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Abstract

Recently, a modified Feynman-alpha technique for the subcritical system driven by

periodically triggered neutron bursts was developed. One of the main features of this

technique is utilization of a simple formula that is advantageous in evaluating the sub-

criticality. However, owing to the absence of the theory of this technique, this feature

has not been fully investigated yet. In the present study, a theory of this technique

is provided. Furthermore, the experimental conditions under which the simple for-

mula works are discussed to apply this technique to the subcriticality monitor for the

accelerator-driven system.

Keywords: Feynman-alpha technique, Subcriticality, Accelerator-driven system,
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Nomenclature

λs ≡ vΣs = probability that one neutron is scattered per unit

time.

λc ≡ vΣc = probability that one neutron is captured by ma-

terials excluding neutron detector per unit time.

λf ≡ vΣf = probability that one neutron induces a fission re-

action per unit time.
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λd ≡ vΣd = probability that one neutron is captured by neu-

tron detector per unit time.

v = velocity of neutrons (constant value).

Σs = macroscopic cross section of scattering reaction.

Σc = macroscopic cross section of capture reaction in

materials excluding neutron detector.

Σf = macroscopic cross section of fission reaction.

Σd = macroscopic cross section of capture reaction in

neutron detector.

pf (n, c) = probability that n prompt neutrons and c de-

layed neutron precursors are born in one fission

reaction.〈
νp

〉
=

∞

∑
n=0

∞

∑
c=0

npf (n, c), i.e., first order moment of num-

ber of prompt neutrons born in one fission reac-

tion.

〈νd〉 =
∞

∑
n=0

∞

∑
c=0

cpf (n, c), i.e., first order moment of num-

ber of delayed neutrons born in one fission reac-

tion.〈
νp

(
νp − 1

)〉
=

∞

∑
n=0

∞

∑
c=0

n (n − 1) pf (n, c), i.e., second order facto-

rial moment of number of prompt neutrons born

in one fission reaction.〈
νpνd

〉
=

∞

∑
n=0

∞

∑
c=0

ncpf (n, c), i.e., second order moment of

product of numbers of prompt neutrons and de-

layed neutrons born in one fission reaction.

〈νd (νd − 1)〉 =
∞

∑
n=0

∞

∑
c=0

c (c − 1) pf (n, c), i.e., second order facto-

rial moment of number of delayed neutrons born

in one fission reaction.
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α =
β − ρ

Λ
, i.e., neutron decay constant.

λ = delayed neutron time constant.

β =
〈νd〉〈

νp
〉
+ 〈νd〉

, i.e., delayed neutron fraction.

ρ =
λf

{〈
νp

〉
+ 〈νd〉

}
− (λc + λf + λd)

λf
{〈

νp
〉
+ 〈νd〉

} , i.e., reactiv-

ity.

Λ =
1

λf
{〈

νp
〉
+ 〈νd〉

} , i.e., neutron generation time.

pb (q) = probability that q neutrons are born in one neu-

tron burst.

〈ξ〉 =
∞

∑
q=0

qpb (q), i.e., first order moment of number of

neutrons born in one neutron burst.

〈ξ (ξ − 1)〉 =
∞

∑
q=0

q (q − 1) pb (q), i.e., second order factorial

moment of number of neutrons born in one neu-

tron burst.

τ = repetition period of neutron bursts.
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1. Introduction

Evaluation of the subcriticality is one of the key problems to reconcile the nu-

clear criticality safety with the economical operation in the nuclear fuel facilities. The

Feynman-alpha technique can evaluate the subcriticality through determination of the

neutron decay constant, so that it has been frequently studied for this purpose (de

Hoffmann, 1949; Williams, 1974). In the Feynman-alpha technique, the neutron count

with respect to a certain length of counting gate, i.e., gate width, is repeatedly mea-

sured to calculate a correlation index Y that consists of the mean and variance values

of thus obtained neutron count data (Feynman et al., 1956). The neutron decay con-

stant is determined by applying a theoretical formula to the Y value as a function of

the gate width, i.e., Y curve.

Investigation on the Feynman-alpha technique is still being pursued to cope with

a renewed necessity, i.e., subcriticality monitoring for the accelerator-driven system

(ADS). Corresponding to two kinds of operation modes of accelerators, i.e., the cur-

rent mode and the pulse one, the Feynman-alpha techniques for the ADSs with respec-

tive operation modes were developed (Pázsit and Yamane, 1998, 1999; Behringer and

Wydler, 1999; Muñoz-Cobo et al., 2001; Degweker, 2003; Pázsit et al., 2005; Kitamura

et al., 2005, 2006; Degweker and Rana, 2007; Pázsit and Pál, 2008; Rana and Degweker,

2009). However, there is a defect in some Feynman-alpha techniques for the ADS with

pulse mode developed so far; their theoretical formulae are disadvantageous in deter-

mining the neutron decay constant since they are too complicated owing to the rapid

variation of neutron counting rate that is caused by the prompt decaying behaviour of

neutron population.

To overcome this problem, one of the authors and his collaborators developed a

modified Feynman-alpha technique for the subcritical system driven by periodically

triggered neutron bursts (Misawa et al., 2014). In this technique, by introducing a

masking window for omitting a period of time during which the prompt decaying be-

haviour of neutron population is observed, a simpler formula than the conventional
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ones can be applied to determine the neutron decay constant. Through an experiment

performed at the Kyoto University Critical Assembly (KUCA), they further showed a

possibility of suppressing the space dependency effect in evaluating the subcriticality.

It is hence expected that this technique can be applied to the subcriticality monitor for

the ADS with pulse mode. However, these features of this technique have not been

fully investigated because the theoretical study on this technique has not been per-

formed yet. In the present study, hence, a theory of this technique is developed by

explicitly taking the periodically triggered neutron bursts and the masking window

into consideration. On the basis of the theory thus developed, the experimental con-

ditions under which the simple formula works are discussed to promote the study for

developing the subcriticality monitor for the ADS.

