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Abstract—This paper discusses a contact-force control problem 

for a flexible arm. This flexible arm includes a Timoshenko beam, 

and thus we call it the flexible Timoshenko arm. The aim of the 

force control is to control the contact force at the contact point. To 

solve this problem, we propose a simple boundary controller and 

show the exponential stability of the closed-loop system by the 

frequency domain method. Finally, we describe simulation results 

carried out to investigate the validity of the proposed controller 

for the force control problem. 

Index Terms—Flexible arm, Timoshenko beam, Distributed 

parameter systems, Exponentially stable. 

 

I. INTRODUCTION 

The dynamics of a flexible arm are expressed by partial 

differential equations (PDEs), which present the dynamics of 

the elastic link, and ordinary differential equations (ODEs), 

which present the dynamics of the actuators, tip load and others. 

Thus, the flexible arm can be represented by a hybrid 

PDE-ODE system. For the dynamics of flexible arms, the 

Timoshenko beam is widely used to represent the dynamics of 

the elastic link, and we describe such arms as flexible 

Timoshenko arms. If we focus attention on a flexible 

Timoshenko arm represented by the hybrid PDE-ODE system, 

there are several relevant previous studies [1]-[9]. 

These studies mainly dealt with vibration control, but 

vibration control alone is insufficient if the goal is to use the 

flexible arm for more complex tasks. It is also important to 

control the contact force that the end-effector of the flexible 

arm exerts on an object or the environment [10]. In this paper, 

we focus on a force control problem of a one-link flexible 

Timoshenko arm. In particular, we propose a simple boundary 

controller without any finite dimensional approximation. 

Contact-force control of a flexible arm based on the infinite 

dimensional model has been studied previously [11]-[18]. In 

these studies [11]-[15], the force control problem for a one-link 

flexible arm was modeled by Euler-Bernoulli beams, and 

asymptotic/exponential stabilizing controllers were proposed. 

Other studies [16]-[18] discussed cooperative or grasping tasks 

(which are typical tasks of force control) by multiple flexible 

arms also modeled by Euler-Bernoulli beams. However, to the 

best of our knowledge, there has not yet been a study of force 

control for a flexible Timoshenko arm based on the infinite 

dimensional model. In contrast to the Euler-Bernoulli beam, the 

Timoshenko beam includes the effects of shear and rotation, 

and thus the Timoshenko beam is modified for a non-slender 
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beam and high-frequency response. Therefore, the Timoshenko 

beam has a wider application range than the Euler-Bernoulli 

beam [19], [20]. From this point of view, the contact-force 

control problem of the flexible Timoshenko arm is a 

challenging and important one, and thus we propose a simple, 

easy to implement boundary controller to solve the 

contact-force control problem of the flexible Timoshenko arm. 

The paper is organized as follows. In Section II, we describe 

the mathematical model of a constrained one-link flexible 

Timoshenko arm. Further, we formulate the contact-force 

control problem, and propose a simple boundary controller. 

The semigroup setting of the closed-loop system is described in 

Section III, and its exponential stability is proved in Section IV. 

The simulation results that are described in Section V 

demonstrate the validity of the proposed boundary controller. 

Finally, Section VI presents our conclusions. 

II. DESCRIPTION OF THE PROBLEM 

A. Dynamics of a constrained flexible Timoshenko arm  

Fig. 1 shows a constrained one-link flexible Timoshenko arm. 

One end of the arm is clamped to control actuators consisting of 

the rotational motor and the translational slider, and the other 

end has a concentrated tip mass m . The tip mass makes contact 

with the surface of an object. The flexible arm moves in the XY

plane in Fig. 1; it is not affected by the acceleration of gravity. 

The flexible arm, with length l , mass per unit length  , mass 

moment of inertia I , cross sectional area A , area moment of 

inertia I , Young’s modulus E , shear modulus G , and shear 

coefficient  , satisfies the Timoshenko beam hypothesis. 

