
Xilara: XSS audItor using htmL templAte restoRAtion

Keitaro YAMAZAKI†, Daisuke KOTANI‡, and Yasuo OKABE‡

† Graduate School of Informatics,
Kyoto University

‡ Academic Center for Computing and Media Studies,
Kyoto University

Abstract Mitigating Cross Site Scripting (XSS) is important to protect user’s sensitive data in the web applications.
XSS mitigation without modifications of application’s code is beneficial to protect many systems by one system. How-
ever, such mitigations depend on request or correspondence between request and response. We propose a new XSS
filter, Xilara, that audits structure of responses. First, Xilara collects normal responses and restores HTML template
automatically. Second, Xilara detects the stored XSS attack by verifying if the structure of response matches with
the template. Our preliminary results show that Xilara can mitigate some known stored XSS vulnerabilities in real
applications with acceptable performance.

Key words Security, XSS, Web, HTML

1 Introduction

Cross Site Scripting (XSS) is one of the most fearful
attack towards web application[?] and many vulnerabil-
ities related to this attack is now being reported. At-
tackers use XSS to gain access to sensitive user infor-
mation via user’s web browser, control the browser or
deceive users by presenting fake information. These
data include session information which is an identifica-
tion of the user in the application. It is important to pro-
tect users from XSS but there are still many vulnerable
applications because of application’s bug.
There has been several protection and mitigation

techniques against XSS. One of widely used methods
is to convert untrusted data to be treated as string in
the HTML context. However, many applications have
not implemented this method yet, so mitigation tech-
niques are also needed. Some mitigation techniques
are implemented in some major browsers as XSS fil-
ter (e.g. XSS Auditor[?] in Google Chrome and XSS
filter[?] in IE). Owner of the application can introduce
Content Security Policy[?], which represents a policy
of trusted contents in an application and which is im-
plemented in almost all major browsers. However, the
former mitigation technique is effective only for reflected
XSS, which is described in next section. The latter is not
widely used in general because it requires the owner of
application to configure application settings.
A typical XSS vulnerability occurs when an HTML

document is constructed with template and data includ-
ing valid HTML fragments from untrusted sources. In
this paper, we propose a new XSS filter: Xilara. First,
Xilara observes HTML structure in ordinary HTTP re-
sponses and restores the HTML template. To restore
HTML templates, we apply existing methods for data
extraction from multiple HTML documents. After that,

Xilara confirms whether the HTML structure in HTTP
response matches with the restored template, and re-
gards the response is harmful due to XSS attacks if the
response does not match with the template. Xilara can
be applied not only to reflected XSS but also to stored
XSS, and can be used independent of application code.
We implemented Xilara and conducted preliminary

experiments. We used real web applications which
have XSS vulnerabilities and applied Xilara to them to
detect XSS attack. The results show that Xilara can
detect XSS attacks at realistic speed in several appli-
cations.
In this paper, Section 2 explains XSS. Section 3 intro-

duces related works for XSS. Section 4 describes our
proposed method. Section 5 explains implementation
for Xilara, and Section 6 describes preliminary exper-
iments and its results. Section 7 shows a discussion
about adaptive attacker, and Section 8 gives conclud-
ing remarks and future work.

2 XSS
XSS is an attack that executes JavaScript on the victim
browser which accesses the target web page. For ex-
ample, an attacker embeds an attack script written by
JavaScript in the HTML document of the target page by
XSS. The attacker can execute the attack script with the
authority (called origin) of the target page. As a result,
the attacker can steal his/her to impersonate as a victim
cookie and can alter the contents of the web page.
XSS is classified into three types in terms of causes

of XSS vulnerabilities and conditions required to the at-
tacks.

Reflected XSS
A reflected XSS vulnerability occurs when a web

1

Copyright ©201 by IEICE 7
This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

- 89 -

Figure 1: Example source code written by PHP. It has
two XSS vulnerabilities at line 5 and line 6.

1
2
3
4
5
6
7

application embeds the untrusted data included in
the HTTP request into the HTML document for the
response without sanitizing it. To establish the at-
tack, attacker has the victim browser sends a re-
quest including the attack string. Attackers often
embed attack string in the URL query or POST
data.