A brief review of the modified Feynman-alpha technique is provided in the fol-

lowing section. The one- and two-time-point neutron detection probabilities for estab-

lishing the theoretical basis on this technique are derived in Section 3. By using the

neutron detection probabilities thus derived, the theoretical formula of this technique

is obtained in the same section. Finally, the conclusion is summarized in Section 5

based on the discussions given in Section 4.

2. Review of modified Feynman-alpha technique

In Fig. 1, a typical temporal response of neutron population in a subcritical system

that is driven by periodic neutron bursts triggered at time mτ ( m = −∞, . . . ,−1, 0, 1, . . . , +∞)

is illustrated, where τ is the repetition period of neutron bursts. In the modified

Feynman-alpha technique, the masking window with a duration of w is introduced

so as to omit the prompt decaying behaviour of neutron population (Misawa et al.,

2014).

The modified Feynman-alpha technique utilizes the bunching procedure to effi-

ciently obtain the Y curve (Misawa et al., 1990). As shown in Fig. 2, in the bunching

procedure, successive neutron count data between w and τ with respect to a funda-
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Figure 1: Illustration of masking window in modified Feynman-alpha technique.
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Figure 2: Data processing procedure in modified Feynman-alpha technique.
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mental gate width T0 are measured to calculate the Y value with respect to T0. The

neutron count data with respect to longer gate widths T = rT0 (r = 2, 3, . . .) are not

measured but synthesized by bunching adjacent neutron count data with respect to T0.

The Y curves as functions of w and T thus obtained are written as

Y (w, T) ≡ V (w, T)
M (w, T)

− 1, T = rT0, r = 1, 2, . . . , (1)

where M (w, T) and V (w, T) are the mean and variance values of neutron count data

with respect to T. Denoting the xth neutron count datum with respect to T0 by Zx,

M (w, T) and V (w, T) are calculated as follows:

M (w, T) ≡ 1
Nr

Nr

∑
x=1

r

∑
y=1

Zr(x−1)+y, (2)

V (w, T) ≡ 1
Nr

Nr

∑
x=1

{
r

∑
y=1

Zr(x−1)+y

}2

− M2 (w, T) , (3)

Nr ≡ Maximum integer that does not exceed
N
r

, (4)

where N is the total number of disjoint consecutive neutron count data sets with indi-

vidual gate width T0.

When the expected value of Y (w, T) is written as 〈Y (w, T)〉, it is expressed as

〈Y (w, T)〉 ≡ 〈V (w, T)〉
〈M (w, T)〉 − 1, (5)

where 〈M (w, T)〉 and 〈V (w, T)〉 are the expected values of M (w, T) and V (w, T) that

are calculated as follows (Wallerbos and Hoogenboom, 1998; Kitamura et al., 2000):

〈M (w, T)〉 ≡
〈

1
Nr

Nr

∑
x=1

r

∑
y=1

Zr(x−1)+y

〉
=

1
Nr

rNr

∑
x=1

〈Zx〉 , (6)
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〈V (w, T)〉 ≡
〈

1
Nr

Nr

∑
x=1

{
r

∑
y=1

Zr(x−1)+y

}2

− M2 (w, T)

〉

=
Nr − 1

N2
r

rNr

∑
x=1

〈Zx〉 +
Nr − 1

N2
r

rNr

∑
x=1

〈Zx (Zx − 1)〉

+
2

Nr

Nr

∑
x=1

r−1

∑
y=1

r−y

∑
z=1

〈
Zr(x−1)+yZr(x−1)+y+z

〉
− 2

N2
r

rNr−1

∑
x=1

rNr−x

∑
y=1

〈
ZxZx+y

〉
.

(7)

Hence, one understands that 〈Y (w, T)〉 can be derived by calculating the right-hand

sides of Eqs. (6) and (7) that include the first-order moment 〈Zx〉 and the second-order

moments 〈Zx (Zx − 1)〉 and
〈

ZxZx+y
〉

of the neutron count data with respect to T0.

These moment quantities are calculated as follows:

〈Zx〉 =
∫ w+xT0

w+(x−1)T0

dt1 P1 (t1) , (8)

〈Zx (Zx − 1)〉 = 2
∫ w+xT0

w+(x−1)T0

dt1

∫ w+xT0

t1

dt2 P2 (t1, t2) , (9)

〈
ZxZx+y

〉
=

∫ w+xT0

w+(x−1)T0

dt1

∫ w+(x+y)T0

w+(x+y−1)T0

dt2 P2 (t1, t2) , (10)

where P1 (t1) dt1 is the one-time-point neutron detection probability that one neutron

is detected within an infinitesimal time interval dt1 around t1, and P2 (t1, t2) dt1dt2

the two-time-point probability that a pair of neutrons are detected within respective

infinitesimal time intervals dt1 around t1 and dt2 around t2 (> t1).

In the next section, through derivation of these neutron detection probabilities for

the subcritical system that is driven by periodically triggered neutron bursts, a theory

of modified Feynman-alpha technique is developed.

3. Theory of modified Feynman-alpha technique

3.1. Notations

In the present study, the one- and two-time-point neutron detection probabilities

P1 (t1) dt1 and P2 (t1, t2) dt1dt2 are derived by using the de Hoffmann’s formulation

approach (de Hoffmann, 1949; Albrecht, 1962; Yamane and Pázsit, 1998). The theoret-
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ical framework supposed and the notations needed in deriving these probabilities are

defined in this subsection.

A zero-power subcritical system that is driven by periodically triggered neutron

bursts is supposed. Formulation will be thoroughly performed within the mono-

energy one-point reactor model where delayed neutrons are emitted from precursors

having a single time constant λ, for a simple discussion. The neutron interactions in

the subcritical system (i.e., scattering, capture, fission, and detection) are dealt with the

following quantities,

λx ≡ vΣx, x = s, c, f, d, (11)

where λs is the probability that one neutron is scattered per unit time, λc the probability

that one neutron is captured by materials excluding a neutron detector per unit time,

λf the probability that one neutron induces a fission reaction per unit time, λd the

probability that one neutron is captured by the neutron detector per unit time, Σx the

macroscopic cross-sections for corresponding neutron interactions x (= s, c, f, d), and v

the velocity of neutrons.

