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Finiteness of certain products of algebraic groups

over a finite field

By

Toshiro HIRANOUCHI *

Abstract

Let G_{1} ,
. . .

; G_{n} be smooth connected and commutative algebraic groups over a finite field

F . We show the finiteness of the tensor product (G_{1}M\otimes\cdots M\otimes G_{n})( Spec F ) of G_{1} ,
. . .

; G_{n}
in the category of Mackey functors and also Ivorra‐Rülling�s K‐group T(G_{1}, \ldots; G_{n})( Spec F )
associated with those algebraic groups as reciprocity functors. We apply this to prove that, for

a product of open curves, the finiteness of the relative Chow group and an abelian fundamental

group which classies abelian coverings with bounded ramication along the boundary.

§1. Introduction

A Mackey functor over a perfect field F (a finite Mackey functor in the sense of

[4], see Def. 2.1 for the denition) is a co‐ and contravariant functor from the category
of étale schemes over F to the category of abelian groups. A smooth connected and

commutative algebraic group G over the field F is regarded as a Mackey functor by the

correspondence x\mapsto G(x) . Such an algebraic group G can be extended to a Nisnevich

sheaf with transfers on the category of regular schemes over F with dimension \leq 1.

Furthermore, it satises the following condition which is the so‐called reciprocity law

(Rosenlicht�s theorem when the base field F is algebraically closed [12], Chap. III, Sect.

3, Thm. 1; [3], Prop. 2.2.2): For any open ( =\mathrm{n}\mathrm{o}\mathrm{n}‐proper) regular connected curve C

over F and a section a\in G(C) there exists an effective Weil divisor D=\displaystyle \sum_{P}n_{P}P on

the smooth compactication \overline{C} of C such that its support is the boundary |D|=\overline{C}\backslash C
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and

\displaystyle \sum_{P\in C}v_{P}(f)\mathrm{T}\mathrm{r}_{P/x_{C}}s_{P}(a)=0
for any f\neq 0 in the function field F(C) of C with f\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} D ,

that is, v_{P}(f-1)\geq n_{P}
for any P\in|D| ,

where vp is the valuation at P, s_{P} : G(C)\rightarrow G(P) is the pull‐back

along the natural inclusion P\mapsto C and \mathrm{T}\mathrm{r}_{P/x_{C}} : G(P)\rightarrow G(x_{C}) is the push‐forward

along the finite map P\rightarrow x_{C}:= Spec H (\overline{C}, $\theta$_{\overline{C}}) . F. Ivorra and K. Rülling [3] have

introduced the notion of a reciprocity functor as a Nisnevich sheaf with transfers on the

category of regular schemes over F with dimension \leq 1 satisfying several axioms. One

of the axioms is the reciprocity law as above. They have also introduced a
\backslash \backslash 

product�

T(\mathscr{M}_{1}, \ldots, \mathscr{M}_{n}) associated with reciprocity functors \mathscr{M}_{1} ,
.

::, \mathscr{M}_{n} in the category of

reciprocity functors (for the precise denition of the \backslash \backslash 

product�, see [3] Def. 4.2.3). By
the very construction of the product T

,
as a Mackey functor, T(\mathscr{M}_{1}, \ldots, \mathscr{M}_{n}) is a

quotient of the tensor product \mathscr{M}_{1}^{M..M}\otimes\cdot\otimes \mathscr{M}_{n} (for the denition, see (2.1) in the next

section). Hence we have a canonical surjection

(\mathscr{M}_{1}\otimes\cdot\otimes \mathscr{M}_{n})( Spec F)M..M\rightarrow T(\mathscr{M}_{1}, \ldots, \mathscr{M}_{n})( Spec F ) .

Although the tensor product  M\otimes gives a structure of a symmetric monoidal category in

the abelian category of Mackey functors, it is not known that whether this product
 T satises the associativity and then gives a monoidal structure or not. However,
this product coincides with the K‐group of homotopy invariant Nisnevich sheaves with

transfers on the category of smooth schemes over F ([6]). In particular, we obtain an

isomorphism

T(G_{1}, . ::; G_{n})( Spec F )\simeq K(F;G_{1}, . ::, G_{n}) ,

for semi‐abelian varieties G_{1} ,
. .

:; G_{n} over F
,

where K (F ;Gl, . .

:, G_{n} ) is Somekawa�s

K‐group [13] which was limited on considering only semi‐abelian varieties. For semi‐

abelian varieties G_{1} ,
. .

:, G_{n} over a finite field F
,

B. Kahn showed in [5] that

(1.1) K (F ;Gl, . .

