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ABSTRACT 

Aerogels have many attractive properties but are usually costly and too friable, which always 

limit their practical applications. Besides, almost all of the reinforced aerogels sacrifice the 

transparency or superinsulating properties. Here we report unprecedented superflexible 

polyvinylpolymethylsiloxane ((CH2CH)n(CH3)SiO2/2) aerogels that are facilely prepared from a 

single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic 

crosslinkers. It is based on a consecution of radical polymerization and hydrolytic 

polycondensation followed by ultralow-cost, highly scalable ambient pressure drying directly 

from alcohol as a drying medium without any modification and additional solvent exchange. The 

resulting aerogels and xerogels show a unique, homogeneous, tunable, highly porous, doubly 

crosslinked nanostructure with the elastic polymethylsiloxane network crosslinked with flexible 

hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore 

size, high surface area, high transparency, high hydrophobicity, excellent machinability, 

superflexibility in compression, superflexibility in bending and superinsulating properties has 

been achieved in a single aerogel and xerogel for the first time. This study represents a 

significant progress of porous materials and makes the practical applications of transparent 

flexible aerogel-based superinsulators realistic. 

 

KEYWORDS: polyvinylpolymethylsiloxane aerogel, ultralow cost, transparent, superflexible, 

superinsulating 
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Aerogels are a kind of highly porous materials typically obtained by the sol-gel process 

combined with a specific drying process. Since they were first prepared in 1931, many types of 

aerogels such as silica, 1,2 metal oxide, 3,4 chalcogenide, 5 cellulose, 6,7 polymer, 8 carbon, 9 carbon 

nanotube, 10,11 and graphene12,13 have been developed. Aerogels show a variety of attractive 

properties such as high porosity, high specific surface area (SSA), low density and low thermal 

conductivity. 3-6 Owing to their unique properties, aerogels have drawn great interests in a wide 

range of applications including thermal insulators, adsorbents, catalyst supports, energy storage, 

Cherenkov radiators and cosmic dust collectors. 3,4,6 However, there are two disadvantages that 

limit the practical applications of aerogels. First, because they are composed mostly of air and 

their skeletons consist of randomly interconnected nanoparticles, aerogels are usually too friable. 

Although some aerogels based on nanofibers exhibit compressibility or bendability, 14,15 

transparent low-density aerogels combining compressing and bending flexibility are rarely 

reported. Second, a crucial step for the preparation of aerogels is the drying process, which 

replaces the liquid solvent within the pores of the gels with air. In order to preserve their 

friable/deformable porous structure, aerogels are usually prepared via supercritical drying (SCD), 

which minimizes the contraction of the drying gel but requires high pressure, thus making their 

preparation energy-consuming and expensive. 3  

To facilitate the drying process, ambient pressure drying (APD) has been developed. 16 This 

drying method usually involves multistep solvent exchange with solvent having low surface 

tension and a modification by silylation of residual silanol groups with an organosilane 

compound to render the surface hydrophobicity. However, the aerogels prepared via APD usually 
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show serious cracking because of the friable structure of the gels, which makes it difficult to 

obtain low-density monolithic aerogels via APD.  

To overcome their friability, significant efforts have been dedicated to enhance the toughness 

of aerogels by crosslinking with organic compounds. Many robust silica-based composite 

aerogels have been developed by crosslinking with organic compounds such as isocyanate, 

epoxide, polyimide and polyacrylate. 17-20 Unlike native silica aerogels with high visible light 

transparency, high SSA and low density, however, most of the reinforced aerogels are not 

transparent in visible light region because of their coarsened microstructure and/or increased 

inhomogeneity and exhibit lower SSAs and higher density by the incorporation of organic 

compounds. These changes restrict their applications in thermal superinsulation (especially 

transparent window insulation), adsorption, catalysis, etc. Besides, this crosslinking method 

usually adds some tedious steps in the preparation process, which also discourages the practical 

applications.  

Another approach to improve the mechanical properties is to use a trifunctional 

organoalkoxysilane such as methyltrimethoxysilane/methyltriethoxysilane (MTMS/MTES), 

ethyltrimethoxysilane (ETMS) or vinyltrimethoxysilane (VTMS) as a single precursor to prepare 

polyorganosilsesquioxane aerogels. 21-23 Transparent and elastic polyorganosilsesquioxane 

aerogels can be obtained by suppressing the macroscopic phase separation of the hydrophobic 

network via the utilization of an adequate surfactant, but those aerogels do not show bending 

flexibility. 21,22 It is reported that incorporating a difunctional organoalkoxysilane in the MTMS 

system enhances the flexibility but sacrifices the transparency, resulting from the macroscopic 
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phase separation of the more hydrophobic network. 24 Organo-bridged alkoxysilane precursors 

are also used to improve the mechanical properties of aerogels. 25-28 Although some of the 

obtained aerogels based on hexylene-bridged polysilsesquioxane29 and 

ethylene-bridged/ethenylene-bridged polymethylsiloxane27,30 are transparent and show 

bendability due to the organic bridge, their bendability is far from satisfactory. It therefore still 

remains a great challenge to prepare bendable and elastic aerogels with high transparency. 