In Fig. 1, XY  is an absolute coordinate system and xy  is a 

local coordinate system, whose origin is fixed at the rotor of the 

motor. In addition, xy  translates with the slider in the 

Y-direction and rotates with the rotor of the motor. Let J , )(tm , 

)(t , M , )(tFs , and )(ts  be the inertia moment of the motor, the 

torque by the motor, the angle of the motor, the mass of the 

slider, the force by the slider, and the position of the slider, 

respectively. Further, let ),( txw  and ),( tx  be the transverse 

displacement of the arm at time t  and spatial point x , and the 

rotation of the cross section due to bending deformation, 

respectively. Note that ),( txw , ),( tx , )(t , and )(ts  are 

assumed to be small. 
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Fig. 1.  Flexible Timoshenko arm making contact with an object. 
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There is a linear actuator (slider) at the root of the arm in 

addition to the rotary actuator (motor); that is, the motor is 

installed on the slider. We use two actuators for the following 

reason: in vibration control of a Timoshenko beam with a 

fixed-free boundary, it is known that a system with one control 

actuator at the free end is exponentially stabilized if and only if 

a physically impossible condition (equal wave speeds) holds 

[21]. In keeping with this fact, we use two actuators here.  

Since the tip mass makes contact with the surface of the 

object, we obtain the following geometric constraint: 

0)(),()( =++ tstlwtl . This constraint means that the Y-axis 

position of the tip mass is constrained on the surface of the 

object. The kinetic energy kE  and the potential energy pE  of 

the overall system are given by the following: 
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where GAK = , a dot denotes the time derivative, and a prime 

denotes the partial derivative with respect to x . Here the virtual 

work is given by )( δ )()(δ )(δ tstFttW sm +=  . 

Under the above preparation, we can obtain the following 

equations of motion by applying Hamilton’s principle and 

Lagrange’s multiplier, and using the procedure in [14]: 















+=

+=

=++===

=−−++

=−+++

),(),0()()( 

),(),0()()(  

,0)(),()(),(),0(),0( 

,0),()],(),([)](),([ 

,0)],(),([)]()(),([ 

ttEIttJ

tFtwKtFtsM

tstlwtltlttw

txEItxwtxKttxI

txwtxKtstxtxw

m

s

















 (1) 

with the algebraic relation 

)],,(),([)( tltlwKt  −=  (2) 

where )(t  is Lagrange’s multiplier and is equivalent to the 

contact force, i.e., the shear force at the tip of the flexible arm, 

which arises in the direction along the normal vector of the 

constraint surface. 

B. Control objective and boundary controller 

The aim of this paper is to control the contact force at the tip of 

the flexible arm. In other words, the control objective is to 

construct a controller satisfying: dt  →)( , 0),( →txw , ),( tx

0→ , 0)( →t , 0)( →ts , where d  is the constant desired 

contact force. At the desired equilibrium point ( dt  =)( ,

0)()(),(),( ==== tsttxtxw   ), ),( txw  and ),( tx  become the 

function of x , and )(t  and )(ts  become constant. Thus, we 

describe them as )(xwd , )(xd , d , and ds , respectively. By 

substituting these into (1), (2), we obtain: 
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In these relations, )(xwd , )(xd , d , and ds  mean a static 

transverse displacement, a static rotation of the cross section of 

the flexible arm, a static angle of the motor, and a static position 

of the slider in the case where the contact force is converged to 

the desired value, respectively. Furthermore, d  and ds  are 

coupled through d , and thus we cannot set d  and ds  

independently. 