The probability that n prompt neutrons and c delayed neutron precursors are born

in one fission reaction is denoted by pf (n, c), and is supposed to be normalized as

∞

∑
n=0

∞

∑
c=0

pf (n, c) = 1. (12)

Using this probability, the following moment quantities with respect to the numbers of

prompt and delayed neutrons are defined as

〈
νp

〉
≡

∞

∑
n=0

∞

∑
c=0

npf (n, c) , (13)

〈νd〉 ≡
∞

∑
n=0

∞

∑
c=0

cpf (n, c) , (14)

〈
νp

(
νp − 1

)〉
≡

∞

∑
n=0

∞

∑
c=0

n (n − 1) pf (n, c) , (15)
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〈
νpνd

〉
≡

∞

∑
n=0

∞

∑
c=0

ncpf (n, c) , (16)

〈νd (νd − 1)〉 ≡
∞

∑
n=0

∞

∑
c=0

c (c − 1) pf (n, c) . (17)

The delayed neutron fraction β is naturally written as

β ≡ 〈νd〉〈
νp

〉
+ 〈νd〉

. (18)

Furthermore, the reactivity ρ, the neutron generation time Λ, and the neutron decay

constant α are defined as follows:

ρ ≡
λf

{〈
νp

〉
+ 〈νd〉

}
− (λc + λf + λd)

λf
{〈

νp
〉
+ 〈νd〉

} , (19)

Λ ≡ 1
λf

{〈
νp

〉
+ 〈νd〉

} , (20)

α ≡ β − ρ

Λ
= (λc + λf + λd) − λf

〈
νp

〉
. (21)

As illustrated in Fig. 3, it is assumed that the neutron bursts are periodically trig-

gered at time mτ (m = −∞, . . . ,−1, 0, 1, . . . , +∞). All neutrons born from one neutron

burst are assumed to be simultaneously injected into the subcritical system.

The probability that q neutrons are born in one neutron burst is denoted by pb (q),

and is supposed to be normalized as

∞

∑
q=0

pb (q) = 1. (22)

Using this probability, the following moment quantities with respect to the numbers of

injected neutrons are defined as

〈ξ〉 ≡
∞

∑
q=0

qpb (q) , (23)
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〈ξ (ξ − 1)〉 ≡
∞

∑
q=0

q (q − 1) pb (q) . (24)

3.2. One-time-point neutron detection probability

In the de Hoffmann’s formulation approach, all possible event combinations that

result in the neutron detection must be taken into consideration (de Hoffmann, 1949;

Albrecht, 1962; Yamane and Pázsit, 1998). To complete such a task, it is helpful to draw

schematic illustrations where possible event combinations are depicted. Furthermore,

the population of progeny neutrons at time t originating from one ancestor neutron

born at time 0 is introduced as Gp (t) (see also Appendix A).

Figure 4 shows a schematic illustration for deriving the one-time-point probabil-

ity P1 (t1) dt1. In this figure, a possible event combination that results in the neutron

detection within dt1 around t1 is depicted; the progeny of q neutrons born in the neu-

tron burst at tb (< t1) survive until t1 (< τ) then one of them is detected within dt1.

By using the notations defined in the previous subsection and Gp (t), one immediately

writes the probability that a progeny neutron of the q neutrons born at tb is detected

within dt1 around t1 as

λddt1 · qGp (t1 − tb) , (25)

where λddt1 is the probability that one neutron is detected within dt1, and qGp (t1 − tb)

the population of progeny neutrons at t1 originating from q neutrons born at tb.

Since q can take only integer values from 0 to ∞, multiplying Eq. (25) by pb (q) and

then summing over q, one obtains the probability that one neutron originating from

the neutron burst at tb is detected within dt1 around t1, i.e., P1 (tb → t1) dt1, as

P1 (tb → t1) dt1 ≡ λd

∞

∑
q=0

qpb (q) Gp (t1 − tb) dt1 = λd 〈ξ〉 Gp (t1 − tb) dt1. (26)

Therefore, by setting tb = mτ then summing up m from −∞ to 0, P1 (t1) dt1 can be
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Figure 3: Timing diagram of periodically triggered neutron bursts.
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Figure 4: Neutron detection originating from neutron burst.
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written as follows:

P1 (t1) dt1 =
0

∑
m=−∞

P1 (mτ → t1) dt1

= λd 〈ξ〉 ∑
i=p,d

Ωp,i

(
0

∑
m=−∞

eαimτ

)
e−αit1dt1

= λd 〈ξ〉 ∑
i=p,d

Ωp,i∆αiτe−αit1dt1, 0 ≤ t1 < τ,

(27)

where ∆γ is defined as

∆γ ≡
0

∑
m=−∞

emγ =
1

1 − e−γ
. (28)

3.3. Two-time-point neutron detection probability

3.3.1. Components in two-time-point neutron detection probability

de Hoffmann (1949) indicated that the two-time-point neutron detection probability

P2 (t1, t2) dt1dt2 consists of two components, i.e.,

P2 (t1, t2) dt1dt2 = P(c)
2 (t1, t2) dt1dt2 + P(u)

2 (t1, t2) dt1dt2, (29)

where the first term is the correlated one, and the second the uncorrelated one (0 <

t1 < t2 ≤ τ). The correlated term corresponds to cases of detecting pairs of neutrons

that can be traced back to a common branching process. When a plural number of

neutrons are simultaneously born from the extraneous neutron source, the correlated

term is further divided into two mutually exclusive ones (Yamane and Pázsit, 1998) as

P(c)
2 (t1, t2) dt1dt2 = P(c-f)

2 (t1, t2) dt1dt2 + P(c-b)
2 (t1, t2) dt1dt2, (30)

where the first and second terms are the correlated term where the nearest common

branching processes are the fission reaction (see Fig. 5) and the neutron burst (see Fig.

6), respectively. On the other hand, the uncorrelated term corresponds to cases of

detecting pairs of neutrons that cannot be traced back to common branching processes
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(see Fig. 7).