Radical polymerization of monomers that contain alkene groups is another effective approach 

to enhance the mechanical properties of aerogels. Optically opaque and mechanically strong 

silica-based aerogels crosslinked with polystyrene or poly(butyl acrylate) prepared by radical 

polymerization have been reported. 20,31 Radical polymerization of vinyl groups in the network of 

polyvinylsilsesquioxane gels also leads to mechanically reinforced aerogels. 23 Up to now, most 

of the reinforcement by radical polymerization on silica-based aerogels is processed as a 

post-gelation treatment. It is noteworthy that flexible hybrid wet gels and dense gel films can be 

obtained by radical polymerization of VTMS, followed by the hydrolytic polycondensation. 32,33 

The polyethylene chains interconnected with siloxane bonds in the network provide flexibility to 

the hybrid gel. In addition, mechanically strong and flexible organic polymer hydrogels with a 

double network structure were synthesized via a radical polymerization. 34-37 The obtained gels 

contain two interpenetrating soft and sacrificial rigid polymer networks with no chemical 

crosslinking between two networks. These two examples implicate a probability of further 

reinforcement of aerogel materials by a doubly crosslinked network, which can be derived by 

radical polymerization followed by hydrolytic polycondensation from specific 
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organoalkoxysilanes with alkene groups for instance. However, to the best of our knowledge, 

there is no report on the preparation of aerogels via this kind of method. 

Here, we report unprecedented superflexible aerogels—polyvinylpolymethylsiloxane (PVPMS, 

(CH2CH)n(CH3)SiO2/2) aerogels that have been facilely prepared for the first time by a 

combination of radical polymerization and hydrolytic polycondensation from a single 

difunctional precursor with one vinyl group and two alkoxy groups —

vinylmethyldimethoxysilane (VMDMS) or vinylmethyldiethoxysilane (VMDES), followed by 

SCD or ultralow-cost APD. Direct hydrolysis and condensation of VMDMS or VMDES do not 

afford a three-dimensional network structure because it contains only two hydrolysable groups. 

In our approach (Figure 1a), the precursor is first radically polymerized using di-tert-butyl 

peroxide (DTBP) as an initiator to afford polyvinylmethyldimethoxysilane (PVMDMS) or 

polyvinylmethyldiethoxysilane (PVMDES). The conversion and degree of polymerization of 

PVMDMS or PVMDES are readily controlled by adjusting polymerization time and the initiator 

concentration. The obtained PVMDMS or PVMDES is then subjected to hydrolysis and 

condensation with tetramethylammonium hydroxide (TMAOH) as a base catalyst, leading to 

transparent gels. The aerogels and xerogels are finally obtained after SCD and APD, respectively 

(Figure 1b). In particular, crack-free aerogel-like xerogels can be obtained by APD directly from 

alcohol as a drying medium without any modification and additional solvent exchange, which 

will significantly reduce their cost of production. Both the aerogels and xerogels show a 

homogeneous, tunable, highly porous nanostructure consisting of flexible hydrocarbon chains 

and polymethylsiloxanes that are chemically crosslinked each other. Their unique doubly 
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crosslinked structure leads to a combination of low density, high SSA, high hydrophobicity, high 

transparency, excellent machinability, superflexibility in compression and bending and 

superinsulating properties in a single aerogel and xerogel. These superior properties together 

with the ultralow-cost APD make their practical applications in transparent flexible 

superinsulators feasible. 

 

RESULTS AND DISCUSSION 

  During the synthesis of PVMDMS or PVMDES polymers, the polymerization temperature is 

fixed at 120 °C, while the polymerization time is in the range of 6-72 h. Results on the radical 

polymerization of VMDMS are listed in Table S1 in the Supporting Information. Under the 

constant DTBP concentration of 1 mol%, the measured degree of polymerization of PVMDMS 

with polymerization time of 24, 48 and 72 h is 40.5, 40.5 and 45.7, respectively. Meanwhile, the 

corresponding conversion of PVMDMS is 91%, 95% and 99%, respectively, indicating the 

increase of conversion of PVMDMS with the increase of polymerization time. The resulting 

PVMDMS with a DTBP concentration of 5 mol% and polymerization time of 48 h exhibits 

higher degree of polymerization (68.0) and conversion (99%) compared to those of samples with 

the DTBP concentration of 1 mol%. 
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Figure 1. Synthesis route and resulting PVPMS aerogels and xerogels. (a) Schematic of facile 

synthesis of transparent PVPMS aerogels from a single precursor — VMDMS or VMDES by a 

combination of radical polymerization and hydrolytic polycondensation followed by SCD or 

APD. (b) Comparison of different drying methods. (c) Solid-state 29Si CP/MAS NMR spectra of 

typical PVPMS aerogels and xerogels. (d) Photograph of a large APD xerogel panel 

(AH1-48-1-100, dried from n-hexane) with width× length × height of 9 × 9 × 0.5 cm on flowers. 

(e) Photograph of a large APD xerogel panel (AH1-48-1-100-IPA, dried from IPA) with width × 

length × height of 9 × 9 × 0.5 cm in hand. (f) The contact angles of water on SH1-48-1, 
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AH1-48-1-100, AH1-48-1-100-IPA and SH1-6-1 are 131°, 133°, 133° and 154°, respectively. 

 

  Table 1 and Table S2 detail the starting compositions and typical physical properties of the 

resulting PVPMS aerogels and xerogels. The aerogel samples obtained by SCD are given the 

prefix SH, while those by APD are denoted as AH. The number 1 and 5 after the character 

indicates the aerogels with the DTBP concentration of 1% and 5%, respectively. The following 

number specifies the polymerization time of VMDMS. The third number 1, 2 and 3 indicates the 

aerogels with the molar ratio of BzOH to VMDMS of 4.3, 5.0 and 5.7, respectively. Some of the 

sample names are followed by the number 100, indicating the rigorous aging at 100 °C. The 

sample names without number 100 indicate the aging temperature of 80 °C. The following 

character “IPA” indicates APD from 2-propanol (IPA) as a drying medium, while those without 

“IPA” were dried by SCD or APD from n-hexane. The last character “E” indicates the aerogels 

obtained from VMDES, while those without “E” were obtained from VMDMS. 

