- 1 Photoacoustic Tomography Shows the Branching Pattern of Anterolateral Thigh Perforators in Vivo
- $\mathbf{2}$

3 Abstract

4

5 Background

- 6 The distal branching pattern of perforators is associated with thin anterolateral thigh (ALT) flap failure. The
- 7 purpose of this study is to investigate the feasibility of using photoacoustic tomography (PAT) as a diagnostic
- 8 imaging modality to identify ALT perforators and their branching patterns in the subcutaneous layer.

9 Methods

- 10 Ten thighs in five healthy males were studied. The anterolateral aspect of the mid-thigh was examined using
- 11 PAT. The correlation between PAT and ultrasound (US) findings was evaluated. To determine the
- 12 detectability of PAT by depth, the depth of vessels in the stem portion was compared to the depth of the
- 13 deep fascia measured by US. Branching patterns of vessels in the adipose and suprafascial layers were
- 14 evaluated by three-dimensional observation.

15 Results

- 16 A total of 18 perforators were visualized by PAT. PAT and US had comparable diagnostic potential for the
- 17 detection of perforators. PAT visualized microvessels in the subcutaneous layer, especially those in oblique
- 18 or horizontal orientations. The estimated mean depth of visualized vessels was 9 mm; the maximum was 13

- 19 mm. There was a strong correlation between the depth of visualized vessels in the stem portion and the
- 20 depth of the deep fascia. Three-dimensional observation of PAT images showed the branching morphology
- 21 of perforators.
- 22 Conclusions
- 23 This study showed the applicability of PAT to identification of the branching patterns of ALT perforators in
- 24 vivo although limited visualization of subfascial vessels is a technical issue. We believe PAT has the potential
- 25 to be a new imaging modality for thin ALT flap surgery.
- 26
- 27 Key words
- 28 Anterolateral thigh, imaging, perforator, photoacoustic tomography, thin flap

30 Introduction

31	Flap thinning ¹ is technically challenging. In particular, a high rate of failure has been reported for the thin
32	anterolateral thigh (ALT) flap. ² Previous experimental studies have suggested that skin perfusion is changed
33	during thinning as a result of injuries to vessels in the suprafascial layer. ³ Thus, an appreciation of the
34	individualized vascular anatomy of the thigh is essential for thin flap planning; however, suitable imaging
35	methods that can be used safely and easily in vivo are lacking. Photoacoustic tomography (PAT) is an
36	emerging vascular imaging modality that has been used in basic research and clinical practice, which allows
37	for visualization of subcutaneous vessels on the basis of the photoacoustic mechanism. Energy from a near-
38	infrared pulse laser is introduced into hemoglobin. As a result, red blood cells become swollen and release
39	ultrasonic waves, which allows vessels to be visualized without contrast agents. ⁴ The purpose of this study
40	is to investigate the feasibility of using PAT as an imaging tool for identifying branching vessels in the
41	subcutaneous layer associated with the thin ALT flap.
42	
43	Materials and methods
44	After approval by our institutional ethics committee and clinical trial registration, we recruited five healthy
45	male adults (mean age, 41 years; mean body mass index, 23.1 kg/m ²) for this study. PAT was performed

46 bilaterally in all subjects.

