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SUMMARY

Dendritic filopodia of developing neurons function as
environmental sensors, regulating the spatial organi-
zation of dendrites and proper targeting to presyn-
aptic partners. Dendritic filopodia morphology is
determined by the balance of F-actin assembled via
twomajor nucleating pathways, the ARP2/3 complex
and formins. The inverse-BAR protein MTSS1 is
highly expressed in Purkinje cells (PCs) and has
been shown to upregulate ARP2/3 activity. PCs in
MTSS1 conditional knockout mice showed dendrite
hypoplasia due to excessive contact-induced retrac-
tion during development. This phenotype was
concomitant with elongated dendritic filopodia and
was phenocopied by overactivation of the actin
nucleator formin DAAM1 localized in the tips of PC
dendritic protrusions. Cell biology assays including
single-molecule speckle microscopy demonstrated
that MTSS1’s C terminus binds to DAAM1 and
paused DAAM1-mediated F-actin polymerization.
Thus, MTSS1 plays a dual role as a formin inhibitor
and ARP2/3 activator in dendritic filopodia, deter-
mining final neuronal morphology.

INTRODUCTION

Dendritic arbor size, shape, and location critically affect synaptic

integration and neuronal circuit organization. Dendrites of

space-filling arbors allow for maximum coverage of a field while

minimizing inefficient redundancies (Parrish et al., 2007; Snider

et al., 2010). Recent studies have shown contact-dependent

stalling and/or retraction of growing branches as one mecha-

nism to achieve such morphology (Han et al., 2012; Smith

et al., 2012). The cell-surface molecules involved in dendritic

self-avoidance of space-filling neurons have only recently been

identified in the mammalian nervous system, including DSCAM
This is an open access article under the CC BY-N
(Fuerst et al., 2009), Semaphorin 6A (Sun et al., 2013), g-proto-

cadherins (Lefebvre et al., 2012), and Robo2/Slit2 (Gibson

et al., 2014). However, it remains unclear how the signaling

threshold for retraction and inter-dendrite spacing is

established.

We have previously shown that dendritic protrusions, which

encompass filopodia and immature spines, mediate contact-

dependent stalling and retraction of Purkinje cell (PC) dendrites

to achieve its large space-filling configuration (Fujishima et al.,

2012). Dendritic protrusions vary considerably in shape, dy-

namics, and internal organization by changes in the underlying

actin cytoskeleton, depending on developmental stage, activity,

and disease state (Hotulainen and Hoogenraad, 2010; Yuste and

Bonhoeffer, 2004), and have been shown to contain unbundled,

bidirectional arrangements of F-actin (Hotulainen et al., 2009;

Korobova and Svitkina, 2010). The rate-limiting step of F-actin

assembly is mediated by two major classes of actin nucleators:

the ARP2/3 complex forms a branched F-actin network, whereas

formins such as mDia1 (Campellone and Welch, 2010) and

DAAM1 (Jaiswal et al., 2013) can form linear, unbranched F-actin

and mediate polymerization by remaining associated with the

growing barbed end. In contrast to canonical filopodia consisting

of formin-dependent unbranched F-actin, dendritic protrusions

contain both actin nucleators (Korobova and Svitkina, 2010).

Thus, with their small volumes and dynamic morphology, den-

dritic protrusions require tight control of actin nucleators to

achieve correct morphological structure (Miermans et al.,

2017; Hotulainen et al., 2009; Spence et al., 2016); yet, how

these pathways are temporally and locally balanced in dendritic

protrusions is not well understood.

Metastasis suppressor-1 (MTSS1, also known as MIM) is a

member of the inverse-Bin/Amphiphysin/Rvs domain (I-BAR) su-

perfamily highly expressed in the developing central nervous

system (Mattila et al., 2003). The N-terminal membrane-binding

I-BAR domain self-associates to form a homodimer and induces

protrusion of the plasma membrane (Suetsugu et al., 2006).

MTSS1 is known to directly bind to G-actin with high affinity

via its C-terminal Wiskott-Aldrich syndrome protein (WASP) ho-

mology 2 (WH2) domain (Mattila et al., 2003; Woodings et al.,
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Figure 1. Purkinje-Specific Loss of MTSS1

Results in Decreased Dendritic Complexity

and Increased Dendritic Protrusion Length

In Vivo

(A) Endogenous staining of PC marker calbindin

and MTSS1 in sagittal cerebellar sections fromWT

(top) and cKO (bottom) mice at P7. IGL, internal

granule layer; ML, molecular layer; PCL, Purkinje

cell layer.

(B) Representative images of PCs labeled with

AAV-GFP in sagittal cerebellar sections from WT

(top) and cKO (bottom) mice at indicated ages.

(C and D) Quantification of total dendritic length (C)

and total number of branch points (D) from AAV-

GFP-labeled PCs at indicated ages reconstructed

and traced using Imaris software. n = 10–11 neu-

rons per condition.

(E) Diagram illustrating PC dendrite classification

and quantification of primary dendrite length in

mature PCs (P35). N R 17 neurons per condition.

(F and G) Sholl analyses of AAV-GFP-labeled PCs

reconstructed in Imaris software at ages P14 (F)

and P35 (G). The number of dendrites intersecting

concentric circles centered at the point of primary

dendrite emanation from the soma with increasing

radii was measured at an increment of 5 mm.

n = 9–11 neurons per condition.

(H) Distal dendrites and their dendritic protrusions

at indicated ages in WT and cKO PCs labeled with

AAV-GFP.

(I) Quantification of distal dendritic protrusion

length in WT and cKO PCs.

All data show mean ± SEM. Scale bars, 50 mm

(A, B); 3 mm (H). ****p < 0.0001. See also Figure S1.
2003), as well as upregulate the activity of ARP2/3 via multiple

mechanisms (Lin et al., 2005; Saarikangas et al., 2015). It has

also been demonstrated that MTSS1 interacts with a formin

DAAM1 and regulates neural tube closure in Xenopus (Liu

et al., 2011). DAAM1 has been shown to regulate filopodia forma-

tion via its processive actin polymerization activities (Jaiswal

et al., 2013). A more recent study using MTSS1 null mice has

demonstrated for the first time that MTSS1 regulates dendritic

protrusion initiation in neurons by coupling I-BAR-dependent

plasma membrane bending and ARP2/3-mediated actin poly-

merization (Saarikangas et al., 2015). Furthermore, MTSS1 null

mice have altered synaptic transmission at PC spines and pro-

gressive neurological and behavioral deficits that are associated

with the cerebellum and other brain regions expressing MTSS1

(Saarikangas et al., 2015; Sistig et al., 2017). However, the causal

link between the molecular function and loss-of-function cellular

phenotypes remains ambiguous.

Using conditional knockout (cKO) mice lackingMTSS1 in PCs,

we demonstrate that MTSS1 loss results in dendritic hypoplasia

and show that MTSS1 determines dendritic protrusion length

and the threshold for branch retraction, thereby influencing the

complexity of the space-filling dendrites. We provide evidence
96 Cell Reports 24, 95–106, July 3, 2018
that the C terminus of MTSS1 binds to

and inhibits actin assembly by DAAM1

in dendritic protrusions in neurons.
Thus, we identify MTSS1’s dual role in regulating a formin as

well as ARP2/3, pointing to the importance of coordinating the

precise balance of diverse actin assembly strategies during

neuronal morphogenesis.

RESULTS

PC-Specific MTSS1 Knockout Results in Loss of
Dendritic Arbor Complexity
We sought to clarify the cell-autonomous function of MTSS1 in

PCmorphogenesis using a PC-specificMTSS1 knockout mouse

(cKO, GluRd2-Cre; Mtss1flox/flox) (Figures S1A–S1D). We gener-

ated an Mtss1flox/flox mouse, which was then crossed with a

Cre line under the control of the GluRd2 promoter (GluRd2-

Cre); this promoter is restricted to PCs and starts expression

at embryonic day 15 (Takayama et al., 1996). Clear abolishment

of MTSS1 signal in PCs was confirmed by post-natal day (P) 7

(Figure 1A) and in adults (Figure S1E). Loss of MTSS1 did not

disrupt the cerebellar cortical layer organization or molecular

layer height (Figures S1F and S1G).

To analyze the morphology of individual PCs, P1 pups under-

went intracerebellar injection of adeno-associated virus (AAV)



carrying a GFP expression construct, and PCs were analyzed at

the indicated ages. Compared with wild-type (WT, Mtss1flox/flox)

PCs, loss of MTSS1 in cKO PCs reduced complexity in dendritic

branching as early as P9 (Figure 1B). By P14, in which PCs are

actively forming new dendrites (Kaneko et al., 2011), cKO PCs

showed an �40% decrease in both total dendritic length (WT,

3,530 ± 189 mm; cKO, 1,970 ± 142 mm;mean ± SEM) and branch

points (WT, 233 ± 11; cKO, 136 ± 9) (Figures 1C and 1D). By P35,

at which stage PCs are finished growing, cKO PCs showed a still

significant �30% reduction in dendritic complexity (total den-

dritic length: WT, 6,710 ± 330 mm; cKO, 4,620 ± 203 mm; branch

points: WT, 377 ± 10; cKO, 254 ± 10). By maturation at P35, cKO

PCs had many smaller, thinner dendrites emanating from a

longer, thick primary dendrite that bifurcated far from the soma

(WT, 36 ± 4 mm; cKO, 98 ± 7 mm) (Figure 1E). Furthermore, Sholl

analysis demonstrated that dendrite density was reduced prox-

imal to the soma in cKO PCs, although density at distal regions

approached WT levels by maturation (Figures 1F and 1G). Inter-

estingly, we observed that the primary dendrites of cKO PCs

were positioned within the molecular layer at non-uniform and

bent angles, presumably to compensate for the loss of proximal

dendrites (Figure S1G).

Close observation of subcellular structures revealed that den-

dritic protrusions in P14 cKO PCs looked thinner, as previously

reported (Saarikangas et al., 2015). However, unlike previous ob-

servations, we detected no obvious change in protrusion density

in cKO PCs, although precise quantification was technically

challenging because of the high density of dendritic protrusions

(Figures 1H and 1I). The dendritic protrusions were longer than

those of WT PCs (WT, 0.63 ± 0.01 mm; cKO, 0.94 ± 0.01 mm),

which could be observed until P35 (WT, 0.70 ± 0.01 mm; cKO,

0.91 ± 0.01 mm).

MTSS1 Knockout PCs Show Increased Early-Stage
Contact-Dependent Dendritic Retraction In Vitro

To better observe the developmental characteristics of cKO

PCs, we performed in vitro cultures of dissociated cerebellar

cells from P0.5 pups. Like in vivo PCs, cKO PCs in vitro showed

a similar loss of dendritic complexity (Figure 2A). At 12 days

in vitro (DIV) (12DIV), cKO PCs showed an�60% decrease in to-

tal dendritic length and �55% decrease in branch points (Fig-

ures 2B and 2C). Furthermore, cKO PCs showed a 46%

decrease in the number of primary dendrites. To address

whether the loss of dendrite complexity in MTSS1-deficient

PCs was due to decreased dendrite formation or increased

retraction frequency, we performed time-lapse imaging of PCs

during their period of dendritic arborization. Like WT neurons,

cKO PCs started growth with multiple primary dendrites with

frequent extension of dendrites; however, these dendrites were

often retracted within 24 hr (Figures 2E and 2F; Video S1).

Throughout development, cKO PCs showed more retractions

than WT PCs, particularly in the beginning stages of dendritic

arborization (Figure 2G). Time-dependent Sholl analyses

showed the progressive loss of proximal dendrites in cKO

PCs, which are established first during development (Figures

2H and 2I). We confirmed that dendritic growth speed was not

decreased but rather increased in cKO PCs (Figure S2A).