3.3.2. Correlated term due to branching by fission reaction

The probability P(c-f)
2 (t1, t2) dt1dt2 is calculated with the help of the schematic illus-

tration given in Fig. 5. Before calculating P(c-f)
2 (t1, t2) dt1dt2, the population of progeny

neutrons at time t originating from one ancestor delayed neutron precursor born at

time 0 is introduced as Gd (t) (see also Appendix B).

(a) The probability that a progeny neutron of the q neutrons born in the neutron

burst at tb induces a fission reaction within dtf around tf (> tb):

λfdtf · qGp (tf − tb) . (31)

(b) The joint probability that a progeny neutron of one of the n prompt neutrons born

at tf is detected within dt1 around t1 (> tf) and a progeny neutron of one of the

remaining n − 1 prompt neutrons is detected within dt2 around t2:

{
λddt1 · nGp (t1 − tf)

}
×

{
λddt2 · (n − 1) Gp (t2 − tf)

}
. (32)

(c) The joint probability that a progeny neutron of the n prompt neutrons born at tf

is detected within dt1 around t1 and a progeny neutron of the c delayed neutron

precursors born at tf is detected within dt2 around t2:

{
λddt1 · nGp (t1 − tf)

}
× {λddt2 · cGd (t2 − tf)} . (33)

(d) The joint probability that a progeny neutron of the c delayed neutron precursors

born at tf is detected within dt1 around t1 and a progeny neutron of the n prompt

neutrons born at tf is detected within dt2 around t2:

{λddt1 · cGd (t1 − tf)} ×
{

λddt2 · nGp (t2 − tf)
}

. (34)
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(e) The joint probability that a progeny neutron of one of the c delayed neutron pre-

cursors born at tf is detected within dt1 around t1 and a progeny neutron of one

of the remaining c − 1 delayed neutron precursors born at tf is detected within

dt2 around t2:

{λddt1 · cGd (t1 − tf)} × {λddt2 · (c − 1) Gd (t2 − tf)} . (35)

Since q, n, and c can take only integer values from 0 to ∞, then one proceeds as follows:

first we have added up Eqs. (32), (33), (34) and (35), and we have multiplied the result

by Eq. (31). Then, the resulting equation has been multiplied by pb (q) and pf (n, c).

Finally a summation has been performed with respect to all values of q, n, and c. This

set of operations gives the probability that one fission reaction originating from the

neutron burst at tb is induced within dtf around tf then a pair of neutrons originating

from the fission reaction at tf are detected within dt1 around t1 and dt2 around t2, i.e.,

P(c-f)
2 (tb → tf → t1, t2) dtfdt1dt2, as

P(c-f)
2 (tb → tf → t1, t2) dtfdt1dt2

≡ λ2
dλf

∞

∑
q=0

qpb (q) Gp (tf − tb)

×
∞

∑
n=0

∞

∑
c=0

pf (n, c)



n (n − 1) Gp (t1 − tf) Gp (t2 − tf)

+ ncGp (t1 − tf) Gd (t2 − tf)

+ cnGd (t1 − tf) Gp (t2 − tf)

+ c (c − 1) Gd (t1 − tf) Gd (t2 − tf)


dtfdt1dt2

= λ2
dλf 〈ξ〉 Gp (tf − tb)



〈
νp

(
νp − 1

)〉
Gp (t1 − tf) Gp (t2 − tf)

+
〈
νpνd

〉 
Gp (t1 − tf) Gd (t2 − tf)

+ Gd (t1 − tf) Gp (t2 − tf)


+ 〈νd (νd − 1)〉 Gd (t1 − tf) Gd (t2 − tf)


dtfdt1dt2.

(36)
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When tb is set to be mτ owing to the periodicity of neutron bursts, one sees from Fig. 5

that tf can take values in the interval from mτ to t1 and m can take only integer values

from −∞ to 0. Therefore, one obtains P(c-f)
2 (t1, t2) dt1dt2 as follows:

P(c-f)
2 (t1, t2) dt1dt2 =

0

∑
m=−∞

∫ t1

mτ
dtf P(c-f)

2 (mτ → tf → t1, t2) dt1dt2

= λ2
dλf 〈ξ〉 ∑

i=p,d
∑

j=p,d
∑

k=p,d
θi,j,k


∆αiτe−(αi−αk)t1−αkt2

− ∆(αj+αk)τe−αjt1−αkt2

 dt1dt2,

(37)

where θi,j,k is defined as

θi,j,k ≡
Ωp,i

−αi + αj + αk



〈
νp

(
νp − 1

)〉
Ωp,jΩp,k

+
〈
νpνd

〉 (
Ωp,jΩd,k + Ωd,jΩp,k

)
+ 〈νd (νd − 1)〉Ωd,jΩd,k


. (38)

3.3.3. Correlated term due to branching by neutron burst

The probability P(c-b)
2 (t1, t2) dt1dt2 is calculated with the help of the schematic il-

lustration given in Fig. 6.

The joint probability that a progeny neutron of one of the q neutrons born in the

neutron burst at tb is detected within dt1 around t1 (> tb) and a progeny neutron of

one of the remaining q − 1 neutrons is detected within dt2 around t2:

{
λddt1 · qGp (t1 − tb)

}
×

{
λddt2 · (q − 1) Gp (t2 − tb)

}
. (39)

Since q can take only integer values from 0 to ∞, multiplying Eq. (39) by pb (q) and

then summing over q, one obtains the probability that a pair of neutrons originating

from the neutron burst at tb are detected within dt1 around t1 and dt2 around t2, i.e.,
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P(c-b)
2 (tb → t1, t2) dt1dt2, as

P(c-b)
2 (tb → t1, t2) dt1dt2 ≡ λ2

d

∞

∑
q=0

q (q − 1) pb (q) Gp (t1 − tb) Gp (t2 − tb) dt1dt2

= λ2
d 〈ξ (ξ − 1)〉 Gp (t1 − tb) Gp (t2 − tb) dt1dt2.