Based on these considerations, we propose a boundary 

controller that realizes the following: 
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For this purpose, we propose the following boundary 

controller:  
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where feedback gain ik
~

, 8,,1=i , is a positive constant. In (4), 

the first and second terms are for the control: )(),( xwtxw d→  

and 0),( →txw , and the third and the forth terms are for the 

position control: dsts →)(  and 0)( →ts . On the other hand, in 

(5), the first and second terms are for the control: )(),( xtx d →  

and 0),( →tx , and the third and the forth terms are for 

dt  →)(  and 0)( →t . In the controllers, ),0( tEI  can be 

measured by the strain gauges, and )(t  and )(ts  can be 

measured by the encoders. In addition, the shear force, ),0( twK   

(here note 0),0( =t ), can also be measured using strain gauges 

based on the difference method [22]. Here, if we use a 

speed-reference-type servo amplifier with speed feedback and 

the high-gain characteristic of the amplifier for the motor and 

slider, we can implement the controllers without the time 

derivatives. For more technical details, please see [23]. 

Therefore, we can easily implement the controller. 

III. CLOSED-LOOP SYSTEM 

A. Semigroup setting 

Now let us introduce new variables: 
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based on the procedure described by [17]. Here, Mkk ii /
~

=  for 

4,,1=i , and Jkk ii /
~

= , for 8,,5 =i . Then the equations of 

motion become simple, the equilibrium point is moved to its 

origin, and the closed-loop system can be rewritten as 

,0)],(),([),( 121 =−+ txytxyKtxy ,0   ),,0(  tlx  (6) 

,0),()],(),([),( 2122 =−−+ txyEItxytxyKtxyI 
  (7) 

,0),(),( 21 == tlytly  (8) 

),,0(),0()],0(),0([)( 11132111 tyDtyktytyKkt  ++−−=  (9) 

),,0(),0(),0()( 2227252 tyDtyktyEIkt  ++−=  (10) 

with the algebraic relation )],,(),([)( 21 tlytlyKt d −=−  where 
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13241 / kkkkD −=  and 57682 / kkkkD −= . Here, we introduced 

),(1 txy  and ),(2 txy  to formulate the system as a classic hybrid 

control system [24]. In addition, we introduced )(1 t  and )(2 t  

so that the closed-loop system becomes dissipative; that is, the 

estimate (17) holds. We arrived at this choice by trial and error. 

As a result, the restriction (16) was needed for the operator A to 

become dissipative. 

We wish to formulate the closed-loop system as a first order 

evolution equation in an appropriate Hilbert space, H , as in the 

following equation: 

,)0(    ),()( 0zztAztz ==  (11) 

where Ttttytytytytz ))(),(),,(),,(),,(),,(()( 212211 =   is the state, 

and 0z  is the initial value. To do this, let us introduce the 

following Hilbert space as the state space: 
22121

0 C),0(),0(),0(),0( = lLlHlLlHH , (12) 

where ),0( lH m  is the usual Sobolev space of order m , ),0(2 lL  

is the usual square integrable functional space, ),0(0 lH m

}0)(:),0({ == lulHu m , and C  is the set of complex numbers. 

In the space H , we define the inner product as follows: 
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for Tvuvuz ),,,,,( 212211 = , and Hvuvuz T = )ˆ,ˆ,ˆ,ˆ,ˆ,ˆ(ˆ 212211  . It can 

be shown that H , together with the inner product (13), 

becomes a Hilbert space because we can show that the norm 

induced by (13) is equivalent to the standard norm in H (please 

see the Appendix, where a part of the proof of the equivalence 

is given). In addition, we also define a linear operator 
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The closed-loop system (6), (7), (9), (10) can then be written as 

the first order evolution equation (11) on H . 

B. Properties of the closed-loop system 

As the properties of the closed-loop system, we obtain the 

following lemma: 
 

Lemma 1: If feedback gain ik , 8,,1=i , satisfies 

,3241 kkkk   and ,7685 kkkk   (16) 

that is, if 0 , 21 DD , then the operator A  generates a 

C0-semigroup of contractions. Furthermore, the operator 1−− A  

is compact. Therefore, the spectrum )(A  of the operator A  

consists only of the isolated eigenvalues. 
 