47 The PAT we employed was the same system that was used for a previous study on breast cancer

48	angiogenesis. In that study, the estimated maximum depth of vessels visualized was 27 mm. ⁵ The system
49	comprised a Ti:sapphire laser transmitter and a tabletop scanning platform (Supplemental Digital Content
50	Figure 1). The wavelength of the laser was 797 nm. The maximum laser power was set to less than the half
51	the maximum permissible exposure recommended by the American National Standards Institute. Multiple
52	ultrasonic transducers were placed into a hemispherical cup built into the platform. Each subject was placed
53	on the platform in the semi-prone position with the anterolateral surface of the mid-thigh facing the cup. The
54	space between the skin and the cup was filled with de-aired water for smooth transmission of ultrasonic
55	waves. Each scan took approximately 2 minutes for a 14 \times 14 cm ² region. Acquired data were processed
56	three-dimensionally using laboratory-made imaging software. Visualization of vessels in the adipose or
57	suprafascial layer was performed using the following steps. First, the surface of the skin was identified
58	automatically using signals from the dermis. Next, color gradation was applied to the images according to
59	the depth from the skin surface. Subdermal venous networks in the most superficial layer were visualized in
60	blue. Finally, vessels in the adipose layer or deeper were visualized independent of the venous networks by
61	semi-automatically cropping out the superficial layer that included the networks (Fig. 1).
62	To study the diagnostic potential of PAT, the correlation between the locations of perforators identified on
63	PAT versus conventional ultrasound (US) was evaluated. To determine the detectability of PAT by depth, the
64	depth of vessels in the stem portion was measured and compared to the depth of the deep fascia measured
65	using US. The orientation of perforators in the stem portion was also evaluated. The branching morphology

66 of vessels in the adipose and suprafascial layers was evaluated using three-dimensional observation.

68	Results
69	PAT visualized the branching vessels of perforators in the subcutaneous layer in all subjects. PAT showed
70	18 perforators and US showed 15 perforators, all of which were visualized by PAT. However, discrepancies
71	in location of less than 10 mm were frequently observed. The estimated mean depth of vessels visualized
72	by PAT was 9 mm; the maximum was 13 mm. Unlike US, PAT does not visualize the soft tissue components.
73	Comparison of the depth of a vessel visualized by PAT with the depth of the deep fascia visualized by US at
74	the corresponding site revealed a strong correlation (Pearson's correlation = 0.8). Among the 18 perforators,
75	nine had an orientation of approximately 30 degrees relative to the horizontal plane and the remaining nine
76	had an orientation of 30–60 degrees.
77	Three-dimensional observation of PAT images showed the branching pattern of perforators. Fourteen Type
78	I and four Type II perforators according to a classification system proposed by Schaverien et al. ⁶ were
79	observed. Figure 2 is a representative image showing a Type II perforator with horizontal branches visualized
80	in the deepest layer and oblique branches more superficially (see also Supplemental Digital Content Video
81	1). Such branching vessels in the suprafascial layer were almost always undetectable by Doppler mode of
82	US (Supplemental Digital Content Figure 2).

84 Discussion

- 85 This is the first report to show the feasibility of using PAT imaging to visualize the branching morphology of
- 86 perforators in the subcutaneous layer in the anterolateral thigh. The three-dimensional nature of PAT imaging
- 87 contributed to identification of the branching morphology of perforators.
- 88 Compared with conventional US, PAT visualized vessels to the level of the deep fascia. By contrast, vessels
- 89 deeper than the fascia were undetectable, suggesting that the deep fascia could be a factor limiting the
- 90 depth performance of PAT. The lack of anatomical references of PAT imaging is a barrier to its intraoperative
- 91 use. Cooperation of US with PAT would resolve these issues.
- 92 PAT has two other technical limitations. First, there are currently no established methods to distinguish
- 93 arteries from veins using PAT, thus a triple bundle appearance was common, especially in vessels near the
- 94 stem portion (Fig. 2). The subdermal venous networks were distinguishable owing to their superficial location
- 95 and polygonal morphology.⁷ Second, the orientation of a vessel affects its visualization by PAT. This is known
- 96 as the limited view problem.⁸ More vertically distributed vessels are reportedly less likely to be visualized.
- 97 Indeed, no vertical vessels were observed in this study, although vessels at an angle of approximately 60
- 98 degrees were visualized. This might be the reason why no Type III perforators were found in this study.
- 99 Although further technical refinements are needed for PAT to establish its clinical utility, we believe that PAT
- 100 would be a promising new imaging modality for thin ALT flap surgery.

- 102 Authors' role/participation in the authorship of the manuscript
- 103 SS conducted the study and IT performed the experiments. HS developed imaging software. IT, AY and SS
- 104 \qquad analyzed the data. All the authors contributed to writing of the manuscript.

