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Symbolic generators of the Brauer group of diagonal
cubic surfaces and their applications to zero‐cycles

By

Tetsuya UEMATSU *

Abstract

In this article, we first announce the result of the paper [10], in which we introduce the

notion of uniform generators of the Brauer group of varieties, and consider the problem whether

the Brauer group of diagonal cubic surfaces has such generators or not. The reader may refer

to the paper [10] for proofs and details.

Secondly, as an application of such symbolic generators, we give an example of explicit
calculations of the degree‐zero part of the Chow group of zero‐cycles on diagonal cubic surfaces

over p‐adic fields, along the same line as in [9].

§1. Background and known results

Let V be a variety over a field k . Grothendieck dened its cohomological Brauer

group Br(V) :=H_{\'{e} \mathrm{t}}^{2}(V, \mathbb{G}_{m}) in his papers [4]. The group Br(V) plays an important role

in studying the arithmetic and the geometry of V . For example, when k is a number field,
it appears in the Brauer‐Manin obstruction [6], which is used in constructing various

counterexamples to the Hasse principle for rational points on V . For such studies, we

want to answer the following two natural problems:

(1) Determine the structure of Br(V) as an abelian group.

(2) Find generators of Br(V) in terms of norm residue symbols.
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Let k be a field of characteristic zero containing a fixed primitive cubic root  $\zeta$ of

unity. We are concerned with the above problems for diagonal cubic surfaces  V over k,
that is, smooth projective surfaces dened by a homogeneous equation of the form

x^{3}+by^{3}+cz^{3}+dt^{3}=0,

where b, c, d\in k^{*} . An original work in this direction was due to Manin [7]. Let V be a

diagonal cubic surface of the form x^{3}+y^{3}+z^{3}+dt^{3}=0 for d\in k^{*}\backslash (k^{*})^{3},  $\pi$:V\rightarrow Spec k

be the structure morphism, and

\}_{3}:K_{2}^{M}(k(V))\rightarrow H^{2}(k(V), $\mu$_{3}^{\otimes 2})\cong H^{2}(k(V), $\mu$_{3})\mapsto \mathrm{B}\mathrm{r}(k(V))

be the norm residue symbol map. By the regularity of V ,
we can consider Br(V) as a

subgroup of \mathrm{B}\mathrm{r}(k(V)) in a natural way. Put \mathrm{B}\mathrm{r}(V)/\mathrm{B}\mathrm{r}(k) :=\mathrm{B}\mathrm{r}(V)/$\pi$^{*}\mathrm{B}\mathrm{r}(k) . In this

case, \mathrm{B}\mathrm{r}(V)/\mathrm{B}\mathrm{r}(k)\cong(\mathbb{Z}/3\mathbb{Z})^{2},

(1.1) \displaystyle \{d, \frac{x+ $\zeta$ y}{x+y}\}_{3}, \{d, \frac{x+z}{x+y}\}_{3}
are elements in Br(V) and their images in \mathrm{B}\mathrm{r}(V)/\mathrm{B}\mathrm{r}(k) are generators of this group.

In the paper [10], we study these problems in a more general setting where the

equation of V is of the forms x^{3}+y^{3}+cz^{3}+dt^{3}=0 and x^{3}+by^{3}+cz^{3}+dt^{3}=0 . We

announce the results in the next section.

§2. Results

First we state the following theorem, which gives an answer to the above problems

(1) and (2) for the case x^{3}+y^{3}+cz^{3}+dt^{3}=0.

Theorem 2.1 ([10], Theorem 4.1). Let k be as above and V be the cubic surfa ce

over k dened by an equation x^{3}+y^{3}+cz^{3}+dt^{3}=0 ,
where c and d\in k^{*} . Assume that

c, d
,

cd and d/c are not contained in (k^{*})^{3} . Then we have the fo llowing:

(1) The group \mathrm{B}\mathrm{r}(V)/\mathrm{B}\mathrm{r}(k) is isomorphic to \mathbb{Z}/3\mathbb{Z}.

(2) The element

e_{1}=\displaystyle \{\frac{d}{c}, \frac{x+ $\zeta$ y}{x+y}\}_{3}\in \mathrm{B}\mathrm{r}(k(V))
is contained in Br(V).