Proof: First, we show that the operator A  is dissipative. For 

any )(),,,,,( 212211 ADvuvuz T =  , it follows that  
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Here we used integration by parts and the boundary conditions 

in (15) to obtain (17). Hence, the operator A  is dissipative. 

Next, we show that )(0 A , where )(A  is the resolvent set 

of the operator A . For any given Hvuvuz T = )ˆ,ˆ,ˆ,ˆ,ˆ,ˆ(ˆ
212211  , we 

find a solution )(),,,,,( 212211 ADvuvuz T =   of zAz ˆ=− . 

Eliminating 1v , 2v , 1 , and 2  in this equation, we obtain the 

following equations: 
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Now, we integrate first equation of (18) and substitute it into 

second equation of (18). The obtained equation then yields 
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where iC , 3 ,2 ,1=i , is a constant, which is determined by the 

boundary conditions. Further, we obtain =)(1 xu

++++−−−  xCCxCxEIssvsxIssvsx
xx

32
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,4C  where 4C  is a constant, and KxEIxx /)6/(][ 3 − . 

Substituting these solutions into the remaining boundary 

conditions, we get the matrix form relation: 

,],,,[],,,[ 43214321
TT ffffCCCCM =  where 44C M  is a matrix 

and if , 4,,1=i , is a scalar. A straightforward calculation 

shows 0det M and thus, the coefficient iC , 4,,1=i , can be 

uniquely determined. The remaining unknowns 1v , 2v , 1 , and 

2  can be found using 1u  and 2u . Therefore, we could find a 

solution z , which means )(0 A . 

From the fact that the operator A  is dissipative and )(0 A , 

that is, HA =− )(Ran , we establish A  generates a C0-semigroup 

of contractions by the Lumer-Phillips theorem [25]. 

Finally, we show that the operator 1−− A  is compact. For this, 

we first determine the following estimate: 
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where mH
    is the usual norm in ),0( lH m , and C  is a positive 

constant. For the coefficient iC , 4,,1=i , we obtain the 

following: for 4,,1=i , 
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used the Cauchy-Schwarz inequality and the following 

inequality to obtain (21): 
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 where iC  , 9 ,8=i  is a positive 

constant, and we used (A1) for obtaining final estimation. Thus, 

the desired estimate (20) is satisfied, and the operator 1−− A  is 

compact by the Sobolev imbedding theorem [25].      ■ 
 

Let )(tS  be a C0-semigroup of contractions generated by the 

operator A . Then, Lemma 1 means that the closed-loop system 

(11) has a unique solution )()()( 0 ADztStz = , where ).(0 ADz   

Further, 1y  and ),0(2
2 lHy   in the solution, and thus the 

contact force )],(),([)( 21 tlytlyKt d −=−   also exists. 

IV. EXPONENTIAL STABILITY 

We investigate the exponential stability of the closed-loop 

system. Since we could not find the Lyapunov functional to 

show the exponential stability, we consider exponential 

stability using the frequency domain method. Here, note that 

although there is another powerful approach to prove the 

exponential stability (i.e., the Riesz basis approach [26]), we 

use the frequency domain method where the calculation is easy. 

According to the frequency domain method, we need to show 

the following two facts to prove the exponential stability of a 

C0-semigroup of contractions in a Hilbert space [27]: 

(i)    ,RR : )( iiA    (23) 

(ii)  .)(i lim 1 − −

→ H
A


 (24) 

Here, if a C0-semigroup of contractions in a Hilbert space 

satisfies (23) and (24), the exponential stability of the 

C0-semigroup is obtained from the well-known 

Gearhart-Prüss-Greiner theorem [28]. In the following, we 

demonstrate fact (i) in Lemma 2, and (ii) in Lemma 3. 
 

Lemma 2: Assume that the feedback gain ik , 8,,1=i , satisfies 

(16). Then, )(R Ai   . 
 

Proof: We show that the spectrum )(A  consists only of the 

isolated eigenvalues in Lemma 1. Thus, to prove that the 

imaginary axis belongs to the resolvent set )(A , we need to 

show that there are no eigenvalues on the imaginary axis. 