  The polymerization time shows a significant influence on the microstructures and properties of 

the resulting PVPMS aerogels. As presented in the FTIR spectra (Figure S1), the residual vinyl 

groups (=C-H stretching at 3056 cm-1, C=C stretching at 1600 cm-1, =CH2 scissor at 1406 cm-1 

overlapped with –C-H deformation, and =C-H bending at 532 cm-1)38 in the aerogel gradually 

decrease with the increase of polymerization time. For the sample with polymerization time of 

24 h (SH1-24-1), the absorption bands corresponding to vinyl groups are already too weak to be 

identified in FTIR spectra, while for the sample with polymerization time of 48 h (SH1-48-1), 

there is no vinyl group absorption observed. Besides, by the solid-state 29Si cross-polarization 
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magic angle spinning (CP/MAS) NMR spectra (Figure1c), a peak at around -35ppm 

corresponding to the silicon with vinyl groups (CH2=CH(CH3)SiO2/2) is detected on SH1-24-1, 

while it is not observed on SH1-48-1. This is consistent with the results of the different 

conversion values of PVMDMS for these two samples.  

 

Table 1. Compositions and typical physical properties of the PVPMS aerogels and 

xerogels.a) 

sample DTBP 

/mol% 

tp
b) 

/h 

BzOH/Si 

/mol mol−1 

H2O/Si 

/mol mol−1 

TMAOH/Si 

/mol mol−1 

ρc) 

/g cm−3 

SBET
d) 

/m2 g−1 

de) 

/nm 

Vp
f) 

/cm3 g−1 

Tg) 

/% 

λh) 

/mW m−1 K−1 

SH1-48-1 1 48 4.3 2.0 0.030 0.22 950 32.3 3.64 82.4 15.3 

AH1-48-1 1 48 4.3 2.0 0.030 0.31 912 24.4 2.38 90.2 - 

AH1-48-1-100 1 48 4.3 2.0 0.030 0.21 906 43.6 3.95 80.6 15.4 

AH1-48-1-100-IPA 1 48 4.3 2.0 0.030 0.21 903 43.6 3.91 80.2 15.4 

AH5-48-1-100-IPA 5 48 4.3 2.0 0.030 0.22 916 32.3 3.66 84.3 15.2 

SH1-48-2 1 48 5.0 2.0 0.045 0.19 919 43.6 4.47 76.4 15.2 

AH1-48-2-100 1 48 5.0 2.0 0.045 0.18 908 50.4 4.70 75.5 15.2 

AH1-48-2-100-IPA 1 48 5.0 2.0 0.045 0.18 905 50.4 4.64 75.3 - 

AH5-48-2-100-IPA 5 48 5.0 2.0 0.045 0.19 912 43.6 4.55 78.1 15.1 

SH1-48-3 1 48 5.7 2.0 0.067 0.16 937 58.1 5.37 65.7 15.0 

a) The typical volume of VMDMS in the starting composition is 1 mL. b)Polymerization time. c) 

Bulk density. d) Brunauer-Emmett-Teller (BET) SSA obtained from nitrogen adsorption 

measurement. e) Mean pore diameter obtained from nitrogen adsorption branch via 

Barrett-Joyner-Halenda (BJH) method. f)Total pore volume obtained from bulk density and 

skeletal density. g) Visible-light transmittance at 550 nm for 2-mm thick aerogel. h) Thermal 

conductivity at room temperature and ambient pressure. 

 

  The unpolymerized VMDMS in the precursor solution tends to form cyclic and chain-like 

species during the hydrolytic polycondensation process, which results in inhomogeneous 
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gelation of the sol. In this case, macroscopic phase separation between the hydrophobic 

condensates and polar solvent occurs, resulting in precipitations or monolithic gels with 

coarsened domains and low transparency21. This tendency is supposed to be lower in PVMDMS 

compared to that of VMDMS, because the resulting PVMDMS molecules possess a large 

number of hydrolysable alkoxy groups, giving higher crosslinking density and promoting 

homogenous gelation. As a result, under the constant DTBP concentration of 1 mol%, the 

aerogels with polymerization time of 6 h and 12 h are opaque and translucent, respectively 

(Figure S2a), whereas those with polymerization time of 24, 48, and 72 h are transparent with 

bluish appearance caused by the Rayleigh scattering of short-wavelength light by their ultrafine 

particles (Figure1b and Figure S2a). The 2-mm thick PVPMS aerogels with bulk density in the 

range 0.21-0.31 g cm-3 and polymerization time of 48 h and 72 h show a high visible-light 

transmittance of 80-90% (Table 1 and Table S2).  

  The SSAs of the aerogels increase and the pore and particle size decrease with the increase of 

polymerization time in the range 6-72h (Table 1, Table S2, Figure S2b-d, and Figure S3). The 

PVPMS aerogels with polymerization time of 24, 48 and 72 h exhibit a high SSA of >900 m2 g−1, 

apparently higher than those of aerogels with shorter polymerization time (248 and 701 m2 g−1 

for SH1-6-1 and SH1-12-1, respectively). Meanwhile, the mean pore diameter decreases 

from >100 nm for SH1-6-1 to 58.1 nm for SH1-12-1 and then 28.1 nm for SH1-72-1. The 

aerogel with polymerization time of 6 h (SH1-6-1) exhibits large pores and aggregated particles 

(Figure S2b), which results from the phase separation mainly due to the less crosslinked 

hydrophobic condensates from less polymerized species. The longer polymerization time leads to 
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a more homogenous structure and thinner skeletons of the resulting aerogels. The microstructure 

and properties of the PVPMS aerogels can be regulated by varying the polymerization time of 

VMDMS (Figure S2e). 