105

106 Acknowledgement

- 107 This work was funded by the ImPACT Program of the Council for Science, Technology and Innovation
- 108 (Cabinet Office, Government of Japan). Canon invented the photoacoustic imaging system used in this
- 109 study. We would like to express our sincere gratitude to all our collaborators: Tomoko Kosaka, Kazuko
- 110 Kobayashi, Yasufumi Asao, Shuichi Kobayashi and Takayuki Yagi.

111

113 References

114

- 115 1) Kimura N, Satoh K. Consideration of a thin flap as an entity and clinical applications of the thin
- anterolateral thigh flap. Plast Reconstr Surg. 1996; 97: 985-992.
- 117 2) Ross GL, Dunn R, Kirkpatrick J, Koshy CE, Alkureishi LW, Bennett N, Soutar DS, Camilleri IG. To thin or
- 118 not to thin: the use of the anterolateral thigh flap in the reconstruction of intraoral defects. Br J Plast Surg.

119 2003; 56: 409-413.

- 120 3) Alkureishi LWT, Shaw-Dunn J, Ross GL. Effects of thinning the anterolateral thigh flap on the blood supply
- 121 to the skin. Br J Plast Surg. 2003; 56: 401-408.
- 4) Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;

123 335(6075):1458-1462.

- 124 5) Toi M, Asao Y, Matsumoto Y, Sekiguchi H, Yoshikawa A, Takada M, Kataoka M, Endo T, Kawaguchi-Sakita
- 125 N, Kawashima M, Fakhrejahani E, Kanao S, Yamaga I, Nakayama Y, Tokiwa M, Torii M, Yagi T, Sakurai T,
- 126 Togashi K, Shiina T. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging
- 127 system with a hemispherical detector array. Sci Rep. 2017; 7: doi10.1038/srep41970
- 128 6) Schaverien M, Saint-Cyr M, Arbique G, Hatef D, Brown SA, Rohrich RJ. Three- and four-dimensional
- 129 computed tomographic angiography and venography of the anterolateral thigh perforator flap. Plast Reconstr
- 130 Surg. 2008; 121: 1685-1696.

- 131 7) Imanishi N, Kishi K, Chang H, Nakajima H, Aiso S. Three-dimensional venous anatomy of the dermis
- 132 observed using stereography. J Anat. 2008; 212: 669-673.
- 133 8) Xu Y, Wang LV. Reconstructions in limited-view thermoacoustic tomography. Am Assoc Phys Med. 2004;
- 134 **31**: **724-733**.
- 135

136	Figure legends
137	
138	Fig. 1
139	Anteroposterior photoacoustic tomography images in the all-layer (left) and deep-layer views (right). The
140	color corresponds to the depth from the skin surface. Note that the blue superficial venous networks in the
141	all-layer image are not shown in the deep-layer image; deep branching vessels in red are visualized
142	separately. Scale bar = 20 mm.
143	
144	Fig. 2.
145	Photoacoustic tomography projection images showing a Type II branching pattern in a perforator. Insets are
146	lateral views for the regions indicated in the anteroposterior image. In the inset A-B, a perforator bifurcates
147	into vessels coursing horizontally and oblique to the skin surface. In the inset C-D, a branch coursing
148	obliquely from the bifurcation changes its direction, becoming more horizontal in the distal portion. Note the
149	triple bundle appearance of the branches (arrowhead). Scale bars = 10 mm. See also Supplementary video
150	1.
151	
152	Supplemental Digital Content Figure 1
153	Schematic of the photoacoustic tomography system.

- 155 Supplemental Digital Content figure 2
- 156 Images show a difference in visual performance between PAT and Doppler ultrasound. Note that the oblique
- 157 portion of the perforator system in the subcutaneous layer shown by PAT is not visualized by Doppler US
- 158 (arrowhead).
- 159
- 160 Supplemental Digital Content Video 1
- 161 The video highlights three-dimensional visualization of the branching vessels in Fig. 2. The color of the
- 162 vessels corresponds to the depth from the skin. X, Y, and Z coordinates indicate the medial, distal, and
- 163 posterior directions, respectively.

Fig.1

Fig.2

Supplementary video capture

Supplemental Digital Content Figure 1

Supplemental Digital Content Figure 2