:; G_{n} ) =(G_{1}\otimes\cdot\otimes G_{n})( Spec F)M..M=0
if n>1 . Because of the isomorphism ([13], Thm. 1.4)

(F);\mathrm{K}(\mathrm{F} ;

where K_{n}^{M}(F) is the Milnor K‐group of the field F
,
these results generalize the classical

fact that K_{n}^{M}(F)=0 if F is a finite field and n>1 . For algebraic groups G_{1}, G_{2} which

may contain unipotent part, the product (G_{1}\otimes G_{2})( Spec F)M may not be trivial. In this

note, we shall show the following theorem.
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Theorem 1.1 (Thm. 2.3). Let G_{1} ,
. .

:; G_{n} be smooth commutative and connected

algebraic groups over a finite field F. Then

T(G_{1}, . ::, G_{n})( Spec F ) ,
and (G_{1}\otimes\cdot\otimes G_{n})( Spec F)M..M

are finite.

As an application of (1.1), the class field theory of a product of projective smooth

curves over a finite field, a special case of the higher dimensional class field theory of

S. Bloch, K. Kato and S. Saito (e.g., [7]) is deduced from the classical (unramied) class

field theory (= class field theory of curves over a finite field) and Lang�s theorem: the

reciprocity map on a normal variety over a finite field has dense image. In Section 3,
we will pursue related results on the (ramied) class field theory of a product of open

( =\mathrm{n}\mathrm{o}\mathrm{n}‐proper) curves as a byproduct of the above theorem. In particular, we obtain

a finiteness of the relative Chow group CH(X; D ) for a product of smooth curves

X=X_{1}\times\cdots\times X_{n} over a finite field and an effective Weil divisor D on the product

\overline{X}=\overline{X}_{1}\times\cdots\times\overline{X}_{n} of the smooth compactication \overline{X}_{i} of X_{i} with support jj \subset\overline{X}\backslash X

(Thm. 3.1).
Throughout this note, we mean by an algebraic group a smooth connected and

commutative group scheme over a field.

Acknowledgments. A part of this note was written during a stay of the author at

the Duisburg‐Essen university. He thanks the institute for its hospitality. The author

learned most of what he knows about relative Chow groups and Albanese varieties from

Henrik Russell. Finally, we would also like to thank the anonymous referee for his/her
detailed and quick reading and for useful comments and suggestions.

§2. Mackey functors and reciprocity functors

Throughout this section, F is a perfect field.

Denition 2.1. A Mackey functor M over F is a contravariant functor from

the category of étale schemes over F to the category of abelian groups equipped with a

covariant structure for finite morphisms such that M(x_{1}\sqcup x_{2})=M(x_{1})\oplus M(x_{2}) and if

f'\downarrow x'y'\rightarrow y\rightarrow xg'g\downarrow f
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is a Cartesian diagram with g and g' are finite, then the induced diagram

M(x')\rightarrow^{g_{*}'}M(x)

f^{\prime*}\uparrow \uparrow f^{*}
M(y')\rightarrow^{g_{*}}M(y)

commutes.

We call a morphism  x\rightarrow Spec F \mathrm{a} finite point if x= Spec E for some finite field

extension of F . For Mackey functors M_{1} ,
. .

:; M_{n} ,
the product M_{1}^{M..M}\otimes\cdot\otimes M_{n} called the

Mackey product is dened as follows. For any finite point  x\rightarrow Spec F
,

(2.1) (M_{1}\displaystyle \otimes\cdot\otimes M_{n})(x)M..M:=(\bigoplus_{y\rightarrow x:\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}}M_{1}(y)\otimes_{\mathbb{Z}}\cdots\otimes_{\mathbb{Z}}M_{n}(y))/R(x)
where y\rightarrow x runs through all finite points over x

,
and R(x) is the subgroup generated

by elements of the following form: For any morphism j : y'\rightarrow y of finite points over x,

and if a_{i_{0}}'\in M_{i_{0}}(y') and a_{i}\in M_{i}(y) for i\neq i_{0} ,
then

(2.2) j^{*}(a_{1})\otimes\cdots\otimes a_{i_{0}}'\otimes\cdots\otimes j^{*}(a_{n})-a_{1}\otimes\cdots\otimes j_{*}(a_{i_{0}}')\otimes\cdots\otimes a_{n}\in R(x) ,

where j^{*} and j_{*} are the pull‐back and the push‐forward along j respectively. We write

\{a_{1}, . . . , a_{n}\}_{y/x} for the image of a_{1}\otimes\cdots\otimes a_{n}\in M_{1}(y)\otimes_{\mathbb{Z}}\cdots\otimes_{\mathbb{Z}}M_{n}(y) in the product
M M

(M_{1}\otimes\cdots\otimes M_{n})(x) . Using this symbol, the above relation (2.2) dening R(x) above

gives the following equation which is often called the projection fo rmula:

(2.3) \{j^{*}(a_{1}), . . . , a_{i_{0}}', . . . , j^{*}(a_{n})\}_{y'/x}=\{a_{1}, . . . , j_{*}(a_{i_{0}}'), ::. ; a_{n}\}_{y/x}.