 Due to the methyl group and vinyl group bonded to silicon of the precursor VMDMS, there 

are abundant methyl groups and aliphatic hydrocarbon chains and only a small amount of –OH 

groups in the network of the resulting PVPMS aerogels, which is evidenced by the FTIR spectra 

(Figure S1) and solid-state 29Si CP/MAS NMR spectra (Figure 1c). As shown in FTIR spectra, 

the absorption bands corresponding to C-H and Si-C bonds indicate the presence of methyl 

groups and/or the aliphatic hydrocarbon chains of the PVPMS aerogels. 24,39,40 As presented in 

NMR spectra, an intense peak located at –19 ppm, which corresponds to D2 

((CH2CH)n(CH3)SiO2/2) species, 27 shows the presence of methyl groups, aliphatic hydrocarbon 

chains and polysiloxanes in the PVPMS aerogels. Due to their unique structures with abundant 

hydrophobic groups and only a small amount of –OH groups, the PVPMS aerogels exhibit high 

hydrophobicity. Both the aerogels and xerogels can float on top of water for at least 6 months 

(Figure S4). The contact angles of water on all the samples are found to be larger than 130° 

(Figure 1f), of which the samples with shorter polymerization time show better hydrophobicity 

because of the rougher surfaces, as confirmed by the FESEM images (Figure S2b-d). For 

example, SH1-6-1 shows superhydrophobicity with a contact angle as high as 154°.  
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Figure 2. Porous structure and mechanical properties of PVPMS aerogels. (a) N2 

adsorption/desorption isotherms and (b) pore size distributions of typical PVPMS aerogels 

obtained by SCD. The y-axis shift in each isotherm is 600 cm3 g−1. FESEM images of typical 

PVPMS aerogels by SCD: (c) SH1-48-1 and (d) SH1-48-2. (e) Stress-strain curves of uniaxial 
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compression-decompression tests on typical PVPMS aerogels. The values in the figure are the 

obtained Young’s moduli. (f) Stress-strain curves of three-point bending tests on typical PVPMS 

aerogels. (g) Photographs of a uniaxial compression-decompression test on SH1-48-1. (h) 

Photographs of a three-point bending test on SH1-48-1. The thickness, width and length of the 

sample are 1 mm, 10 mm and 50 mm, respectively and the fixture span is 25 mm. (i) 

Photographs of SH1-48-2 during a hand bending test. It shows a large bending deformation 

without fracture when it is bent by hand, then recovers nearly its original shape after it is released. 

Schematic of molecular-scaled structure variations during (j) compression and (k) bending  

tests. 

 

In order to obtain transparent PVPMS aerogels, it is crucial to optimize the catalyst parameters 

such as the type and concentration to control hydrolysis and polycondensation of PVMDMS. 

Here, a strong base TMAOH is used as the hydrolysis and polycondensation catalyst to promote 

gelation. As reported, stronger bases contribute to more accelerated gelation prior to macroscopic 

phase separation due to higher pH of the solution, which increases the homogeneity of the porous 

structure and transparency of the resulting aerogels. 21 It is clearly observed from Figure 2a that 

the resulting PVPMS aerogels exhibit type IV isotherms with distinct capillary condensation 

steps at the relative pressure of 0.5-1.0, demonstrating the mesoporous three-dimensional 

network structure of the aerogels. Figure 2b-d further confirms that they show a randomly 

interconnected homogenous porous structure that is composed of aggregated nanoparticles. The 

pore and particle sizes of SH1-48-1 are mainly 10-40 and 10-35 nm, respectively. Besides, 
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SH1-48-1 shows a high SSA (950 m2 g−1) and high transparency (82.4% transmittance for 2-mm 

thick aerogel). 

The precursor concentration also significantly affects the structure of the PVPMS aerogels. 

According to a report, 21 trifunctional alkoxysilanes show a higher tendency for inhomogeneous 

gelling when the precursor concentration is low. Similarly, PVPMS aerogels with the lower 

precursor concentration are supposed to possess the more inhomogeneous structure. It is found 

that the optimized aerogels with a lower precursor concentration (SH1-48-2 and SH1-48-3) show 

larger particle size and wider pore size distribution compared with the samples with a higher 

precursor concentration (Figure 2b-d). Since a larger pore size results in stronger visible light 

scattering, the PVPMS aerogels with a lower precursor concentration show relatively lower 

transparency. The visible-light transmittance decreases from 82.4% for SH1-48-1 to 76.4% for 

SH1-48-2 and then 65.7% for SH1-48-3. Evidently, the structure and properties of the PVPMS 

aerogels can also be regulated by varying the precursor concentration. 

Benefiting from their unique molecular- and nano-scaled structures, the PVPMS aerogels 

exhibit excellent mechanical properties. As presented in the stress-strain curves and photographs 

of uniaxial compression-decompression tests and the three-point bending tests (Figure 2e-h), the 

optimized aerogels SH1-48-1 and SH1-48-2 combine high compressive flexibility (strength plus 

recovery) and high bending flexibility. They are compressed with 80% strain without fracture 

and then perfectly recover their original shape after the force is removed. Meanwhile, they are 

able to recover nearly their original shape from a large diametral deflection of around 18-25 mm 

in the three-point bending tests with a fixture span of 25 mm. The hand bending tests of 
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SH1-48-2 (Figure 2i and Movie S1) clearly demonstrate the high bending flexibility of PVPMS 

aerogels. The Young’s moduli of SH1-48-1 and SH1-48-2 calculated from the stress-strain curves 

of uniaxial compression-decompression tests is 4.7 and 3.3 MPa, respectively, which is 

comparable to that for traditional silica 41 and polymethylsilsesquioxane (PMSQ) aerogels. 21 The 