Branching probability remained unchanged until 10DIV, yet de-
cayed at 11DIV in WT cells and remained high in cKO (Fig-

ure S2B). It is thus unlikely that the dendritic hypoplasia is due

to decreased dendrite formation. This phenotype is similar to

that observed in vivo, suggesting that the resulting morphology

is established by increased proximal dendrite retraction during

the early stages of dendritic arborization.

Length of Dendritic Protrusions Regulates Final PC
Dendritic Morphology
The growing dendrites of cultured PCs at 12DIV are stubbed

with dendritic protrusions that include both filopodia and thin,

headed spines (Lee et al., 2004; Shimada et al., 1998). Consis-

tent with in vivo observations, the average length of dendritic

protrusions in cKO PCs was significantly increased (WT,

0.98 ± 0.02 mm; cKO, 1.60 ± 0.03 mm), as was the distribution

of lengths (Figures 2J and 2K). Time-lapse imaging showed dy-

namic extension and retraction of dendritic protrusions in cKO

PCs, with some filopodia-like protrusions reaching up to 4 mm

and retracting again (Video S2). These results suggested a

mechanism in which the length of dendritic protrusions, which

are the first point of contact with surrounding growing den-

drites, may increase the frequency of encountering a retraction

stimulus and may underlie the dendritic morphology observed

in cKO PCs. To test this hypothesis, we used a previously es-

tablished computer model of PC dendritic arbor growth based

on morphological parameters, dendritic growth speed, and

branching and retraction probabilities (Fujishima et al., 2012).

Setting the parameters as previously reported, the distribution

of the simulated growing dendrites reflected that of PCs grown

in vitro (Figure 2L). When the average length of dendritic protru-

sions was increased by 0.6 mm, reflecting the average length

increase observed in culture, and all other parameters kept

constant, simulated neurons showed reduced dendritic branch-

ing (Figures 2M and 2N) and a 32% decrease in primary

dendrite count (Figure 2O). The average morphology of neurons

simulated with longer filopodia showed similar loss of branches

in proximal regions consistent with experimental observations.

These results suggest that regulation of length of dendritic pro-

trusions is important for space-filling neurons to achieve their

final morphology.

The C Terminus of MTSS1 Regulates the Length of
Dendritic Protrusions and Proper Dendritic Arborization
in PCs
The I-BAR domain of MTSS1 has been well studied for its mem-

brane-bending activity, accumulation of PIP2, and regulation of

the GTPase Rac1, and it has been shown to have distinct func-

tions in initiating canonical filopodia and spine precursors (Bom-

pard et al., 2005; Mattila et al., 2007; Saarikangas et al., 2015).

On the other hand, the C terminus of MTSS1 includes the WH2

domain, which has been shown to bind G-actin (Mattila et al.,

2003; Woodings et al., 2003), and serine-rich (SRD) and pro-

line-rich domains (PRD), which regulate other actin-binding pro-

teins (Lin et al., 2005; Liu et al., 2011; Quinones et al., 2010). To

understand the mechanistic function of MTSS1 in the regulation

of PC dendritic arbor and protrusion morphology, several GFP-

tagged MTSS1 truncate proteins (Figures 3A and S3A) were

generated and transfected into cerebellar cultures at 0DIV.
Cell Reports 24, 95–106, July 3, 2018 97
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Figure 2. MTSS1 Knockout PCs Show Increased Early-Stage Contact-Dependent Dendritic Retraction In Vitro Caused by Increased

Dendritic Protrusion Length

(A) Representative images of PCs transfected with GFP in dissociated cerebellar cultures of WT (left) and cKO (right) mice at 12DIV.

(B–D) Quantification of total dendritic length (B), number of branch points (C), and primary dendrites (D). n = 17–24 neurons per condition.

(E and F) Montages of time-lapse imaging started at 7DIV of developing dendrites from one cKO PC (E) and another example (F) labeled with AAV-GFP in

dissociated cerebellar culture. Figures show progression every 6 hr. Arrows indicate apparent collisions of dendritic branches.

(G) Quantification of eliminated dendrite events observed during time-lapse imaging of PCs. One event was counted on the last frame of retraction. n = 4 neurons

per condition.

(H and I) Time-dependent Sholl analyses of developing PCs in WT (H) and cKO (I) cultures observed during time-lapse imaging. n = 4 per condition.

(J) Representative images of dendritic segments from PCs transfected with GFP in dissociated WT (left) and cKO (right) cerebellar cultures at 12DIV.

(K) Distribution of WT (n = 540) and cKO (n = 572) dendritic protrusion lengths in 12DIV PCs.

(L) Representative image of computer-simulated PCs using WT (left) and increased dendritic protrusion length (right) parameters.

(M–O) Quantification of total dendritic length (M), number of branch points (N), and primary dendrites (O) of computer-simulated neurons at 72 hr. n = 20 neurons

precondition.

All data show mean ± SEM. Scale bars, 50 mm (A); 10 mm (E and F); 3 mm (J). **p < 0.01; ***p < 0.001; ****p < 0.0001. See also Figure S2 and Videos S1 and S2.
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Figure 3. The C Terminus of MTSS1 Regu-

lates the Length of Dendritic Protrusions

and Proper Dendritic Arborization in Pur-

kinje Cells

(A) Schematic of MTSS1 domains and constructs.

(B) Representative images showing GFP signal of

12DIV WT and cKO PCs in dissociated cerebellar

cultures, transfected at 0DIV with GFP or GFP-

MTSS1 constructs.

(C) Representative GFP and calbindin images of

dendritic segments from PCs described in (B).

(D and E) Quantification of total dendritic length (D)

and total number of branch points (E). n = 11–24

neurons per condition.

(F) Quantification of dendritic protrusion lengths.

All data show mean ± SEM. Scale bars, 20 mM (B);

3 mM (C). ****p < 0.0001. See also Figure S3.
Analysis at 12DIV showed that overexpression of full-length

MTSS1 completely rescued cKO dendritic arbor complexity,

with comparable morphology to WT cells. Unexpectedly,

expression of the I-BAR domain, which was localized strongly

at the plasma membrane at more distal regions of the arbor,

could not rescue dendritic growth (Figures 3B, 3D, and 3E).

On the other hand, a similar expression level of C-MTSS1 (Fig-

ures S3A and S3B) was sufficient in rescuing PC dendritic

arborization. Furthermore, complete rescue of dendritic arbor

shape with C-MTSS1DWH2 demonstrated that this was inde-

pendent of the strong G-actin binding activity of the WH2

domain.

At higher magnification, full-length GFP-MTSS1 was localized

throughout the dendritic arbor and showed accumulation in den-

dritic protrusions (Figure 3C). cKO PCs expressing GFP-MTSS1

showed complete rescue in dendritic protrusion length (WT, 0.98

± 0.02 mm; cKO+MTSS1, 1.02 ± 0.02) (Figure 3F). Dendritic pro-

trusions in cKO PCs showed strong accumulation of GFP-I-BAR

with long, very thin morphology and no rescue of protrusion

length (1.76 ± 0.04 mm). Both GFP-C-MTSS1 and GFP-C-

MTSS1DWH2 showed diffuse localization throughout the den-

dritic shaft and protrusions, and consistent with their rescue of

the dendritic arbor, resulted in a rescue of dendritic protrusion

length (C-MTSS1, 1.04 ± 0.02 mm; C-MTSS1DWH2, 1.03 ±

0.02 mm), indicating that the C-terminal SRD and PRD are critical
for MTSS1 regulation of dendritic protru-

sion and arbor morphology.

MTSS1 Modulates Actin Nucleator
Activity in PCs
Dendritic filopodia of developing neurons

have been shown to contain branched

and linear F-actin structures (Korobova

and Svitkina, 2010), which are nucleated

by the ARP2/3 complex and formin

family, respectively. Using PCs, we first

wanted to confirm previous reports that

MTSS1 upregulated ARP2/3 activity in

dendritic protrusions. We transfected

dissociated WT cerebellar cultures with
GFP-MTSS1 at 0DIV and observed at 12DIV numerous round,

bulbous-shaped protrusions with slightly shorter length (WT,

1.02 ± 0.02 mm; WT+MTSS1, 0.89 ± 0.02 mm) (Figure 4A). Treat-

ment with ARP2/3 inhibitor CK-666 (20 mM) led to a reduction in

this morphology (Figure 4B), confirming that MTSS1 also posi-

tively regulates the ARP2/3 pathway in PCs. Of note, we

observed that CK-666 treatment of control PCs resulted in a

57% increase in length of dendritic protrusions (WT+CK-666,

1.61 ± 0.03 mm), consistent with previous studies using RNAi

to inhibit the activity of the ARP2/3 complex (Hotulainen et al.,

2009; Kim et al., 2013; Spence et al., 2016). It is possible that

this increase in length may be due to a shift to formin-dependent

actin nucleation, because recent studies have shown that

ARP2/3 and formin-mediated pathways of actin nucleation can

compete for G-actin within cells (Rotty et al., 2015; Suarez

et al., 2015). However, ARP2/3 inhibition of PCs overexpressing

MTSS1 did not show the samemagnitude of dendritic protrusion

lengthening (WT +MTSS1 + CK-666, 1.13 ± 0.03 mm). This led us

to wonder whether MTSS1 was negatively regulating formin

activity.

To test this, we acutely treated 12DIVWT and cKOPC cultures

with the pan-formin inhibitor SMI-FH2 (10 mM). Time-lapse imag-

ing both before and after drug addition showed minor retraction

of dendritic protrusions in WT cultures, but much more obvious

retraction of the longer cKO dendritic protrusions (Figure 4C;
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Figure 4. MTSS1 Modulates Actin Nucleator Activity in Purkinje

Cells

(A) Representative images of 12DIV WT PCs transfected at 0DIV with either

GFP (left) or GFP-MTSS1 (right) and treated with either vehicle (top) or 20 mmof

the ARP2/3 inhibitor CK-666 for 24 hr prior to fixation.

(B) Quantification of dendritic protrusion lengths in PCs described in (A).

(C) Representative images of 12DIVWT (left) and cKO (right) PCs transfected at

0DIV with GFP and treated with either vehicle (top) or 10 mm of the formin in-

hibitor SMI-FH2 for 10 min prior to fixation.

(D) Quantification of dendritic protrusion lengths in PCs described in (C).

All data show mean ± SEM. Scale bars, 3 mm. **p < 0.01; ****p < 0.0001. See

also Video S3.
Video S3). Quantification of cultures fixed 10min after drug appli-

cation showed cKO dendritic protrusions decreased 33% in

length, whereas WT protrusions showed a 19% decrease (Fig-

ure 4D). This rescue of cKO dendritic protrusion length sug-

gested that loss of MTSS1 had resulted in the upregulation of

formin activity. We were unable to observe whether pan-inhibi-

tion of formins by SMI-FH2 induces compensatory ARP2/3-

dependent change in protrusion morphology because of the

short treatment time required to avoid dendritic retraction.

DAAM1 Interacts with MTSS1 in Dendritic Protrusions
and Regulates Protrusion Length
Because loss of MTSS1 led to an upregulation of formin activity

in PC dendritic protrusions, we next aimed to identify which for-

min may be regulated by MTSS1 in PCs. In a previous report, the

C-terminal SRD and PRD of MTSS1 were identified to bind to the

catalytic domain of Xenopus DAAM1 (Liu et al., 2011). DAAM1

has been shown to be involved in many actin-dependent

morphogenic developmental processes (Gombos et al., 2015;

Matusek et al., 2008), as well as regulating filopodia formation

(Hoffmann et al., 2014; Jaiswal et al., 2013). However, there

have been no reports of DAAM1 involvement in neuronal den-

dritic protrusion formation. We first confirmed the presence of

DAAM1 in developingmouse cerebellum (Figure 5A). Immunoflu-
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orescence of culturedWT PCs at 12DIV showed punctate soma-

todendritic localization of MTSS1 and strong DAAM1 localization

in dendritic protrusions (Figures 5B and 5C). At higher magnified

views, MTSS1 appeared to be at the tips of most protrusions

(Figures 5D and 5E). DAAM1, on the other hand, showed variable

distribution throughout the protrusion, with some long protru-

sions showing strong localization of DAAM1 at the tip. MTSS1

and DAAM1 colocalized or were closely apposed in most den-

dritic protrusions.

