop a Multi Scale Simulation (MSS)
method where the macroscopic model and microscopic
molecular model are directly connected through the stress and
strain rate tensor fields. This type of multiscale simulation
method has been proposed by Ottinger with the concept of
“CONNFFESSIT”.***” In the MSS method of the present
work, we introduce Lagrangian particles as fluid elements,
each of which contains many molecules to precisely describe
the microscopic states. So far, for flow problems of polymeric
fluids a limited number of this type of multiscale simulations
have been performed.”” Actually, the MSS method has
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been applied to solve flow problems of polymeric liquids
in rather simple flow geometries such as flows in between
two parallel plates™*****'*"*  flows around an infinitely
long cylinder’*****”_ flows in between eccentric rotating

8,39
"and so forth. As far as we know, no one has ever

cylinders’
attempted to apply this type of multiscale simulation method
to an industrial polymer process before. This means that an
MSS method applicable to industrial polymer processing
problems has not yet been established. Hence, the aims of the
present paper are (i) to develop an MSS method applicable to
a polymer melt spinning process and (ii) to check the validity
and efficiency of this method. To make the assessment of the
MSS method easier, in the present work we select a rather
simple microscopic model for the polymer chains, i.e., a
Hookean dumbbell model, because it is well-known that the
stress given by a set of Hookean dumbbells is equivalent
to the one evaluated by the upper convected Maxwell
constitutive equation, provided the number of dumbbells
goes infinity. Although the dumbbell model is not a realistic
polymer model, we will be able to apply the present method
to a more realistic situation just by replacing the model with a
elaborated polymer model such as PASTA™* or NAPLES™,
among many others.

The content of this paper is as follows. In the next section,
we explain our model for the melt spinning process at the
macroscopic and microscopic levels separately. In Sec. 2.1
we describe the governing equations at the macroscopic level,
e.g., the time evolution of the cross section area and the fiber
velocity, with the appropriate boundary conditions, and the
assumptions we have used. In Sec. 2.2 we describe the set of
equations used to investigate the dynamics of the dumbbells in
the microscopic model for the polymer chains. In Sec. 2.3 we
explain how we have performed the multiscale simulations for
a melt-spinning process as a function of the Reynolds number
Re. In Sec. 3 the results for the (a) Re—0 and (b) finite Re
cases are presented separately, and explained in detail. Finally,
we give a summary in Sec. 4.

2. MELT SPINNING MODEL

2.1 Equations of Motion at the Macroscopic Level

Here we briefly explain the one dimensional model for
a polymer melt spinning that we have used, even though
such models have been previously developed by other

BI0IISI9 A typical polymer melt spinning is

researchers.
drawn in Fig. 1. A polymer melt is extruded from a die with
a velocity V,, and then the extrudate runs through the air.

Finally the filament is taken up at a roll inside a water bath. In

266

A(x,1)
L V(x,1)

Air gap region

YA ]

A Winding sectoin
e

Fig. 1. Schematic view of the melt spinning process.

deriving the set of equations for the one dimensional model of
a polymer melt spinning process, the following assumptions
are made:

(i) The shape of the filament is axi-symmetric.

(if) The polymer chains are relaxed at the place where
the diameter of the extruded filament from the orifice
shows a maximum due to the die swelling effect.

(iii) The filament in the air gap region is isothermal.™

(iv) The gravitational force, surface tension between the
polymer melt and the air, and the friction of filament
with the air are all neglected.

(v) The polymer filament is in the melt state just before
reaching the surface of the cooling-water, and just
after it has gone into the water bath, it is solidified
instantaneously by cooling.

Under the assumptions mentioned above, the dynamics
of the melt spinning process at the macroscopic level can be
described by the cross section area A(x, f), the velocity V(x, ¢)
and the tension F(x, t) of the filament at a position x and at
time 7. The time evolution equation of the cross section area
Alx, 1) is given by the following equation of continuity:

dA(x,1) 0

= —a(A(x, HV(x, r)). (1

The tension of the fiber can be expressed as

F(x,1) = A(x, t)o(x, 1), (2)
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where o is the normal stress difference defined by using the
stress tensor of the polymer melt 6, (e, B € {x,y,z}) as

‘T(xa 1) =0 — (O-_\'_\' +: ‘T:z}/z- {3)
The equation for the velocity is given by

DV(x,1) 0
A = —
Dt ax

F(x.n, (4)

where D/Dt = glgt + Vélox is the Lagrangian derivative.
Note that in an incompressible Newtonian fluid the uniaxial
clongation stress ¢ is expressed as o = 317,8V/éx. 17, being the
shear viscosity of the fluid. The boundary conditions for 4 and
Vatx =0 are given as

Vix=0,0)=V, and A(x=0,1) = A,, (5)

where the position x = 0 is defined such that the filament
shows the maximum radius after being extruded from the
die due to the Barus effect.”™ In addition, the normal stress
difference & in eq.(3) is zero at x = 0 because the polymer
chains at x = 0 are fully relaxed and isotropic, as given by
assumption (ii). In the spinning process, a tension is imparted
to the polymer melt filament extruded from the die by being
taken up at the winding section at high speeds. The filament is
extended and becomes slender in the air gap region between
the exit of the die and the water bath, and then it is cooled
down by going into a cool medium, the water bath. As
mentioned in assumption (v), because the filament is solidified
just after entering the water bath (see Fig. 1), the velocity of
the filament at x = L is the same as the winding velocity, V.
Namely, the boundary condition for V" at x = L is given as

Vix=Lt) = V. (6)

The velocity ratio between ¥, and the winding velocity V,,
is called the draw ratio, Dr = ¥, /F,. It is known that such
elongational flow becomes unstable above a critical draw ratio
Dr', where the draw resonance phenomenon appears and the
cross section area of the fiber varies periodically. In addition,
the air-gap distance, temperature and viscoelastic properties
of the polymer melt also affect the stability of the spinning
process and the material properties of the resultant fibers."”’