Let is =  and )(],,,,,[ 654321 ADT =   be an eigenvalue 

and the corresponding eigenfunction of the operator A , 

respectively, where R . Now let us consider the eigenvalue 

problem  sA = . Here, we have shown that )(0 A , and thus 

0 . Then, we can obtain 0,Re =
H

A  , and this means the 

following from (17): 





==−

==−−

.0)0(  ,0)0()0( 

,0)0(  ,0)0()]0()0([ 

43735

213311





kEIk

kKk
 (25) 

Eliminating 2 , 4 , 5 , and 6  in the equation  sA = , and 

accepting the fact of (25) gives the followings: 

,0)()0()0()0()()0(

,0)()()(  ,0)()()(

333111

133231131

======

=−−=−−

ll

xaxaxxaxx




 (26) 

where Ksa / 2
1 = , )/()( 2

2 EIKsIa +=  , and )/(3 EIKa −= . It is 

easy to see that the solutions of (26) are 031 ==  . From this, 

we can see that the eigenvalue problem  sA =  has only a zero 

solution, 0= . This contradicts the fact that the   is an 

eigenfunction, and thus the proof is completed.       ■ 
 

Lemma 3: Assume that the feedback gain ik , 8,,1=i , satisfies 

(16). Then, (24) holds. 
 

Proof: To prove (24), we use the contradiction argument 

method developed in [27]. According to this method, if (24) is 

false, then there exists a sequence Rn  with →n  and a 

sequence )(ADzn   with 1=
Hnz  such that: 

,in     0)( HzAi nnn →−   (27) 

where T
nnnnnnn vuvuz ],,,,,[ 214321 = , T

nnnnnnn ],,,,,[ 654321  = . 

Here, (27) with (A1) means the following: 

,111 nnnn vui  =− ,/)( 2121 nnnnn uuKvi  =−+  (28) 

,322 nnnn vui  =− ,/ /)( 42122 nnnnnn IuEIIuuKvi   =−−+  (29) 

,)0()0()]0()0([ 511132111 nnnnnnn vDukuuKki  =−−−+  (30) 

,)0()0()0( 62227252 nnnnnn vDukuEIki  =−−+  (31) 








→→→→

→−→→→

,0 ,0 ,0)0( ,0)0(

,0 ,0 ,0 ,0

6531

13432 2222

nnnn

LnnLnLnLn




 (32) 

.0 ,0 ,0 222 311 →→→
LnLnLn   (33) 

Now we show the contradictions of 1=
Hnz ; in other words, we 

demonstrate that 0→
Hnz . 

From (17) and (27), we obtain 







→→−

→→−−

.0)0(   ,0)0()0( 

,0)0(   ,0)0()]0()0([ 

22725

113211

nnn

nnnn

vukuEIk

vukuuKk
 (34) 

Here, using (22) and (34) in n1  and n2  in (15) leads to 

.2 ,1   ,0 =→ iin  (35) 

On the other hand, from first equations in (28) and (29), (34), 

and the fact that n  is bounded below from zero, we have 

.2 ,1   ,0)0( =→ iuin  (36) 

Furthermore, (34) with (36) and (22) yields 

.2 ,1   ,0)0( =→ iuin  (37) 

Now, eliminating nv1  in (28), then multiplying the obtained 

equation by 
nulx 1 )( −  and integrating it from 0  to l  yields 

.d))((d))](([
0

121
0

1121
2

 −+−=−−−
l

nnnn

l

nnnnn xulxixulxuuKu   
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Using the integration by parts, (36), and the Cauchy-Schwarz 

inequality, the right-hand side of this equation can be rewritten 

as follows: 