The actin nucleation and polymerization activities of DAAM1

have been shown to be mediated by its highly conserved cata-

lytic domains (FH1 and FH2 domains) in the C terminus (Fig-

ure S4A). After confirming endogenous interaction of MTSS1

and DAAM1 in cerebellar lysates of developing mice at P8 (Fig-

ure 5F), we also sought for the domains of mammalian

MTSS1-DAAM1 interaction by pull-down with purified GST-

tagged MTSS1 truncates (Figures S4D–S4G). While the I-BAR

domain of MTSS1 was unable to pull down GFP-C-DAAM1,

both the C terminus of MTSS1 and C-MTSS1DWH2, which

were shown to be entirely sufficient in rescuing the MTSS1

cKO morphological phenotype, showed interaction with

C-DAAM1 (Figure S4E). We confirmed that MTSS1 did not

bind to an analogous truncate of the well-characterized diapha-

nous-related formin mDia1, consistent with previous studies that

showed specific interaction of MTSS1 with DAAM1, but not

with an mDia1 isoform mDia2 in Xenopus (Liu et al., 2011)

(Figure S4F).

We next examined whether MTSS1 regulates formin activity of

DAAM1 in living cells. We confirmed that constitutively active

C-DAAM1 increased F-actin content in NIH 3T3 cells, consistent

with previous reports (Habas et al., 2001; Liu et al., 2008) (Figures

6A and 6B). In contrast, coexpression of MTSS1 significantly

reduced C-DAAM1-induced actin assembly. These results sug-

gest that MTSS1 negatively regulates DAAM1’s actin-polymer-

izing activity.

We further explored whether the increased length of dendritic

protrusions in MTSS1-deficient PCs is mediated by upregulation

of DAAM1 activity. Because the persistent overexpression of

constitutively active C-DAAM1 was toxic to PCs, we utilized

the tamoxifen-inducible FLEx CreERT2 system to express

C-DAAM1 in PCs for short periods of time and fixed them at

12DIV. After just 6 hr of 4-OHT exposure, TdTomato-positive

PCs showed little to very weak GFP signal in the dendritic shaft

in both GFP and GFP-C-DAAM1 conditions (Figure 6C). How-

ever, this weak expression of GFP-C-DAAM1 was sufficient to

induce a significant increase in length of dendritic protrusions

(2.18 ± 0.03 mm), compared with either cultures expressing

GFP for 6 hr (1.08 ± 0.02 mm) or cultures transfected with GFP-

C-DAAM1, but not induced with 4-OHT (1.13 ± 0.02 mm) (Figures

6C–6E). After 12 hr of 4-OHT exposure, both GFP and GFP-C-

DAAM1 could be more clearly detected in Td-Tomato-positive

PCs. In contrast to GFP, GFP-C-DAAM1 showed more localiza-

tion to dendritic protrusions with clear accumulation at the tips

(Figures 6C and 6D). However, the dendritic protrusions by this

time became very thin and dense, and many dendrites began

to shrink, leaving behind blebbed membrane. Together these

data show that a very small increase in the level of DAAM1 activ-

ity is sufficient to increase protrusion length, which likely better
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Figure 5. DAAM1 Is Localized at the Tips of

Dendritic Protrusions in Developing PCs

and Directly Interacts with MTSS1

(A) Western blot staining of DAAM1 from cerebellar

lysates of WT mice at the indicated ages.

(B and C) Endogenous staining of MTSS1 and

DAAM1 in cultured WT PCs at 12DIV at low (B) and

higher (C) magnification.

(D and E) Insets shown in (C) demonstrating co-

localization of MTSS1 and DAAM1 in one subset of

dendritic protrusions (D) and another example (E).

(F) Immunoprecipitation from P8 cerebellar lysate

with anti-DAAM1 and IgG as a negative control.

Scale bars, 20 mm (B); 3 mm (C); 1 mm (D and E). See

also Figure S4.
reflects endogenous expression levels, and increasingly higher

levels can lead to major disruption of cell morphology.

MTSS1 Negatively Regulates Constitutively Active
DAAM1-Dependent F-Actin Elongation
To understand in better detail how MTSS1 may be negatively

regulating DAAM1 activity, we used total internal reflection

fluorescence (TIRF) microscopy to directly visualize DAAM1-

dependent F-actin elongation, using a simplified system of

DyLight488-labeled actin, profilin, and bead-immobilized

C-DAAM1, with or without the presence of MTSS1 (Figures

S5A–S5C). While we observed processive elongation of actin fil-

aments from beads conjugated with GST-C-DAAM1, in the pres-

ence of purified C-MTSS1DWH2, the elongation speed tended

to slightly decrease, and in a few filaments elongation stopped

all together, resulting in a significant decrease in total elongation.

We further analyzed the interplay of MTSS1 and DAAM1 in a

more natural environment than cell-free assays using single-

molecule speckle microscopy (SiMS) in XTC cells (Higashida

et al., 2004, 2008). XTC cells form very wide, thin lamellipodia

on poly-L-lysine-coated glass coverslips, allowing little obstruc-

tion from other planes of focus. Expression of very low levels of
fluorophore-tagged formins allows for

resolution of individual active formin di-

mers as speckles that show a directional

movement at a constant speed, proces-

sively adding G-actin to the barbed end

of an F-actin filament.

Expression of GFP-C-DAAM1 alone

showed speckles with fast, directional

movement (Figures 7A and 7C; Videos

S4 and S5) consistent with its processive

elongating activity previously reported

(Jaiswal et al., 2013). In sharp contrast,

coexpression of GFP-C-DAAM1 with

mCherry-MTSS1 resulted in a global

slowing and pausing of GFP-C-DAAM1,

suggesting that the actin elongation activ-

ity of C-DAAM1 is strongly inhibited by

MTSS1 (Figures 7B and 7D). Analysis of

total distance traveled by each speckle

during observation, which represents the
length of the F-actin filament polymerized, showed that coex-

pression with MTSS1 reduced C-DAAM1-dependent F-actin

polymerization by 48% ± 5% (Figure 7E). This inhibition of

C-DAAM1-dependent F-actin elongation could similarly be

achieved with C-MTSS1 (�51% ± 5%). Furthermore, coexpres-

sion of GFP-C-DAAM with C-MTSS1DWH2 resulted in slightly

less but significant reduction in total distance traveled

(�37% ± 3%).

When looking at traces of total distance traveled versus time

for individual speckles, the pausing of GFP-C-DAAM1 speckles

in the presence of MTSS1 and its truncates became more

apparent (Figure 7F; Video S5). Therefore, we separated and

quantified the speed of polymerization and state of polymeriza-

tion activity. In the presence of MTSS1 and C-MTSS1, the

average processive elongation speed of GFP-C-DAAM1

speckles showed strong negative correlation with mCherry-

construct expression (MTSS1, r2 = 0.85, p < 0.0001;

C-MTSS1, r2 = 0.81, p < 0.0001) (Figure 7G); however,

C-MTSS1DWH2 did not show such correlation (r = 0.32,

p = 0.28). This suggested that the slowing of elongation speed

may be due to transient interference or competition of the

G-actin-binding WH2 domain with C-DAAM1-dependent actin
Cell Reports 24, 95–106, July 3, 2018 101



0.0

0.5

1.0

1.5

2.0

2.5

3.0

C

G
FP

-C
-D

A
A

M
1

Td
To

m
at

o

E

D

0 hr 6 hr 12 hr

GFP GFP-MTSS1
A

M
yc

-C
-D

A
A

M
1

P
ha

llo
id

in

GFP-I-BAR GFP-C-MTSS1

G
FP

Td
To

m
at

o

P
ro

tru
si

on
 le

ng
th

 (μ
m

)

n=
55

8

n=
77

1

n=
63

4

*

*

*

*

****

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B

Fo
ld

 in
cr

ea
se

 F
-a

ct
in

n.s.
****

****

+ myc-C-DAAM1

Figure 6. MTSS1 Negatively Regulates

Constitutively Active DAAM1-Dependent

F-Actin Elongation

(A) Representative images of NIH 3T3 cells trans-

fected with myc-C-DAAM1 and GFP, GFP-MTSS1,

GFP-I-BAR, or GFP-C-MTSS1, and stained with

anti-myc, anti-GFP, and phalloidin. Arrows indicate

co-transfected cells. Asterisks indicate higher rela-

tive myc-C-DAAM1-expressing cells.

(B) Quantification of phalloidin staining intensity in

myc- and GFP double-positive cells described in (A)

versus non-transfected cells in the same image. n =

25 for each condition.

(C and D) Representative images of dendrite seg-

ments from cultured WT PCs at 12DIV induced with

500 nM 4-OHT for the indicated times prior to fixa-

tion. PCs were transfected at 0DIV with a 1:2:3 ratio

mix of CAG::TdTomato, Pcp2(L7):: CreERT2, and

CAG::FLEx-GFP-C-DAAM1 (C) or -GFP (D).

(E) Quantification of dendritic protrusions from PCs

as described in (C) and (D).

All data show mean ± SEM. Scale bars, 20 mm (A);

3 mm (C and D). ****p < 0.0001.
elongation (Mattila et al., 2003). We further confirmed that this

reduction in F-actin processive elongation was a non-specific

effect of the WH2 domain by co-expressing a constitutively

active mDia1 construct in the presence of an excess of

MTSS1 (Figures S5D and S5E).

We next quantified the fraction of measured speckles showing

pauses longer than 1 s and recovering movement on the same

vector within our 20-s observation window. In control cells, an

average of 9.7% ± 2.5% of GFP-C-DAAM1 speckles showed a

pause of >1 s (Figure 7H). However, the proportion of GFP-C-

DAAM1 speckle pausing increased and showed a significant

positive correlation with MTSS1 (r2 = 0.68, p < 0.0001) or

C-MTSS1 expression level (r2 = 0.66, p < 0.0001). This pausing

behavior was independent of the WH2 domain, because

coexpression with C-MTSS1DWH2 increased speckles

showing >1-s pauses with a similar strong positive correlation

(r2 = 0.72, p < 0.0001). Furthermore, this pausing behavior was

not observed when constitutively active mDia1 was cotrans-

fected with MTSS1 (r2 = 0.02, p = 0.52) or C-MTSS1DWH2

(r2 = 0.06, p = 0.25) (Figure S5F). Thus, the above results suggest

that MTSS1 negative regulation of DAAM1 does not specifically

affect the incorporation speed of free G-actin into the actively

elongating F-actin filament; however, MTSS1 induces pauses

in actively processive DAAM1 molecules.
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DISCUSSION

Here, we identified MTSS1 as an impor-

tant morphological regulator of the intri-

cate dendritic branches of cerebellar

PCs. Using both cultured PCs and

computer modeling characterized by

contact-dependent growth inhibition,

we demonstrated that simple lengthening

of dendritic protrusions significantly
affected final dendritic morphology. We identify MTSS1 as an

endogenous formin inhibitor in vertebrate neurons that nega-

tively regulates the dendritic protrusion-localized formin DAAM1.

Regulation of PC Morphology by MTSS1
We previously observed that dendritic filopodia act as the medi-

ators of contact-dependent retraction of PC dendrites (Fujishima

et al., 2012) and, due to their high density in developing PCs, may

possibly function to extend the diameter of dendritic reach

without compromising dendritic volume (Ziv and Smith, 1996).

Our present observations suggest oversensitivity of the self-

autonomous dendritic self-avoidance program with MTSS1

loss, and that the signaling threshold for contact-dependent

retraction is not only dependent on the surface molecules ex-

pressed, but also on the physical morphology and dynamics of

subcellular structures.

MTSS1 deficiency appeared not to affect differentiation of filo-

podia into spines, but rather caused elongation of all protrusions.