All the variables defined at the macroscopic level are scaled
by using the spatial unit £™ = L, time unit (= L/V) and
stress unit o™, The symbols with the upperscript “(M)”
stands for various units used at the Macroscopic level, and in
the next subsection the symbols with the upperscript *(m)”
are used for units used at the microscopic level. In addition,
the cross section 4 is scaled by 4. The stress unit 5"

[

will be
explained in detail in the next subsection, after we introduce

the corresponding constitutive equation. All scaled variables
are expressed with a tilde symbol on top, as V=wv,

A=AlA, & =oclol, F = FlAoM, % = x/t® and 7= t/t™.

o o 39

After scaling, equations (1)-(4) are found to be:

AGED 0 (e
== —8—_)(_(.4(.1(‘, DV(T. r)), (7)
F&D=A®DFE.D. (8)
E{_":ﬁ = a:.i',\' = (E_\'_\' + E*:)/z (9)
—dV  —aVy\ OF
¥ o) P 10
HeA(a}_+Va_f) - (10)

where Re =pV /o™

o

is the Reynolds number. The boundary
conditions are given as

VO,D=1, V(1,D=Dr and A0, D=1. (1)

As seen from the set of equations (7)-(10) and the boundary
conditions (11), the control parameters at the macroscopic
level are the draw ratio Dr and the Reynolds number Re.

In industrial applications, the velocity of the spinning fiber
is roughly categorized into four regions"'”: (i) a low speed
region (£ 2000m/min), (ii) a partially oriented yarn region
(~3500m/min), (iii) a high speed region (~6000m/min) and (iv)
an ultra-high speed region (>6000 m/min). The length of the
air gap and the diameter of the nozzle are 0.05m < L, £ 0.1m
(standard value ~0.05m) and A, = 0.2 mm’, respectively. If one
considers a melt spinning process with a spinning velocity V,
higher than that in the low speed region (< 2000m/min), and
uses 77, = 10° Pa-s as a typical value for the shear viscosity'”
of the polymer melt used in the spinning, along with a density
p, = 10°’kg/m’, air gap L, = 0.05m and a typical stress of ™"
(= n.V,/L,), the Reynolds number Re is found to be in the
regime Re = 16.7/Dr, where the velocity of the fiber at the
exit of the die is estimated as ¥, = V,,/Dr. In the following
sections, we separately investigate the two Reynolds number
regimes (a) Re—0 and (b) finite Re, for draw down ratios in

the range 10 < Dr < 30.

2.2 Microscopic Model for the Polymer Chains and
Stress Tensor
The rheological properties of the polymeric fluid play an
essential role in determining the stability of the spinning
process. Usually, a constitutive equation is used to theoretically
predict the flow behavior. Until now, numerous constitutive
equations have been proposed, and each of them presents
its own advantages and disadvantages. The main problems
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of using such a constitutive equation approach are: (a) how
to choose a proper constitutive equation, which is able to
predict the rheological properties of a target polymeric liquid,
and (b) the difficulty in connecting the stress evaluated by
the constitutive equation to the microscopic state of the
polymer chains. In the present work, instead of using a
macroscopic constitutive equation, we employ a microscopic
model to describe the rheology of the fluid, where the stress
tensor is evaluated in a statistical manner by considering
the microscopic states of the polymer chains. So far, many
microscopic polymer models have been proposed, such as
the Rouse mode™, the simple and finite extensible Hookean-
dumbbell models™, the Kremer-Grest-beads-spring model*”,

the Doi-Edwards reptation model®”, the primitive chain

2 , and so on, and

network model’”, and the slip-link models”"
they have all been used to investigate the bulk rheological
properties of polymeric fluids. Here we employ the simple
Hookean dumbbell model as a microscopic model in our
multiscale simulation of the melt spinning process. The
reasons why we have selected this particular model are the
following:

(i) In the limit when the number of Hookean dumbbells
goes to infinity, the corresponding constitutive equation
is known. This allows us to assess the accuracy of our
multiscale simulation.

(if) The computational cost is significantly lower than the
other microscopic polymer models.

The Hookean dumbbell is composed of two beads connected
by a spring with a spring constant k. We consider that a fluid
particle with a volume v, in a fluid contains N-dumbbells as
shown in Fig. 2 (a) and (b). It is assumed that no interaction
does work among different dumbbells. The equation for the

. . . 23
relative vector » between two beads is given as™’

gzx-r—ékr+%li (12)

where ¢ is the frictional coefficient, x is the velocity gradient
tensor which is defined by x,, = oV, /ox, (e, B € ix, y, z}) and
R is a random force which satisfies the fluctuation-dissipation
theorem. Using the obtained relative vectors r from eq.(12)
and the spring forces F for all the dumbbells, the stress tensor
in a fluid particle can be evaluated by the following statistical
average over constituent dumbbells™”, which is known as

Kramers’ relation:

Ny
rj,-“F;'}, (13)

§=1

n

N,
af = T -ﬂ‘F e T
T Vo {raFp) N,
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Fig. 2. Schematic views of (a) fluid particles composing a polymeric
liquid, (b) N,-dumbbells in a fluid element and (c) the dumbbell
model.

where (---) denotes the statistical average of (---) and can be
evaluated approximately by the average over N,-dumbbells,
the variables with the upperscript (s) mean the ones of the
s-th dumbbell, N, is the number of dumbbells in the system of
volume v, and n = N, /v, is the number density of dumbbells.
Using the expression of the spring force F = —kr, the stress

tensor is microscopically expressed as

Top = n(k(rarg) — knTSop) (14)

where £, is the Boltzmann constant, 7" the temperature, and
o is redefined by subtracting a constant diagonal tensor from
it, such that it is equivalent to the zero tensor in the quiescent
= kgT5,/k. The
constitutive equation of the stress defined by (14), can be

state, by using the following relation (r,7).,

derived to be

dog

dt

= KayTyp + TayKgy + Nk T (Kop + Kgo) — — 0o,

¢
(15)

where the repeated indices are summed over {x, y, z}.
Equation (15) is referred to as the upper convected Maxwell
constitutive equation. It should be noted that in the limit
N,—w, the stress evaluated by eq.(14) converges to that
evaluated by eq.(15). Because N, is always finite in a realistic
numerical simulations, the influence on rheological properties
of the statistical error always remains, depending on how large
N, is, as shown in the last paragraph of this section.

When constructing dimensionless expressions for eqs.(12)-
(15) the Deborah number naturally appears. The Deborah
number De is the ratio of an apparent convective time
t™M(= L/V,) of a material point in the air gap region and the
relaxation time of the dumbbell A(= £/(4k)), and is defined
as De = 1/t!™. To obtain dimensionless expressions for egs.
(12)-(15), £™, €™ and ¢'™ are used as units of time, length

o 9

and stress, respectively. We set the units at the microscopic
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level to be the same as those at the macroscopic level, except
that the length of dumbbell is scaled by the equilibrium length
of a dumbbell £, = V3ksT/k . Namely, we chose as units of
length and time £ =, £ = L, and £ =t = L/,
respectively. We now introduce the unit of stress, which we
did not clearly explain when introducing the macroscopic
level model in eqs.(8)-(9), since the constitutive equation had
not yet appeared at that time. We define the units of stress as
o™ =™ = nk,T Alt,. It should be noted '™ can also be
expressed as " = n,V,/L,, with 17, being the shear viscosity
of Maxwell fluid, given by nk,T A. Hereafter #,(= 1™ = 1)
and o (= 0™ = o™) will be used as units of time and stress.