Stored XSS
A stored XSS vulnerability occurs when a web ap-
plication embeds the attack string, which is stored
in the databases or some other places, in the
HTML document for the response without sanitiz-
ing it. The attacker stores the attack string into the
database, and when the victim browses the vulner-
able page, attack string is executed. The attacker
has no need to have the victim send a crafted re-
quest.

DOM based XSS
DOM based XSS is an attack that exploits vulnera-
bility of JavaScript code executed on the browser.
This vulnerability is located in client side JavaScript
code, not in a code of web application.

We show an example of an application written in PHP
which is vulnerable to reflected XSS and stored XSS at-
tacks in Figure 1. Since this application responds the
HTML document including the id parameter received
from the browser (as written in the line 5), this appli-
cation has a reflected XSS vulnerability. Also, if an at-
tacker can change username, it has a stored XSS vul-
nerability because the username is printed at line 6.
An attacker could steal the victim’s cookie by embed-
ding attack string such as <script>location.href=”//at-
tacker.com/” + document.cookie</script> using these
vulnerabilities.
In this research, we deal with reflected XSS and

stored XSS which are related to the vulnerability in
server side application.

3 Related works
A basic protection method of XSS is to sanitize HTML
special characters in untrusted data. For example,
is converted to so that it is treated as a charac-
ter in HTML documents. However, there are still many

vulnerable applications because sanitizing all untrusted
data comprehensively is difficult in some cases. For
that reason, various mitigation techniques against XSS
have been proposed and deployed.
There are mitigation techniques implemented in web

browsers. IE 8 using XSS filter [?], and Google Chrome
using XSS Auditor [?]. They detect the attack string in
the HTTP request and prevent the attack if the HTTP
response also includes a similar attack string. These
mitigations are effective for reflected XSS because they
can detect the attack string in HTTP requests, but are
not effective for stored XSS. Also, these are not effec-
tive when an attacker hides the attack payload in HTTP
requests using a complex conversion process of the ap-
plication. For example, Kettle [?] has been reported
that an attacker can bypass these mitigation techniques
when an application uses some WAF.
Also, there are XSS filters using regular expression

and blacklists for example in [?]. OWASP ModSecurity
Core Rule Set1 is one of the popular filters including
such XSS filter. These filters have the same issues as
in the web browser’s XSS filter described above.
In addition, there are methods using a policy con-

figured in application servers to validate the HTTP re-
sponse. The policy is used to prevent web browsers
from loading the code not intended by the administrator
of the application. Using Content Security Policy (CSP)
[?], it is possible to specify the location or hash value
of valid JavaScript codes by creating a policy. Nonces-
paces [?] can detect attacks by assigning random num-
bers to trusted HTML elements and its attribute names.
However, since these methods require specific configu-
ration for each application, it is necessary to rewrite the
code of the application in some cases, which is a great
burden to the server administrator. Therefore, they are
not necessarily said to be widely used.
RoadRunner [?] and ExAlg [?] are algorithms that re-

store HTML templates from multiple HTML documents.
These researches aim to extract the structured data
from web pages. The template generated by RoadRun-
ner is represented by XML consisting of the following
XML elements.

<tag> HTML element. <p class=”a”> will be repre-
sented as <tag element=”p” attrs=”class:a”>.

<and> [T1, ..., Tn]. A template which is a set of n tem-
plates (T1, ..., Tn).

<plus> [T1, ..., T1]. A template which is a set of con-
secutive template T1.

<hook> (T1)?. A template which has optional template
T1. T1 sometimes appears in this template and
sometimes doesn’t appear.

<variant> Template indicating that the contents of its
child element is variable.

1https://modsecurity.org/crs/

2- 90 -

Figure 2: HTML 1

1
2
3
4
5
6
7

Figure 3: HTML 2

1
2
3
4
5
6
7
8

<subtree> This template represents that it is impossi-
ble for RoadRunner to generate the template at this
node.