(40)

Therefore, by setting tb = mτ then summing up m from −∞ to 0, one calculates

P(c-b)
2 (t1, t2) dt1dt2 as follows:

P(c-b)
2 (t1, t2) dt1dt2 =

0

∑
m=−∞

P(c-b)
2 (mτ → t1, t2) dt1dt2

= λ2
d 〈ξ (ξ − 1)〉 ∑

j=p,d
∑

k=p,d
ηj,k∆(αj+αk)τe−αjt1−αkt2dt1dt2,

(41)

where

ηj,k ≡ Ωp,jΩp,k. (42)

3.3.4. Uncorrelated term

The probability P(u)
2 (t1, t2) dt1dt2 is calculated with the help of the schematic illus-

tration given in Fig. 7.

The joint probability that a progeny neutron of the q1 neutrons born in the neutron

burst at tb,1 is detected within dt1 around t1 (> tb,1) and a progeny neutron of the q2

neutrons born in the neutron burst at tb,2 is detected within dt2 around t2:

{
λddt1 · q1Gp (t1 − tb,1)

}
×

{
λddt2 · q2Gp (t2 − tb,2)

}
, tb,2 6= tb,1. (43)

We have to note here that the case tb,1 = tb,2 must be excluded to derive the uncor-

related term because all neutrons born in one neutron burst are regarded to be corre-

lated in the present study. Multiplying Eq. (39) by pb (q1) and pb (q2) and carrying out

summations over q1 and q2 from 0 to ∞ each, one obtains the probability that a pair

of neutrons originating from the different neutron bursts at tb,1 and tb,2 are detected

18



within dt1 around t1 and dt2 around t2, i.e., P(u)
2 (tb,1 → t1, tb,2 → t2) dt1dt2, as

P(u)
2 (tb,1 → t1, tb,2 → t2) dt1dt2

≡ λ2
d

∞

∑
q1=0

q1pb (q1)
∞

∑
q2=0

q2pb (q2) Gp (t1 − tb,1) Gp (t2 − tb,2) dt1dt2

= λ2
d 〈ξ〉

2 Gp (t1 − tb,1) Gp (t2 − tb,2) dt1dt2, tb,2 6= tb,1.

(44)

Therefore, by setting tb,1 = m1τ and tb,2 = m2τ then summing up m1 and m2 ( 6= m1)

from −∞ to 0, one obtains P(u)
2 (t1, t2) dt1dt2 as follows:

P(u)
2 (t1, t2) dt1dt2 =

0

∑
m1=−∞

0

∑
m2=−∞
m2 6=m1

P(u)
2 (m1τ → t1, m2τ → t2) dt1dt2

= λ2
d 〈ξ〉

2
0

∑
m1=−∞


0

∑
m2=−∞

Gp (t1 − m1τ) Gp (t2 − m2τ)

− Gp (t1 − m1τ) Gp (t2 − m1τ)

 dt1dt2

= λ2
d 〈ξ〉

2 ∑
j=p,d

∑
k=p,d

ηj,k

{
∆αjτ∆αkτ − ∆(αj+αk)τ

}
e−αjt1−αkt2dt1dt2.

(45)

3.3.5. Summary of two-time-point neutron detection probability

As mentioned before, the two-time-point neutron detection probability P2 (t1, t2) dt1dt2

consists of the correlated and uncorrelated terms. Therefore, one derives P2 (t1, t2) dt1dt2

as the summation of Eqs. (37), (41), and (45), i.e.,

P2 (t1, t2) dt1dt2

= λ2
dλf 〈ξ〉 ∑

i=p,d
∑

k=p,d

(
θi,p,k + θi,d,k

)
∆αiτe−(αi−αk)t1−αkt2dt1dt2

+ λ2
d 〈ξ〉

2 ∑
j=p,d

∑
k=p,d

ηj,k

{
χj,k∆(αj+αk)τ + ∆αjτ∆αkτ

}
e−αjt1−αkt2dt1dt2,

(46)

where

χj,k ≡ − λf

〈ξ〉
θp,j,k + θd,j,k

ηj,k
+

〈ξ (ξ − 1)〉
〈ξ〉2 − 1. (47)
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3.4. Theoretical formula of modified Feynman-alpha technique

Using the one- and two-time-point neutron detection probabilities, i.e., Eqs. (27)

and (46), one can now calculate the moment quantities given in Eqs. (8) to (10) that are

needed to derive the theoretical formula of the modified Feynman-alpha technique:

〈Zx〉 = λd 〈ξ〉 ∑
i=p,d

Ωp,i∆αiτ

αi
e−αiw e−αixT0

∆αiT0e−αiT0
, (48)

〈Zx (Zx − 1)〉 = 2λ2
dλf 〈ξ〉 ∑

i=p,d

(
θi,p,i + θi,d,i

)
∆αiτ

α2
i

e−αiw
(
1 − αiT0∆αiT0e−αiT0

)
e−αixT0

∆αiT0e−αiT0

+ 2λ2
dλf 〈ξ〉 ∑

i=p,d
∑

i′=p,d
i′ 6=i

(
θi,p,i′ + θi,d,i′

)
∆αiτ

αi (αi′ − αi)
e−αiw

(
1 − αi∆αiT0

αi′∆αi′T0

)
e−αixT0

∆αiT0e−αiT0

− 2λ2
d 〈ξ〉

2 ∑
j=p,d

∑
k=p,d

ηj,k

{
χj,k∆(αj+αk)τ + ∆αjτ∆αkτ

}
αjαk

e−(αj+αk)w

×

{
αk∆αkT0

(αj+αk)∆(αj+αk)T0

− 1

}
e−(αj+αk)xT0

∆αkT0e−(αj+αk)T0
,

(49)

〈
ZxZx+y

〉
= λ2

dλf 〈ξ〉 ∑
i=p,d

(
θi,p,i + θi,d,i

)
∆αiτ

α2
i

e−αiw αiT0e−αi(x+y)T0

∆αiT0e−αiT0

+ λ2
dλf 〈ξ〉 ∑

i=p,d
∑

i′=p,d
i′ 6=i

(
θi,p,i′ + θi,d,i′

)
∆αiτ

αi (αi′ − αi)
e−αiw −αie

−(αix+αi′y)T0

αi′∆αi′T0∆(αi−αi′)T0
e−αiT0

− λ2
d 〈ξ〉

2 ∑
j=p,d

∑
k=p,d

ηj,k

{
χj,k∆(αj+αk)τ + ∆αjτ∆αkτ

}
αjαk

e−(αj+αk)w

× −e−{(αj+αk)x+αky}T0

∆αjT0∆αkT0e−(αj+αk)T0
.