Using the units defined above, eqs.(12)-(15) are rescaled and

found to be
@ e Lo [ 1 16)
d}' =K r[f) =t ﬁr(f) + ﬁ R(f). (

where ¥ = xt,, R is defined by R= Vo /4kgT¢ and satisfies
(R,) =0 and (R (T)R(T)) = 5,,6(7-T'). The dimensionless

expression for the stress tensor is given as

& 3

e 1
Tap = E((ﬁr’:ﬁ) - 560'8)‘ (]7)

The dimensionless expression of eq.(15) is found to be

Do
Dt

s i 1 .
= KayTyp + ToyKpy + D_e(;(:rﬁ + Kﬁ:r) - Deo'frﬁ-
(18)

Unless otherwise stated, in what follows we omit the tilde
symbols on dimensionless variables, except where it might
cause confusion to occur, in order to simplify the resulting
expressions. As seen from the dimensionless equations (16)-
(18), De is the only control parameter in the equations at the
microscopic level. Therefore, the control parameters in the
present system are the draw ratio Dr, the Reynolds number
Re and the Deborah number De.

As mentioned in the previous paragraph, the statistical error
of the stress tensor depends on the number of dumbbells N,
used in the simulation. Here we show how the stress evaluated
by a microscopic system consisting of a finite number of N,
deviates from the stress calculated by the mathematically
equivalent constitutive equation (15), which will give us
useful information on how large N, should be in order to
obtain reasonable results when using multiscale simulations
to describe melt spinning processes. In Fig. 3, we show
the time evolution of the stresses in a uniaxial elongational
start-up flow with a constant velocity gradient x,, = 25

0.40
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Fig. 3. Time evolutions of &,, and &, in a start-up flow under a
constant uniaxial elongational flow (k. = 25) for Maxwell fluids
(De =107 consisting of non-interacting N -dumbbells (N, = 10°
(dotted-line), 10° (black solid-line) and 10° (white solid-line)).
The very thick grey line behind the other lines stands for the
theoretical lines obtained by the corresponding constitutive
equation (15).

(k,, = k.= -k /2, k,; = 0 for @) for three different number
of dumbbells, N, = 10°, 10* and 10°, with a Deborah number
De = 107, The value k., = 25 is chosen as a typical velocity
gradient used in our multiscale simulations and De = 107 is
chosen so that the fluid shows a viscoelastic behavior over a
time period 7, during which a material point runs through the
air gap region. The time period ¢ is roughly estimated to be 0.3
t, by using Dr = 25 and the expression ¢ = (Dr—1)/(Dr In Dr)
for the Newtonian fluid.”” As shown in Fig. 3, the deviation
of the stress o, and o, from the theoretical lines obtained by
using the upper convected Maxwell equation (15) decreases
with increasing N,. We confirmed that the standard deviation
from o) decreases proportional to INFP. Judging from
Fig. 3 and from the view point of the trade-off between the
accuracy of the stress and the computational cost, we decided
to use N, = 10" as the number of dumbbells on a single
Lagrangian particle (i.e., on each microscopic simulator) in
the multiscale simulations presented in the next section.

2.3 Multiscale Simulation Method

We performed numerical simulations of a spinning process
in a multiscale way, where a set of macroscopic equations
are solved by communicating with an ensemble of embedded
microscopic simulation systems. The fluid in the spinning
process is assumed to be a viscoelastic fluid described by
a set of non-interacting Hookean dumbbells defined in
eq.(12), which is equivalent to a Maxwell viscoelastic fluid,
described by eq.(15). Because the stress of a viscoelastic fluid
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Fig. 4. Schematic views of (a) the filament in melt spinning process, (b) the
grid used in solving the macroscopic equations, and (c) the Lagrange
fluid particles denoted by open circles on the spinning line.

depends on the history of the strain and/or strain-rate that
the microscopic molecules have experienced in the past, it is
suitable to evaluate the stress tensor on a fluid particle based
on the Lagrangian picture (see Fig. 4). As shown in Fig. 4 (b),
the spinning line in the air gap region is divided by (M+1)-grid
points, in other words, the line is divided into M regions with
a constant spatial interval Ax = 1/M, to solve the equations
at the macroscopic level in the Eulerian fashion. On a grid
point i (0 < i < M), the variables 4, (¢) and ¥, (¢) are defined
(4,(f) = A, (iAx, 1) and V(1) = V(iAx, 1)), on the other hand, the
stress o, (7) is defined on a staggered lattice point [ = i—1/2,
(o,(t) = o (IAx, 1)). In addition, N, -Lagrangian fluid particles
are distributed on the spinning line, on each of which a
microscopic simulation system is embedded. The stress tensor
on a staggered lattice point / is evaluated by an average over
the stress tensors of all the Lagrangian particles located within
the spatial interval [(i—1)Ax, iAx].

270

(i) Cross section area update

Suppose that the values of 4, and ¥/ at a time ¢ are known.
The cross section area A,(f) at a lattice point i (1 <i < M) (see
Fig. 4(b)) is updated by the following discretized form of
equation of eq.(7)

Ai(t + Ar) = Ai(1) + 0A; (19)
where 54, is defined at time 7 as

0A; = —(Ai Vi — A ViLDA/2Ax for 1 <i< M
(20)

and 54, = —(3A4,,Vy — 44, Vg, + Ay 2Var2)A2A x with the
boundary conditions Ay(7) =1 and V(1) =1 ineq.(11).

(i) Velocity field update

The velocity F(t + At) is evaluated from eq.(10). As we
estimated at the end of Sec.2.2, for moderate spinning the
Reynolds number is in the range Re = 0.1, but Re may
become very small when we perform a very slow spinning
or use a polymeric fluid with a very high viscosity. Because
the appropriate numerical scheme for evaluating V(t + Af)
depends on Re, we separately explain the schemes used to
update () for two cases, (a) Re—0 and (b) finite Re.