The Mackey product (2.1) satises the following properties:

(M1) The Mackey product  M\otimes gives a tensor product in the abelian category of the Mackey
functors. Its unit is the constant Mackey functor \mathbb{Z} . In particular, the product

commutes with the direct \mathrm{s}\mathrm{u}\mathrm{m}\oplus and satises the associativity:  M_{1}^{MM}\otimes M_{2}\otimes M_{3}\rightarrow^{\simeq}
(M_{1}\otimes M_{2})\otimes M_{3};\{a_{1}MM, a_{2}, a_{3}\}_{y/x}\mapsto\{\{a_{1}, a_{2}\}_{y/y}, a_{3}\}_{y/x}.

(M2) The product -\otimes MM is right exact for any Mackey functor M.

(M3) For any finite point j : x'\rightarrow x
,

the push‐forward j_{*} : (M_{1}M\otimes\cdots M\otimes M_{n})(x')\rightarrow
(M_{1}\otimes\cdot\otimes M_{n})(x)M..

M

along j is given by j_{*}(\{a_{1}, . . :; a_{n}\}_{y'/x'})=\{a_{1}, . . :; a_{n}\}_{y'/x} on

symbols.
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Lemma 2.2. Let G be a unipotent (smooth and commutative) algebraic group

over F and A a semi‐abelian variety over F. If F is a perfe ct field of characteristic

p>0 ,
we have G^{M}\otimes A=0.

Proof. The unipotent group G has a composition series:

0=G^{r}\subset\cdots\subset G^{1}\subset G,

each G^{i}/G^{i+1} being isomorphic to \mathbb{G}_{a} . By the right exactness (M2), it is enough to

show (\mathbb{G}_{a^{\otimes A)}}^{M}=0 . By (M3) above, the assertion is reduced to showing \{a, b\}_{x/x}=0
for any a\in \mathbb{G}_{a}(x) , b\in A(x) . There exists a finite point j : x'\rightarrow x such that j^{*}(b)=pb'
for some b'\in A(x') . Since the trace map (= the push‐forward map on \mathbb{G}_{a} ) j_{*}=\mathrm{T}\mathrm{r}_{x'/x} :

\mathbb{G}_{a}(x')\rightarrow \mathbb{G}_{a}(x) is surjective, we obtain

\{a, b\}_{x/x}= \{ Trx� /x(a') , b\}_{x/x} for some a'\in \mathbb{G}_{a}(x')

=\{a', j^{*}b\}_{x'/x} by the projection formula (2.3)

=\{a', pb'\}_{x'/x}
=0.

The assertion follows from this. \square 

A point x is a morphism x= Spec k \rightarrow Spec F where  k is a finitely generated
field extension over F . Let Reg \leq 1 be the category of regular schemes over F which are

separated and of finite type over some point and Ab is the category of abelian groups.

A reciprocity functor is a Nisnevich sheaf with transfers \mathscr{M} : (Reg \leq 1\mathrm{C}\mathrm{o}\mathrm{r})^{\mathrm{o}\mathrm{p}}\rightarrow \mathrm{A}\mathrm{b}
satisfying several axioms ([3], Def. 1.5.1), where Reg \leq 1\mathrm{C}\mathrm{o}\mathrm{r} is the category with objects
the objects of Reg \leq 1 and morphisms are given by correspondences. In particular, \mathscr{M}

has the transfer \mathrm{T}\mathrm{r}_{X/Y}:=f_{*}:\mathscr{M}(X)\rightarrow \mathscr{M}(Y) for a finite flat morphism f : X\rightarrow Y.

As an example, an algebraic group G over F is a reciprocity functor which is given by

X\mapsto G(X) . For a finite flat map X\rightarrow Y
,

The transfer map \mathrm{T}\mathrm{r}_{X/Y} : G(X)\rightarrow G(Y)
equals the usual trace if G=\mathbb{G}_{a} and the norm map if G=\mathbb{G}_{m} . Note that any reciprocity
functor gives a Mackey functor by restricting to the category of finite points over F . The

\backslash \backslash 

product� T(\mathscr{M}_{1}, \ldots, \mathscr{M}_{n}) for reciprocity functors \mathscr{M}_{1} ,
.