This all-encompassing change in protrusion morphology is not

surprising for two reasons: (1) dendritic filopodia and spines

share common molecular characteristics, with dendritic filopo-

dia containing unbundled, bidirectional F-actin filaments and

actin-binding proteins similar to what are found in thin spines

and the spine neck (Korobova and Svitkina, 2010); and (2)
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Figure 7. MTSS1 Reduces DAAM1 Actin Polymerization via Multiple Mechanisms

(A and B) SiMS imaging showing GFP signal in live XTC cells transfected with either GFP-C-DAAM1 alone (A) or with mCherry-MTSS1 (B). Asterisks indicate

starting position of GFP-C-DAAM1 speckle during observation, and circles indicate the traced speckle.

(C) Speckle position per frame from images in (A).

(D) Speckle position per frame from images in (B). Darker color indicates speckle pause.

(E) The total distance traveled during observation of 10–20 GFP-C-DAAM1 speckles was averaged per cell (one data point) and normalized to the GFP-C-DAAM1

alone condition. Data show mean ± SEM.

(F) Examples of time versus distance traveled traces of individual GFP-C-DAAM1 speckles.

(G) Linear regression shows a change in GFP-C-DAAM1 speckle speed dependent on MTSS1 or C-MTSS1 expression, but not C-MTSS1DWH2. Speed was

calculated from non-paused portions of a speckle’s trace.

(H) Linear regression shows a change in proportion of measured speckles per cell showing a pause >1 s during observation dependent on expression level of all

MTSS1 constructs.

Errorbars indicate 95%confidence interval of linear regressions in (G) and (H). Scalebars, 5mm. ***p<0.001; ****p<0.0001.SeealsoFigureS5andVideosS4andS5.
dendritic protrusions lie on a reversible morphological spectrum

and can show intermediate morphology between the long, thin,

filopodia-like spine and the bulbous, mushroom-like spine

(Nägerl et al., 2004; Schätzle et al., 2011). Thus, MTSS1 may

function as one regulator of the balance of these actin-binding

proteins in dendritic protrusion morphogenesis.

Dual Function of MTSS1 in Local Actin Regulation
In PCs, overexpression of MTSS1 in a WT background resulted

in bulbous protrusions, whichwas lost by ARP2/3 inhibition, con-
firming that the MTSS1-ARP2/3 axis of regulation is also present

in PCs. MTSS1 has been identified to indirectly upregulate the

ARP2/3 pathway via two methods: (1) accumulation of the mem-

brane phospholipid PIP2 via its I-BAR domain, which in turn

recruits ARP2/3-activating factors during initiation of dendritic

protrusions (Maddugoda et al., 2011; Saarikangas et al., 2015);

and (2) by interaction via its PRD with cortactin and facilitation

of cortactin’s upregulation of ARP2/3 activity (Lin et al., 2005).

The increase in protrusion length inMTSS1-deficient cells may

be attributed to the loss of MTSS1-mediated ARP2/3 activation,
Cell Reports 24, 95–106, July 3, 2018 103



which induces compensatory formin activation and/or the loss of

MTSS1-directed formin suppression. Our present results indi-

cate a novel function of MTSS1 as a direct inhibitor of DAAM1,

thus providing support for the latter scenario and suggesting

MTSS1 plays a dual role as ARP2/3 activator and formin inhibitor

in dendritic protrusions.

Previous studies using rat hippocampal neurons have shown

MTSS1 loss resulted in a reduction of thin spine density (Saari-

kangas et al., 2015). The authors demonstrated that MTSS1’s

I-BAR domain was sufficient for abrogating this loss, leading to

the conclusion that the membrane-binding function of MTSS1

is critical for filopodia initiation in hippocampal neurons. How-

ever, the authors further noted that a complete loss in protrusion

initiation was not observed, possibly because of the redundant

behavior of other I-BAR or F-BAR proteins. In line with this

conjecture, we observed that MTSS1 loss in mouse PCs did

not affect total protrusion density, nor was the I-BAR domain

required for attaining proper morphology. We think this may be

due to the expression of other I-BAR domain proteins such as

ABBA/MTSS1L in PCs (see in situ hybridization data from the

Allen Mouse Brain Atlas: Mtss1l - RP_050510_01_C01).

Another possibility of the morphological discrepancy may be

because of our selective ablation of MTSS1 in PCs, rather than

the previous global MTSS1 null animals used. Because MTSS1

is widely expressed in the CNS (Holst et al., 2008), deficiency

might affect circuit formation or function, thus having a more se-

vere effect in global knockout mice.

Taken together, we surmise thatMTSS1 has dual function dur-

ing dendritic protrusion formation: the first initiation step, in

which the MTSS1 I-BAR domain contributes to membrane

bending and ARP2/3 recruitment; and the growth step, based

on a balance of DAAM1 inhibition and possibly ARP2/3 activa-

tion by the C-terminal domain.

Functional Significance of DAAM1 in Neuronal Dendritic
Protrusions
We showed that acute over-activation of DAAM1 leads to tran-

sient increase in dendritic protrusion length. This is in line with

previous results showing that expression of a constitutively

active form of mDia2 results in an increase in filopodia length

(Hotulainen et al., 2009). Experimental and computer modeling

have shown that dendritic protrusion dynamics and final

morphology are most dependent on the rate of actin polymeriza-

tion (Marchenko et al., 2017; Miermans et al., 2017), suggesting

the contribution of a concerted effort of local formin activation

and release of inhibition.

We demonstrate that MTSS1 homeostatically inhibits DAAM1

actin polymerizing activity in PCdendritic protrusions. Formin ac-

tivity is tightly regulated by the autoinhibitory interactions of DAD

with the N-terminal diaphanous inhibitory domain (DID), which

can be released by Rho family GTPases (Higashi et al., 2008),

Wnt-dependent binding to Disheveled (Habas et al., 2001; Liu

et al., 2008), and a yet uncharacterized conformation change of

the FH2 domain to allow exposure of its actin-binding surfaces

(Lu et al., 2007). We showed that MTSS1 binds to the active

formofDAAM1and inhibits actin nucleation via twomechanisms.

First, overexpression of MTSS1 can non-specifically slow actin

polymerization byDAAM1and other formins viaWH2-dependent
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competition for G-actin. This may be specifically enhanced for

DAAM1 due to binding of MTSS1 and increased proximity of its

WH2 domain. Second, MTSS1 can specifically induce pauses

of DAAM1 during polymerization independently of the MTSS1

WH2 domain. Similar transient arrest of processive actin assem-

bly has also been reported for Formin2 (FMN2) in the presence of

itsmodulator Spire (Montaville et al., 2014). It has been proposed

thatSpire competitively binds to thebarbedendof actin filaments

and reversibly inhibits FMN2-induced actin nucleation. Although

Spire function is complex and its molecular structure is very

different from MTSS1, MTSS1 has also been shown to interact

with both G-actin (Mattila et al., 2003) and F-actin (Lin et al.,

2005), and may transiently interfere with other actin-binding pro-

teins. Whether MTSS1 induces transient disassociation of the

DAAM1 dimer from the F-actin, blocks G-actin addition, or pre-

vents the sliding of the DAAM1 dimer to remain at the barbed

end are just a few of the many questions that entail further study.

In conclusion, we have shown that MTSS1 modulation of

opposing actin nucleation pathways is important for bothmacro-

scale and microscale morphogenesis of neuronal dendrites.

Much remains to be clarified of the regulatory interplay and con-

trol of the fine actin-based temporal dynamics, which is made

especially challenging because of the functional redundancy

and mutual competition and/or compensation of actin binding

proteins. Furthermore, observations that some formins are un-

able to incorporate GFP-actin in formin-assembled actin struc-

tures (Chen et al., 2012) call for careful future dissection of the

function of formins in neuronal dendritic protrusions.
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Matusek, T., Gombos, R., Szécsényi, A., Sánchez-Soriano, N., Czibula, A., Pa-
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viciene, R., Kuurne, J., Mattila, P.K., Garrett, L., Hölter, S.M., et al. (2015). MIM-

induced membrane bending promotes dendritic spine initiation. Dev. Cell 33,

644–659.

Schätzle, P., Ster, J., Verbich, D., McKinney, R.A., Gerber, U., Sonderegger,

P., and Mateos, J.M. (2011). Rapid and reversible formation of spine head filo-

podia in response to muscarinic receptor activation in CA1 pyramidal cells.

J. Physiol. 589, 4353–4364.
106 Cell Reports 24, 95–106, July 3, 2018
Shimada, A., Mason, C.A., and Morrison, M.E. (1998). TrkB signaling modu-

lates spine density and morphology independent of dendrite structure in

cultured neonatal Purkinje cells. J. Neurosci. 18, 8559–8570.

Sistig, T., Lang, F., Wrobel, S., Baader, S.L., Schilling, K., and Eiberger, B.

(2017). Mtss1 promotes maturation and maintenance of cerebellar neurons

via splice variant-specific effects. Brain Struct. Funct. 222, 2787–2805.

Smith, M.B., Karatekin, E., Gohlke, A., Mizuno, H., Watanabe, N., and Vavylo-

nis, D. (2011). Interactive, computer-assisted tracking of speckle trajectories in

fluorescence microscopy: application to actin polymerization and membrane

fusion. Biophys. J. 101, 1794–1804.

Smith, C.J., Watson, J.D., VanHoven, M.K., Colón-Ramos, D.A., and Miller,

D.M., 3rd. (2012). Netrin (UNC-6) mediates dendritic self-avoidance. Nat. Neu-

rosci. 15, 731–737.

Snider, J., Pillai, A., and Stevens, C.F. (2010). A universal property of axonal

and dendritic arbors. Neuron 66, 45–56.

Spence, E.F., Kanak, D.J., Carlson, B.R., and Soderling, S.H. (2016). The

Arp2/3 complex is essential for distinct stages of spine synapse maturation,

including synapse unsilencing. J. Neurosci. 36, 9696–9709.

Spudich, J.A., and Watt, S. (1971). The regulation of rabbit skeletal muscle

contraction. I. Biochemical studies of the interaction of the tropomyosin-

troponin complex with actin and the proteolytic fragments of myosin. J. Biol.

Chem. 246, 4866–4871.

Suarez, C., Carroll, R.T., Burke, T.A., Christensen, J.R., Bestul, A.J., Sees, J.A.,

James, M.L., Sirotkin, V., and Kovar, D.R. (2015). Profilin regulates F-actin

network homeostasis by favoring formin over Arp2/3 complex. Dev. Cell 32,

43–53.

Suetsugu, S., Murayama, K., Sakamoto, A., Hanawa-Suetsugu, K., Seto, A.,

Oikawa, T., Mishima, C., Shirouzu, M., Takenawa, T., and Yokoyama, S.

(2006). The RAC binding domain/IRSp53-MIM homology domain of IRSp53 in-

duces RAC-dependent membrane deformation. J. Biol. Chem. 281, 35347–

35358.

Sun, L.O., Jiang, Z., Rivlin-Etzion, M., Hand, R., Brady, C.M., Matsuoka, R.L.,

Yau, K.-W., Feller, M.B., and Kolodkin, A.L. (2013). On and off retinal circuit as-

sembly by divergent molecular mechanisms. Science 342, 1241974.

Takayama, C., Nakagawa, S., Watanabe,M., Mishina,M., and Inoue, Y. (1996).

Developmental changes in expression and distribution of the glutamate recep-

tor channel d 2 subunit according to the Purkinje cell maturation. Brain Res.

Dev. Brain Res. 92, 147–155.

Takeo, Y.H., Kakegawa, W., Miura, E., and Yuzaki, M. (2015). RORa regulates

multiple aspects of dendrite development in cerebellar Purkinje cells in vivo.