(a) Re—=0

For a very low Reynolds number, the force balance
equation 0F/dx = 0 will be satisfied instantaneously. Namely,
at every single time step, the tension F(/) must be balanced
throughout the system. In the numerical simulation, the

following condition should be satisfied:

§F | Max{(F(D)) - Min{F(D)} |
Fil\"e F:wc

<€ 21

where Max{F(/)}, Min{F(/)} and F,,. denote the maximum,
minimum and average of F(/), respectively, and ¢ is a suitably
small value which sets the tolerance level. To find the velocity
V{(t+ At) that satisfies condition (21), a relaxation method or a
quasi-Newtonian method can be used. In a simple relaxation
method, the trial velocity V" at ¢ + At is repeatedly updated
by using the following equation

V:n+l] — V:”] n : [Flmu + [}_ F:u}(”] {22)

Ax
until the force balance condition given in eq.(21), with the
updated stress values o;""(¢ + Af) obtained from the velocity
gradient field corresponding to ", is satisfied. In eq.(22), &
is a small virtual time increment, » is the internal counter for
the iteration step at ¢ + At, F")(I) = &,"(t + ADA[t + Af) and
A, = (A,_, + A,)/2. This means that at each step of the iterative
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procedure used to find the V(¢ + A¢) satisfying the force
balance condition, the stress tensor o; must be recalculated
according to the velocity gradient tensor corresponding to the
trial . As an alternative to this simple iterative procedure,
the Broyden method is one of the quasi-Newtonian methods
used to find the roots of multi-dimensional non-linear
equations. This method can be very efficient, provided one
gives an appropriate initial guess for {V{(¢ + Af)}, but if not,
it can take many steps, or worse, it is possible that it never
converges. Generally speaking, the relaxation method requires
much more computational time than the Broyden method, but
is relatively less-sensitive to the initial guess for V}, although a
better initial guess will result in faster convergence. However,
for our present application, both methods required many
internal iteration steps at each time step, and the velocity field
sometimes would not converge within the specified threshold
for the number of iteration steps, above which a simulation
would not finish within a realistic time. As will be shown
in Sec.3(a), we chose the Broyden method to evaluate the
velocity field because it was relatively faster than the simple
relaxation method.

(b) Finite Re

As estimated before, for relatively high speed spinning
(Z2000m/s), the Reynolds number is in the range Re = 16.7/Dr
(e.g., 0.56 for Dr = 30). In such situations, the contributions
from the inertial term in eq.(10) cannot be ignored. Therefore,
we directly evaluate the velocity V(¢ + Af) by applying an

explicit scheme for the momentum equation (10) as

Vit + At) = ViD= (Vi1 (1)* = (Viei (0)) At/ (4Ax)
+Re™ (At/AxX)[0 11 AL — oA /A,
(23)

(iii) Lagrange particle update

After obtaining the velocity ¥; on the Eulerian grids, as
described above in the calculation step (ii), the velocities
and velocity gradient tensors at all the positions of the
Lagrange particles are evaluated by interpolating the V.. As an
interpolating function for the velocity and velocity gradient
tensor «,; we use a quadratic and linear function, respectively.
Then, all the fluid particles are advected according to the local
velocities evaluated at their positions. When the position X{(7)
of a Lagrange particle closest to x = 0 becomes larger than
A X, a new Lagrangian particle is inserted into the system at
position X'(= X — A X,,;,), in such a way that the initial distance
between two adjacent Lagrange particles is set to a constant
A X Since the time interval A ¢ used in our simulations is
small, the initial position X" of the newly inserted Lagrangian

particle is almost zero. In the simulations which will be

shown in the next section, the initial distance A X, is set to
AX,;=10"in (a), and X, = 10~ for Dr=10, 20 and 0.5x10"*
for Dr = 30 in (b). The dumbbells on the newly inserted
particle are set so as to satisfy the relation <r, 7> = 6,,/3,
which results in a zero stress tensor.

(iv) Bridge between macro- and microscopic simulators

A microscopic system embedded in a fluid particle is
used to obtain a local stress tensor as a response to the
velocity gradient tensor at the position of a particle on the
spinning line. The resulting stress tensors on the particles
are transferred to the macroscopic system as stress tensors
at the corresponding positions, then, the stress tensor o,
on the staggered lattice / is evaluated as an average over
the stresses on the particles located in the region-/ (i.e., the
spatial interval [(i—1)]AX, iAX). Generally speaking, the step
to evaluate the stress tensor on each Lagrangian particle
demands a tremendous computational expense, because of
the large number of molecular agents (dumbbells) present in a
single Lagrangian particle. Therefore, we have implemented
a parallel computational code by using MPI (Message
Passing Interface), specifically designed for the calculation
of the stresses, which plays an essential role in reducing
the computational time to a realistic value. The number of
cores used in the parallel computations is ranged from 64 to
96 in (a), is 24 in (b).”” In this way, we have performed the

communication between macro- and microscopic systems.

3. RESULTS OF THE MULTISCALE
SIMULATIONS

In the multiscale simulations, we used M = 100 as the
number of the grid points, with N, = 10* in each microscopic
system of Lagrangian material points, as explained in the
previous section. In the following, we present the results
obtained in the typical cases of (a) Re—0 and (b) finite Re.
The initial configurations of the dumbbells in each of the
Lagrangian particles in (a) and (b) are set to be those at the
relaxed state, i.e., S0 as to give (r,7) = J,,/3. The initial values
of the cross section area and velocity along the spinning line
are those of the analytic solution for a Newtonian fluid at the
specified.

(a) Re—0

In the limit Re—0, the tension will be balanced within an
infinitely small time duration, therefore, the velocity field must
be determined so as to satisfy 6F/ox = 0. To obtain a velocity
field which satisfies this constraint, we used the Broyden
method mentioned in the previous section. All the simulations

in (a), the time increment A ¢ is set to 10~ Figure 5 shows
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Fig. 5. Time evolution of the cross section area A_ at an end point (x = 1)
for Dr =10, 15, 20, 25, 30 (from top to bottom) at (a) De = 10
and (b) De = 107",
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Fig. 6. Spatial distributions of the number of Lagrangian particles
N, (x) existing in the interval [x, x + Ax] on the spinning line
for De = 10~ (grey) and De = 107 (white) at # = 5 in Dr = 10,
15 and 20. The lower and higher histograms stand for Dr = 10
and 20, respectively, but the results for Dr = 15 are drawn using
filled circles (De = 107) and open circles (De = 10 ), to easily
distinguish them from the other cases.

the time evolutions of the cross section area 4. = A(x = 1.1)
at the end of air gap region for Dr = 10, 15, 20, 25, 30 (from
top to bottom) at (a) De = 10~ and (b) De = 107", In the
case of (a) De = 107, the draw resonance phenomenon takes
place at Dr = 20. In the case of (b) De = 107, although large
oscillations of 4.(r) are observed at the beginning, which
increase with increasing values of Dr, these oscillations are
finally suppressed after # = 4. Namely, no periodic change in
the cross section area could be observed in (b), although a
fluctuation of A.(r) still exists at long times. Note that in the
Newtonian fluid, the critical draw ratio above which the draw
resonance takes place is Dr'” = 20.21.%'? It seems that A4,(f)
for Dr = 20 and De = 10 starts to show a periodic change.