(50)
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One hence obtains 〈M (w, T)〉 and 〈V (w, T)〉 by substituting Eqs. (48) to (50) into Eqs.

(6) and (7) as

〈M (w, T)〉 = λd 〈ξ〉
1

Nr
∑

i=p,d

Ωp,i∆αiτ

αi
e−αiw

(
1 − e−αi NrT

)
, (51)

〈V (w, T)〉 = λd 〈ξ〉
1

Nr
∑

i=p,d

Ωp,i∆αiτ

αi
e−αiw

(
1 − 1

Nr

) (
1 − e−αi NrT

)
+ 2λ2

dλf 〈ξ〉
1

Nr
∑

i=p,d

(
θi,p,i + θi,d,i

)
∆αiτ

α2
i

e−αiw

×
(

1 − e−αi NrT
) {

1 − αiTe−αiT

1 − e−αiT
− 1

Nr

(
1 − αiNrTe−αi NrT

1 − e−αi NrT

)}

+ 2λ2
dλf 〈ξ〉

1
Nr

∑
i=p,d

∑
i′=p,d

i′ 6=i

(
θi,p,i′ + θi,d,i′

)
∆αiτ

αi (αi′ − αi)
e−αiw

×
(

1 − e−αi NrT
) {

1 − αi

αi′

1 − e−αi′T

1 − e−αiT
− 1

Nr

(
1 − αi

αi′

1 − e−αi′ NrT

1 − e−αi NrT

)}

− 2λ2
d 〈ξ〉

2 1
Nr

∑
j=p,d

∑
k=p,d

ηj,k

{
χj,k∆(αj+αk)τ + ∆αjτ∆αkτ

}
αjαk

e−(αj+αk)w

×
{

1 − e−(αj+αk)NrT
}


αk

αj + αk
− 1 − e−αkT

1 − e−(αj+αk)T

− 1
Nr

{
αk

αj + αk
− 1 − e−αk NrT

1 − e−(αj+αk)NrT

}
 .

(52)

The theoretical formula 〈Y (w, T)〉 can now be derived by substituting Eqs. (51) and

(52) into Eq. (5). However, in the modified Feynman-alpha technique, thus obtained

formula (rigorous one, hereafter) is not utilized because it is too complicated. Instead,

let us introduce a wider masking window w̃ that allows the following approximation,

e−αpw̃ ' 0. (53)
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Equations (51) and (52) with w̃, i.e., 〈M (w̃, T)〉 and 〈V (w̃, T)〉, are written as follows:

〈M (w̃, T)〉 = λd 〈ξ〉
1

Nr

Ωp,d∆αdτ

αd
e−αdw̃

(
1 − e−αdNrT

)
, (54)

〈V (w̃, T)〉 = λd 〈ξ〉
1

Nr

Ωp,d∆αdτ

αd
e−αdw̃

(
1 − 1

Nr

) (
1 − e−αdNrT

)
+ 2λ2

dλf 〈ξ〉
1

Nr

(
θd,p,d + θd,d,d

)
∆αdτ

α2
d

e−αdw̃
(

1 − e−αdNrT
)

×
{

1 − αdTe−αdT

1 − e−αdT − 1
Nr

(
1 − αdNrTe−αdNrT

1 − e−αdNrT

)}
+ 2λ2

dλf 〈ξ〉
1

Nr

(
θd,p,p + θd,d,p

)
∆αdτ

αd
(
αp − αd

) e−αdw̃
(

1 − e−αdNrT
)

×
{

1 − αd

αp

1 − e−αpT

1 − e−αdT − 1
Nr

(
1 − αd

αp

1 − e−αpNrT

1 − e−αdNrT

)}

− 2λ2
d 〈ξ〉

2 1
Nr

ηd,d

{
χd,d∆2αdτ + ∆2

αdτ

}
α2

d
e−2αdw̃

(
1 − e−2αdNrT

)
×

{
1
2
− 1

1 + e−αdT − 1
Nr

(
1
2
− 1

1 + e−αdNrT

)}
.

(55)

One hence obtains 〈Y (w̃, T)〉 as

〈Y (w̃, T)〉 =
2λdλf

(
θd,p,d + θd,d,d

)
αdΩp,d

×
{

1 − αdTe−αdT

1 − e−αdT − 1
Nr

(
1 − αdNrTe−αdNrT

1 − e−αdNrT

)}
+

2λdλf
(
θd,p,p + θd,d,p

)(
αp − αd

)
Ωp,d

×
{

1 − αd

αp

1 − e−αpT

1 − e−αdT − 1
Nr

(
1 − αd

αp

1 − e−αpNrT

1 − e−αdNrT

)}

−
2λd 〈ξ〉 ηd,d

{
χd,d

∆2αdτ

∆αdτ
+ ∆αdτ

}
αdΩp,d

e−αdw̃
(

1 + e−αdNrT
)

×
{

1
2
− 1

1 + e−αdT − 1
Nr

(
1
2
− 1

1 + e−αdNrT

)}
− 1

Nr
.