::, \mathscr{M}_{n} is a reciprocity functor

and satises some functorial properties. In particular, there are functorial isomorphisms

T(\mathscr{M}_{1}, \ldots, \mathscr{M}_{i}, \ldots, \mathscr{M}_{j}, \ldots, \mathscr{M}_{n})\simeq T(\mathscr{M}_{1}, . :. , \mathscr{M}_{j}, \ldots, \mathscr{M}_{i}, . :. , \mathscr{M}_{n})

and

T(\mathscr{M}_{1}, \ldots, \mathscr{M}_{i}\oplus \mathscr{M}_{i}', \ldots, \mathscr{M}_{n})\simeq T(\mathscr{M}_{1}, \ldots, \mathscr{M}_{i}, \ldots, \mathscr{M}_{n})\oplus T(\mathscr{M}_{1}, . :. , \mathscr{M}_{i}', \ldots, \mathscr{M}_{n}) .
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There is a surjective map as Nisnevich sheaves T(\mathscr{M}_{1}, \mathscr{M}_{2}, \mathscr{M}_{3})\rightarrow T(T(\mathscr{M}_{1}, \mathscr{M}_{2}), \mathscr{M}_{3}) .

However, it is not known whether this map becomes an isomorphism. By the very

construction, for any finite point x over F
,

the product T(\mathscr{M}_{1}, \ldots, \mathscr{M}_{n})(x) evaluated

at x is a quotient of the Mackey product (\mathscr{M}_{1}M\otimes\cdots M\otimes \mathscr{M}_{n})(x) . More precisely, the

product T(\mathscr{M}_{1}, . . :; \mathscr{M}_{n}) is dened to be the Nisnevich sheacation \mathscr{L}_{\mathrm{N}\mathrm{i}\mathrm{s}}^{\infty} of a quotient
\mathscr{L}^{\infty} of the product \mathscr{M}_{1}\otimes\cdots\otimes \mathscr{M}_{n} whose underlying Mackey functor is the Mackey

M M

product \mathscr{M}_{1}\otimes\cdots\otimes \mathscr{M}_{n} . However, an isomorphism \mathscr{L}^{\infty}(x)\rightarrow^{\simeq}\mathscr{L}_{\mathrm{N}\mathrm{i}\mathrm{s}}^{\infty}(x) exists since

any Nisnevich covering of Spec F renes a trivial covering.

Theorem 2.3. Let G_{1} ,
.

::, G_{n} be algebraic groups over a finite field F. Then

the group (G_{1}\otimes\cdot\otimes G_{n})(x)M..
M

is finite for any finite point x over F. In particular, the

product T(G_{1}, . :. ; G_{n})(x) is also finite.

Proof. The case of n=1
,
there is nothing to show. So we assume n>1 . First we

show that there is a surjection (U_{1}\otimes\cdot\otimes U_{n})MM(x)\rightarrow(G_{1}\otimes\cdot\otimes G_{n})MM(x) by induction on

n . We consider the case n=2 . The algebraic group G_{i} has a decomposition

0\rightarrow U_{i}\rightarrow G_{i}\rightarrow A_{i}\rightarrow 0

with unipotent part U_{i} and a semi‐abelian variety A_{i} over F . From the right exactness

(M2), we obtain the following exact sequences

U_{1}^{M}\otimes U_{2} A_{1}^{M}\otimes U_{2}
\downarrow \downarrow

 U_{1}^{M}\otimes G_{2}\rightarrow G_{1}^{M}\otimes G_{2}\rightarrow A_{1}^{M}\otimes G_{2}\rightarrow 0
(2.4) \downarrow \downarrow

 U_{1}^{M}\otimes A_{2} A_{1}^{M}\otimes A_{2}

 0\downarrow 0\downarrow
By Kahn�s theorem (1.1), we have  A_{1}\otimes A_{2}M=0 . Lemma 2.2 implies U_{1}^{M}\otimes A_{2}=A_{1}\otimes M
U_{2}=0 . Hence we obtain U_{1}^{M}\otimes U_{2}\rightarrow G_{1}^{M}\otimes G_{2} . For n>2 ,

consider a decomposition

0\rightarrow U_{n}\rightarrow G_{n}\rightarrow A_{n}\rightarrow 0

as above. The right exactness (M2) again gives an exact sequence,

U_{1}^{M..MM}\otimes\cdot\otimes U_{n-1}\otimes U_{n}\rightarrow U_{1}^{M..MM}\otimes\cdot\otimes U_{n-1}\otimes G_{n}\rightarrow U_{1}^{M..MM}\otimes\cdot\otimes U_{n-1}\otimes A_{n}\rightarrow 0.
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Lemma 2.2 induces U_{1}M\otimes\cdots M\otimes U_{n-1}M\otimes U_{n}\rightarrow U_{1}M\otimes\cdots M\otimes U_{n-1}M\otimes G_{n} . By induction

hypothesis, we have U_{1}^{M\ldots M}\otimes\otimes U_{n-1}\rightarrow G_{1}\otimes\otimes G_{n-1}M\ldots M and the claim follows from

this. Thus it is enough to show the assertion for unipotent groups G_{i}=U_{i} . Take a

composition series of the unipotent group G:=G_{i} :