272

This result might be attributed to the effect of noise coming
from the finite number of dumbbells we have used, but
further investigations should be performed in order to clarify
such noise and finite-number effects. It is considered that
the suppression of the draw resonance in case (b) De = 10~
originates from the elastic effect of the dumbbells.

Figure 6 shows the spatial distribution of Lagrangian
particles existing in the region [x, x + Ax] with Ax = /M,
at ¢ =5, for Dr =10, 15 and 20 in De = 10~ (grey) and
10~(white). The lower and higher histograms, respectively,
denote the data for Dr = 10 and 20, and the results for Dr= 15
are drawn using filled circles for De = 107, and open circles
for De = 10, When the position of the closest Lagrangian
particle to x = 0 becomes larger than a certain threshold
value A X, (= 107), a new Lagrangian particle is inserted at
a new position (X = 0), in such a way that the initial distance
between the adjacent particles is constant A X,,. Hence, the
distribution of Lagrangian particles shows almost no change
when the velocity field has reached a steady state. It should
be noted that even when a draw resonance takes place, the
change in the velocity field is not so large that the particle
distribution is significantly altered. The total numbers of
Lagrangian particles N, for Dr=10, 15and 20 at t = 5
are N,"™" = 1900, 3300 and 3000, respectively, and these
numbers are almost constant for ¢ = 4. To suppress the
statistical error in evaluating the stress, it is important to have
a large enough number of Lagrangian particles, especially
in the regions close to x = 1, because the density of particle
becomes smallest at this position. For all the cases considered
here, we choose an appropriately small A X, so that the
number of particles at x = | is roughly constant, which is
enough to suppress the statistical error below a certain level.
Although a smaller A X, is better for suppressing the error,
a larger number of total Lagrangian particles will make the
computational cost increase significantly.

Figure 7 shows the velocity profiles on the spinning line
at t = 5 for the six combinations of Dr = 10, 15, 20 and
De = 107, 107, For both De = 10~ and 107, the velocities
for Dr= 10 and 15 coincide with the corresponding ones of a
Newtonian fluid (solid line) given by eq.(A.4) in Appendix,
although a small deviation from the solid line can be seen in
the case of De = 10~ and Dr = 15. We can infer from these
results that the dumbbells in these cases are stretched, which
will be confirmed later in Fig. 10. At Dr = 20, the velocity
profiles for De = 10~ mostly coincide with the Newtonian
fluid results, but the one for De = 10~ shows a clear deviation
towards larger values. This is because of the elastic effect
coming from the slow relaxation of stretched dumbbells, as
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Fig. 7. Velocity profiles at t = 5 for Dr = 10 (circle), 15 (square) and 20
(diamond) on the spinning line obtained by the MSS method for
De=10 "(ﬁIlcd symbol) and 10 2 (open symbol), The lines stand
for the velocity profiles of Newtonian fluids for Dr = 10, 15 and
20, from bottom to top, respectively.
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Fig. 8. Cross section area A(x) of the fiber obtained by the MSS method
for Dr = 10 (circle), 15 (square) and 20 (diamond), and De = 10~
(filled symbols) and 10~ (open symbols). The solid lines are
the cross section areas for a corresponding Newtonian fluid for
Dr =10, 15 and 20, from top to bottom, respectively.

seen from the analytic solution (eq.(A.5) in Appendix) in
the elastic limit, where V{(x) becomes a linear function of x.
In Fig. 8, we plot the cross section area along the spinning
line for Dr = 10, 15 and 20 at De = 10™ and 107 The cross
section areas at De = 10~ correspond almost exactly to the
analytic solution for the Newtonian fluid. For the De = 10~
cases, on the other hand, the lines deviate towards smaller
(thinner) values, with respect to the corresponding Newtonian
solution (eq.(A.4) in Appendix). This tendency for 4 is
consistent with what would be expected given the velocity
profiles shown in Fig. 7. We can see that the 4, are mainly
determined by Dr, but they do not depend strongly on De.
The states of the dumbbells at x = 1 for different De, but for
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Fig. 9. Tensions F on the spinning line at r = 5 for Dr = [0(circle), 15
(square) and 20 (diamond), and De = 107 (filled symbols) and
10~ (open symbols). As a reference, the tension at ¢ = 3 for
Dr = 20 and De = 107" is also shown by larger filled diamonds.
The dotted lines stand for tensions of a Newtonian fluid,
F =3 In(Dr) (See eq.(A.4) in Appendix), for Dr= 10, 15 and 20
from bottom to top, respectively.

the same Dr, however, are significantly different to each other,
as can be clearly seen in Fig. 10.

As mentioned in the previous section, the tension along
the fiber must be balanced. In our numerical simulations, this
condition is relaxed by introducing a tolerance ¢, as explained
in eq.(21), which we have set to € = 0.05. In Fig. 9, the fiber
tension along the spinning line is plotted, and we can clearly
see that the tension is almost perfectly balanced. In addition,
to understand to what extent the tension balance holds under
the various conditions in our simulations, we present the
maximum, minimum, and average tension at / = 5 along the
spinning line, as well as the relative deviation of the tension
from its average value in Table 1. As seen from the table, the
relative errors are maintained at less than 5%, as the tolerance
€in eq.(21) is set to 0.05. As seen from Fig. 9, for a given Dr,
the tension at De = 10~ (open symbols) is higher than the
one at De = 10~ (corresponding filled symbols). Although it
is expected that the tension at De = 10~ (see filled symbols
in Fig. 9) should be closer to the Newtonian values (shown
as dashed lines), the tension at ¢ = 5 for De = 10 is actually
closer. Particularly, the tension at De = 10~ for Dr = 20 is
considerably smaller than that of the corresponding Newtonian
fluid (see F in eq.(A.4)). We confirmed that the tension is
changing largely with time depending on A, in Fig. 5. This is
a reason why the tension at ¢ = 5 became smaller than that of
the Newtonian fluid. As a reference, the tension at t = 3 for
De = 10 and Dr = 20 is also shown in Fig. 9, using larger
filled diamonds. The tension is apparently larger than that at
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Table I. Maximum (F,,,), minimum (F,,,), average (F,.) and relative

errors (dF/F,.) of the fiber tension F(x) at t = 5 for (a) Dr = 10

(b) Dr =15 (¢) Dr = 20 (d) Dr = 25 (e) Dr = 30 at two typical
Deborah numbers (De = 10~ and De = 107%), where 6F =F,_ — F,

i min®

Dr De Foa F
(a) 10 107

min

F,

SF/F

ave

225x107 2.23x107 2.24x107°  1.05%
107 2.32¢107 227<107 2.39x10°  2.65%
(b) 15 107 226x107 2.26x107 2.63%107°  0.58%
107 2.79x107 2.70<107 2.74x107°  3.02%