J. Neurosci. 35, 12518–12534.

Takeuchi, T., Nomura, T., Tsujita, M., Suzuki, M., Fuse, T., Mori, H., and Mis-

hina, M. (2002). Flp recombinase transgenic mice of C57BL/6 strain for condi-

tional gene targeting. Biochem. Biophys. Res. Commun. 293, 953–957.

Takeuchi, T., Miyazaki, T., Watanabe, M., Mori, H., Sakimura, K., and Mishina,

M. (2005). Control of synaptic connection by glutamate receptor d2 in the adult

cerebellum. J. Neurosci. 25, 2146–2156.

Taniguchi, M., Yuasa, S., Fujisawa, H., Naruse, I., Saga, S., Mishina, M., and

Yagi, T. (1997). Disruption of semaphorin III/D gene causes severe abnormality

in peripheral nerve projection. Neuron 19, 519–530.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-MTSS1 Novus Biologicals CAT# NBP2-24716;

RRID: AB_2716709

Mouse monoclonal anti-MTSS1 Santa Cruz Biotechnology CAT# sc-101390;

RRID: AB_1126390

Chicken polyclonal anti-GFP Thermo Fisher Scientific CAT# A10262;

RRID: AB_2534023

Mouse monoclonal anti-GFP Santa Cruz Biotechnology CAT# sc-9996;

RRID: AB_627695

Rabbit polyclonal anti-RFP MBL Life Science CAT# PM005;

RRID: AB_591279

Goat polyclonal anti-DAAM1 Santa Cruz Biotechnology CAT# sc-55929;

RRID: AB_2089450

Mouse monoclonal anti-DAAM1 Novus Biologicals CAT# H00023002-M03;

RRID: AB_2089446

Mouse monoclonal anti-Calbindin Swant CAT# 300; RRID:

AB_10000347

Mouse monoclonal anti-mDia1 BD Biosciences CAT# 610848;

RRID: AB_398167

Mouse monoclonal anti-c-Myc Enzo CAT# BML-SA294;

RRID: AB_10541551

Goat anti-GST GE Healthcare CAT# 27-4577-01

RRID: AB_771432

Goat anti-Chicken Alexa Fluor 488 Thermo Fisher Scientific CAT# A-11039;

RRID: AB_2534096

Goat anti-Mouse Alexa Fluor 488 Thermo Fisher Scientific CAT# A-11029;

RRID: AB_2534088

Goat anti-Mouse Alexa Fluor 568 Thermo Fisher Scientific CAT# A-11004;

RRID: AB_2534072

Donkey anti-Mouse Alexa Fluor 647 Thermo Fisher Scientific CAT# A-31571;

RRID: AB_162542

Goat anti-Rabbit Alexa Fluor 488 Thermo Fisher Scientific CAT# A-11034;

RRID: AB_2576217

Goat anti-Rabbit Alexa Fluor 568 Thermo Fisher Scientific CAT# A-11011;

RRID: AB_143157

Donkey anti-Rabbit Alexa Fluor 647 Thermo Fisher Scientific CAT# A-31573;

RRID: AB_162542

Donkey anti-Goat Alexa Fluor 568 Thermo Fisher Scientific CAT# A-11057;

RRID: AB_2536183

Donkey anti-Goat Alexa Fluor 647 Thermo Fisher Scientific CAT# A-21447;

RRID: AB_2535864

Donkey anti-mouse HRP EMD Millipore CAT# AP192P;

RRID: AB_92658

Donkey anti-rabbit HRP EMD Millipore CAT# AP182P;

RRID: AB_92591

Donkey anti-goat HRP EMD Millipore CAT# AP180P;

RRID: AB_92573

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ChromPure Mouse IgG Jackson ImmunoResearch Labs CAT# 015-000-003;

RRID: AB_2337188

ChromPure Goat IgG Jackson ImmunoResearch Labs CAT# 005-000-003;

RRID: AB_2336985

Bacterial and Virus Strains

AAV2-CAG::eGFP Kengaku Lab (Fujishima et al., 2012)

BL21-CodonPlus (DE3)-RIPL E. coli Agilent CAT# 230280

Chemicals, Peptides, and Recombinant Proteins

DMEM/F12 (1:1) 1x GIBCO CAT# 11320-033

DMEM (1x) GIBCO CAT# 11965-092

Opti-MEM (1x) GIBCO CAT# 31985-070

HBSS (1x) GIBCO CAT# 14170-112

Leibovitz’s L15 medium GIBCO CAT# 11415-064

GlutaMAX (100x) GIBCO CAT# 35050-061

Penicillin Streptomycin (100x) GIBCO CAT# 15140-122

Fetal Bovine Serum (FBS) GIBCO CAT# 10270-106

Progesterone Sigma-Aldrich CAT# P7556

Insulin Sigma-Aldrich CAT# I-5500

Transferrin Sigma-Aldrich CAT# T1283-1G

Putrescine Sigma-Aldrich CAT# P5780

Selenium Dioxide Sigma-Aldrich CAT# S9379

Bovine Serum Albumin Sigma-Aldrich CAT# A3156

Poly-D-lysine Sigma-Aldrich CAT# P6407

AraC Sigma-Aldrich CAT# C1768

SMI-FH2 Sigma-Aldrich CAT# S4826

CK-666 EMD Millipore CAT# 182515

4-OHT Sigma-Aldrich CAT# H7904

IPTG Nacalai tesque CAT# 19742-94

DAPI Nacalai tesque CAT# 11034-56

Alexa Fluor 647 Phalloidin Thermo Fisher Scientific CAT# A-22287; RRID: AB_2620155

Protease Inhibitor Cocktail (EDTA-free) Nacalai tesque Cat# 03969-21

DyLight 488 NHS-Ester Thermo Fisher Scientific CAT# 46403

0.5 mm carboxylated polystyrene microspheres Polysciences CAT# 09836-15

EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

Hydrochloride)

Nacalai tesque CAT# 15022-86

Thrombin Nacalai tesque CAT# 33842

Critical Commercial Assays

Neuron Dissociation Kit Wako Pure Chemical Industries CAT# 291-78001

Lipofectamine LTX Thermo Fisher Scientific CAT# L3000001

AAV Helper-Free System Agilent CAT# 240071

AVB Sepharose High Performance GE Healthcare CAT# 28-4112-01

Protein A/G PLUS-Agarose Santa Cruz Biotechnology CAT# sc-2003

Amersham ECL prime GE Healthcare CAT# RPN2232

Glutathione Sepharose 4B GE Healthcare CAT# 17-0756-01

p- aminobenzamidine agarose Sigma Aldrich CAT# A7155

KOD FX polymerase Toyobo CAT# KFX-101

Experimental Models: Cell Lines

RENKA ES cell line (Mishina and Sakimura, 2007) Masayoshi Mishina lab

HEK293T cell line Riken BRC Cell Bank CAT# RCB2202

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

NIH 3T3-3-4 cell line Riken BRC Cell Bank CAT# RCB1862

XTC cell line Laboratory of Naoki Watanabe N/A

Experimental Models: Organisms/Strains

Mice: Slc:ICR Japan SLC CAT# 002225

Mice: B6-Tg (CAG-FLPe)36 RIKEN CAT# RBRC01834

Mice: C57BL/6N CLEA Japan CAT# C57BL/6NJcl

Mice: MTSS1flox/flox Laboratory of Masayoshi Mishina This paper

Mice: GluRd2-Cre Laboratory of Masayoshi Mishina (Kitayama et al., 2001)

Oligonucleotides

BAC clone carrying C57BL/6 MTSS1 CDS BACPAC Resources Center RP23-400B12

Genotyping primer for flox check: ‘‘s-neocassette-f ’’

GGAATGAGATCCGCTTTCCC

Eurofins Genomics PCReady primer

Genotyping primer for flox check: ‘‘s-neocassette-r’’

TCAAGCTGCAAGTGCCAGCT

Eurofins Genomics PCReady primer

Genotyping primer for Cre check: ‘‘d2-6aS’’

CAGAAGCCCTGTCTTACCGATG

Eurofins Genomics PCReady primer

Genotyping primer for Cre check: ‘‘d2 5S’’

GAAAGCTGCACTCAACTCTATCC

Eurofins Genomics PCReady primer

Genotyping primer for Cre check: ‘‘Cre P2’’

AAATCCATCGCTCGACCAGTTTAGTTACCC

Eurofins Genomics PCReady primer

PCR primers for MTSS1 and DAAM1. See Methods Details Eurofins Genomics PCReady primer

Recombinant DNA

Plasmid: pMC1DTpA Masayoshi Mishina lab (Taniguchi et al., 1997)

Plasmid: pCR2.1 TOPO Invitrogen CAT# K4500

Plasmid: pLFNeo Masayoshi Mishina lab (Takeuchi et al., 2002)

Template: Mouse MTSS1 (Full-length) Mineko Kengaku lab This study

Template: Mouse DAAM1 (C terminus) Mineko Kengaku lab This study

Plasmid: pAAV-CAG-eGFP Mineko Kengaku lab (Fujishima et al., 2012)

Plasmid: pCMV-DN3-mDia1 Naoki Watanabe lab (Higashida et al., 2004)

Plasmid: pAAV-CAG-mCherry Mineko Kengaku lab (Fujishima et al., 2012)

Plasmid: pCAGGS-flex Michisuke Yuzaki lab (Takeo et al., 2015)

Plasmid: pCL20c-L7::ERT2-Cre-ERT2 Michisuke Yuzaki lab (Nishiyama et al., 2012)

Plasmid: pGEX-4T-3 GE Healthcare CAT# 28-9545-52

Plasmid: pCMV-tag5a Agilent CAT# 211175

Plasmid: pAAV-CAG::TdTomato Mineko Kengaku lab (Fujishima et al., 2012)

Software and Algorithms

Purkinje cell growth model Mineko Kengaku lab (Fujishima et al., 2012)

Fiji (ImageJ) http://fiji.sc RRID:SCR_002285

Imaris http://www.bitplane.com/imaris/imaris RRID:SCR_007370

MetaMorph Microscopy Automation and Image

Analysis Software

https://www.moleculardevices.com/

Products/Software/Meta-Imaging-

Series/MetaMorph.html

RRID:SCR_002368

Graphpad Prism https://www.graphpad.com/ RRID:SCR_002798

MATLAB https://www.mathworks.com/

products/matlab/

RRID:SCR_001622

Speckle Tracker J plugin http://athena.physics.lehigh.edu/

speckletrackerj

(Smith et al., 2011)

Other

Round microscope cover glass, 12 mm No.1 Matusnami Glass IND., LTD CAT# C012001

Square microscope cover glass, 22 3 22 mm No.1 Matusnami Glass IND., LTD CAT# C022221

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SuperFrost Micro Slide Glass Matusnami Glass IND., LTD CAT# S2441

27-gauge needle Terumo CAT# NN-27195

33-gauge needle Terumo CAT# NN-33195

Amicon Ultra 4 Centrifugal filter Ultracel 50K EMD Millipore CAT# UFC805024

SpinTrap G-25 GE Healthcare CAT# 28-9180-04

PVDF membrane, Immobilon-FL Millipore CAT# IPFL00005

ProLong Gold Antifade Thermo Fisher Scientific CAT# P36934

ChemiDoc XRS+ System BioRad CAT# 1708265

Nepa Electroporation Cuvettes 2mm gap Nepagene CAT# EC-002S

Nepa21 Electroporator Nepagene CAT# NEPA21

Neon� Transfection System Invitrogen CAT# MPK1096
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mineko

Kengaku (kengaku@icems.kyoto-u.ac.jp).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animals were treated in accordancewith the guidelines of the Animal Experiment Committee of Kyoto University. Micewere kept in

a 12 hr dark/light cycle at 23 ± 3�C/50% humidity, with standard food and water provided ad libitum, in group housing of up to three

animals per cage. MTSS1 cKO mice and their littermates were kept in standard SPF housing. Timed-pregnancy wild-type ICR mice

(Japan-SLC, Cat# Slc:ICR) were obtained 1-3 days prior to giving birth and kept in a non-SPF conventional animal facility, and used in

experiments requiring only mice with wild-type backgrounds (Figures 4A, 5, and 6C–6E).