For example, RoadRunner can generate the template
using the HTML Figure 2 and Figure 3 which is gener-
ated from same template. Figure 4 shows the template
generated by RoadRunner.

4 Our approach
When an application has an stored XSS vulnerability, it
is not necessary for attackers to craft the victim user’s
request. Therefore, in order to detect the attack in such
case, it is required to check whether the HTML docu-
ment structure in HTTP response is valid or not (be-
cause of the injection of the DOM node caused by the
attacker). In typical web applications such as BBS and
blogs, user generated data stored in a database is ap-
plied to an HTML template where an HTML document
is generated. In most cases, HTML templates has syn-
tax which represent variables. For example, <?= $vari-
able ?> is a syntax used in PHP as it appears in Figure
1. Therefore, it is considered that there are XSS vul-
nerabilities in the location where such syntax appears
and these variables can be attack string. In addition,
since the HTML document structure changes when an
attacker injects an attack string composed with HTML
elements, it is possible to detect XSS attack by com-
paring the outputted HTML document structure with the
template. Furthermore, if it is possible to restore the
HTML template from the HTTP responses of the web
application, we can implement the filter independent
from the application code or its language.
We propose a new XSS filter: Xilara, which has two

stages. Figure 5 represents an overview of its ap-

proach.
In the first stage, Xilara collects the HTML documents

in the HTTP responses, and restores the HTML tem-
plate which is used as the valid HTML document struc-
ture. In this stage, it requires that application runs in
an environment where attackers do not exist. These
requirement enables the filter to collect the HTML doc-
uments that are not attacked. We think it is not difficult
to prepare such environment. For example, test envi-
ronments where only limited user can access satisfy the
requirement.
Also, we introduce some special templates.

Browsers execute JavaScript code only if the val-
ues of some HTML element attributes follows a special
format (e.g.). Those at-
tributes have multiple states. For example, with regard
to the href attribute of the A HTML element, sometimes
its value represents an URL such as <a href=”http://ex-
ample.com”> and sometimes represents an JavaScript
code such as . In the
former case, the attribute is used to represent a link to
some web page. In the latter case, it is used to trigger
some actions. Since an attacker can cause XSS using
these attributes with unintentional purpose, we add
some special templates and distinguish the attribute
values starting with javascript: and other values. If
href attribute values always represent URL, we treat
this attribute as URL. Restored template ensures that
the attribute value never starts with javascript:. Now, it
possible to detect XSS attacks exploiting href attribute
values intended to be used as a URL link to another
web page.
In the second stage, the filter runs in a production

environment, and attackers can access the application.
In this stage, the filter audits the HTML document and
judges whether it matches the template to detect the
XSS attack.
Xilara considers the template as a finite automaton

and starts the matching from the first HTML element
node with breadth first search. In this automaton, both
opening nodes and closing nodes of the <tag> tem-
plate are the states and a transition function is basically
matching of next HTML element node and next template
node. Also, <loop> and <hook> affect this transition
function to accept looped nodes and optional nodes. If
all HTML element nodes canmatch with template nodes
and if last state is an accepting state, the matching will
success, otherwise the matching will fail. If the struc-
ture of HTML document matches the template, user will
receive it, if it does not match, the incident is reported to
the administrator. When the XSS is detected, adminis-
trator can choose whether to block the HTTP response
or not. If you want to raise the availability as much as
possible, HTTP responses will not be blocked and user
will receive HTML documents. If you want to protect
the user as much as possible, HTTP responses will be
blocked and users will receive an error message.
Since Xilara behaves as an HTTP reverse proxy (or

may be an HTTP forward proxy) in both stages, server

3- 91 -

Figure 4: Template generated by RoadRunner

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

administrators can easily introduce the filter without the
knowledge of the application’s code.