(c) 20 107 227x107 2.27x107 2.67¢107  0.73%
107 3.21x107" 3.11x107 3.15%107°  3.18%
(d) 25 107 3.34x107° 3.31x107 3.32¢10° 0.89%

107 3.60%107  3.47<107 3.53%107  3.83%
(e) 30 107 4.52x107  4.45%107 4.50%107°  1.70%
10° 3.92¢107" 3.76x107 3.84x107  4.23%

= 5. For the case of Dr = 20, 4, exhibits a periodic fluctuation,
with a minimum at ¢ = 5 (see Fig. 5). This implies that the
tension is correlated to the change in A4, and therefore, that the
smaller tension observed for De = 10~ and Dr = 20 may be
attributed to the larger fluctuations in the cross section area.
From the values given in Table I, we can see that the relative
deviations in the tension, for the cases with De = 107, are
significantly smaller than those with De = 107. As seen from
Fig. 9, the maximum deviation in the tension for De = 10~
is located at the position closest to x = 0, where the average
configuration of the polymer chains is assumed to be isotropic,
i.e., all the components of the stress tensor are zero. Thus, we
infer that the deviation near x = 0 comes from the assumed
initial configurations of the dumbbells. To obtain an initial
configuration for the dumbbells without such an assumption, it
is necessary to perform a multiscale simulation even at the up-
stream side, including the die swell phenomenon, as well as
inside the die, but this is outside the scope of the current work,
and will be investigated in a future work.

Figure 10 shows the microscopic states of the dumbbells
in Lagrangian particles located at three typical positions, (1)
x=0.1,(2)x=05and 3)x=1atr=5 for (a) De = 10"
and (b) De = 107 in Dr = 15. In the figures, a dot represents
the position of one of the end points of a dumbbell, with the
other end point fixed at the origin, where all of the end points
within a single Lagrangian particle have been superimposed.
From the figures, one can see the degree of deformation of
the dumbbells due to the uni-axial elongational flow along the
spinning line. In De = 10~ (Fig. 10(a)), the dots are almost
isotropically distributed, although the distribution in (a-3) is
slightly elongated along the flow direction. In (b) De = 107,
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Fig. 10. Distribution of the connecting vectors for Dr = 15 in a fluid
particle at (1) x = 0.1, (2) x= 05 and (3) x= 1 at 1 = 5 for (a)
De=10"and (b) De = 107",
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Fig. 11 Distribution of connecting vectors in a fluid particle located at
x=1andat¢=>5 for De = 10" with (i) Dr= 10, (ii) Dr =15 and
(iii) Dr = 20.

on the other hand, the distribution at (2) x = 0.5 and (3) x = 1
is stretched along the x-direction, although the one at (1)
x = 0.1 is almost isotropic. In particular, in (b-3) one can see
that the dumbbells are largely elongated in the x-direction and
shrunk in the y-direction. Figure 11 shows the distribution of
connecting vectors in a Lagrange particle located at x = 1 at
t=5 for different Dr with De = 107°. From this figure, we can
see how the distribution is elongated as Dr increases.

Although we could qualitatively grasp the microscopic state
of the dumbbells at typical positions, for various Deborah
numbers and draw ratios, from Fig. 10 and 11, in order to
quantitatively understand the microscopic states of the system,
we focus on the statistically averaged quantities describing
the state of the dumbbells, such as their degree of stretching
and orientation. For this purpose, we have analyzed the
conformation tensor W, defined as

Np

1
w:r,{:f = (rrr-'-,b'> = F Z Fiatig- {24)

P =1
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Table I1. Conformation tensor ¥, atx = | for De = 10™" and De = 10~
for Dr=(a) 10, (b) 15, (c) 20, (d) 25 and (e) 30.

Dr De W, W, W, —c./o,
(a) 10 107 0.349 0.326 -2.89x10° 215
107 0.512 0.281 1.21x10™ 3.39
(b) 15 10" 0.361 0.321  3.96x10° 2.3
10° 0.675 0.258  9.55x10° 451
() 20 10° 0.374 0316  243x10° 235
107 0.876 0.240  —4.06x10°  5.82
(d)25 107 0.390 0311 =2.77%107° 248
107 1.11 0227 -1.07x10°  7.32
()30 107 0.408 0.305  —1.94x107° 2,65
107 1.39 0216 —7.26x10°  9.07

It should be noted that this conformation tensor W, is related
to the scaled stress tensor o, of eq.(17). In Table 11, we give
W, W, and W, at a position in the vicinity of x =1 atr =35
for Dr = 10, 15, 20, 25 and 30 and De = 10~ and 10~. The
values of o,/ o,, at x = 1 are also shown in Table II. Given
the axisymmetric geometry of the system, . is statistically
equal to . For the case of Dr= 10 and 15 at De = 10~°, the
xx- and yy-components are close to 1/3, and xy-component
is nearly zero, which means the state of the dumbbells is
almost relaxed and isotropic. This result is consistent with
Fig. 10 (a-3). In addition, o,/ o,, in these cases is close to
-2. Because o,/ ,, = =2 holds in an axi-symmetric flow
of an incompressible Newtonian fluid, the state of the fluid
throughout the spinning line can be approximated by that of
a Newtonian fluid, on the other hand, for the other cases, the
excess stress emerges. The conformation tensor W, can be
decomposed into a stretch ratio A and an orientation tensor S,
as

Wop = 228 o, (25)

where A° is defined as the mean squared length of the
dumbbells :

a=xy.2
with the stretch ratio in the ¢z-direction given by:

Np

1
2 §
zl“« - Np - for (27)

:."tq

In Fig. 12 and Fig. 13, we plot the time evolutions of the
stretch ratio along the x- and y-directions, and the xx- and

yy-components orientation tensor, respectively, for Dr = 10,
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Fig. 12 Time evolutions of 7 — 1/3 and A7 — 1/3 at x = | for Dr = 10 (light
arey), 15 (grey) and 20 (black) at (a) De = 10" and (b) De = 10~
Al = 1/3and 2] — 1/3 are positive and negative. respectively.
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Fig. 13. Time evolution of S, and §,, for Dr = 10 (light grey), 15 (grey)
and 20 (black) in (a) De = 10~ and (b) De = 107, The xx- and
yy-components are positive and negative, respectively.