(56)

With a longer pulse repetition period τ than the masking window w, one can obtain
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a greater number of neutron count data with respect to T0 (see also Fig. 2). Under such

a condition, when one restricts the Y curve to a shorter gate width range in determining

the neutron decay constant, one can introduce the following approximation (Kitamura

et al., 2000),

Nr '
NT0

T
, (57)

owing to a small difference between Nr and N/r. We would like to remind that Nr is

the maximum integer that does not exceed N/r. Hence, one re-writes 〈Y (w̃, T)〉 as

〈Y (w̃, T)〉 =
2λdλf

(
θd,p,d + θd,d,d

)
αdΩp,d

(
1 − αdTe−αdT

1 − e−αdT

)
+

2λdλf
(
θd,p,p + θd,d,p

)(
αp − αd

)
Ωp,d

(
1 − αd

αp

1 − e−αpT

1 − e−αdT

)

−
2λd 〈ξ〉 ηd,d

{
χd,d

∆2αdτ

∆αdτ
+ ∆αdτ

}
αdΩp,d

e−αdw̃
(

1 + e−αdNT0
) (

1
2
− 1

1 + e−αdT

)
− φ (w̃) T,

(58)

where

φ (w̃) ≡
2λdλf

(
θd,p,d + θd,d,d

)
αdΩp,d

1
NT0

(
1 − αdNT0e−αdNT0

1 − e−αdNT0

)
+

2λdλf
(
θd,p,p + θd,d,p

)(
αp − αd

)
Ωp,d

1
NT0

(
1 − αd

αp

1 − e−αpNT0

1 − e−αdNT0

)

−
2λd 〈ξ〉 ηd,d

{
χd,d

∆2αdτ

∆αdτ
+ ∆αdτ

}
αdΩp,d

e−αdw̃ 1
NT0

(
1 + e−αdNT0

)
×

(
1
2
− 1

1 + e−αdNT0

)
+

1
NT0

.

(59)

When one utilizes the Y curve of a shorter gate width range in determining the
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neutron decay constant, one can further introduce the following approximation,

αdT ' 0. (60)

Therefore, one can apply the following theoretical formula (simple one, hereafter):

〈Y (w̃, T)〉 = Y0

(
1 − 1 − e−αpT

αpT

)
−Y1T, (61)

where

Y0 ≡
2λdλf

(
θd,p,p + θd,d,p

)(
αp − αd

)
Ωp,d

, (62)

Y1 ≡ φ (w̃) −
λdλf

(
θd,p,d + θd,d,d

)
Ωp,d

−
λd 〈ξ〉 ηd,d

{
χd,d

∆2αdτ

∆αdτ
+ ∆αdτ

}
2Ωp,d

e−αdw̃
(

1 + e−αdNT0
)

.

(63)

We would like to note here that the second term −Y1T is added to the formula utilized

in the subcriticality measurement experiment at the KUCA (Misawa et al., 2014) be-

cause the finite measurement time effect (Wallerbos and Hoogenboom, 1998) and the

delayed neutrons were explicitly taken into consideration in the present study. How-

ever, Eq. (61) is still much simpler than those of some Feynman-alpha techniques for

the ADS with pulse mode developed so far.

4. Discussions

4.1. Verification of theoretical formula by Monte Carlo calculations

In Section 3, the experimental conditions under which the simple formula Eq. (61)

works were extracted; a wider masking window, a longer pulse repetition period of

neutron bursts, and restricted utilization of Y curve to a shorter gate width range.

Among them, the third one is not peculiar to the modified Feynman-alpha technique,

rather very common in the conventional Feynman-alpha techniques. Hence, in the

present section, the remaining two experimental conditions are discussed by using the

24



rigorous formula 〈Y (w, T)〉 that is derived by substituting Eqs. (51) and (52) into Eq.

(5). Prior to the discussion, verification of the rigorous formula is provided in this

subsection.

To verify the rigorous formula, a series of mono-energy analogue Monte Carlo cal-

culations, where a typical thermal subcritical system with a subcriticality of 2.9 %∆k/k

is supposed, was carried out. The parameters for these Monte Carlo calculations are

listed in Table 1. Because of the neutron life time of the order of 10−5 s, one understands

that the system is belonging to the light water one. In these Monte Carlo calculations,

the time of every neutron detection event in an imaginary neutron detector was tallied

to obtain the time series data. For simplicity, the probability that n prompt neutrons

and c delayed neutron precursors are born in one fission reaction, i.e., pf (n, c), was

assumed to be expressed as

pf (n, c) ≡ pf,p (n) · pf,d (c) , (64)

where pf,p (n) is the probability that n prompt neutrons are born in one fission reaction,

and pf,d (c) the probability that c delayed neutron precursors are born. In the present

calculations, a binomial type distribution by Diven et al. (1956) was supposed for re-

spective probabilities in determining the numbers of neutrons or precursors born in

one fission reaction, i.e.,

pf,p (n) ≡ 5!
n! (5 − n)!

[〈
νp

〉
5

]n [
1 −

〈
νp

〉
5

]5−n

, n = 0, 1, . . . , 5, (65)

pf,d (c) ≡ 2!
c! (2 − c)!

[
〈νd〉

2

]c [
1 − 〈νd〉

2

]2−c
, c = 0, 1, 2. (66)

On the other hand, as seen in Table 1, the probability that q neutrons are born in one

neutron burst, i.e., pb (q), is defined on the basis of the Poisson distribution.

In the Monte Carlo calculations, 10,000 sets of the time series data where the neu-

tron bursts with a pulse repetition period τ of 0.25 s start at time −800 s and finish at
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Table 1: Parameters for Monte Carlo calculations.

Parameter: Value

λs [s−1]: 1310617.02249

λc [s−1]: 33196.23153

λf [s−1]: 21685.74903

λd [s−1]: 334.85040〈
νp

〉
[-]: 2.4564375

〈νd〉 [-]: 0.0185625

β [-]: 0.0075

pf (n, c) [-]: pf,p (n) · pf,d (c)

pf,p (n) [-]: 0.0340692086 (n = 0)

0.1645111565 (n = 1)

0.3177522660 (n = 2)

0.3068682534 (n = 3)

0.1481785262 (n = 4)

0.0286205893 (n = 5)

pf,d (c) [-]: 0.9815236416 (c = 0)

0.0183902168 (c = 1)

0.0000861416 (c = 2)

〈ξ〉 [-]: 25000

ps (q) [-]:


0, 0 ≤ q < 24900, 25100 ≤ q
100(q−24900)e−100

(q − 24900)!
, 24900 ≤ q < 25100

λ [s−1]: 0.077

τ [s]: 0.25
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time 0 s were obtained. By using the 10,000 sets of time series data between 0 s and 0.25

s, the Y curves were calculated by introducing various widths of the masking window

w. Thus obtained Y curves and the corresponding rigorous formula are plotted in Fig.