5 Implementation

Next, we describe more implementation details of Xi-
lara.
In the first stage, we implement the HTTP proxy run-

ning between the web application and its user to collect
the HTTP response. Then, Xilara restores the template
from HTTP responses. In this research, we adopted
RoadRunner [?] 2 as an engine for restoring templates.
We combined the restored template with our special
template which distinguish some attributes due to its
values.
Furthermore, we complement the differences be-

tween the HTML document tree generated by the HTML
parser of RoadRunner and that generated by the HTML
parser of the actual web browser (such as Google
Chrome). These differences occur when the HTML
structure of the document is not valid (e.g. closing
HTML element without corresponding open HTML el-
ement). Before RoadRunner processes the HTML doc-
uments, we parse the HTML documents with Google
Chrome using DOMParser API, then reconstruct the
HTML string. It prevents the attacker crafting attack
string with HTML elements or attribute values which
are detected by web browsers but are not detected by
RoadRunner’s HTML parser.

2RoadRunner’s implementation is publicly available at
http://www.dia.uniroma3.it/db/roadRunner/

In the second stage, Xilara judges whether the HTML
document structure served by the application matches
the template. Before the judging, Xilara parses the
HTML document with Google Chrome in the same way
as in the first stage, because the template is derived
from HTML documents parsed by the browser.

6 Preliminary Experiments

In order to evaluate the process speed and XSS de-
tection rate of Xilara, we conducted preliminary exper-
iments with one web applications and two WordPress
plugins. The targeted applications are shown in Table
1.

Table 1: Applications used for experiments

Application Version CVE
Webmin 1.678 CVE-2014-0039

Count Per Day 3.5.4 N/A1
AffiliateWP 2.0.9 N/A2

For experiments we used MacBook Pro 2016 with 2.9
GHz Intel Core i5 CPU and 8GB memory.
For each application, we changed the URL parame-

ter and data in databases and obtained 4 to 6 ordinary
HTTP responses of the page where the XSS vulnera-
bility exists. We then restored the template and tested

1https://wpvulndb.com/vulnerabilities/8587
2https://wpvulndb.com/vulnerabilities/8835

4- 92 -

Figure 5: Approach overview of Xilara

whether Xilara can detect the XSS with the HTTP re-
sponse created by the attack string provided as PoC.
Also, we tested whether ordinary HTTP responses were
detected by Xilara.

As a result of experiment, we found that normal re-
sponses were not detected as XSS in all applications.
Also, we were able to detect attacks on Webmin and
Count Per Day. However, Xilara could not detect the
attack onAffiliateWP. This is because RoadRunner fails
to restore a template of AffiliateWP and the subtree ap-
pears in the template where the attack string is inserted.
Since we confirmed that hook template was not restored
correctly, eliminating this error is a future work.

Also, we present the average times of vulnerable
pages (calculated 10 times) and the average times
which Xilara takes to parse HTML and judge XSS at-
tack in Table 2. It is shown that the processing time of
the filter is low, so the overhead of Xilara is moderate or
low.

Table 2: Xilara performance result

Application Response time Xilara overhead
Webmin 423.46ms 14.16ms

Count Per Day 109.72ms 27.5ms
AffiliateWP 186.84ms 21.4ms

7 Discussion
We discuss adaptive attacker against Xilara and attacks
that cannot be detected by Xilara. Xilara detects XSS
attacks using the result of matching of restored tem-
plates and theHTML documents. Thismeans if attacker
can craft HTML documents for XSS attack that matches
the template, Xilara will be bypassed. For example, if an
attacker can control the content of the li element of the
template Figure 4 and if he sets it as text1text2,
the number of li elements will be changed and it may
cause unintended result.
In this example, an attacker can increase the num-

ber of li elements however, an attacker cannot exe-
cute arbitrary scripts to steal user’s data. In order for
an attacker to avoid Xilara and execute scripts, an ele-
ment or attribute that can include a context for executing
JavaScript (in this paper, we call a JavaScript execution
context) should be appeared in the template. Also, this
context should not be a fixed value, and should exist
after the part that the attacker can control in the docu-
ment. As a result, there are following patterns of docu-
ment structures that an attacker can avoid detection.

JavaScript execution context in <plus> If <plus> in-
cludes a JavaScript execution context that is not
a fixed value as shown in Figure 6 and the at-
tacker can control the data at line 3, the attacker
can avoid the filter by sending text1<script>attack
string</script>.