MTSS1 cKO Mice
We identified a bacterial artificial chromosome (BAC) clone RP23-400B12 prepared from the C57BL/6 strain (BACPAC Resources

Center, Oakland, CA) carrying the coding sequence of Mtss1 using basic local alignment searches against the mouse genome

sequence database. The targeting vector was constructed by a PCR-based method using the BAC clone DNA as a template. The

50 homology arms were amplified by PCR with primers 50-CGGCCGAGCTGACTACAGCTGAATGCACA-30 and 50-GTGATAACTTCG

TATAGCATACATTATACGAAGTTATGGATCCGTTCATTATTTCAGGGTCCGTGC-30, and 50-ATGTATGCTATACGAAGTTATCACA

GTGGTCCTTAGCTCTTCCA-30 and 50-GCGGCCGCTAGTTCCAGAGTCGACAAGTCACGGAGCCAGCTCTT-30, respectively. The

amplified fragments were fused by PCR and cloned into the NotI site of pMC1DTpA (Taniguchi et al., 1997) to yield pDT-50-arm.

The 30 homology arm was amplified by PCR with primers 50-GAGCTCGGAGTCAGATGGCCCTCGT-30 and 50-GCGGC

CGCTCCCAGGTGCCCTAGTGAGA-30, and cloned into the SacI-NotI sites of pCR2.1 TOPO (Invitrogen) to yield pTOPO-30-arm.

The 1.85-kb KpnI-SacI DNA fragment carrying the loxP sequence and Pgk-1 promoter-driven neomycin phosphotransferase gene

(neo) flanked by two Flp recognition target (frt) sites (Takeuchi et al., 2005) was cloned into the KnpI-SacI sites of pTOPO-30-arm
to yield pTOPO-LoxP-Neo-30-arm. The SalI-NotI DNA fragment from the pTOPO-LoxP-Neo-30-arm was cloned into the SalI-NotI

sites of the pTOPO-50-arm to yield the pMTSS1-targeting vector. The pMTSS1-targeting vector was linearized by NotI and electro-

porated into the embryonic stem (ES) cell line RENKA derived from the C57BL/6 strain (Mishina and Sakimura, 2007) as described

previously (Takeuchi et al., 2005). G-418 (150 mg/ml)-resistant clones were picked, and recombinant clones were identified by South-

ern blot hybridization analysis of BamHI- or EcoRI-digested genomic DNA using PCR-amplified 534-bp fragment, PCR-amplified

599-bp fragment, and the 0.6-kb EcoRI fragment from pLFNeo (Takeuchi et al., 2002) as 50, 30, and neo probes, respectively. The

50 probe and 30 probes were amplified by PCR using 50-ACACCAGTAGTCAGCATACTGCCT-30 and 50-CATGTGTACGTAAG

CATTCCCAG-30, 50-TAATTGGCATCGGATGGTGAGG-30 and 50-GCCTGTCAGCACCTGAGAGC-30 as primers, respectively. Re-

combinant ES cells were injected into eight-cell stage embryos of the ICR mouse line. Resulting chimera mice were mated to

B6-Tg (CAG-FLPe)36 mice, a C57BL/6 strain carrying the Flp recombinase gene under control of the CAG promoter (Kanki et al.,

2006), to remove the neo cassette. The resulting mice were further crossed with C57BL/6N mice to yieldMTSS1+/flox mice. Inducible

and cerebellar PC-specific MTSS1 mutant mice were obtained by crossingMTSS1+/flox mice with GluRd2-Cre+/Cre mice carrying the

Cre gene under the control of the GluRd2 gene promoter (Kitayama et al., 2001). Littermates derived from MTSS1flox/flox and

MTSS1flox/flox�; GluRd2-Cre+/Cre mice on the pure C57BL/6 genetic background were used for subsequent studies. Newborn homo-

zygous floxed MTSS1 littermates were genotyped for presence or lack of GluRd2-Cre either on the day of birth for use in primary
e4 Cell Reports 24, 95–106.e1–e9, July 3, 2018
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cultures, or at postnatal day 7 for use in immunohistochemistry experiments. No distinction between male and female pups were

made for experiments.

Primary Cell Culture
For primary cerebellar dissociated cultures, cerebella from littermates of both sexes were dissected in HBSS(GIBCO), pooled

together, and dissociated using the Neuron Dissociation Kit (Wako Pure Chemical Industries). Cells were resuspended in DMEM/F12

(GIBCO) supplemented by 10% FBS (GIBCO), plated on 12 mm glass coverslips (coated with 400 mg/mL poly-D-lysine (Sigma-Al-

drich) overnight) at a concentration of 2 cerebella/coverslip, and incubated for 2-3 hr at 37�C/5%CO2. Following incubation, the me-

dium was replaced by maintenance medium containing DMEM/F12 and supplemented with 0.1 mg/ml bovine serum albumin

(Sigma-Aldrich), 2.1 mg/ml glucose (Sigma-Aldrich), 2x GlutaMAX (GIBCO), 8 mM progesterone (Sigma-Aldrich), 20 mg/mL insulin

(Sigma-Aldrich), 200 mg/mL transferrin (Sigma-Aldrich), 100 mM putresine (Sigma-Aldrich), 30 nM selenium dioxide (Sigma-Aldrich),

5 mM Ara-C (Sigma-Aldrich), 100 units/mL penicillin (GIBCO), and 100 mg/mL streptomycin (GIBCO). Cultures were maintained at

37�C/5%CO2, with periodic replacement of a portion of the media.

Cell Lines
HEK293T cell line

HEK293T (Riken BRC Cell Bank, RCB2202) cells were maintained at 37�C/5% CO2 and were cultured in DMEM (GIBCO) supple-

mented with 10% Fetal Bovine Serum (FBS), 100 units/mL penicillin, and 100 ug/mL streptomycin. Cells were passaged every

2-3 days and maintained in plastic cell culture-treated dishes.

NIH 3T3 cell line

NIH 3T3 cells were maintained at 37�C/5% CO2 (Riken BRC Cell Bank, RCB1862) and were cultured in DMEM supplemented with

10% FBS, 100 units/mL penicillin, and 100 ug/mL streptomycin. Cells were passaged and plated at a density of 1.5x104cells/cm2

every 3 days andmaintained in plastic cell culture-treated dishes. For experiments, cells were plated on glass coverslips (Matusnami

Glass IND., LTD, C012001) coated with 100 ug/mL poly-D-lysine.

XTC cell line

XTC cells were maintained at 25�C and were cultured in in 70% Leibovitz’s L15 medium (GIBCO) supplemented with 10% FCS

(GIBCO). Cells were passaged every 2-3 days and maintained in plastic cell culture-treated dishes. For experiments, cells were

plated on glass coverslips coated with 100 ug/mL poly-L-lysine, in 70% Leibovitz’s L15 medium with no serum or phenol red.

METHOD DETAILS

Plasmids and Construction
The plasmids pAAV-CAG-eGFP, pAAV-CAG-mCherry, pAAV-CAG-TdTomato, and pCMV-DN3-mDia1 have been previously

described (Fujishima et al., 2012; Higashida et al., 2004). The plasmids pCAGGS-Flex and pCL20c-L7::ERT2-Cre-ERT2 were kindly

provided by Michisuke Yuzaki of Keio University, Japan. pGEX-4T-3 (GE Healthcare), pCMV-tag5a (Agilent) were purchased.

The full coding sequence of MTSS1 (Forward: ACACGGATCCATGGAGGCTGTGATCGAGAAGGAAT, Reverse:

ACACGCGGCCGCCTAAGAGAAGCGCGGTGCTGAGC) and the C-DAAM1 fragment (Forward: ACACGGATCCAAGGAAGAAAT

GATGCAGACCTTAA, Reverse: ACGCGGCCGCCTATTAAAAATTAAGTTTTGTGATT) were PCR amplified from P1 mouse cere-

bellum cDNA and cloned into the BamHI and NotI sites of pCAGGS-GFP-MCS for CAG promoter-driven N’-tagged eGFP expression

constructs. Other eGFP-tagged MTSS1 truncates were PCR amplified from pCAGGS-GFP-MTSS1 and cloned into the BamHI and

NotI sites of pCAGGS-GFP-MCS using the following primers: I-BAR (Forward: ACACGGATCCATGGAGGCTGTGATCGAGAAG

GAAT; Reverse: ACGCGGCCGCCTAAGAACCTTTCAAGTCCAAAATC), C-MTSS1 (Forward: ACACGGATCCAAGGACTGGGCA

AAGCCAGGA; Reverse: ACACGCGGCCGCCTAAGAGAAGCGCGGTGCTGAGC), C-MTSS1DWH2 (Forward: ACACGGATCCAAG

GACTGGGCAAAGCCAGGA; Reverse: ACGCGGCCGCCTACTTCTTCAGCTTCACGCCCCTC).

For CAG promoter-driven inducible expression constructs, eGFP-C-DAAM1 was excised from pCAGGS-GFP-C-DAAM1 and

cloned into the EcoRI and NotI sites of pCAGGS-Flex. To make pCAGGS-Flex-GFP, a eGFP fragment was PCR amplified (Forward:

TTGACGAATTCATGGTGAGCAAGGGCGAGGAGCTG; Reverse: ATATGCGGCCGCCTACTTGTACAGCTCGTCCATGC) and cloned

into the EcoRI and NotI sites of pCAGGS-flex.

For N’-tagged GST-fusion constructs, inserts were PCR amplified from pCAGGS-GFP-MTSS1 with the following primers and

inserted into the BamHI and SalI sites of pGEX-4T-3. MTSS1 (Forward: ACACGGATCCATGGAGGCTGTGATCGAGAAGGAAT;

Reverse: AGAGTCGACAGAGAAGCGCGGTGCTGAGCGATCGT), I-BAR(Forward: ACACGGATCCATGGAGGCTGTGATCGAGAA

GGAAT; Reverse: GTGTGTCGACAGAACCTTTCAAGTCCAAAATCACC), C-MTSS1(Forward: ACACGGATCCAAGGACTGGGCA

AAGCCAGGA; Reverse: AGAGTCGACAGAGAAGCGCGGTGCTGAGCGATCGT), C-MTSS1DWH2 (Forward: ACACGGATCCAAG

GACTGGGCAAAGCCAGGA; Reverse: GTGTGTCGACTTCTCTGGGGCTCAGGTCTGCGGGG).

For CMV-promoter driven N’ tagged myc-C-DAAM1, C-DAAM1 was PCR amplified from pCAGGS-GFP-C-DAAM1 with the

following primers and inserted into the NotI and HinDIII sites of pCMV-tag5a. C-DAAM1 (Forward: ACATGCGGCCGCAAGGAA

GAAATGATGCAGACCTT; Reverse: CATAAGCTTTTAAAAATTAAGTTTTGTGATTGGTC).
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For CAG-driven N’tagged mCherry expression constructs, mCherry constructs: MTSS1 (Forward: GACGTCGACATGGAG

GCTGTGATCGAGAA; Reverse: TATAAGCTTCTAAGAGAAGCGCGGTGCTGAGCGAT), C-MTSS1 (Forward: GACGTCGACAAG

GACTGGGCAAAGCCAGG; Reverse: TATAAGCTTCTAAGAGAAGCGCGGTGCTGAGCGAT), C-MTSS1DWH2 (Forward: GACGTC

GACAAGGACTGGGCAAAGCCAGG; Reverse: TATAAGCTTCTATTCTCTGGGGCTCAGGTCTGCGG).

All constructs were sequence verified.

