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Atkin and Swinnerton‐Dyer congruences and

noncongruence modular forms

By

Wen‐Ching Winnie \mathrm{L}1^{*} and Ling LONG **

Abstract

Atkin and Swinnerton‐Dyer congruences are special congruence recursions satised by
coefficients of noncongruence modular forms. These are in some sense p‐adic analogues of

Hecke recursion satised by classic Hecke eigenforms. They actually appeared in different

contexts and sometimes can be obtained using the theory of formal groups. In this survey

paper, we introduce the Atkin and Swinnerton‐Dyer congruences, and discuss some recent

progress on this topic.

§1. Introduction

Atkin and Swinnerton‐Dyer (ASD) congruences in the title refer to the congruences

of the form

(1.1) a_{np}-A_{p}a_{n}+$\mu$_{p}p^{k-1}a_{n/p}\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{(k-1)(1+\mathrm{o}rd_{p}n)} for all \mathrm{n}\geq 1,

where p is a prime, a_{n} are integral over \mathbb{Z}_{p}, A_{p} is an algebraic integer, and $\mu$_{p} is a root of

unity. The congruence means that the left hand side divided by the modulus is integral
over \mathbb{Z}_{p} . As usual, a_{x}=0 if x is not an integer. The original purpose was to study
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the arithmetic properties of the Fourier coefficients a_{n}=a_{n}(f) of a weight‐k cusp form

f for a finite index subgroup  $\Gamma$ of  SL_{2}(\mathbb{Z}) . When  $\Gamma$ is a congruence subgroup and  f
is an eigenfunction of the Hecke operator at p ,

then with A_{p} being the eigenvalue and

congruence replaced by equality, this is the familiar three term recursive Hecke relation.

When  $\Gamma$ is a noncongruence subgroup, which is the majority, such  f may be regarded
as playing the role of a Hecke eigenfunction at p . This remarkable observation was

made by Atkin and Swinnerton‐Dyer in their seminal paper [ASD71], which initiated

a systematic study of the arithmetic of noncongruence modular forms. Assume that

the modular curve of  $\Gamma$ has a model dened over \mathbb{Q} such that the cusp at innity is \mathbb{Q}-

rational, k\geq 2 and the space S_{k}( $\Gamma$) of weight‐k cusp forms for  $\Gamma$ is  d‐dimensional. Based

on their numerical evidence, Atkin and Swinnerton‐Dyer expected S_{k}( $\Gamma$) to contain a

basis with this congruence property for good primes p , although the basis would vary

with p . Using the 2d‐dimensional \ell‐adic Galois representations attached to  S_{k}( $\Gamma$) , Scholl

in [Sch85] proved that such a basis exists at primes p where the action of the Frobenius

has d distinct p‐adic unit eigenvalues. In §6.3, we give some examples of S_{k}( $\Gamma$) for

which the ASD expectation holds for almost all primes, and also an example where the

3‐term ASD congruence holds for only half of the primes. In the paper [Sch85] Scholl

also showed that all forms f in S_{k}( $\Gamma$) with p‐adically integral Fourier coefficients satisfy
a similar, but longer, (2d+1) ‐term congruence for all n\geq 1 :

a_{np^{d}}(f)+A_{1}a_{np^{d-1}}(f)+\cdots+A_{d}a_{n}(f)+\cdots+A_{2d}a_{n/p^{d}}(f)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{(k-1)(1+\mathrm{o}rd_{p}n)}.

Here T^{2d}+A_{1}T^{2d-1}+\cdots+A_{2d}\in \mathbb{Z}[T] is the characteristic polynomial of the geometric
Frobenius at p under the Galois representation. See §2 for details.

Recently, Kazalicki and Scholl [KS13] extended the above congruence to include

weakly holomorphic exact weight‐k cusp forms for  $\Gamma$
,
but with weaker modulus  p^{(k-1)\mathrm{o}rd_{p}n}

instead. This is discussed in §6. In §7, we describe an application of the ASD congru‐

ences to an open conjecture characterizing genuine noncongruence modular forms.