0=G^{r}\subset\cdots\subset G^{1}\subset G,

each G^{i}/G^{i+1}\simeq \mathbb{G}_{a} . By the right exactness (M2), we may assume G_{i}=\mathbb{G}_{a} for all

i and x= Spec F without loss of generality. We show the finiteness of (\mathbb{G}_{a})^{M}\otimes n(x) by

induction on n . We assume that (\mathbb{G}_{a})^{M}\otimes(n-1)(x) is finite. The group (\mathbb{G}_{a})^{M}\otimes n(x) has a

structure of an F‐vector space given by a\{a_{1}, . . :; a_{n}\}_{x'/x}:=\{j^{*}(a)a_{1}, ::. ; a_{n}\}_{x'/x} ,
for

any a\in F and a symbol \{a_{1}, . . . ; a_{n}\}_{x'/x} on a finite point j : x'\rightarrow x= Spec F. Consider

a subspace I(x) of (\mathbb{G}_{a})^{M}\otimes n(x) generated by the elements of the form

\{1_{x'}, a_{2}, . . . , a_{n}\}_{x'/x}-\{a_{2}. . . a_{n}, 1_{x'}, . . . , 1_{x'}\}_{x'/x}

for any finite point x'\rightarrow x
,

where 1_{x'}\in \mathbb{G}_{a}(x') is the unit. By identifying the canonical

isomorphism (\mathbb{G}_{a})^{M}\otimes n\simeq \mathbb{G}_{a^{\otimes}}^{M}(\mathbb{G}_{a})^{M}\otimes(n-1) by (M1) and j^{*}(1_{x})=1_{x'} ,
we have

\{1_{x'}, a_{2}, . . . , a_{n}\}_{x'/x}=\{j^{*}(1_{x}), \{a_{2}, . . . , a_{n}\}_{x'/x'}\}_{x'/x}
=\{1_{x} , ja;::. ; a_{n}\}_{x'/x'}\}_{x/x} by the projection formula

=\{1_{x}, \{a_{2}, . . :; a_{n}\}_{x'/x}\}_{x/x} by (M3).

By the induction hypothesis, the set of elements of this form is finite. On the other

hand, the projection formula implies

\{a_{2}. . . a_{n}, 1_{x'}, . . . , 1_{x'}\}_{x'/x}=\{a_{2}\cdots a_{n}, j^{*}(1_{x}), . . . , j^{*}(1_{x})\}_{x'/x}

=\{j_{*}(a_{2}\cdots a_{n}), 1_{x}, :. . , 1_{x}\}_{x/x}.

Thus the subspace I(x) is finite. Dene Q(x) :=(\mathbb{G}_{a})^{M}\otimes n(x)/I(x) the quotient space.

We denote by \overline{\{a_{1},\ldots,a_{n}\}}_{x/x} the image of \{ al;:. .

, a_{n}\}_{x'/x} in Q(x) . Now we consider

a subspace S(x) of Q(x) generated by symbols of the form \overline{\{a_{1},\ldots,a_{n}\}}_{x/x} . It is easy to

see that the subspace S(x) is finite. We show that any symbol \overline{\{a_{1},\ldots,a_{n}\}}_{x/x} in Q(x)
for a finite point j:x'\rightarrow x is in S(x) . In fact,

\overline{\{a_{1},\ldots,a_{n}\}}_{x/x}=j_{*}(\overline{\{a_{1},\ldots,a_{n}\}}_{x/x},) by (M3)

=j_{*} (a_{1}\overline{\{1_{x'},}a2, . . .

, a_{n}\}_{x/x}, ) because of \overline{\{a_{1},\ldots,a_{n}\}}_{x/x}, \in Q(x')

=j_{*}(a_{1}\overline{\{a_{2}\cdots a_{n},1_{x'},\ldots,1_{x'}\}}_{x'/x'})
=\overline{\{a_{1}\cdots a_{n},1_{x'},\ldots,1_{x'}\}}_{x/x} by (M3)

=\overline{\{j_{*}(a_{1}\cdots a_{n}),1_{x},\ldots,1_{x}\}}_{x/x} by the projection formula.
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Thus we obtain Q(x)=S(x) and the assertion follows from it. \square 

§3. Applications

Let X be a smooth (and connected) variety over a finite field F . Assume that

there is a smooth compactication \overline{X} of X
,

that is, a projective smooth variety which

contains X as an open subscheme. Let D be an effective Weil divisor on \overline{X} with support

jj \subset\overline{X}\backslash X . We dene the relative Chow group of the pair (X, D) by

CH(X; D ) := Coker ( \mathrm{d}\mathrm{i}\mathrm{v} : \displaystyle \bigoplus_{ $\phi$:C\rightarrow X}P_{C}(\overline{ $\phi$}^{*}D)\rightarrow Z_{0}(X)) ,

where the direct sum runs over the normalization  $\phi$ :  C\rightarrow X of a curve in X, Z_{0}(X)
is the group of 0‐cycles on X, \overline{ $\phi$} : \overline{C}\rightarrow\overline{X} is the extension of the map  $\phi$ to the smooth

compactication \overline{C} of C ,
the map \mathrm{d}\mathrm{i}\mathrm{v} is given by the divisor map on each curve C and