AAV Production
HEK293T cells were transfected using calcium phosphate with the three-plasmid Agilent Helper-Free AAV system, containing a

modified expression vector pAAV-CAG::eGFP (Fujishima et al., 2012), pAAV-RC, and pAAV-Helper. After two days of growth, cells

were washed in an AAV-wash buffer containing 20mMTris HCl (pH 8.0), 250mMNaCl, and 10mMMgCl2, and lysed via three rounds

of freeze-thaw cycles. The lysate was centrifuged and filtered through a 0.45 mm filter. Lysates were incubated with AVB Sepharose

High Performance (GE Healthcare) for 15 min at RT, washed three times with AAV-wash buffer, and eluted using a buffer containing

250 mM NaCl and 10 mMMgCl2 (pH 3.0), directly into a concentrated Tris pH 8.0 for immediately neutralization. AAV particles were

concentrated using an Amicon Ultra Centrifugal filter Ultracel 50K (EMD Millipore).

AAV Intracerebellar Injection
For intracerebellar injection of AAV-CAG-EGFP into WT and cKO mice, P1 or P2 pups were anesthetized by hypothermia and posi-

tioned on a homemade stereotaxic stagemade for neonatal mice. After making a small incision through the occipital skin andmuscle,

a 27-gauge needle (Terumo) was used to create a small hole in the bone over the cerebellar vermis. A 33-gauge needle (Terumo)

attached to a microsyringe containing the AAV suspension was inserted 0.5 mm through the incision in the cerebellar vermis.

Over 30 s, 1-2 mL of AAV suspension was slowly injected. The wound was then sutured, and pups were revived at 37�C and returned

to the litter after 2 hr.

Genotyping
Tail clippings were digested in 50 mM NaOH for 10 min at 95C. The MTSS1flox allele (LoxP-frt check) was identified by PCR using

primers 50-GGAATGAGATCCGCTTTCCC-30 and 50-GTTATCTGGGTGCGCCTGTGTAC-30 using KOD FX polymerase kit (Toyobo).

PC Electroporation
Dissociated cerebellar cells were washed three times in Optimem (GIBCO) and resuspended in a final volume of 100 mL Optimem/

cuvette (Nepagene) at a concentration of 2-3 cerebella/cuvette, with 10 mg plasmid DNA. Cells were electroporated using the Nepa21

Electroporator (NepaGene) using the following settings: Poring Pulse: 150 V, 0.8 ms pulse length, 50ms pulse interval, 2 pulses, 10%

decay rate, + polarity; Transfer Pulse: 20 V, 50 ms pulse length, 50 ms pulse interval, 5 pulses, 40% decay rate, +/� polarity. After

electroporation, cells were immediately washed with DMEM/F12 supplemented by 10% FBS and plated.

Pharmacological Experiments
For pharmacological experiments, SMI-FH2 (Sigma-Aldrich) was dissolved in DMSO, diluted in media, and added to cultures for

10 min at a final concentration of 10 mMSMI-FH2 and 0.01% DMSO. CK-666 (EMDMillipore) was dissolved in DMSO, diluted in me-

dia, and added to cultures for 24 hr at a final concentration of 20 mM CK-666 and 0.01% DMSO. Equivalent volumes of media and

DMSO were added to control cultures.

Immunocytochemistry/Immunohistochemistry
Antibodies were diluted in PBS containing 5% skimmilk (w/v) and 0.3% Triton X-100. For immunocytochemistry, cultures were fixed

for 5 min at RT in freshly prepared paraformaldehyde (4%) in 10 mM MES, 138 mM KCl, 3mM MgCl2, 2 mM EGTA, and 0.32 M su-

crose (pH 6.1) solution. Coverslips were then washed, and cultures were simultaneously permeabilized and blocked with 5% skim

milk (w/v) in PBS and 0.3% Triton X-100 for 1 hr at RT. Cells were labeled with primary antibodies as follows: anti-calbindin (mouse,

1:1000, Swant), anti-GFP (chicken, 1:1000, Thermo Fisher Scientific), anti-MTSS1 (rabbit, 1:500, Novus Biologicals), anti-DAAM1

(goat, 1:1000, Santa Cruz), anti-RFP (rabbit, 1:1000, MBL Life Science) in 5% skim milk/PBS-Triton X-100 (0.3%) at 4�C overnight.

Cells were washed extensively in PBS-Triton X-100 (0.3%) and stained with Alexa Fluor-conjugated secondary antibodies (1:10000,

Molecular Probes) at RT for 1 hr. Coverslips were washed again with PBS-Triton X-100 (0.3%) and mounted on glass slides using

ProLong Gold Antifade (Thermo Fisher Scientific).

For in vivo analysis of PC morphology and immunohistochemistry, mice were deeply anesthetized by isoflurane, and were trans-

cardially perfused with phosphate buffer (PB) followed by 4% paraformaldehyde (PFA) in PB. Brains were removed, and postfixed

overnight in 4% PFA at 4�C. Brains were then washed of PFA with three changes of 1X phosphate buffered saline (PBS), and

embedded in 3% low-temperature melting agarose. Sagittal sections were made (100 mm thick) using a vibratome (DTK-3000, Dos-

aka EM, Kyoto, Japan). Slices were permeabilized and blocked by incubation with 5% skimmilk in PBS-Triton X-100 (0.3% v/v) over

night at 4�C. Primary antibody labeling was performed in blocking buffer overnight at 4�C as follows: anti-calbindin (mouse, 1:1000,

Swant), anti-GFP (chicken, 1:1000, Thermo Fisher Scientific), anti-MTSS1 (rabbit, 1:500, Novus Biologicals). After thorough washing,

slices were incubated with secondary antibodies for 1 h and if needed, followed by 10 ug/mL DAPI for 10 min at RT. After washing,
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slices were transferred to SuperFrost Micro slides (Matsunami) and mounted with ProLong Gold Antifade Mountant (Thermo Fisher

Scientific).

Induced Expression of Constitutively Active C-DAAM1
Dissociated cerebellar cells were electroporated on 0DIVwith a 1:2:3 ratiomix of three plasmids, CAG::TdTomato, pCL20c-L7::ERT2-

Cre-ERT2, and CAG::FLEx-eGFP or CAG::FLEx-eGFP-C-DAAM1, and exposed to 500 nM 4-OHT (Sigma Aldrich) either on 11DIV11

or 12DIV for variable induction times.

Immunoprecipitation and Western Blot Analyses
For western blotting and immunoprecipitation of endogenous protein, cerebella were dissected and homogenized using a Dounce

homogenizer in lysis buffer (PBS plus 0.3% Triton X-100 supplemented with EDTA-free protease inhibitor cocktail (Nacalai Tesque).

Lysates were incubated on ice for 30 min, cleared by centrifugation (20K x g 15 min), and either denatured for 5 min at 95�C in

Laemmli buffer or used for immunoprecipitation. For immunoprecipitation, lysates were precleared for 1 hr at 4�C with Protein

A/G agarose beads (Santa Cruz Biotechnologies), and then centrifuged for 500 x g for 1 min. The supernatant was incubated over

night at 4�Cwith 5 mg of anti-DAAM1 (Novus Biologicals) or control mouse IgG antibody (Jackson ImmunoResearch Labs), followed

by incubation with Protein A/G agarose beads (Santa Cruz Biotechnology) for 1 hr at 4�C. Beads were washed four times in lysis

buffer and eluted in Laemmli buffer for 5 min at 95�C. Lysates and samples were separated by SDS-PAGE in 10% acrylamide

gels and transferred onto PVDF membrane (Millipore). Membranes were blocked for 60 min at room temperature in PBS-Tween

with 5% skimmed powdered. Membranes were incubated with primary antibodies in blocking buffer overnight at 4C at the following

concentrations: anti-GFP (mouse, 1: 2000; Sant Cruz Biotechnology), anti-DAAM1 (mouse, 1:1000, Novus Biologicals), anti MTSS1

(mouse, 1:1000, Santa Cruz Biotechnology), anti-mDia1 (mouse, 1:1000, BD Biosciences). Membranes were washed and incubated

for 60 min in blocking buffer containing HRP-conjugated anti- goat, rabbit or mouse secondary antibodies (1:10000; EMDMillipore).

Signal was detected with ECL Prime (G.E. Healthcare) and imaged on a ChemiDoc XRS+ System (Biorad).

Protein Purification
C-DAAM1, MTSS1, and its truncates were expressed as N’tagged GST fusion proteins in BL21-CodonPlus (DE3)-RIPL-competent

cells (Agilent). Cells were grown in LBmedium to OD600 0.6. Expression was induced by 50 mM IPTG (Nacalai tesque) for GST-MTSS1

and 250 mM IPTG for GST-C-DAAM1, GST-I-BAR, GST-C-MTSS1, and GST-C-MTSS1DWH2 constructs. Cells were grown at 18�C
overnight for GST-MTSS1 and GST-C-DAAM1, and 37�C for 1-2 h for GST-I-BAR, GST-C-MTSS1, and GST-C-MTSS1DWH2 con-

structs. For MTSS1 and its truncates, cells were harvested and resuspended in lysis buffer (50 mM Tris HCl (pH 8.0), 150 mM NaCl,

1mMEDTA, 10%glycerol, 1% Triton X-100, 1mMDTT, and 1mMPMSF), with all subsequent steps performed at 4�Cor on ice. Cells

were lysed by sonication and centrifuged at 20k x g for 20 min. GST fusion proteins were purified by incubation with Glutathione Se-

pharose 4B beads (GE Healthcare) for 2 hr. The beads were then washed four times with wash buffer (50 mM Tris HCl (pH 8.0),

300 mM NaCl, 1 mM EDTA, 10% glycerol, 1% Triton X-100, 1mM DTT, and 1 mM PMSF) and eluted in glutathione buffer (50 mM

Tris HCl (pH 8.0), 30 mM reduced glutathione, 150 mM NaCl). The eluted sample was concentrated using Amicon Ultra 4 Centrifugal

filter Ultracel 50K (EMDMillipore) followed by buffer exchange to 50 mM Tris HCl (pH 8.0), 150 mMNaCl, 1 mM EDTA, 10% glycerol,

and 1 mM PMSF using a PD-Spin Trap G-25 column (GE Healthcare). For use in total internal reflection fluorescence microscopy

(TIRFM) experiments, the GST tag was cleaved from GST-C-MTSS1 DWH2 with thrombin (Nacalai tesque) for 1 hr at RT, and

thrombin was removed by incubation with p-aminobenzamidine agarose (Sigma Aldrich). For GST-C-DAAM1, purification was per-

formed as previously described (Vig et al., 2017), stored at 4�C, and used within two weeks.

Rabbit skeletal muscle actin was purified as previously described (Spudich and Watt, 1971), and G-actin was further purified by

Superdex 200 pg HiLoad 16/60 gel filtration column (GE Healthcare). Purified G-actin was labeled with DyLight 488 NHS-Ester

(Thermo Scientific) as previously described (Mizuno and Watanabe, 2014). Purification of human profilin I was previously described

(Higashida et al., 2008).

GST-Pull-down
For pull-down assay, HEK293T cells were transfected with eGFP constructs using Lipofectamine LTX (Thermo Fisher). The following

day, cells were washed and lysed in PBS with 0.1% Triton X-100 and EDTA-free protease inhibitor cocktail (Nacalai Tesque), passed

through a 27-gauge needle 7 times, incubated on ice for 30min, and centrifuged at 20k x g for 20min. eGFP fluorescence permg total

protein was calculated, and lysate from untransfected cells was used to adjust for equivalent eGFP fluorescence and protein con-

centration between different eGFP lysates. Pull-down sampleswere prepared by incubating 1mg/mL total protein concentrationwith

equivalent eGFP fluorescence and 1 mM GST protein for 4 hr at 4�C with end-over-end rotation. Glutathione Sepharose 4B beads

(GE Healthcare) were then added and further incubated for 1 hr. Samples were centrifuged at 500x g, and beads were washed

four times in PBS supplemented with an additional 150 mM NaCl, 0.1% Triton X-100, and EDTA-free protease inhibitor cocktail

(Nacalai Tesque). Beads were eluted in Laemmli buffer for 5 min at 95�C and separated by SDS-PAGE as described above.
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Image Acquisition
For fixed samples, multi-channel fluorescent images were acquired on a Fluoview FV1000 (Olympus) laser scanning confocal micro-

scope equipped with UPLSAPO 40x dry and 100x oil-immersion objectives (NA 0.95 and 1.40, respectively; Olympus). For ex vivo

dendrite morphology imaging, serial confocal z stack images were acquired frommidsagittal PCs in lobes IV-V with the 40x objective

at a z-step of 1 mm. For in vitro dendrite morphology, serial confocal z stack images were acquired with the 100x objective at a z-step

of 1 mm. For dendritic protrusion imaging, serial confocal z stack images were acquired at distal regions of the dendritic arbor with the

100x objective and 3x digital zoom with a voxel size of 0.04 3 0.04 3 0.39 mm.