The congruences discovered by Atkin and Swinnerton‐Dyer actually also appeared
in different contexts. For instance, when the modulus is p^{1+\mathrm{o}rd_{p}n} (with k=2 ), the

ASD‐type congruences can be obtained using the theory of formal groups, recalled in

§3. These congruences are closely related to Dwork�s work on p‐adic hypergeometric

series, see §4. Section 5 is devoted to some geometric backgrounds for ASD congru‐

ences, including p‐adic analogues of the Selberg‐Chowla formula and solutions of cer‐

tain ordinary differential equations. We also exhibit some known and some conjectural

supercongruences, which are ASD‐type congruences that are stronger than what can be

predicted from the formal group laws. We end the paper by discussing another type
of congruences discovered by Atkin, which led to the development of p‐adic modular

forms.

Acknowledgment. The authors would like to thank the referee whose comments
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greatly improve the exposition of this article.

§2. Congruence and noncongruence modular forms

§2.1. Finite index subgroups of SL_{2}(\mathbb{Z}) and modular forms

It is well‐known that all finite index subgroups of SL_{n}(\mathbb{Z}) for n\geq 3 are congruence

subgroups (cf. [BLS64, BMS67]). This property no longer holds for SL_{2}(\mathbb{Z}) . In fact,

among its finite index subgroups, noncongruence ones out number the congruence ones.

One way to see this is from the dening fields of the associated modular curves. More

precisely, the modular curve X_{ $\Gamma$} of a finite index subgroup  $\Gamma$ of  SL_{2}(\mathbb{Z}) is a Riemann

surface obtained as the orbit space of the action of  $\Gamma$ on the Poincaré upper half‐plane
\mathfrak{H} via fractional linear transformations, compactied by adding finitely many cusps.

It is known to have a model dened over a number field. When  $\Gamma$ is a congruence

subgroup  $\Gamma$_{0}(N) or $\Gamma$_{1}(N) ,
the modular curve is dened over \mathbb{Q} , and for the principal

congruence subgroup  $\Gamma$(N) ,
its modular curve has a model dened over the cyclotomic

field \mathbb{Q}(e^{2 $\pi$ i/N}) . On the other hand, a celebrated result of Belyĭ asserts that

Theorem 1 (Bely, [Bel79]). A smooth irreducible projective curve dened over

a number field is isomorphic to a modular curve X_{ $\Gamma$} foor (innitely many) finite index

subgroup (s) $\Gamma$ of  SL_{2}(\mathbb{Z}) .

Thus simply by considering curves dened over number fields one sees easily that

SL_{2}(\mathbb{Z}) contains far more noncongruence subgroups than congruence ones.

Given a finite index subgroup  $\Gamma$ of  SL_{2}(\mathbb{Z}) ,
recall that a weight‐k modular form for

 $\Gamma$ is a holomorphic function  f on the upper half‐plane satisfying

(2.1) f(z)=(cz+d)^{-k}f(\displaystyle \frac{az+b}{cz+d}) for all \left(\begin{array}{l}
ba\\
cd
\end{array}\right)\in $\Gamma$ and all  z\in \mathfrak{H}

and the extra condition that f is holomorphic at the cusps of  $\Gamma$ . It is called a cusp form
if it vanishes at all cusps of  $\Gamma$ . We call it a congruence fo rm if it is for a congruence

subgroup; otherwise it is called a noncongruence fo rm. Denote by  M_{k}( $\Gamma$) (resp. S_{k}( $\Gamma$) )
the space of all weight‐k modular forms (resp. cusp forms) for  $\Gamma$.

When k=2
,

the forms f\in S_{2}( $\Gamma$) may be identied with the holomorphic differen‐

tial1‐forms f(z)dz on X_{ $\Gamma$} . The de Rham space H^{1}(X_{ $\Gamma$}, \mathbb{C}) is 2g‐dimensional, where g

is the genus of X_{ $\Gamma$} , spanned by holomorphic and anti‐holomorphic 1‐forms on X_{ $\Gamma$} ; these

two spaces are dual to each other with respect to the cup product on H^{1}(X_{ $\Gamma$}, \mathbb{C}) .