, ][                

 d))((

22222 1221111

0
121

LnLnLnnLnLn

l

nnnn

uCuC

xulxi

++

−+− 



 

where 1C   and 2C   are constants. Furthermore, from the first 

equation in (28), (33), and the boundedness of 
Hnz , that is, 

1=
Hnz , and (A1), 21 Lnnu  and 21 Lnu  are bounded. Thus, 

from (32) and (33) we obtain 

.0d))](([
0

1121
2 →−−−

l

nnnnn xulxuuKu  (38) 

Here, a simple calculation gives 

,
2

d)(Re
2

   

d))](([Re

2

1
0

12

2

1

0
1121

2

22 Ln

l

nnLnn

l

nnnnn

u
K

xuulxKu

xulxuuKu

−−−−→

−−−









 (39) 

using (36) and (37). Therefore, we obtain the following from 

(38) and (39): 

.0d)(Re2
2

1
0

12

2

1 22 →−−−−  Ln

l

nnLnn uKxuulxKu  (40) 

Similarly, if we eliminate nv2  in (30), multiply the obtained 

equation by 
nulxI 2 )( − , and integrate it from 0  to l , then the 

calculations lead to: 

.0d)(Re2 )(
2

2
0

12

2

22 22 →−−+−−  Ln

l

nnLnn

n

uEIxuulxKu
K

I 


  (41) 

By taking the sum of (40) and (41), we obtain 

.0 )(
2

2

2

22

2

1

2

1 2222 →−−−−−
LnLnn

n
LnLnn uEIu

K
IuKu 


   (42) 

Here, each coefficient is positive, and thus we obtain 

.2 ,1   ,0  ,0 22 =→→ iuu
LinLinn  (43) 

Further, we also obtain the following from the first equations in 

(28), (29), and (43): 

.2 ,1   ,02 =→ iv
Lin  (44) 

On the other hand, we first multiply the first equation in (28) 

by 
nv1 , and the first equation in (29) by 

nvI 2 . Then, the sum 

of the obtained two equations yields 

,0dd
0

22
0

11  →+
l

nnn

l

nnn xvuIixvui   (45) 

using the Cauchy-Schwarz inequality, (33), and (44). Similarly, 

we multiply the second equation in (28) by 
nu1  and the second 

equation in (29) by 
nuI 2 . Then, the sum of the obtained two 

equations leads to: 

,0dd
2

2

2

12
0

22
0

11 22 →+−++  LnLnn

l

nnn

l

nnn uEIuuKxuvIixuvi  (46) 

using the integration by parts, the Cauchy-Schwarz inequality, 

1=
Hnz , (A1), (32), and (36). Here, by taking the sum of (45) 

and (46), and the real parts of the obtained estimate, we obtain 

the following: 

.0
2

2

2

12 22 →+−
LnLnn uEIuuK  (47) 

Finally, from (35), (36), (44), and (47), we obtain 0→
Hnz , 

and this is the contradiction of 1=
Hnz . Thus, the claimed is 

proved.                      ■ 
 

Lemma 3 and 4 are summarized in the following theorem for 

the exponential stability of the closed-loop system (11). 

Theorem 1: Assume that the feedback gain ik , 8,,1=i , 
satisfies (16). Then, the closed-loop system (11) is 
exponentially stable.  
 

Proof: Lemma 3, 4, and the frequency domain method [27] 

leads to the exponential stability of the closed-loop system. ■ 

V. SIMULATIONS 

Numerical simulations were conducted using Laplace 

transform and the numerical inverse Laplace transform method 

[29] with zero initial conditions. For the arm, an aluminum 

cylinder was used. The physical parameters were as follows: 

00.1=l m, 54.2= kg/m, 21083.2 −=I kgm, 41039.9 −=A m2, 

51005.1 −=I m4, 91000.69 =E Pa, 101057.2 =G Pa, 89.0= .  

First, we considered the step responses of the desired contact 

force, 100−=d  N, and the desired position of the slider, 

1.0=ds  m. Here, note that 100−=d  N means that the flexible 

arm pushed the object by the force of 100 N. In the simulations, 

we set the feedback gains ik , 8,,1=i  as follows: 

151 == EIkKk , 2.062 == EIkKk , 1673 == kk , 884 == kk . These 

gains were selected so that they satisfied the conditions of (16) 

by trial and error. 