P_{C}(\overline{ $\phi$}^{*}D) := { f\in F(C)^{\times}|f\equiv 1 mod \overline{ $\phi$}^{*}D+(\overline{C}\backslash C)_{\mathrm{r}\mathrm{e}\mathrm{d}} }

(cf. [1], Set. 8.1, see also [9], Sect. 3.4 and 3.5). Putting X_{y}:=X\times \mathrm{s}_{\mathrm{p}\mathrm{e}\mathrm{c}Fy} and denoting

by D_{y} the pull‐back of D to \overline{X}_{y}:=\overline{X}\times_{x}y for any finite point y\rightarrow x= Spec F, the

assignment

\mathscr{C}H_{0}(X, D) : y\mapsto \mathrm{C}\mathrm{H}_{0}(X_{y}, D_{y})

gives a Mackey functor \mathscr{C}H_{0}(X, D) .

Theorem 3.1. Let X_{1} ,
. . .

, X_{n} be smooth and geometrically connected curves

over a finite field F and put X:=X_{1}\times\cdots\times X_{n} . For an effective Weil divisor D

on \overline{X} :=\overline{X}_{1}\times\cdots\times\overline{X}_{n} with support jj \subset\overline{X}\backslash X ,
the kernel of the degree map

CH (\mathrm{X}; D)^{0}:=\mathrm{K}\mathrm{e}\mathrm{r} (\deg : CH(X;  D)\rightarrow \mathbb{Z} ) is finite.

Recently, P. Deligne has showed the finiteness of the group CH (\mathrm{X}; D)^{0} for a smooth

variety X over a finite field and an effective Cartier divisor D with support in the

boundary \overline{X}\backslash X only assuming the existence of some normal compactication \overline{X} of X

as an application of his finiteness theorem for l ‐adic Galois representations of function

fields ([1], Thm. 8.1).

Proof of Thm. 3.1. Let p_{i} : \overline{X}=\overline{X}_{1}\times\cdots\times\overline{X}_{n}\rightarrow\overline{X}_{i} be the projection. An

irreducible component Z of the boundary

\displaystyle \overline{X}\backslash X=\bigcup_{i=1}^{n}\overline{X}_{1}\times\cdots\times(\overline{X}_{i}\backslash X_{i})\times\cdots\times\overline{X}_{n}.
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has the form Z=p_{i}^{-1}(P) for some P\in\overline{X}_{i}\backslash X_{i} . Therefore, for sufficiently large divisors

D_{i} on \overline{X}_{i} ,
there is a surjection CH(X; p_{1}^{*}D_{1}+\cdots+p_{n}^{*}D_{n} ) \rightarrow \mathrm{C}\mathrm{H}_{0}(X, D) . Thus we

may assume that D is a divisor of the form p_{1}^{*}D_{1}+\cdots+p_{n}^{*}D_{n} . Now we consider the

map

(3.1)  $\psi$ : (\mathscr{C}H_{0}(X_{1}, D_{1})^{M..M}\otimes\cdot\otimes \mathscr{C}H_{0}(X_{n}, D_{n}))( Spec F )\rightarrow \mathrm{C}\mathrm{H}_{0}(X, D)

dened by

 $\psi$(\{[P_{1}], \ldots, [P_{n}]\}_{y/x}):=(j_{y})_{*}[P_{1}\times_{y}\cdots\times_{y}P_{n}]
for a finite point j_{y} : y\rightarrow x:= Spec F and the classes [P_{i}] represented by closed points

P_{i} of (X_{i})_{y}:=X_{i}\times_{x}y ,
where [P_{1}\times_{y}\cdots\times_{y}P_{n}] is the zero‐cycle on X_{y} determined by

P_{i} �s and the base change X_{y}\rightarrow X to y is also denoted by j_{y}.
We ll‐denedness of  $\psi$ : First we have to prove that  $\psi$ annihilates the element of the form

\{j^{*}[P_{1}], . . . , [P_{i_{0}}'], . :. ; j^{*}[P_{n}]\}_{y'/x}-\{[P_{1}], ::. ; j_{*}[P_{i_{0}}'], . ::, [P_{n}]\}_{y/x}

for a map j : y'\rightarrow y of finite points and a closed point P_{i_{0}}' of (X_{i_{0}})_{y'} and closed points

P_{i} of (X_{i})_{y}(i\neq i_{0}) .