For long-term live imaging of developing dendrites, serial confocal z stacks (4 mm stack, 5 slices x 1 mm z-step) were taken with an

incubator microscope (LCV100; Olympus) equipped with a 20x objective (NA 0.7; Olympus) and CO2 supplementation. Images were

taken at 3 h intervals up to 4 days.

For high-resolution live imaging of dendritic protrusions, serial confocal z stacks were taken with an incubator microscope (IX81;

Olympus) equipped with a UPLSAPO 100x objective (NA 1.40, Olympus) and CO2 supplementation. Images were taken with 3x dig-

ital zoom at an interval of 15 s.

For lower-resolution multi-position live imaging of dendritic protrusions (used for the SMI-FH2 experiments), serial confocal z

stackswere acquiredwith a spinning disk confocalmicroscope (CV1000; Yokogawa) using a 100x oil-immersion objective (numerical

aperture 1.4; Olympus) and CO2 supplementation. Images were obtained every 30 s for 1 hr and stacked to acquire z-max

projections.

For SiMS imaging, widefield images were acquired with a microscope (IX71, Olympus) equipped with 100-Wmercury illumination,

a PlanApo 1003 oil-immersion objective (1.40 NA; Olympus), and a cooled EMCCD camera (Evolve 512; Photometrics, Tucson, AZ).

Imaging was performed at room temperature. Images were taken at 200 ms intervals for 20 s.

XTC Cell Electroporation and Preparation for SIMS Imaging
Dissociated XTC cells 1.86 3 105/cells were suspended in 10 mL of Buffer R of the Neon� Transfection kit (Invitrogen) with the

following amounts of plasmid DNA. For the eGFP-C-DAAM1 control condition, 2.5 ng of plasmid DNA was included per 10 uL of

cell suspension. For conditions co-expressing eGFP-C-DAAM1 and mCherry-MTSS1 or its mCherry-conjugated truncates,

2.5-5 ng or eGFP-C-DAAM1 and 2 mg of mCherry construct were included per 10 uL of cell suspension. Cells were electroporated

using the 10 uL Neon� pipette tip using the following program: Voltage: 1005V, Width: 35 ms, Pulses: 2. For experiments, cells were

trypsinization and resuspended in 70% Leibovitz’s L15 medium with no serum or phenol red, and plated on glass coverslips coated

with 100 mg/mL poly-L-lysine. Cells showing similar, low levels of eGFP-C-DAAM1 were selected for imaging 30 min post plating.

TIRF Imaging of C-DAAM1-Dependent Elongation of F-Actin
Twomg of 0.5 mmcarboxylatedmicrospheres (Polysciences) were functionalized with 100 mg goat anti-GST IgG (GE Healthcare) and

200 mg goat IgG (Jackson ImmunoResearch Labs) in a 3mg/mL carbodiimide solution (Nacalai tesque) for 2 hr at RT. After quenching

the reaction with glycine and extensive washing, anti-GSTmicrospheres were incubated with purified GST-C-DAAM1 for 1 hr at 4�C.
GST-C-DAAM1 beads were washed 5 times and resuspended in 50mMKCl, 10mM imidazole-HCl, 1 mMMgCl2, 1 mMEGTA, 1mM

DTT, pH = 7.0).

DyLight 488-labeled actin was diluted with unlabeled actin to achieve 100 mL of 10% labeled actin in G-buffer (2 mM Tris-HCl,

0.2 mM CaCl2, 0.2 mM ATP, and 1 mM DTT) and centrifuged at 346K x g, 4�C, for 30 min. The upper 50 mL of actin was aspirated

for use in assays, within 4 hr of centrifuging.

Homemade glass flow cells were constructed as previously described (Mizuno and Watanabe, 2014), using glass coverslips that

had been carbon-coated (VE-2030, Vacuum Device) and hydrophilized by ‘‘Soft’’ glow-discharge (PIB-10 Vacuum Device, Inc) just

prior to flow cell construction. GST-C-DAAM1 beads were incubated in the flow cell for 1 min, followed by two washes of 10% BSA,

incubation of 10%BSA for 5 min, and six washes of TIRF buffer (50 mMKCl, 10 mM imidazole-HCl, 1 mMMgCl2, 1 mMEGTA, 50 mM

CaCl2, 0.5% methylcellulose, 0.5 mM ATP, 0.5% b-mercaptoethanol, pH = 7.0).

To begin nucleation, actin-bound Ca2+ to Mg2+ exchange was performed by adding 1 mM MgCl2 and 1 mM EGTA to 10%

DyLight488-labeled actin in G-buffer 2 min prior to preparation and perfusion of nucleation buffer (1 mM 10% DyLight488-labeled

actin, 50 mM KCl, 10 mM imidazole-HCl, 1 mMMgCl2, 50 mMCaCl2, 1 mM EGTA, 0.5%methylcellulose, 0.5 mM ATP, 0.5% b-mer-

captoethanol, 0.1 mg glucose oxidase, 20 mg/mL catalase, 4.5 mg/mL glucose) through the flow cell. After 1 min of nucleation, four

volumes of elongation buffer (0.5 mM 10%DyLight488-labeled actin, 2 mMprofilin I, 50 mM KCl, 10 mM imidazole-HCl, 1 mMMgCl2,

50 mM CaCl2, 1 mM EGTA, 0.5% methylcellulose, 0.5 mM ATP, 0.5% b-mercaptoethanol, 0.1 mg glucose oxidase, 20 mg/mL cata-

lase, 4.5 mg/mL glucose) with or without 5 mMC-MTSS1DWH2 was perfused through the flow cell. The total volume of proteins and

their storing buffers were constant among samples and did not exceed 50% of the total sample buffer. All experiments were per-

formed at 20�C.
Fluorescence images of DyLight 488-labeled actin were obtained using an IX81 microscope (Olympus) equipped with Olympus

PlanApo Na 1.45100x TIRFM objective lens and BCD1 Blue DDD laser (488 nm, 20 mW, Melles Griot). Images were recorded by

a CCD camera (CoolSNAP HQ, Roper Scintific) at 5 s intervals using MetaMorph software (Molecular Devices).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Image Analyses
For dendrite morphometry, neurons were traced in reconstructed 3-dimensional stacks using Imaris software. Sholl analysis was

performed using traced dendrites with Fiji software. To illustrate the cKO phenotype, we defined a primary dendrite as any branch

emerging from the soma, terminating in a bifurcation of two equivalent-thickness branches. For protrusion analysis, straight un-

branching dendritic segments of 10 mm were selected at least 3 mm away from branch points and tips of dendrites. For time-lapse

analysis, Z-max projections weremade usingMetamorph software and dendrites were reconstructed with the samemethodology as

the fixed samples. Protrusions were manually traced in 3-dimensional stacks using Fiji software. For fluorescent intensity analysis,

the maximal intensity projected images were generated, and the mean fluorescent intensity of ROI was measured following the sub-

traction for off-cell background with ImageJ software (NIH).

For C-DAAM1 speckling analysis, speckles showing processive elongationmovement (constant speed, same vector) were tracked

using the Speckle Tracker J plugin for Fiji (Smith et al., 2011). Speckles were tracked using the ‘‘constant velocity NCC’’ model, and

two-dimensional Gaussian fitting to identify the peak intensity of the speckle was used to improve position to subpixel accuracy.

Plots of distance traveled versus time were constructed for each speckle. Due to varying lifetimes of speckles or movement of

speckles out of frame, distance traveled was calculated as total distance traveled during observation divided by lifetime of speckle.

Speed of speckles were calculated from the slope of the plot at regionswhere speckles were not obviously paused.We acknowledge

that the presence of very small ‘‘non-obvious’’ pauses could also contribute to the reduction of speckle speed. This issue may be

addressed with imaging at higher time resolution. Speckles were next classified as ‘‘paused’’ or ‘‘moving’’ at every time point.

Speckles were determined to be ‘‘paused’’ at a time points when the total distance traveled over the preceding four frames was

less than 30% of the expected distance to be traveled according to the speckle speed calculated above.

For TIRF imaging of elongating F-actin, C-DAAM1-dependent elongating F-actin were first identified by finding F-actin with one

end immobilized on a bead, showing the relative dark/light regions of the F-actin being pushed away from the bead, indicating

the processive incorporation of G-actin by the C-DAAM1-associated barbed end. Filaments were analyzed manually and with the

KymoResliceWide plugin of Fiji.

Statistical Tests
No statistical methods were used to predetermine sample size. D’Agostino and Pearson’s test was used to test for normality and to

determine appropriate parametric or non-parametric tests. The unpaired two-sided Student’s t test was used for isolated pairs in

Figures 1C–1E, 1I, 2B–2D, 2K, 2M–2O, and S5F. Two-sided Mann-Whitney test was used for Figure 6E. Multiple paired two-sided

t tests with Holm-Sidak’smethodwas used for Figures 2G, S2A, and S2C. One-way ANOVA andHolm-Sidak’smultiple comparison’s

test was used for Figures 6B and S3B. Kruskal-Wallis test and Dunn’s multiple comparison’s test was used for Figure 7E. Two-way

ANOVA with Tukey’s multiple comparison’s test was used for Figures 3D–3F, 4B, and 4D. Linear regressions fit to Figures 7G, 7H,

S5B, and S5C.

DATA AND SOFTWARE AVAILABILITY

Reconstruction of dendritic arbors by computer modeling was carried out in MATLAB software (Mathworks), as previously described

(Fujishima et al., 2012) and with slight modification.

At the initial state, ten initiation sites of primary dendrites were random positioned on the surface of the cell body (a circle with a

radius of 8.65 mm). At each growth step (corresponding to 3hr in experiments), every ‘‘active’’ dendritic terminal grew by either elon-

gation or branching, in an alternating manner.

The elongation of dendrites was recapitulated by the addition of a dendritic unit at ‘‘active’’ dendritic terminals at an average rate of

0.74 times/ step. Each unit was of length L = 1.98 mm (corresponding to the average elongation speedmeasured by time-lapse obser-

vation of growing PC dendrites) with radius R = 2.6 (for control cells) or 3.2 (for longer dendritic protrusion cells). This dendritic unit

radius reflects the radial distance from the center of the dendritic branch to the tip the filopodia, representing the radial ‘‘reach’’ of the

dendrite. Branching of dendrites was recapitulated by the addition of two units at the growing terminal with a mean bifurcation angle

of 65�, at an average rate of 0.26 times/step, which corresponds to the dichotomous branching pattern observed in growing PC

dendrites.

When a growing dendritic tip collided with a neighboring branch, one of the following operations were selected and executed.

(a) Stall: Growth of the dendritic tip was terminated and became an ‘‘inactive’’ terminal, which would not undergo further growth

or branching.

(b) Retract: The dendritic segment from the contacted tip was removed up to the nearest branch point.

Execution of either (a) or (b) was selected in a probabilistic manner, where the probability of ‘‘Stall’’ was determined by the

quadratic 0.058T2� 0.0072T + 0.0054, where T is calculation step (1% T% 31). This change in the probability of Stall versus Retract

corresponded to the change in retraction rate observed during PC development.
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