Poisson’s ratio of SH1-48-1 is around 0.1, which is similar to that of PMSQ aerogels (0.12). 21  

There are three main reasons contribute to the excellent mechanical properties of the PVPMS 

aerogels. First, the elastic polymethylsiloxane network in the skeletons contains abundant methyl 

groups, which facilitates their recovery from compression and bending. Second, the 

polymethylsiloxane network is crosslinked with flexible aliphatic hydrocarbon chains, which 

leads to the high deformability without fracture and recovery of the skeletons on compression 

and bending. Third, there are only a small amount of –OH groups in the skeletons, which reduce 

the irreversible shrinkage. The molecular-scaled structure variations during compression and 

bending tests are schematically represented in Figure 2j,k. 
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Figure 3. Porous structure and mechanical properties of PVPMS xerogels. (a) N2 

adsorption/desorption isotherms and (b) BJH pore size distributions of typical PVPMS xerogels 

obtained by APD. FESEM images of typical PVPMS xerogels: (c) AH1-48-1-100, (d) 

AH1-48-2-100, (e) AH1-48-1-100-IPA and (f) AH1-48-2-100-IPA. (g) Stress-strain curves of 

uniaxial compression-decompression tests on typical xerogels. The values in the figure are the 
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obtained Young’s moduli. (h) Stress-strain curves of three-point bending tests on the PVPMS 

xerogels (AH1-48-1-100, AH1-48-1-100-IPA and AH1-48-2-100-IPA). (i) Photographs of a 

uniaxial compression-decompression test on AH1-48-1-100-IPA. (j) Photographs of a three-point 

bending test on AH1-48-1-100-IPA. The size of the sample is the same as those of corresponding 

aerogels. (k) A hand bending test on AH1-48-2-100-IPA showing high bending flexibility. 

 

  Due to their unique flexibility, optimized PVPMS wet gels can be successfully dried by APD 

to afford transparent superflexible PVPMS xerogels with comparable properties to those of the 

corresponding aerogels. The type IV isotherms with distinct capillary condensation (Figure 3a 

and Figure S5a) and the narrow pore size distribution (Figure 3b and Figure S5b), together with 

the FESEM images (Figure 3c-f and Figure S5c), demonstrate that the PVPMS xerogels also 

show a homogenous mesoporous three-dimensional interconnected network structure. However, 

the xerogel AH1-48-1 aged at 80 °C without modifications show higher density (0.31 g cm−3) 

compared with the corresponding aerogel. This variation results from partially irreversible 

shrinkage caused by the condensation of a small amount of neighboring –OH groups on the 

skeletons during the temporal contraction in drying. Due to the smaller pore size (Figure S5b), 

AH1-48-1 exhibits a higher visible-light transmittance (90.2%) compared to those of the 

corresponding aerogels.  

  It is found that transparent monolithic aerogel-like xerogels with negligible shrinkage 

(AH1-48-1-100 and AH1-48-2-100) can be obtained by simply increasing the aging temperature 

to 100 °C without any modification followed by APD from n-hexane. Upon APD, AH1-48-1-100 
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and AH1-48-2-100 wet gels undergo a large temporal linear shrinkage of around 21% due to the 

capillary force exerted on the entire gel skeletons and then spring back to nearly their original 

size, resulting from their elastic molecular structure with abundant methyl groups and aliphatic 

hydrocarbon chains and few –OH groups. The lower irreversible shrinkage during APD 

compared to those of xerogels aged at 80 °C probably results from the lower –OH concentration 

on the skeletons, achieved by more intense condensation reaction during aging at the higher 

temperature. It is noteworthy that crack-free large xerogel (AH1-48-1-100) panels (Figure 1d) 

are obtained via their simple scale-up. Since they are obtained by APD without any modification 

that consumes surface modifiers, additional solvent and processing time, the production cost for 

the xerogels is greatly reduced, which will significantly contributes to their practical 

applications.  
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Figure 4. Drying process, structure, compressive and bending cycle performances and 

machinability. (a) Photographs of AH1-48-1-100-IPA during ultralow-cost APD from IPA as the 

drying medium without any modification. (b) N2 adsorption/desorption isotherm and (c) FESEM 

image of AH5-48-1-100-IPA. The inset is its BJH pore size distribution. (d) Stress-strain curves 

of a uniaxial compression-decompression test on AH5-48-1-100-IPA. The inset is its stress-strain 

curve of a three-point bending test. Stress-strain curves of 500 cycles of a uniaxial 
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compression-decompression test with 80% strain on (e) AH1-48-1-100-IPA and (f) 

AH5-48-1-100-IPA. (g) Stress-strain curves of 100 cycles of a three-point bending test with a 

large diametral deflection of 12 mm on AH1-48-1-100-IPA. (h) Excellent machinability of the 

PVPMS xerogel AH1-48-1-100-IPA shown by shaping with a knife.   

 

  Transparent monolithic low-density PVPMS xerogels (AH1-48-1-100-IPA and 

AH1-48-2-100-IPA) can also be obtained from the wet gels aged at 100 °C via APD directly 

from IPA as a drying medium without any modification and additional solvent exchange. 

Because of the larger surface tension of IPA compared to that of n-hexane, larger capillary force 

is exerted on the entire gel skeletons, which results in a larger temporal linear shrinkage (around 

30%) during APD. As shown in Figure 4a, however, they still spring back to nearly their original 

size without fracture during APD, successfully affording transparent aerogel-like xerogels. 