 $\psi$(\{j^{*}[P_{1}], \ldots, [P_{i_{0}}'], \ldots, j^{*}[P_{n}]\}_{y'/x})=(j_{y'})_{*}(j^{*}[P_{1}]\times_{y}, \ldots\times_{y'}[P_{i_{0}}']\times_{y}, \ldots\times_{y'}j^{*}[P_{n}])
=(j_{y})_{*}\circ(j_{*})([P_{1}\times_{y}\cdots\times_{y}P_{i_{0}}'\times_{y}\cdots\times_{y}P_{n}])
=(j_{y})_{*}([P_{1}]\times_{y}\cdots\times_{y}j_{*}[P_{i_{0}}']\times_{y}\cdots\times_{y}[P_{n}])
= $\psi$(\{[P_{1}], \ldots, j_{*}[P_{i_{0}}'], \ldots, [P_{n}]\}_{y/x}) .

Next we show that  $\psi$ annihilates the element \{[P_{1}], . ::, \mathrm{d}\mathrm{i}_{\mathrm{V}}^{\vee}(f)i, :. :; [P_{n}]\}_{y/x} for a finite

point j_{y}:y\rightarrow x and f\in P_{(X_{i})_{y}} ((Di)). Because of

\{[P_{1}], ::. ; \mathrm{d}\mathrm{i}\mathrm{v}(f), :::, [P_{n}]\}_{y/x}=(j_{y})_{*}(\{[P_{1}], . .

:; \mathrm{d}\mathrm{i}\mathrm{v}(f), .

::, [P_{n}]\}_{y/y}) ,

we may assume y=x by the denition of  $\psi$ . Consider the product

 P_{1}\displaystyle \times x\ldots\times {}_{x}P_{i-1}\times_{x}X_{i}\times {}_{x}P_{i+1}\times x\cdots\times {}_{x}P_{n}=\bigcup_{Q}(X_{i})_{Q},
where the union runs over a point Q in  P_{1}\times_{x}\cdots \times {}_{x}P_{i-1}\times {}_{x}P_{i+1}\times_{x}\cdots \times {}_{x}P_{n} . For

such a point Q ,
we denote by $\phi$_{Q} the natural map (X_{i})_{Q}\rightarrow X . Since the base change

j_{Q} : (X_{i})_{Q}\rightarrow X_{i} is unramied, j_{Q}^{*}(f)\in P_{(X_{i})_{Q}}($\phi$_{Q}^{*}(D)) . We obtain

 $\psi$(\{[P_{1}], \ldots, \mathrm{d}\mathrm{i}\mathrm{v}(f)\mathrm{v}^{i}, . :.

, [P_{n}]\displaystyle \}_{x/x})=\sum_{Q}j_{Q}^{*}\mathrm{d}\mathrm{i}\mathrm{v}(f)
=0.
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Surjectivity of  $\psi$ : We show that the map  $\psi$ is surjective. Take a cycle [P] as a generator
of CH(X; D ) which is represented by a closed point P on X and is a finite point

j_{P} : P\rightarrow x= Spec F. By the denition of  $\psi$ ,
the push‐forward map on the relative

Chow group and the norm map on the Mackey product are compatible as in the following
commutative diagram:

(\mathscr{C}H_{0}(X_{1}, D_{1})^{M..M}\otimes\cdot\otimes \mathscr{C}H_{0}(X_{n}, D_{n}))(P)\rightarrow^{$\psi$_{P}}\mathrm{C}\mathrm{H}_{0}(X_{P}, D_{P})

(j_{P})_{*}\downarrow \downarrow(j_{P})_{*}
(\mathscr{C}H_{0}(X_{1}, D_{1})^{M..M}\otimes\cdot\otimes \mathscr{C}H_{0}(X_{n}, D_{n}))(x)\rightarrow^{ $\psi$}\mathrm{C}\mathrm{H}_{0}(X, D) .

Thus to show the surjectivity of  $\psi$ we may assume that  P is an F‐rational point. The

point P is determined by maps P\rightarrow X_{i} . These maps give closed points P_{i} in X_{i} and

 $\psi$ ( \{[P_{1}], \ldots

, [Pn] ) =[P_{1}\times_{x}\cdots\times {}_{x}P_{n}]=[P] . Therefore  $\psi$ is surjective.

Finiteness of CH(X,  D ): By a theorem of F. K. Schmidt ([10], Sect. 8), there exists a

degree 1 cycle in X . Hence, for each i
,

we have a decomposition \mathscr{C}H_{0}(X_{i}, D_{i})\simeq \mathbb{Z}\oplus
 J_{X_{i},D_{i}} by the generalized Jacobian variety J_{X_{i},D_{i}} of the pair (X_{i}, D_{i}) ([12]). According
to this decomposition, we obtain

\displaystyle \mathscr{C}H_{0}(X_{1}, D_{1})^{M..M}\otimes\cdot\otimes \mathscr{C}H_{0}(X_{n}, D_{n})\simeq \mathbb{Z}\oplus\bigoplus_{r=1}^{n}\bigoplus_{1\leq i_{1}<\cdots<i_{r}\leq n}(J_{X_{i_{1}},D_{i_{1}}}^{M..M}\otimes\cdot\otimes J_{X_{i_{r}},D_{i_{r}}})
by (M1). The surjection  $\psi$(3.1) induces a surjection