15 and 20 at (a) De = 107 and (b) De = 10, When the
macroscopic cross section area becomes smaller, the
dumbbells are stretched along the flow direction, but shrunk
in the perpendicular plane. As such, the stretch ratio 1°~1/3
is strictly positive, and ,l_f—lf3 negative. In addition, the xx-
component of the orientation tensor is positive and the yy-
component is negative for any parameter set, as expected from
Fig. 3. As shown in Fig. 12, as the draw ratio becomes larger,
the stretch ratio of the dumbbells along the flow direction 4,
becomes larger. We can see from Fig. 12-13, that the stretch
ratios, as well as the xx- and yy-components of the orientation
tensor, for Dr =20 and De = 107, are temporally oscillating in
phase with each other, and they are also synchronized with the
change in A, (for the corresponding parameter set shown in
Fig. 5). In the other cases, the stretch ratios and the orientation

tensor show almost constant values, although they are rapidly
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Fig. 14. Time evolution of the cross section area A, at the end point (x = 1),
for the eighteen combinations of Dr = 10, 20, 30, Re = 107, 107,
1 and De = 107, 107, The results all converge into three lines,
depending only on the draw ratio, Dr = 10 (top), 20 (middle), 30
(bottom).

fluctuating. From all these results, we can conclude that the
larger relaxation time results in a more stable melt spinning
process.

(b) Finite Re

As explained at the end of Sec.2.2, the typical Reynolds
number in industrial spinning processes easily reaches
values larger than 10", Because the inertial effect cannot be
ignored when solving the momentum equation (10) in this
Re-regime, we use the scheme described in eq.(23) with
N, = 10* dumbbells in each Lagrangian particle. In (b) Finite
Re, the time increment At is set to Az = 1.0x10" for Re = 1.0
and 0.1, and A7 = 5.0x10" or A7 = 1.0x10"" for Re = 0.01.
Figure 14 shows the time evolution of the cross section area
A(f) at x = 1. Despite performing simulations for the eighteen
different combinations of the following parameters Dr = 10,
20,30, Re =107, 10", 1 and De = 107, 107, the resulting
values for the relative cross section areas all converge to three
lines, depending only on the Dr = 10, 20, 30; with smaller
Dr corresponding to larger 4., as shown in Fig. 14. While the
cases for Dr > 20 and De = 10~ at Re << 1 exhibit the draw
resonance phenomenon, the flow and cross section area in the
present case are quite stable, even at Dr = 30 for De = 107,
We have found that the inertial effects make the spinning
process stable, in addition to the elastic effect.

In Fig. 15, we separately show the velocity profiles for (a)
Re = 10~ and (b) 10™" and 1. For each Reynolds number,
we plot the data obtained for the six following parameter
combinations: Dr = 10 (circle), 20 (diamond), 30 (triangle),
and De = 10~ (open symbols) and 107 (filled symbols).
In addition, the results obtained by using the Maxwell
constitutive equation are plotted by solid lines. As seen from
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Fig. 15. Velocity profiles at ¢ = 10 for (a) Re = 10~ and (b) 107" and 1.
The six combinations of the three draw ratios Dr = 10 (circle),
20 (diamond), 30 (triangle) and two Deborah numbers De = 107
(filled symbol) and 10 *(open symbol) are plotted for each Re. In
(b), triangle symbols for Re = 10" and Re = 1 are distinguished
by using lower and upper triangles, respectively. Namely, the
velocity close to x = 1 for Re = 107" is slightly higher than that
for Re = 1. The solid lines are the velocity profiles obtained by
using the Maxwell constitutive equation with the parameters
corresponding to the nearest symbols.

the figures, the velocity profiles for Dr = 10 are irrespective
of De and Re. At Dr = 20 and 30, the velocity profiles are
almost the same, except for the case with Re = 10~ and
De = 10~ (open triangles in (a)) whose velocity profile
deviates towards higher values. From these results, the
velocity profiles for Re > 107" seem to depend only on the
draw ratio. In Fig. 16 we show the profiles of the cross section
area at 7 = 10 for Dr = 10, 20, 30 and De = 107, 107 at (a)
Re =107 and (b) Re = 10" and 1. All the profiles for Dr= 10
in (a) are on the same line, i.e., they are independent of De.
The profiles for Dr = 20 and 30, on the other hand, depend
on De, and the cross section areas for larger De becomes
thinner, particularly near the center region. In (b), the area
profiles depend only on the draw ratios, which is consistent
with the results of the velocity profiles at Re > 10™' shown
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Fig. 16. Cross section area as a function of position on the spinning line,
at t = 10, for Dr = 10(circle), 20 (diamond), 30 (triangle) and
De = 107 (open symbol), 107 (filled symbol) at (a) Re = 10~
and (b) Re = 0.1 and 1. The solid lines (in (a) white and (b) black
colors) are the results obtained by using Maxwell constitutive
equation with the parameters corresponding to the symbols.

in Fig. 15. As with the low Reynolds number limiting case
shown in Fig. 6, the distribution of Lagrangian particles on
the spinning line is a monotonically decreasing function of x.
This is because the density of particles is proportional to the
inverse of the velocity. Since the stress tensor at a Eulerian
grid point is evaluated by averaging over the stress tensors of
the Lagrangian particles located within a spatial interval of
width Ax, a larger number of particles will always increase
the statistical accuracy and improve the numerical stability.
In the present simulation, a new particle is inserted at x = 0,
so that at least twenty Lagrangian particles always exist in the
region closest to x = 1, as seen in Fig. 17. The total numbers
of Lagrangian particles in the steady state, for Dr= 10, 20 and
30, are N, = 7850, 10600 and 19100, respectively.