Moreover, crack-free large xerogel (AH1-48-1-100-IPA) panels with width × length × height of 

90 × 90 × 5 mm (Figure 1e) can also be obtained via a simple scale-up. This drying method 

consumes minimal solvent and energy and no modifiers, which leads to a further reduction of 

their production cost. The PVPMS xerogels obtained via this ultralow-cost drying method show 

significant advantages in practical applications over other aerogels obtained via common 

methods such as SCD, traditional APD with hexamethyldisilazane (HMDS) or 

trimethylchlorosilane (TMCS) modification, vacuum drying and freeze drying.  

  Transparent PVPMS xerogels can also be obtained from VMDMS with the DTBP 

concentration of 5 mol% via the same drying method. Since the degree of polymerization and 
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conversion of PVMDMS are higher than those of PVMDMS with the DTBP concentration of 1 

mol%, the resulting PVMDMS molecule possesses more hydrolysable groups, leading to higher 

crosslinking density and more homogenous gelation (Figure S2e). Consequently, as shown in 

Table 1 and Figure 4b,c the xerogel AH5-48-1-100-IPA possesses smaller pores (mainly 10-45 

nm) and particles (mainly 10-40 nm) and higher transparency (84.3%).  

  The PVPMS xerogels such as AH1-48-1-100-IPA are thermally stable up to around 200 °C, 

above which the aliphatic hydrocarbon chains and methyl groups are gradually oxidized (Figure 

S6). As shown in FTIR (Figure S1) and solid-state 29Si CP/MAS NMR spectra (Figure 1c), the 

PVPMS xerogel AH1-48-1-100-IPA exhibits a comparable molecular-scaled structure to those of 

SCD aerogel. Furthermore, other properties of the xerogels AH1-48-1-100, AH1-48-1-100-IPA 

and AH1-48-2-100-IPA such as the contact angle of water (133°, 133° and 135°, respectively) 

(Figure 1f), visible-light transmittance (80.6%, 80.2% and 75.3%, respectively) (Table 1), pore 

size (mainly 10-55, 10-55 and 15-70 nm, respectively) (Figure 3b), particle size (mainly 15-55, 

15-55 and 15-70 nm, respectively) (Figure 3c-f), pore volume (3.95, 3.91 and 4.64 cm3 g−1, 

respectively) (Table 1) and the Young’s moduli (7.6, 7.7 and 5.3 MPa, respectively) (Figure 3g) 

are also similar to those of the corresponding aerogels.  

More importantly, the optimized APD xerogels also exhibit excellent mechanical properties 

that are comparable to those of SH1-48-1 and SH1-48-2 aerogels. As confirmed in Figure 3g-k 

and Figure 4d, AH1-48-1-100, AH1-48-1-100-IPA, AH1-48-2-100-IPA and AH5-48-1-100-IPA 

combine high compressive and bending flexibility. They are compressed with 80% strain without 

fracture and then completely and rapidly spring back to their original size after the force is 
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removed. Movie S2 also shows the high compressive flexibility of AH1-48-1-100-IPA. After 

compression-decompression for 100 cycles, they still recover nearly their original size (Figure 

4e,f and Figure S7a), and their stress-strain curve, SSA, pore size and three-dimensional 

interconnected nanostructure remain virtually unchanged (Figure S7b-d). It is noteworthy that 

the PVPMS xerogels such as AH1-48-1-100-IPA and AH5-48-1-100-IPA spring back to 

approximately 82% of their original size immediately after the compression-decompression with 

80% strain for 500 cycles (Figure 4e,f) and continue to spring back to around 88% after 1 h at 

room temperature. Furthermore, they recover nearly their original size (~94%) with their porous 

structure nearly unchanged (Figure S8) after heat treatment at 120 °C for 2 h. This interesting 

spring-back phenomenon is probably because the flexible skeleton is folded inward toward the 

pores during compression, remains folded in the pores just after the force is removed, gradually 

and partially springs back at room temperature and then continues to spring back due to the 

repulsion and relaxation of the methyl- and aliphatic hydrocarbon chain-rich network during heat 

treatment.  

They also recover nearly their original shape from a large diametral deflection of around 17-20 

mm in the three-point bending tests. The hand bending test of AH1-48-2-100-IPA (Figure 3k and 

Movie S3) clearly presents the high bending flexibility of PVPMS xerogels. No fracture is 

observed after bending with a large diametral deflection of 12 mm for 100 cycles (Figure 4g), 

indicating an excellent bending cycle performance. In addition, as presented in Figure S9, the 

PVPMS xerogel AH1-48-2-100-IPA-E obtained from VMDES exhibits the similar structure and 

bending flexibility to those of AH1-48-2-100-IPA obtained from VMDMS. Furthermore, the 
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desired shape can be obtained simply by cutting with a knife, indicating excellent machinability 

of the PVPMS xerogels (Figure 4h and Figure S10). These unique mechanical properties of 

PVPMS aerogels and xerogels are superior to those of traditional aerogels. Their superelasticity 

against compression and bending with large strain is not observed with silica, 3,41 metal oxide, 42 

and cellulose aerogels6 and conventional polymer, 43,44 carbon9 and silica-based 

organic-inorganic hybrid aerogels. 17,20 Their bending flexibility is also better than that of PMSQ, 

21,22 organo-bridged polysilsesquioxane and polymethylsiloxane aerogels. 25,29,30  

The unique nanostructures of PVPMS aerogels not only lead to excellent mechanical properties 

but also result in outstanding thermal insulation properties. The total thermal conductivity (λtotal) 

of porous materials mainly consists of three components: solid (λs) and gas (λg) conductivities 

and radiation (λr): 22  

λtotal = λs + λg + λr (1) 

