A Lefschetz trace formula for p^{n}-torsion etale cohomology : a resume (Algebraic Number Theory and Related Topics 2012)

Author(s)
Takata, Megumi

Citation
数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2014), B51: 151-155

Issue Date
2014-10

URL
http://hdl.handle.net/2433/232897

Right
© 2014 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
A Lefschetz trace formula for p^n-torsion étale cohomology: a resume

By

Megumi TAKATA*

This is a resume of our results ([5]) on a Lefschetz trace formula on varieties defined over a finite field \mathbb{F}_q of characteristic p. It is a p^n-torsion version of a conjecture of Deligne which was originally formulated with ℓ-adic étale cohomology ($\ell \neq p$) and has been proved by Fujiwara in full generality ([2]).

We introduce some notations to state our results. We fix an algebraic closure k of \mathbb{F}_q. For an object \mathcal{X}_0 (e.g. scheme, sheaf on a scheme, morphism of schemes) over \mathbb{F}_q, \mathcal{X} denotes the base change of \mathcal{X}_0 by the injection $\mathbb{F}_q \hookrightarrow k$. Let S be a scheme. For a morphism of S-schemes $b: V \to U \times_S U$, we put $b_1 = \text{pr}_1 \circ b$ and $b_2 = \text{pr}_2 \circ b$, where pr_1 (resp. pr_2) is the first (resp. second) projection of $U \times_S U$. The S-scheme $\text{Fix}(b) = V \times_{U \times_S U} U$ is defined by the following cartesian diagram

$$
\begin{array}{ccc}
\text{Fix}(b) & \longrightarrow & U \\
\downarrow & & \downarrow \Delta_{U/S} \\
V & \stackrel{b}{\longrightarrow} & U \times_S U,
\end{array}
$$

where $\Delta_{U/S}$ is the diagonal morphism. Remark that if U and V are smooth over S, $db_1: b_1^* \Omega_{U/S} \to \Omega_{V/S}$ is zero and b_2 is étale, then $\text{Fix} b$ is étale over S ([7, Cor. 17.13.6]). For an S-endomorphism $f: U \to U$, we put $\text{Fix} f = \text{Fix}(f \times_S \text{id}_U)$. Let U_0 and V_0 be \mathbb{F}_q-schemes and $b_0: V_0 \to U_0 \times_{\mathbb{F}_q} U_0$ an \mathbb{F}_q-morphism of schemes. We put $b^{(m)} = (\text{Fr}_U^m \circ b_1, b_2)$, where Fr_U is the relative q-th power Frobenius morphism of U i.e. the base change of the absolute q-th power Frobenius morphism of U_0 by $\mathbb{F}_q \to k$.

First, we state a p-torsion version of Fujiwara’s trace formula.
Theorem 1 ([5, Corollary 3.2], [5, Theorem 6.1]). Let U_0 and V_0 be separated \mathbb{F}_q-schemes of finite type and \mathcal{F}_0 a constructible étale \mathbb{Z}/p-sheaf on U_0.

(1) Let $f_0: U_0 \to U_0$ be an automorphism of finite order and $m \geq 1$ an integer. Let $u_0: (\text{Fr}_{U_0}^m \circ f_0)^* \mathcal{F}_0 \to \mathcal{F}_0$ be an isomorphism of sheaves whose order is the same as that of f_0. Then we have the following equality

$$\sum_i (-1)^i \text{Tr}(u \circ (\text{Fr}_{U_0}^m \circ f)^* | H^i_c(U, \mathcal{F})) = \sum_{P \in \text{Fix}(\text{Fr}_{U_0}^m \circ f)} \text{Tr}(u_P | \mathcal{F}_P).$$

(2) Let $b_0: V_0 \to U_0 \times_{\mathbb{F}_q} U_0$ be a morphism of \mathbb{F}_q-schemes. We assume that \mathcal{F}_0 is smooth. Further we assume that there exist proper smooth \mathbb{F}_q-schemes X_0 and Y_0, and an \mathbb{F}_q-morphism $a_0: Y_0 \to X_0 \times_{\mathbb{F}_q} X_0$ such that

(a) U_0 (resp. V_0) is an open \mathbb{F}_q-subscheme of X_0 (resp. Y_0), the diagram

$$\begin{array}{ccc}
V_0 & \xrightarrow{b_0} & U_0 \times_{\mathbb{F}_q} U_0 \\
\downarrow & & \downarrow \\
Y_0 & \xrightarrow{a_0} & X_0 \times_{\mathbb{F}_q} X_0
\end{array}$$

is cartesian,

(b) b_1 is proper, a_2 is étale, a is a closed immersion,

(c) $X \setminus U$ is a Cartier divisor, and

(d) there exists a smooth constructible étale \mathbb{Z}/p-sheaf \mathcal{G}_0 on X_0 such that $\mathcal{G}_0|_{U_0} = \mathcal{F}_0$.