§2.2. Congruence modular forms

The arithmetic for congruence forms is well‐understood, after being studied for

over one century. The two main ingredients are the Hecke theory and \ell‐adic Galois
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representations. The newform theory says that it suffices to study the arithmetic of

newforms of weight k
,

level N
,

and character  $\chi$ [AL70, Mik71, Li75]. Such a form

 f is a common eigenfunction of the Hecke operators at the primes p not dividing N.

The Fourier coefficients a_{n}(f) of f with the leading coefficient a_{1}(f)=1 are algebraic

integers satisfying

a_{mn}(f)=a_{m}(f)a_{n}(f) for (m, n)=1,

and the 3‐term recursive relation

(2.2) a_{np}(f)-a_{p}(f)a_{n}(f)+ $\chi$(p)p^{k-1}a_{n/p}(f)=0 for all p\nmid N and all n\geq 1.

The work of Eichler‐Shimura [Shi71] (for k=2 ) and Deligne [Del69] (for k\geq 3 ) as‐

sociates to f a compatible family of 2‐dimensional \ell‐adic representations $\rho$_{l,f} of the

absolute Galois group G_{\mathbb{Q}} over \mathbb{Q} , unramied outside \ell N such that the characteristic

polynomial of $\rho$_{l,f} at the Frobenius at p\nmid\ell N is H_{p}(T)=T^{2}-a_{p}(f)T+ $\chi$(p)p^{k-1}.
Since $\rho$_{l,f} is of motivic nature, by the Weil conjecture proved by Deligne, we have

|a_{p}(f)|\leq 2p^{(k-1)/2} for all pfN ,
which is the celebrated Ramanujan‐Petersson con‐

jecture. The above developments originated from Ramanujan�s observations on the

discriminant Delta function in S_{12}(SL_{2}(\mathbb{Z}))

\triangle(z) := $\eta$(z)^{24}=q\displaystyle \prod_{n\geq 1}(1-q^{n})^{24} ,
where q=e^{2 $\pi$ iz}

§2.3. Noncongruence modular forms

In comparison, modular forms for noncongruence subgroups are far more myste‐
rious than their congruence counterparts due to the lack of effective Hecke operators,

which was conjectured by Atkin and proved by Serre [Tho80] for noncongruence sub‐

groups normal in SL_{2}(\mathbb{Z}) and Berger [Ber94] in general. More precisely, if one mimics

what�s done for congruence forms by dening a Hecke operator at p for a noncongruence

subgroup  $\Gamma$ by using the  $\Gamma$‐double coset represented by a  2\times 2 matrix with entries in

\mathbb{Z} and determinant p , then, as shown in [Ber94], this operator is the composition of the

trace map from  $\Gamma$ to  $\Gamma$^{c}
,
the smallest congruence subgroup containing  $\Gamma$

,
followed by the

usual Hecke operator at  p on $\Gamma$^{c} . Unfortunately the trace map annihilates all genuine

noncongruence forms, hence no information can be drawn for the noncongruence forms

we are interested in. However, it is not difficult to construct noncongruence modular

forms as long as we keep an eye on the ramication. For weight 0 meromorphic modular

forms, namely modular functions, we have

Theorem 2 (Atkin and Swinnerton‐Dyer, [ASD71]). An algebraic function of
the (modular) j ‐function is a modular function if and only if, as a function ofj‐function,
it only ramies at 3 points 1728, 0 and innity with ramication indices 2, 3, and ar‐

bitrary, respectively.
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A systematic investigation on noncongruence modular forms was initiated by the

work of Atkin and Swinnerton‐Dyer [ASD71]. They showed some similarities between

congruence and noncongruence forms. Given a finite index subgroup  $\Gamma$ of  SL_{2}(\mathbb{Z}) ,
for

convenience, assume that the modular curve X_{ $\Gamma$} has a model dened over \mathbb{Q} under

which the cusp \infty is a \mathbb{Q}‐rational point. Then there is an integer M
,

divisible by the

widths of the cusps of  $\Gamma$ and the primes  p where the cusps are no longer distinct under