Since the optimized PVPMS aerogels exhibit low density (0.18-0.22 g cm−3) and a 

homogenous three-dimensional network structure consisting of aggregated nanoparticles, their 

solid thermal conductivity is supposed to be low. The gas thermal conductivity is given by the 

following equation: 22,45  

𝜆𝜆g = 𝜙𝜙
𝜆𝜆g0

1 + 2𝛽𝛽 𝑙𝑙mfp𝑝𝑝0 [𝑝𝑝𝑝𝑝]⁄     (2)   

where 𝜙𝜙 is the porosity, 𝜆𝜆g0 is the thermal conductivity of non-convective free gas molecules, 

𝛽𝛽 is a constant specific to the gas in the pores, lmfp is the mean free path of a gas molecule, p0 is 

the reference gas pressure, p is the gas pressure, D is the average pore size in the porous material. 
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Because the optimized PVPMS aerogels and xerogels possess a small pore size mainly in the 

range of 10-60 nm, which is smaller than the mean free path (~70 nm) of main molecules in the 

atmosphere, their gas thermal conductivity is suppressed. The contribution of radiation to the 

total thermal conductivity is small at room temperature. The optimized PVPMS aerogels and 

xerogels are therefore supposed to exhibit low total thermal conductivity.  

 

Figure 5. Comparison of our PVPMS aerogels and other thermal insulation materials. (a) 

Comparison of the thermal conductivity values and flexibility of our PVPMS aerogels and other 

reported transparent aerogels: silica aerogel, 41 PMSQ aerogel, 22,47 polyvinylsilsesquioxane 

(PVSQ) aerogel, 23 nanocellulose aerogel, 6 and chitosan aerogel. 48 (b) Comparison of the 
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thermal conductivity values of PVPMS aerogels and commercial thermal insulation materials. 3,4 

(c) Comparison of typical properties of PVPMS aerogels and other typical transparent aerogels. 

All the thermal conductivity values were obtained at room temperature and ambient pressure. 

The PVPMS aerogels exhibit similar thermal conductivity yet higher scalability and much better 

flexibility compared to those of the reported transparent highly insulating aerogels. The thermal 

insulation performance of PVPMS aerogels is also much better than those of the commercial 

thermal insulation materials. 

 

  As expected, the measured thermal conductivity of SCD aerogels SH1-48-1 and SH1-48-2 at 

room temperature is as low as 15.3 and 15.2 mW m−1 K−1 (Table 1), respectively, which is much 

lower than those of commercial thermal insulation materials such as mineral wool and 

polyurethane foam (PUF)4 and comparable to those of traditional silica aerogels (14-25 mW m−1 

K−1)41,46 and PMSQ aerogels (15-35 mW m−1 K−1), 22,47 showing a superinsulating performance. 

The APD xerogels AH1-48-1-100, AH1-48-1-100-IPA and AH5-48-1-100-IPA also show low 

thermal conductivity of 15.4, 15.4 and 15.2 mW m−1 K−1, respectively, which is almost the same 

as those of the corresponding SCD aerogels. The comparison of typical properties of our PVPMS 

aerogels and the reported transparent aerogels and commercial thermal insulation materials is 

additionally provided in Figure 5. The combination of high scalability, high transparency, high 

hydrophobicity, superflexibility in compression and bending, excellent machinability and 

superinsulating properties has not been observed in traditional aerogels and other porous 

materials. These merits together with the ultralow-cost APD will contribute to their practical 
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applications in transparent flexible superinsulators. 

  Recently, we have also prepared transparent PVPMS aerogel-like xerogels by using IPA as the 

solvent during the hydrolytic polycondensation process followed by ultralow-cost APD without 

any solvent exchange and modification. A xerogel with low density of 0.24 g cm−3, a high SSA 

of 796 m2 g−1 and a high visible-light transmittance of 75% (for 2-mm thick sample) has been 

obtained via this method. Since solvent exchange and modification are totally avoided during the 

synthesis process, their production cost will be further reduced. Besides, this double crosslinking 

approach is highly extendable. In addition to PVPMS aerogels and xerogels, other kinds of 

transparent, highly flexible, doubly crosslinked organic-inorganic hybrid aerogels and xerogels 

have also been synthesized from other organoalkoxysilanes with alkene groups via the same 

approach. These works will be published elsewhere.  

 

CONCLUSION 

 In summary, transparent superflexible doubly crosslinked aerogels have been prepared for the 

first time from a single precursor—VMDMS or VMDES by radical polymerization followed by 

hydrolytic polycondensation combined with the ultralow-cost, highly scalable APD technique 

directly using alcohol as a drying medium. Macroscopic phase separation between the 

hydrophobic condensates and polar solvent is effectively suppressed due to the high conversion 

and degree of polymerization of PVMDMS or PVMDES and the accelerated hydrolytic 

polycondensation. The resulting aerogels and xerogels show a unique doubly crosslinked 

nanostructure with elastic polymethylsiloxanes crosslinked with flexible hydrocarbon chains, 



This is the original manuscript before revision. 

28 
 

leading to an unprecedented combination of low density (0.16-0.22 g cm−3), uniform pore size 

(mainly < 60 nm), high SSA (900-1000 m2 g−1), high hydrophobicity (>130° contact angle of 

water), high transparency (>80% transmittance), excellent machinability, superflexibility in 

compression (endure 80% compression strain with 500 cycles), superflexibility in bending 

(endure 100 bending cycles) and superinsulating properties (λ=15.0-15.4 mW m−1 K−1). To the 

best of our knowledge, this is the first time to achieve these merits in a single aerogel and 

xerogel. This highly extendable double crosslinking method and these outstanding results will 

offer a significant progress of porous materials and makes the practical applications of 

transparent flexible aerogel-based superinsulators feasible. 