JavaScript execution context in <hook> If <hook>
includes a JavaScript execution context that is

5- 93 -

Figure 6: Template which contains dynamic JavaScript
code in <plus>

1
2
3
4
5
6
7
8

Figure 7: Template which contains dynamic JavaScript
code in <hook>

1
2
3
4
5
6
7
8

not a fixed value as shown in Figure 7 and the
attacker can control the data at line 2, the attacker
can avoid the filter by sending text1<script>attack
string</script>. This attack is available only if
<script> element in <hook> does not appear.

Attacker controlled JavaScript execution context
If the attacker can directly control the text in the
<script> element or attribute values which are
JavaScript execution context, the attacker can
insert attack strings without changing the HTML
document structure. In some cases, attacker can
also bypass general protection methods that uses
HTML escaping.

8 Concluding Remarks
In this paper, we propose a XSS filter, Xilara, which can
be used independent of the server side application’s
code and without handwriting the policy. We confirmed
that attacks against two applications out of the three
were detected in our experiment. Even for one case
that Xilara could detect the attack, it is considered that
the attack can be detected if the template is restored
correctly. Also, our experiment shows that overhead
of Xilara in each request is moderate or low. In addi-
tion, Xilara is implemented as a proxy between client
and server, and Xilara can coexist with the existing XSS
filters. Therefore, Xilara can be used as a complemen-
tary filter to detect attacks that cannot be detected by
other XSS filter.
However, there are some situations that attackers

can avoid Xilara as we discussed in previous section.

It is our future work to experiment and investigate how
many such patterns are included in a larger number
of templates in various web applications. Also, since
each web application often has several templates, tech-
niques to choose the template for each response is
needed and it is our future work.

References
[1] Arvind Arasu and Hector Garcia-Molina. Extracting

structured data from web pages. In Proceedings of
the 2003ACMSIGMOD international conference on
Management of data, pages 337–348. ACM, 2003.

[2] Daniel Bates,AdamBarth, andCollin Jackson. Reg-
ular expressions considered harmful in client-side
xss filters. In Proceedings of the 19th interna-
tional conference on World wide web, pages 91–
100. ACM, 2010.

[3] Valter Crescenzi, Giansalvatore Mecca, Paolo Meri-
aldo, et al. Roadrunner: Towards automatic data
extraction from large web sites. In VLDB, volume 1,
pages 109–118, 2001.

[4] Ashar Javed and Jörg Schwenk. Towards elim-
ination of cross-site scripting on mobile versions
of web applications. In International Workshop on
Information Security Applications, pages 103–123.
Springer, 2013.

[5] James Kettle. When security features col-
lide.

, 2017.

[6] David Ross. Ie 8 xss filter architec-
ture / implementation.

,
2008.

[7] Sid Stamm, Brandon Sterne, and Gervase
Markham. Reining in the web with content security
policy. In Proceedings of the 19th international
conference on World wide web, pages 921–930.
ACM, 2010.

[8] Matthew Van Gundy and Hao Chen. Noncespaces:
Using randomization to enforce information flow
tracking and thwart cross-site scripting attacks. In
NDSS, 2009.

[9] Dave Wichers. Owasp top-10 2013. OWASP Foun-
dation, February, 2013.

6- 94 -

 HistoryItem_V1
 AddNumbers

 範囲: 1ページから ページ 8
 フォント: Times-Roman 10.5 ポイント
 オリジナル: 中央下
 オフセット: 横方向 0.00 ポイント, 縦方向 36.28 ポイント
 前置文字列: -
 後置文字列: -
 レジストレーションカラーを使用: いいえ

 1
 0
 -
 BC
 -
 1
 89
 TR
 1
 0
 633
 488

 0
 1
 10.5000

 Both
 1
 SubDoc
 8

 CurrentAVDoc

 [Sys:ComputerName]
 0.0000
 36.2835

 QITE_QuiteImposingPlus3
 QI+ 3.0g
 QI+ 3
 1

 0
 6
 5
 6

 1

 HistoryList_V1
 qi2base