8. In this figure, one confirms that the rigorous formula agree well with the Y curves

by the Monte Carlo calculations. Therefore, it is considered that the rigorous formula

derived in the present study was verified.

4.2. Experimental conditions for modified Feynman-alpha technique

By using the rigorous formula 〈Y (w, T)〉, various Y curves were plotted with the

parameters listed in Table 1 by changing the pulse repetition period τ from 10+1.6/αp

to 10+3.0/αp and the masking window width w from 10+0.0/αp to 10+3.0/αp. To thus

plotted Y curves ranging up to 5 ms at most, the simple formula, i.e., Eqs. (61), was ap-

plied to determine Y0, Y1, and αp by the least square fitting technique. The deviations

of the αp values thus determined from the reference (1947.16 s−1) that can be calculated

by the parameters listed in Table 1 were plotted in Fig. 9.

It is seen in Fig. 9 that one cannot stably determine the αp value within 1% error

when the pulse repetition period τ is less than 10+2.0/αp. At the same time, one finds

that the masking window w ranging from 10+1.0/αp to 10+1.2/αp is suitable to deter-

mine the αp value.

5. Conclusion and future work

In the present paper, a theory of the modified Feynman-alpha technique for the sub-

critical system driven by periodically triggered neutron bursts was developed by the

de Hoffmann’s formulation approach to apply this technique to the subcriticality mon-

itor for the accelerator-driven system. Through derivation of the theoretical formula

for determining the neutron decay constant αp by this technique, the experimental

conditions under which this formula works were discussed. A numerical investiga-

tion revealed that these are the pulse repetition period of neutron bursts that is longer

than 10+2.0/αp and the masking window ranging from 10+1.0/αp to 10+1.2/αp.

27



10
−2

10
−1

10
+0

10
+1

10
+2

10
+3

10
+4

10
−5

10
−4

10
−3

10
−2

Y
 [

-]

Gate width [s]

Monte Carlo: w = 0.00001 s
0.0001 s
0.001 s
0.01 s

0.1 s
Theoretical formula
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As mentioned before, the other feature of this technique is a possibility of sup-

pressing the space dependency effect in evaluating the subcriticality. In a forthcoming

paper, hence, discussions on this feature will be reported.
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Appendix A. Population of progeny neutrons originating from one ancestor neu-

tron

In the de Hoffmann’s formulation approach, the population of progeny neutrons at

time t originating from one ancestor neutron born at time 0, i.e., Gp (t), plays a very

essential role, so that it is derived here.

The reactor kinetic equations with one group of delayed neutron precursors are

written as follows: 
dN (t)

dt
= −αN (t) + λC (t) , (A.1)

dC (t)
dt

= −λC (t) +
β

Λ
N (t) , (A.2)

where N (t) and C (t) are the populations of neutrons and delayed neutron precursors

in the system of interest, respectively. Replacing N (t) with Gp (t) and C (t) with Hp (t)

then adding the Dirac’s delta δ (t) to the right-hand side of Eq. (A.1), one obtains


dGp (t)

dt
= −αGp (t) + λHp (t) + δ (t) , (A.3)

dHp (t)
dt

= −λHp (t) +
β

Λ
Gp (t) , (A.4)

where Hp (t) is the population of progeny delayed neutron precursors at t originating

from one ancestor neutron born at 0. Since the initial conditions of Gp (t) and Hp (t)

are read as Gp (0) = 0, (A.5)

Hp (0) = 0, (A.6)

their Laplace transforms, i.e., Ĝp (s) and Ĥp (s), are calculated as


Ĝp (s) =

s + λ

s2 + (α + λ) s − λρ
Λ

, (A.7)

Ĥp (s) =
β
Λ

s2 + (α + λ) s − λρ
Λ

. (A.8)
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By introducing

αp ≡
(α + λ) Λ +

√
(α + λ)2 Λ2 + 4λΛρ

2Λ
, (A.9)

αd ≡
(α + λ) Λ −

√
(α + λ)2 Λ2 + 4λΛρ

2Λ
, (A.10)

Ωp,i ≡
αi − λ

αi − αi′
, i = p, d, i′ 6= i, (A.11)

one re-writes Eq. (A.7) as

Ĝp (s) = ∑
i=p,d

Ωp,i

s + αi
. (A.12)

Therefore, Gp (t) is derived as follows:

Gp (t) = ∑
i=p,d

Ωp,ie−αit. (A.13)

Appendix B. Population of progeny neutrons originating from one ancestor de-

layed neutron precursor

Here, derivation of the population of progeny neutrons at time t originating from

one ancestor delayed neutron precursor born at time 0, i.e., Gd (t), is provided.

By replacing N (t) with Gd (t) and C (t) with Hd (t) then adding the Dirac’s delta

δ (t) to the right-hand side of Eq. (A.2), one obtains


dGd (t)

dt
= −αGd (t) + λHd (t) , (B.1)

dHd (t)
dt

= −λHd (t) +
β

Λ
Gd (t) + δ (t) , (B.2)

where Hd (t) is the population of progeny delayed neutron precursors at t originating

from one ancestor delayed neutron precursors born at 0. Since the initial conditions of

Gd (t) and Hd (t) are read as

{ Gd (0) = 0, (B.3)

Hd (0) = 0, (B.4)
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their Laplace transforms, i.e., Ĝd (s) and Ĥd (s), are calculated as


Ĝd (s) =

λ

s2 + (α + λ) s − λρ
Λ

, (B.5)

Ĥd (s) =
s + α

s2 + (α + λ) s − λρ
Λ

. (B.6)

By introducing

Ωd,i ≡ − λ

αi − αi′
, i = p, d, i′ 6= i, (B.7)

one re-writes Eq. (B.5) as

Ĝd (s) = ∑
i=p,d

Ωd,i

s + αi
. (B.8)

Therefore, Gd (t) is derived as follows:

Gd (t) = ∑
i=p,d

Ωd,ie
−αit. (B.9)
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