 

METHODS 

  Materials. DTBP was purchased from Tokyo Chemical Industry Co., Ltd. (Japan). Distilled 

water was purchased from Hayashi Pure Chemical Ind., Ltd. (Japan). VMDMS, VMDES and 

TMAOH (25wt% in H2O) were obtained from Sigma-Aldrich, Co. (USA). Benzyl alcohol 

(BzOH), IPA and n-hexane were purchased from Kishida Chemical Co., Ltd. (Japan). All of the 

chemical reagents were used as received.  

 

  Sample preparation. Given amounts of VMDMS (or VMDES) and DTBP (1 or 5 mol%) 

were charged in a hydrothermal reactor. The space above the precursor solution was flushed with 

Ar and then the reactor was sealed, after which the whole reactor was heated at 120°C for 

predetermined duration (6 h, 12 h, 24 h, 48 h, or 72 h), followed by cooling naturally at room 
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temperature, affording a transparent and viscous liquid, mainly containing PVMDMS (or 

PVMDES). To the solution were added BzOH, H2O and base catalyst (TMAOH) with specific 

molar ratio under stirring in the listed order. After stirring for 5 min, the sol was transferred into a 

container, which was then sealed and placed in an oven at 80°C, where the gel formed within 1 h. 

The gel was aged at 80 or 100 °C for 4 or 5 d (the gels of AH1-48-2-100-IPA, 

AH5-48-2-100-IPA and AH1-48-2-100-IPA-E were aged for 5 d, while other gels were aged for 4 

d) and subjected to solvent exchange with IPA at 60 °C for 3 times (each 8 h) to remove the 

residual chemicals. 

For supercritical drying, the gel was dried from supercritical CO2 at 80 °C, 13.5 MPa to afford 

PVPMS aerogels. For APD from IPA, the gel was slowly dried by evaporation at room 

temperature for 2-5 d and at 80 °C for 4 h to obtain xerogels. For APD from n-hexane, the gel 

was subjected to solvent exchange with n-hexane at 50 °C for 3 times (each 8 h) followed by 

evaporation at room temperature for 2-3 d and at 80 °C for 4 h to obtain xerogels.  

 

  Characterizations. The weight-average molecular weight (Mw) and polydispersity (Mw/Mn) of 

PVMDMS were analyzed by a gel permeation chromatography (GPC) system (GPC104, Shodex, 

Japan) with a LF604 column and chloroform solvent. The conversion of PVMDMS was 

calculated from the 1H nuclear magnetic resonance (NMR) spectra measured with a NMR 

spectrometer (Avance III, Bruker Corp., Germany) operating at 400 MHz. The bulk density of 

aerogels and xerogels was determined by measuring the diameter, height and mass of the 

cylindrical samples. The skeletal density was determined by Helium pycnometry with an 
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automatic density analyzer (ULTRAPYC 1200e, Quantachrome Instruments, USA). The total 

pore volume was calculated from bulk density and skeletal density. The visible-light 

transmittance of aerogels and xerogels was measured using a UV-vis-NIR spectrophotometer 

(V-670, JASCO, Japan) equipped with an integrating sphere.  

  The surface functional groups of aerogels and xerogels were characterized by a Fourier 

transform infrared spectroscope (FTIR, IRAffinity-1, Shimadzu Corp., Japan). The pore 

morphology was observed by a field emission scanning electron microscope (FESEM, 

JSM-6700F, JEOL, Japan). The N2 adsorption/desorption isotherm, SSA, and pore size 

distribution were measured by a N2 adsorption analyzer (BELSORP-mini, BEL Japan, Inc., 

Japan). Before the N2 adsorption/desorption measurement, the aerogel or xerogel sample was 

degassed at 120 °C under vacuum for around 6 h. The SSA was obtained from the adsorption 

branch using the Brunauer-Emmett-Teller (BET) method. The pore size distribution was derived 

from the adsorption branch using the Barrett-Joyner-Halenda (BJH) calculation.  

The uniaxial compression-decompression tests and three-point bending tests were carried out 

with a material tester (EZGraph, Shimadzu Corp., Japan). The crosshead speed was 0.5 mm 

min-1 for both compression and bending tests. In uniaxial compression-decompression tests, a 

cylindrical aerogel or xerogel with 8-15 mm diameter and 4-10 mm height was used. In 

three-point bending tests, a cuboid aerogel or xerogel with typical width × length × height of 10 

× 50 × 1 mm was used. The apparatus span was fixed at 25 mm.  

Contact angles of water were measured by Drop Master (DM-561Hi, Kyowa Interface Science 

Co., Ltd., Japan). The volume of water droplet was fixed at 3 μL. The thermal stability was 
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investigated by thermogravimetric-differential thermal analysis (TG-DTA) with Thermo plus 

EVO (TG 8120, Rigaku Corp., Japan) at a heating rate of 5 °C min−1 in air. The 29Si 

cross-polarization magic angle spinning (CP/MAS) NMR spectra was obtained from a NMR 

spectrometer (Avance III 800US Plus, Bruker Corp., Germany), operating at a static magnetic 

field of 18.8 T. The probe was 4 mm and the MAS frequency was set to 12 kHz with 

hexamethylcyclotrisiloxane as an external reference material. The thermal conductivity at room 

temperature and ambient pressure was determined by a heat flow meter (HFM 436 Lambda, 

NETZSCH, Germany). A cubic aerogel or xerogel with typical width ×length ×height of 

100×100× 10 mm was used for the thermal conductivity measurement.  
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