reduction of X_{ $\Gamma$} at p ,
such that S_{k}( $\Gamma$) contains a basis whose Fourier coefficients are

integral over \displaystyle \mathbb{Z}[\frac{1}{M}] ,
see [Sch85]. Suppose k\geq 2 is even and S_{k}( $\Gamma$) has dimension d . From

their numerical examples, Atkin and Swinnerton‐Dyer observed that for good primes1
p\nmid M and k even, the space S_{k}( $\Gamma$) possesses a basis \{f_{i}\}_{1\leq i\leq d} with p‐adically integral
Fourier coefficients a_{n}(f_{i}) and for each i there exists an algebraic integer A_{p}(i) with

|A_{p}(i)|\leq 2p^{(k-1)/2} such that

(2.3) a_{np}(f_{i})-A_{p}(i)a_{n}(f_{i})+p^{k-1}a_{n/p}(f_{i})\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{(k-1)(1+\mathrm{o}rd_{p}n)}, \forall n\geq 1.

The striking similarity between this and (2.2) suggests that the p‐adic theory for non‐

congruence modular forms could be fruitful as well.

To understand what Atkin and Swinnerton‐Dyer discovered, Scholl in [Sch85] con‐

structed a compatible family of 2d‐dimensional \ell‐adic representations $\rho$_{l}=$\rho$_{ $\Gamma$,k,l} of the

absolute Galois group G_{\mathbb{Q}} attached to the space S_{k}( $\Gamma$) for k>2 . For each prime \ell, $\rho$_{l}

is an extension of the construction of Deligne, obtained from the first étale cohomol‐

ogy of X_{ $\Gamma$}(\overline{\mathbb{Q}}) with coefficients in the sheaf which is the (k-2)\mathrm{n}\mathrm{d} symmetric power of

some local system. Scholl proved that $\rho$_{l} is unramied outside \ell M such that for any

prime p\nmid\ell M the characteristic polynomial H_{p}(T)=T^{2d}+A_{1}T^{2d-1}+\cdots+A_{2d} of

the geometric Frobenius under $\rho$_{l} is in \mathbb{Z}[T] with all roots of the same absolute value

p^{(k-1)/2} . In fact, H_{p}(T) can be computed by explicit formulas of counting points on

elliptic curves over finite fields. Moreover, by a comparison theorem between étale and

crystalline cohomologies, Scholl proved that for p>k-2 and p\nmid M , any f\in S_{k}( $\Gamma$)
with p‐adically integral Fourier coefficients a_{n}(f) satises the congruence that for all

n\geq 1

(2.4) a_{np^{d}}(f)+\cdots+A_{d}a_{n}(f)+\cdots+A_{2d}a_{n/p^{d}}(f) \equiv  0 \mathrm{m}\mathrm{o}\mathrm{d} p^{(k-1)(1+\mathrm{o}rd_{p}n)}.

In particular, when H_{p}(T) has d distinct p‐adic unit roots, the above long congruence

can be reduced to 3‐term congruences satised by the Fourier coefficients of a basis of

S_{k}( $\Gamma$) ,
as observed by Atkin and Swinnerton‐Dyer.

lIn their paper [ASD71] Atkin and Swinnerton‐Dyer called these primes good without giving any

denition. It turns out that in all numerical examples where the ASD congruences hold, the A_{p}(i)
is a p‐adic unit. Scholl has shown that if $\rho$_{l}(\mathrm{F}\mathrm{r}) is semi‐simple with half of the eigenvalues being
p‐adic units, then p is a good prime.
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Scholl representations are of motivic nature. According to the Langlands philoso‐

phy, the L‐functions of Scholl representations should coincide with the L‐functions of

automorphic representations of certain reductive groups. The congruences (2.3) and

(2.4) can then be interpreted as congruence relations between Fourier coefficients of

noncongruence forms and those of automorphic forms. For 2‐dimensional Scholl rep‐

resentations of G_{\mathbb{Q}} ,
their modularity follows from a renowned conjecture of Serre es‐

tablished by Khare and Wintenberger [KW09] and various modularity lifting theorems