(3) The image of e_{1} in \mathrm{B}\mathrm{r}(V)/\mathrm{B}\mathrm{r}(k) is a generator of this group.
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Note that the claim (1) is due to [1] and a result similar to (2) appeared in [3]. For

a proof of Theorem 2.1, see [10], §4.
An important observation is that in the result of Manin and Theorem 2.1, we can

take generators unifo rmly. We briey give a more precise description of this uniformity.
Let c and d be indeterminates, F=k(c, d) , V be the cubic surface x^{3}+y^{3}+cz^{3}+dt^{3}=0
over F

,
and

e=e(c, d):=\displaystyle \{\frac{d}{c}, \frac{x+ $\zeta$ y}{x+y}\}_{3}
be an element in \mathrm{B}\mathrm{r}(k(V)) . In fact, e is contained in Br(V) by Theorem 2.1. Let

P=(c_{0}, d_{0}) be a point in k^{*}\times k^{*} with c_{0}, d_{0}, c_{0}d_{0} and d_{0}/c_{0} not contained in (k^{*})^{3},
and V_{P} the surface dened by x^{3}+y^{3}+c_{0}z^{3}+d_{0}t^{3}=0 . If we want a symbolic generator of

\mathrm{B}\mathrm{r}(V_{P})/\mathrm{B}\mathrm{r}(k) ,
we can get it by specializing e at P . We denote this element by \mathrm{s}\mathrm{p}(e;P) .

For a precise denition of the specialization, see [10], §2. The Brauer group of a given

family of varieties does not necessarily have such uniform generators.
The main result in the paper [10] is a result for general diagonal cubic surfaces with

three parameters b, c and d . Unlike the result of Manin and Theorem 2.1, we show that

there is no uniform generator in this situation. Let F=k(b, c, d) ,
where b, c, d are

indeterminates over k
,

and let V be the projective cubic surface over F dened by the

equation x^{3}+by^{3}+cz^{3}+dt^{3}=0 . For P=(b_{0}, c_{0}, d_{0})\in k^{*}\times k^{*}\times k^{*} ,
let V_{P} be the

projective cubic surface over k dened by the equation x^{3}+b_{0}y^{3}+c_{0}z^{3}+d_{0}t^{3}=0 . For

e\in \mathrm{B}\mathrm{r}(V) ,
we denote its specialization at P by \mathrm{s}\mathrm{p}(e;P)\in \mathrm{B}\mathrm{r}(V_{P}) . Put

\mathcal{P}_{k}=\{P\in k^{*}\times k^{*}\times k^{*}|\mathrm{B}\mathrm{r}(V_{P})/\mathrm{B}\mathrm{r}(k)\cong \mathbb{Z}/3\mathbb{Z}\}.

Note ([1]) that \mathrm{B}\mathrm{r}(V_{P})/\mathrm{B}\mathrm{r}(k) is isomorphic to one of 0, \mathbb{Z}/3\mathbb{Z} and (\mathbb{Z}/3\mathbb{Z})^{2} and that

Manin dealt with the last case. We also remark that for P\in \mathcal{P}_{k} ,
we can take a sum

of symbols as a generator of \mathrm{B}\mathrm{r}(V_{P})/\mathrm{B}\mathrm{r}(k)\cong \mathbb{Z}/3\mathbb{Z} by a theorem of Merkurjev and

Suslin [8]. However, unlike the result of Manin and Theorem 2.1, we do not know

whether we can take one symbol as its generator.
The claim is the following:

Theorem 2.2 ([10], Corollary 5.3). Let k, F and V as above. Assume more‐

over \dim_{\mathrm{F}_{3}}k^{*}/(k^{*})^{3}\geq 2 . Then there is no element e\in \mathrm{B}\mathrm{r}(V) satisfy ing the following
condition:

there exists a Zariski dense open subset W\subset(\mathbb{G}_{m,k})^{3} such that

\mathrm{s}\mathrm{p}(e;\cdot) is dened on W(k)\cap \mathcal{P}_{k} ;

for all P\in W(k)\cap \mathcal{P}_{k}, \mathrm{s}\mathrm{p}(e;P) is a generator of \mathrm{B}\mathrm{r}(V_{P})/\mathrm{B}\mathrm{r}(k) .
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Remark. By associating to each point P\in \mathcal{P}_{k} the image under P: Spec k \rightarrow

(\mathbb{G}_{m,k})^{3} ,
we can consider \mathcal{P}_{k} as a subset of (\mathbb{G}_{m,k})^{3} . Then the assumption \dim_{\mathrm{F}_{3}}k^{*}/(k^{*})^{3}\geq

 2 is equivalent to the Zariski density of \mathcal{P}_{k}\subset(\mathbb{G}_{m,k})^{3} ,
which is essentially necessary to

prove Theorem 2.2. We see that this assumption holds for various fields, for example,

all finitely generated fields over \mathbb{Q}( $\zeta$) and \mathbb{Q}_{p}( $\zeta$) for any prime number p ;

all function fields of varieties of dimension \geq 1.

Theorem 2.2 is a direct corollary of the following:

Theorem 2.3 ([10], Theorem 5.1). Let k, F and V be as above. Then

\mathrm{B}\mathrm{r}(V)/\mathrm{B}\mathrm{r}(F)=0.