Fig. 2 shows the simulation results of ),( txw , ),( tx , )(ts , 

)(t , and )(t . In Fig. 2 (a) and (b), the dotted lines at 5=t  

show the desired value )(xwd  and )(xd , respectively, and we 

found that ),( txw  and ),( tx  converged to the desired values. 

Further, in Fig. 2 (c)-(e), the solid line represents the response 

and the dotted line shows the desired value; we also found that 

)(ts , )(t , and )(t  converged to the desired values, that the 

proposed controller worked well in the step responses, and that 

the controller was effective for the contact force control. 

Here, to implement the controller, we require the following 

physical parameters: E, I, G, A, l. Although it is easy to measure 

I, A, and l, it is not easy to obtain accurate E and G. Thus, we 

carried out the simulation when the Young’s modulus E in the 

controller had some uncertainty, and considered the robustness 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2. Step responses. (a) ),( txw ; (b) ),( tx ; (c) )(ts ; (d) )(t ; (e) )(t ; (f) 

)(t  when E was changed. 
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with respect to the physical parameter. In particular, we set E as 

E×1.05 in the controller. The shear modulus is G = E/(2(1+υ)), 

where υ is a Poisson's ratio. Thus, G in the controller was also 

changed according to the change of E. We show the response of 

the λ(t) of this simulation in Fig. 2 (f). Although the response 

did not diverge, the response has a steady-state error. Thus, to 

obtain fine responses, we need to measure accurate physical 

parameters before the control.  

VI. CONCLUSION 

We described a contact-force control problem with regards to a 

constrained one-link flexible Timoshenko arm. To solve the 

contact force control problem of such a system, we have 

proposed a simple boundary controller, which is easy to 

implement. Furthermore, the exponential stability of the 

closed-loop system was proved using the frequency domain 

method without any finite dimensional approximation. Finally, 

we carried out several simulations, the results of which showed 

the validity of the proposed boundary controller. 

While this paper addresses the boundary controller only for a 

contact-force control problem, force control can be extended to 

more complex tasks, such as cooperative tasks and grasping 

tasks using multiple arms. We plan to propose controllers for 

use in other tasks in future research. 

APPENDIX 

Now, we show the following estimate, which is used in the 

proof of Lemma 1: 

,),(),(
2

1211

2

221 uuuu   (A1) 

for a positive constant 1 , where 








+++=

++−+=

,),( 

,/)0(/)0(),(2
2

2

2

2

2

1

2

1

2

221

5

2

271

2

13

2

12

2

2

2

121

2222

22

LLLL

LL

uuuuuu

kukkukuuKuEIuu

for ),0(),0(),( 11
021 lHlHuu  . Here, note that += 

x

ii xxuxu
0

d)()(

)0(iu  for 2 ,1=i . From these equations, the Cauchy-Schwarz 

inequality and inequality (22), we obtain 

, ))0()((
22

2

2

22 iLiLi uxuu +   (A2) 

where 2  is a positive constant. On the other hand, note the 

following:  )Re(2
2

112

2

2

2

12 uuuuuu +−=− . Integrating this 

equation and using the inequality  / 2
22

baba +  for 

,0  ,R  ,C,  ba  gives 

( ) .  )/11( 1
2

1

2

2

2

12 222 LLL
uuuu −+−−   (A3) 

Therefore, using (A2) and (A3), we obtain 

, )(),(
2

1

2

23

2

121 22 LL
uuuu +   (A4) 

where , },min{ 543  =  2/)1(/)}2/(,2/min{ 2574  −+= KkkEI , 

2/)/11(5  −= K , and we set  )/()}2/(,2/min{211 257  KkkEI+ . 

Thus, we obtain (A1) by using (A2) and (A4). 
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