As with Fig. 10, in Fig. 18 we show the distribution of one
of the two end points for dumbbells belonging to Lagrangian
points located at (1) x = 0.1 (2) x = 0.5 and (3) x = 0.9, at
=10, for Re = 1 and Dr = 30 at (a) De = 10~ and (b) 10~
In (a) De = 107, the state of the dumbbells at x = 0.1 and 0.5
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Fig. 17. Typical histogram of the number of Lagrangian particles N, (x)
existing in the spatial interval [x, x + Ax] along the spinning line
at 1= 10 for Dr= 10 (dark grey), 20 (light grey), 30 (white).
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Fig. 18. Distribution of connecting vectors in a Lagrangian particle
located at (1) x = 0.1 (2) 0.5 and (3) 0.9 for (a) De = 107 and (b)
De= 10" in Dr=30and Re = 1.

are almost isotropic, but the state at x = 0.9 is slightly stretched
along the flow direction. In (b) De = 10, on the other hand,
one can see that the state of the dumbbells is deformed from
the isotropic state even at x = 0.1, and at x = 0.9 the dumbbells
are highly stretched along x-direction and compressed in the
y-direction, as seen in (b-3). Figure 19 shows the distribution
of connecting vectors in a Lagrangian particle located at
x=0.9 at ¢ = 10 for the nine combinations of Re = 107, 10,
1 and Dr = 10, 20, 30 in De = 107, The distributions are
almost the same if the draw ratio Dr is the same, except for (i-1)
Re = 107 and Dr = 10. This result also means that the state of
the dumbbells is determined only by Dr if Re is large enough,
which is consistent with the results shown in Figs.15 and 16,
where the velocity and cross section area converge towards
profiles depending only on Dr.
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Fig. 19. Distribution of connecting vectors in a Lagrangian particle at
x=0.9 and at ¢ = 10, for (i) Re = 107, (ii) Re = 107" and (iii)
Re=1,and (1) Dr=10(2) Dr=20and (3) Dr=30in De=10".

4. SUMMARY

In the present study, we applied a multiscale simulation
method to a melt spinning processes. In the simulations,
we use a dumbbell model as the microscopic model for the
polymer chains in order to validate our multiscale simulation
method. Based on the fact that the stress evaluated by the
statistical average of a set of dumbbells is mathematically
equivalent to the one calculated from the Maxwell
constitutive equation, we can directly assess the accuracy of
our multiscale simulation method, by comparing our results
for the microscopic model, with those obtained using the
corresponding constitutive equation. Actually, the validation of
the multiscale simulation method is of particular importance,
because the method itself is still under development. The
schemes used to solve the momentum equation are chosen
depending on the Reynolds number, i.e., (a) Re—0 and (b)
finite Re. In the limit (a), the tension balance always holds
along the spinning line, and the Broyden method is used to
evaluate the velocity. We found that the elastic effect and a
longer relaxation time improve the stability of the spinning
process, and that the draw resonance phenomenon that takes
place above Dr = 20.21 in the Newtonian fluid, is suppressed
at De =107, at least up to Dr = 30. In the limiting case in (b),
on the other hand, the inertia effect starts to play an important
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role in determining the dynamical behavior of the spinning
process above Re = 107", In this Re-regime, the spinning
process is quite stable, and the profiles for the cross section
area and velocity along the spinning line are determined
only by the draw ratio Dr. In both cases (a) and (b), we used
N,-dumbbells (N, = 10%) in a Lagrangian particle. The use of
a finite number of dumbbells in a Lagrangian particle always
brings with it a non-zero statistical error for the computed
stress, as compared to the one obtained by the Maxwell
constitutive equation. Even though the number of dumbbells
in a Lagrangian particle is N, = 10" in this work, the present
scheme gives good agreement with the results obtained by the
Maxwell constitutive equation. In addition, we demonstrated
that the MSS method is useful in bridging the macroscopic
behavior and the simultaneous microscopic state, by
comparing the velocity and cross section area profiles with
the end point distribution of the connecting vectors for the
dumbbells in a Lagrangian particle at characteristic locations
along the spinning line.

We hope that the MSS method we propose brings us to a
new stage in the field of material science, by allowing us to
develop novel approaches in designing materials. In particular,
we hope to increase the current understanding of the flow
behaviors of polymeric materials, not only from a macroscopic
point of view, but also from a detailed microscopic level.

In the near future, by employing a more realistic
microscopic model for the polymer chains, such as the
slip-link model (PASTA ***”) and the primitive chain
network model (NAPLES™), an improved description of the
entanglements of the polymer chains and their orientations
will be incorporated into our MSS method. In the present
work, we have simply used an isothermal condition.
However, in many industrial problems, the temperature is
not homogeneous and solidification and/or a crystallization
of the polymeric material may occur. To deal with such
phenomena, we need to extend the microscopic model or even
develop a new one. In addition, to overcome the problems
due to the high computational cost, we will have to improve
the numerical schemes, including the parallelization of the
numerical codes. Thereby, the MSS method will be more
effective in solving problems with industrial applications.
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APPENDIX: ANALYTIC SOLUTIONS OF
STEADY STATE AT LIMITS

We need to rely on a numerical method to obtain a steady
state solution of eqgs.(7)-(11) and (18) at a finite Deborah
number, but in the two limits: (I) De—0 and (II) De—w, one
can obtain analytic solutions for the steady states.

(1) De—0 (Newtonian limit)

The analytic solution of the steady state for the spinning
process of a Newtonian fluid at Re # 0 can be obtained as

Re — (Re — C)e“/?

Re — (Re — C)eC/3’ A) = V1™

V(x) = Dr

(A.1)

with the constant C determined by the following equation:

C + Dr(Re — 0)¢“"* = DrRe. (A.2)
The tension F'is given by
= Cx/3
e C(Re - C)e @3

Re — (Re — C)eC¥/3"

If one takes the limit Re—0, the constant C is found to
be -3 In(Dr), and the above analytic solution turns out
be the well-known analytic solution at the steady state
(Dr <20.21)*" of the spinning process for a Newtonian fluid
with Re =0 as

V(x)=(Dn*, A(x)=(Dn™, F=3In(Dr). (A4

(I1) De—oo (Elastic limit)
In the elastic limit (De—a0), one can also obtain the analytic

solution as

Vi)=1+Dr-x, Ax) =[1 +(Dr- l)x]“'.
(A.5)

The elastic stresses for xx-, yy- and zz-components are

Dr-1

o = ReDr? V(oI A6
D -1 Lo (A-6)
B 1 ,Dr—1 o
Ty = 0y = 5ReDr == (VI (A7)
Then the tension is given as
, Dr—1 5
F = ReDr- BT Vix) = V(x)™"|. (A.8)
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If one wants to simulate industrial melt spinning processes, the
isothermal assumption should be replaced by a non-isothermal
one, but we are considering that the ideal isothermal condition
is suitable to make an assessment of the present multiscale
simulation.

The time period ¢ is estimated by ¢ = [} dx/V(x) and ¥(x) in
(A4).

In the present works, (i) 24Cores: Xeon E5-1680v3 (3.2GHz)
and (ii) 16Cores: Xeon E5-2680 (2.7GHz) are used in (a), and
the CPU (i) is used in (b).