[SW99, SW01, DM03, DFG04, \mathrm{K}\mathrm{i}\mathrm{s}09\mathrm{a} , ALLL, et al.]. What makes Scholl representa‐

tions interesting is that they cannot be decomposed into 2‐dimensional pieces in general
and hence provide a fertile testing ground for Langlands philosophy. For more details

in this regard, see a survey [Li12]. In §7, we will give an application of the ASD con‐

gruences as well as the automorphy of Scholl�s representations [LL12]. In the proof, we

also used the best known bound for the coefficients a_{n}(f) of noncongruence cusp forms

obtained by Selberg, namely |a_{n}(f)|=O(n^{k/2-1/5}) . In [Sel65] Selberg gave an example
to show that the Ramanujan‐Petersson conjecture fails for noncongruence cusp forms.

To illustrate the above results we exhibit an example below. Let $\Gamma$^{1}(5) be the group

consisting of matrices in SL_{2}(\mathbb{Z}) which become lower triangular unipotent when modulo

5. It has 4 cusps, \infty, 0, -2
,

and -5/2 ,
and admits a normalizer A=\left(\begin{array}{ll}
-2 & -5\\
1 & 2
\end{array}\right) which

swaps cusps \infty and -2 . Let E_{1}, E_{2} be weight‐3 Eisenstein series of $\Gamma$^{1}(5) ,
which have

simple zeros at all cusps except \infty and -2
, respectively, and nonvanishing elsewhere.

Both of them have integer Fourier coefficients:

 E_{1}(z)=1-2q^{1/5}-6q^{2/5}+7q^{3/5}+26q^{4/5}+\cdots ,

 E_{2}(z)=q^{1/5}-7q^{2/5}+19q^{3/5}-23q^{4/5}+\cdots

For more details, see [LLY05, §4]. Thus  t=\displaystyle \frac{E_{2}}{E_{1}} is a modular function for $\Gamma$^{1}(5) with

a simple zero and a simple pole, both located at the cusps. By Theorem 2, \sqrt{t} is a

modular function for an index‐2 subgroup $\Gamma$_{2} of $\Gamma$^{1}(5) . Also,

 f=E_{1}\displaystyle \sqrt{t}=\sqrt{E_{1}E_{2}}=\sum_{n\geq 1}a_{n}(f)q^{n/10}=q^{1/10}-\frac{3^{2}}{2}q^{3/10}+\frac{3^{3}}{2^{3}}q^{5/10}+\frac{3\cdot 7^{2}}{2^{4}}q^{7/10}+\cdots
is a weight‐3 cusp form for $\Gamma$_{2} ,

which in fact generates S_{3}($\Gamma$_{2}) . The group $\Gamma$_{2} is a non‐

congruence subgroup because the Fourier coefficients of \sqrt{E_{1}E_{2}} have unbounded de‐

nominators. No congruence cusp form behaves this way, since it is a linear combination

of Hecke eigenforms, whose Fourier coefficients are algebraic integers. This distinction

is conjectured to be a criterion to distinguish congruence forms from genuine noncon‐

gruence forms with algebraic Fourier coefficients. This conjecture is of fundamental

importance and is very useful in many applications. It will be discussed later in §7.
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Nevertheless, if the coefficients of a noncongruence modular form lie in a number field,
then they are integral at all but finitely many places.

For S_{3}($\Gamma$_{2}) the ASD congruences proved by Scholl assert that, for all primes p>3,
there are A_{p}, B_{p} in \mathbb{Z} such that

a_{np^{r}}(f)-A_{p}a_{np^{r-1}}(f)+B_{p}a_{np^{r-2}}(f)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{2r}, \forall n, r\geq 1.

In particular, the corresponding 2‐dimensional \ell‐adic Scholl representation of  G_{\mathbb{Q}} is

reducible when restricted to \mathrm{G}\mathrm{a}1(\overline{\mathbb{Q}}/\mathbb{Q}(\sqrt{-1})) due to the finite order linear operator on

the representation space induced from the matrix A above. On the space of forms, this

operator sends E_{1} to E_{2} and E_{2} to -E_{1} . Consequently, one can check that A_{p} agrees

with the pth coefficient of the weight‐3 Hecke eigenform  $\eta$(4z)^{6}=q\displaystyle \prod_{n\geq 1}(1-q^{4n})^{6} and

B_{p}=(\displaystyle \frac{-1}{p})p^{2} ,
where (\displaystyle \frac{-1}{p}) is the Legendre symbol. For more details, see [LLY05].