Then, for any integer $m \geq 1$ and any $u_0 \in \text{Hom}(b_{01}^{(m)*} \mathcal{F}_0, b_{02}^* \mathcal{F}_0)$, we have the following equality

$$\sum_i (-1)^i \text{Tr}(u_! | H^i_c(U, \mathcal{F})) = \sum_{P \in \text{Fix}(b^{(m)})} \text{Tr}(u_P | \mathcal{F}_P),$$

where $u_!$ is the composition

$$H^i_c(U, \mathcal{F}) \xrightarrow{b^{(m)*}_1} H^i_c(V, b_1^{(m)*} \mathcal{F}) \xrightarrow{u} H^i_c(V, b_2^* \mathcal{F}) \xrightarrow{b_2} H^i_c(U, \mathcal{F}).$$

Remark that $\text{Fix}(\text{Fr}_{U_0}^m \circ f)$ is finite over k by Zink's lemma [6, Lemma 2.3] and $\text{Fix}(b^{(m)})$ is finite étale over k since U and V are smooth over k, the differential of $b_1^{(m)}$ is zero and b_2 is étale.

Theorem 1 (1) is proved by using the Lefschetz trace formula for the Frobenius correspondence ([8, Fonct. L mod. ℓ Théorème 4.1]) and Deligne-Lusztig’s method ([1,
Section 3). We sketch the proof of Theorem 1 (2). This is a generalization of the proof of [8, Fonct. L mod. ℓⁿ, Théorème 4.1]. We put $\mathcal{G}' = \mathcal{I}_0(\mathcal{G}_0 \otimes \mathcal{O}_X)$, where \mathcal{I}_0 is the ideal sheaf of definition of $X_0 \setminus U_0$. Since $X \setminus U$ is a Cartier divisor, \mathcal{G}' is a locally free \mathcal{O}_X-module of finite rank and sits in the exact sequence

$$0 \to j_1 \mathcal{F} \to \mathcal{G}' \xrightarrow{1-\Phi} \mathcal{G}' \to 0,$$

where $\Phi: \mathcal{G}' \rightarrow \mathcal{G}'$ is the morphism induced by the p-th power map on \mathcal{O}_X. Then we can reduce the calculation of the trace of the endomorphism of the cohomology group of \mathcal{F} to that of \mathcal{G}'. By applying the following trace formula to the trace, we obtain Theorem 1 (2).

Theorem 2 (Woods Hole formula, [5, Theorem 4.1]). Let S be the spectrum of an artinian local ring, X and Y proper smooth schemes over S, and $a: Y \hookrightarrow X \times S$ a closed immersion over S. We assume that a_2 is étale and the homomorphism $da_1: a_1^* \Omega_{YS} \to \Omega_{YS}$ is zero. Then, for any perfect complex \mathscr{K} of \mathcal{O}_X-modules and any $u \in \text{Hom}(a_1^* \mathscr{K}, a_2^* \mathscr{K})$, we have

$$\sum_i (-1)^i \text{Tr}(u_\ast | H^i(X, \mathscr{K})) = \sum_{\beta \in \pi_0(\text{Fix}(a))} \text{Tr}_{\beta/S}(\text{Tr}(u_{\beta} | \mathscr{K}_{\beta})),$$

where u_\ast is the composition

$$H^i(X, \mathscr{K}) \xrightarrow{a_1^*} H^i(Y, a_1^* \mathscr{K}) \xrightarrow{u} H^i(Y, a_2^* \mathscr{K}) \xrightarrow{a_2*} H^i(X, \mathscr{K}),$$

$\pi_0(\text{Fix}(a))$ is the set of connected components of $\text{Fix}(a)$, \mathscr{K}_β (resp. u_β) is the pull-back of \mathscr{K} (resp. u) by the immersion $i_\beta: \beta \hookrightarrow Y$ and $\text{Tr}_{\beta/S}$ is the trace map $\Gamma(\beta, \mathcal{O}_\beta) \to \Gamma(S, \mathcal{O}_S)$.

Remark that $\text{Fix}(a)$ is finite étale over S. Theorem 2 is a generalization of [9, Exp. III, Corollaire 6.12], and can be proved by using the Lefschetz-Verdier trace formula ([9, Exp. III, Théorème 6.10]) and properties of residue symbols in [3, Ch. III, §9].

Secondly, we state a p^n-torsion version of Fujiwara’s trace formula. At present, this requires more assumptions than Theorem 1.

For a perfect field K of characteristic p, we denote by $W_n(K)$ the ring of Witt vectors of K of length n. We write σ_0 for the Frobenius automorphism of $W_n(K)$. For a scheme S, we write \mathcal{O}_S for the structure sheaf of S. If S is of characteristic p, denote by $\Phi_{\mathcal{O}_S}$ the p-th power map on \mathcal{O}_S.