We briey explain the strategy of our proof of Theorem 2.3. Fix an algebraic closure

\overline{F} of F and put \overline{V}=V\times{}_{F}\overline{F} . The starting point is the following exact sequence:

(2.1) 0\rightarrow \mathrm{B}\mathrm{r}(V)/\mathrm{B}\mathrm{r}(F)\rightarrow H^{1}(F, \mathrm{P}\mathrm{i}\mathrm{c}(\overline{V}))^{d^{1,1}}\rightarrow H^{3}(F, \overline{F}^{*}) ,

which is derived by the Hochschild‐Serre spectral sequence

E_{2}^{p,q}=H^{p}(F, H_{\'{e} \mathrm{t}}^{q}(\overline{V}, \mathbb{G}_{m}))\Rightarrow H_{\'{e} \mathrm{t}}^{p+q}(V, \mathbb{G}_{m})

and the rationality of \overline{V} . Secondly, we show H^{1}(F, \mathrm{P}\mathrm{i}\mathrm{c}(\overline{V}))\cong \mathbb{Z}/3\mathbb{Z} by computing the

action of \mathrm{G}\mathrm{a}1(\overline{F}/F) on \mathrm{P}\mathrm{i}\mathrm{c}(\overline{V}) ,
which is generated by the classes of the well‐known 27

lines on \overline{V} . Thus, to prove the theorem, we have to prove that the image of a generator

 $\phi$ of  H^{1}(F, \mathrm{P}\mathrm{i}\mathrm{c}(\overline{V})) under d^{1,1} is not zero. Thirdly, using a description of d^{1,1} due to

Kresch and Tschinkel [5], we obtain the image d^{1,1}( $\phi$) in an explicit form. Finally, we

construct a group G satisfying

there exists a homomorphism f : H^{3}(F, \overline{F}^{*})\rightarrow G ,
and

the image f(d^{1,1}( $\phi$)) is nonzero in G

by using residue maps of Galois cohomology. These steps complete the proof of Theorem

2.3.

Remark. Let V/k be a diagonal cubic surface. If the base field k is of cohomo‐

logical dimension less than or equal to two, we have \mathrm{B}\mathrm{r}(V)/\mathrm{B}\mathrm{r}(k)\cong H^{1}(k, \mathrm{P}\mathrm{i}\mathrm{c}(\overline{V})) by
the above exact sequence (2.1) for V/k . This isomorphism also holds when V has a k‐

rational point. Note that the surfaces appearing in the result of Manin and Theorem 2.1

have a rational point. However, our V/F does not satisfy these conditions, which makes

the problem more complicated. As far as we know, this would be the first example of

computation of Brauer groups for such varieties.
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§3. An application to zero‐cycles

Let k be a p‐adic field and V be a diagonal cubic surface over k . We are concerned

with computing A_{0}(V) ,
the degree‐zero part of the Chow group of zero‐cycles on V.

For results on diagonal cubic surfaces V : x^{3}+y^{3}+z^{3}+dt^{3}=0 over k with p\neq 3,
see [2] and [9]. Saito and Sato [9] recently proved a certain unramiedness theorem for

Brauer groups. Using this theorem and the symbolic generators (1.1), they computed

A_{0}(V) for such V with p=3 . Their result is the following:

Theorem 3.1 ([9], Theorem 4.1.1 (2)). Let k be a finite extension of \mathbb{Q}_{3} con‐

taining a primitive cubic root  $\zeta$ of unity,  d\in k^{*} and V be the projective surfa ce over k

dened by x^{3}+y^{3}+z^{3}+dt^{3}=0 . If \mathrm{o}\mathrm{r}\mathrm{d}_{k}(d)\equiv 1 mod3, then A_{0}(V)\cong(\mathbb{Z}/3\mathbb{Z})^{2}.

As an application of Theorem 2.1, we compute A_{0}(V) for V : x^{3}+y^{3}+cz^{3}+dt^{3}=0
by using the same method as in [9]. The result is the following:

Theorem 3.2. Let k be a finite extension of\mathbb{Q}_{3} containing a primitive cubic root

 $\zeta$ of unity,  c, d\in k^{*} and V be the projective surfa ce over k dened by x^{3}+y^{3}+cz^{3}+dt^{3}=
0 . Assume that

c, d
, cd, c/d\not\in(k^{*})^{3},

\mathrm{o}\mathrm{r}\mathrm{d}_{k}(c-1) is greater than the absolute ramication index e of k,

\mathrm{o}\mathrm{r}\mathrm{d}_{k}(d)\equiv 1 mod3.

Then A_{0}(V)\cong \mathbb{Z}/3\mathbb{Z}.

Remark. A proof of the above theorem will be written in a forthcoming paper.

In our proof, the assumption \mathrm{o}\mathrm{r}\mathrm{d}_{k}(c-1)>e is essential, since this enables us to

exclude difficulties caused by the fact c\neq 1 and reduce to the same situation as in [9].
If \mathrm{o}\mathrm{r}\mathrm{d}_{k}(c-1)\leq e ,

we cannot ignore the difference between c and 1, at least in our

method, which seems to make the computation of A_{0}(V) more difficult.
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