\displaystyle \bigoplus_{r=1}^{n}\bigoplus_{1\leq i_{1}<\cdots<i_{r}\leq n}(J_{X_{i_{1}},D_{i_{1}}}^{M..M}\otimes\cdot\otimes J_{X_{i_{r}},D_{i_{r}}})( Spec F )\rightarrow \mathrm{C}\mathrm{H}_{0}(X, D)^{0}

The left is finite by Theorem 2.3 and so is CH (\mathrm{X}; D)^{0}. \square 

Let X be the product of curves over F
,

and D as in the above theorem (Thm.
3.1). For each normalization  $\phi$ :  C\rightarrow X of a curve in X

,
we have a divisor D_{C}:=

\overline{ $\phi$}^{*}(D)+(\overline{C}\backslash C)_{\mathrm{r}\mathrm{e}\mathrm{d}} on \overline{C} . The category of étale coverings of X with ramication

bounded by the collection of Weil divisors (D_{C})_{ $\phi$:C\rightarrow X} forms a Galois category and

gives a fundamental group $\pi$_{1}(X, D) ([2], Lem. 3.3). For each such C and a point
P\in\overline{C}\backslash C there is a canonical map G_{C,P}^{\mathrm{a}\mathrm{b}}:=\mathrm{G}\mathrm{a}1(F(C)_{P}^{\mathrm{a}\mathrm{b}}/F(C)_{P})\rightarrow$\pi$_{1}(X)^{\mathrm{a}\mathrm{b}} ,

where

F(C)_{P}^{\mathrm{a}\mathrm{b}} is the maximal abelian extension of the completion F(C)_{P} at P . By the very

denition of the coverings, we have

Coker (\displaystyle \bigoplus_{ $\phi$:C\rightarrow X}\bigoplus_{P\in\overline{C}\backslash C}G_{C,P}^{\mathrm{a}\mathrm{b},m_{P}(D_{C})}\rightarrow$\pi$_{1}(X)^{\mathrm{a}\mathrm{b}})\rightarrow$\pi$_{1}(X, D)^{\mathrm{a}\mathrm{b}},
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where G_{C,P}^{\mathrm{a}\mathrm{b},m} is the m‐th (upper numbering) ramication subgroup of G_{C,P}^{\mathrm{a}\mathrm{b}} ([11], Chap.

IV, Sect. 3) and m_{P}(D_{C}) is the multiplication of the divisor D_{C} at P . Using the idele

theoretic description of the relative Chow group

CH (X; D)\simeq Coker (\displaystyle \bigoplus_{ $\phi$:C\rightarrow X}F(C)^{\times}\rightarrow Z_{0}(X)\oplus\bigoplus_{ $\phi$:C\rightarrow X}\bigoplus_{P\in\overline{C}\backslash C}F(C)_{P}^{\times}/U_{C,P}^{m_{P}(D_{C})}) ,

where U_{C,P}^{m}=1+\mathfrak{m}_{C,P}^{m} is the higher unit group, local class field theory (see e.g., [11],
Chap. XV) induces a commutative diagram:

Z_{0}(X)^{0}\rightarrow \mathrm{C}\mathrm{H}_{0}(X, D)^{0}

 $\rho$\downarrow \downarrow$\rho$_{D}
$\pi$_{1}(X)^{\mathrm{a}\mathrm{b},0}\rightarrow$\pi$_{1}(X, D)^{\mathrm{a}\mathrm{b},0}.

Here Z_{0}(X)^{0} is the kernel of the degree map \deg :  Z_{0}(X)\rightarrow \mathbb{Z} ,
the left vertical map

 $\rho$ is the reciprocity map on  X and $\pi$_{1}(X, D)^{\mathrm{a}\mathrm{b},0} is the geometric part of the abelian

fundamental group (= the kernel of the canonical map $\pi$_{1}(X, D)^{\mathrm{a}\mathrm{b}}\rightarrow$\pi$_{1}( Spec ( F))^{\mathrm{a}\mathrm{b}} ).
The image of the reciprocity map  $\rho$ :  Z_{0}(X)\rightarrow$\pi$_{1}(X)^{\mathrm{a}\mathrm{b}} is known to be dense (due to

Lang [8]) and the image of $\rho$_{D} in the above diagram is finite by Theorem 3.1. Therefore,
the map $\rho$_{D} is surjective and we obtain the following finiteness result.

Corollary 3.2. Let X and D be as in Theorem 3.1. Then, the geometric part

of the abelian fundamental group $\pi$_{1}(X, D)^{\mathrm{a}\mathrm{b},0} is finite.
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