Theorem 3 ([5, Theorem 7.1]). Let U_0 and V_0 be smooth \mathbb{F}_q-schemes, $b_0: V_0 \to U_0 \times_{\mathbb{F}_q} U_0$ an \mathbb{F}_q-morphism, and \mathcal{F}_0 a locally free constructible étale \mathbb{Z}/p^n-sheaf on U_0. We assume that there exist proper smooth $W_n(\mathbb{F}_q)$-schemes \mathcal{X}_0 and \mathcal{Y}_0, a Cartier divisor \mathcal{D}_0 of \mathcal{X}_0 which is flat over $W_n(\mathbb{F}_q)$, a $W_n(\mathbb{F}_q)$-morphism $\tilde{a}_0: \mathcal{Y}_0 \to \mathcal{X}_0 \times_{W_n(\mathbb{F}_q)} \mathcal{X}_0$, and a morphism $\Phi_{\mathcal{O}_{\mathcal{X}_0}}: \mathcal{O}_{\mathcal{X}_0} \to \mathcal{O}_{\mathcal{X}_0}$ such that

$$1-\Phi_{\mathcal{O}_{\mathcal{X}_0}}: \mathcal{O}_{\mathcal{X}_0} \to \mathcal{O}_{\mathcal{X}_0}.$$
(a) when we put $X_0 = \mathcal{X}_0 \times W_n(F_q)$, $Y_0 = \mathcal{Y}_0 \times W_n(F_q)$ and define a_0 such that the diagram

$$
\begin{array}{c}
\mathcal{Y}_0 \xrightarrow{\bar{a}_0} \mathcal{X}_0 \times W_n(F_q) \\
\uparrow \quad \uparrow \\
Y_0 \xrightarrow{a_0} X_0 \times W_n(F_q)
\end{array}
$$

is cartesian, then $(U_0, V_0, b_0, X_0, Y_0, a_0)$ satisfies the condition (a) in Theorem 1 (2),

(b) b_1 is proper, \tilde{a}_2 is étale, \tilde{a} is a closed immersion,

(c) \mathcal{D}_0 is a lift of $X_0 \setminus U_0$ to $W_n(F_q)$,

(d) the diagrams

$$
\begin{array}{c}
W_n(F_q) \xrightarrow{\sigma_0} W_n(F_q) \\
\downarrow \quad \downarrow \\
\mathcal{O}_{\mathcal{X}_0} \xrightarrow{\Phi_{\mathcal{O}_{\mathcal{X}_0}}} \mathcal{O}_{\mathcal{X}_0}
\end{array}
\quad \text{and} \quad
\begin{array}{c}
\mathcal{O}_{\mathcal{X}_0} \xrightarrow{\Phi_{\mathcal{O}_{\mathcal{X}_0}}} \mathcal{O}_{\mathcal{X}_0} \\
\downarrow \quad \downarrow \\
\mathcal{O}_{X_0} \xrightarrow{\Phi_{\mathcal{O}_{X_0}}} \mathcal{O}_{X_0}
\end{array}
$$

commute,

(e) the inclusion $\Phi_{\mathcal{O}_{\mathcal{X}_0}}(\mathcal{I}_0) \subset \mathcal{I}_0$ holds, where \mathcal{I}_0 is the defining ideal of \mathcal{D}_0,

(f) there exists a locally free constructible étale \mathbb{Z}/p^n-sheaf \mathcal{G}_0 on X_0 such that $\mathcal{G}_0|_{U_0} = \mathcal{F}_0$ and

(g) $H^i_c(U, \mathcal{F})$ (resp. $H^i(\mathcal{D}, \mathcal{G} \otimes_{\mathbb{Z}/p^n} \mathcal{I})$) is free over \mathbb{Z}/p^n (resp. $W_n(k)$) for any i.

Then there exists an integer M such that, for any integer $m \geq M$ and any homomorphism $u_0 \in \text{Hom}(b_0^{(m)*}\mathcal{G}_0, b_0^{(m)}\mathcal{G}_0)$, we have the following equality

$$
\sum_{i} (-1)^i \text{Tr}(u_! | H^i_c(U, \mathcal{F})) = \sum_{P \in \text{Fix}(b^{(m)})} \text{Tr}(u_P | F_P).
$$

We note that the integer M in Theorem 3 depends on the sheaf \mathcal{F}_0. We need the assumption on existence of \mathcal{X}_0, \mathcal{Y}_0, \mathcal{D}_0, \bar{a}_0 and $\Phi_{\mathcal{O}_{\mathcal{X}_0}}$ in order to use the same argument used in the proof of Theorem 1 (2), and the assumption (g) in order to compute the trace in the category of \mathbb{Z}/p^n-modules, not in that of perfect complexes of \mathbb{Z}/p^n-modules. If X_0 is a curve, then the assumption (e) automatically holds ([4, Lemma 1.1.2]).

The proof of Theorem 3 is similar to that of Theorem 1 (2).

Acknowledgement

The author would like thank to the organizers of the conference ‘Algebraic Number Theory and Related Topics 2012’ for giving him the precious chance to talk. He is
also indebted to the referee for his careful reading and useful comments especially for a generalization of Theorem 3. He owes his gratitude to his advisor Professor Yuichiro Taguchi. Without his many pieces of advice and comments, this resume would not have been possible.

References