§3. ASD congruences and 1‐dimensional commutative formal group laws

§3.1. ASD congruences for elliptic curves

The inspiration of the congruence (2.3) observed by Atkin and Swinnerton‐Dyer
came from what they proved for weight‐2 cusp forms for  $\Gamma$ such that the genus of  X_{ $\Gamma$}

is one. In this case the modular curve X_{ $\Gamma$} is an elliptic curve E : y^{2}=x^{3}+Ax+B
with A, B\in \mathbb{Z} . Let p>3 be a prime such that E has good reduction modulo p . Let

 $\xi$ be a local uniformizer of  E at the point at innity which is either −

\displaystyle \frac{x}{y} or −

\displaystyle \frac{x}{y} plus

higher order terms with coefficients in \mathbb{Z} . The coefficients of the holomorphic differential

1‐form \displaystyle \frac{dx}{2y}=\sum_{n\geq 1}a_{n}$\xi$^{n}\frac{d $\xi$}{ $\xi$} satisfy

(3.1) a_{np^{r}}-(p+1-\#[E/\mathrm{F}_{p}])a_{np^{r-1}}+pa_{np^{r-2}}\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{r}, \forall n, r\geq 1.

This can be explained by using 1‐dimensional commutative formal group law, which

we will recall in the next section by following the development in [Kib11]. For more

information on d‐dimensional commutative formal group laws, the reader is referred to

[Haz78, Dit90, Kib11].

§3.2. 1‐dimensional commutative formal group law (1‐CFGL)

A1‐CFGL over a characteristic 0 commutative integral domain R with units, such

as \mathbb{Z}, \mathbb{Z}[1/M] ,
or \mathbb{Z}_{p} ,

is a formal power series G(x, y) in R[[x, y]] satisfying

G(x, y)=x+y+\displaystyle \sum_{i,j\geq 1}c_{i,j}x^{i}y^{j}, c_{i,j}\in R,

(Associativity) G(x, G(y, z))=G(G(x, y), z) ,
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(Commutativity) G(x, y)=G(y, x) .

Corresponding to each formal group is a unique normalized invariant differential

 $\omega$(y)=[\displaystyle \partial_{x}G(0, y)]^{-1}dy=(1+\sum_{i\geq 2}a_{i}y^{i-1})dy, a_{i}\in R
where \partial_{x} means partial derivative with respect to the first variable. The corresponding
strict fo rmal logarithm is dened to be

\displaystyle \ell(y):=\int $\omega$=y+\frac{a_{2}}{2}y^{2}+\frac{a_{3}}{3}y^{3}+\cdots
so that  G(x, y)=\ell^{-1}(\ell(x)+\ell(y)) .

Two 1‐CFGLs G(x, y) and \overline{G}(x, y) over R are said to be isomorphic if there ex‐

ists a formal power series  $\phi$(x)=ax+ higher terms in R[[x]] with a\in R^{\times} such that

 $\phi$(G(x, y))=\overline{G}( $\phi$(x),  $\phi$(y)) . If a=1
,

then the isomorphism is said to be strict. Thus,
over the field of fractions of R ,

each 1‐CFGL is strictly isomorphic to the additive CFGL

G(x, y)=x+y via the formal logarithm.

Proposition 3. If f(x)=\displaystyle \sum_{n\geq 1}\frac{a_{n}}{n}x^{n} is the strict fo rmal logarithm of a 1‐

CFGL G(x, y) over R ,
then for any  $\phi$(x)=x+ higher terms \in R[[x]], f( $\phi$(x))=

\displaystyle \sum_{n\geq 1}\frac{b_{n}}{n}x^{n} is the strict formal logarithm of a 1‐CFGL, which is strictly isomorphic to

G(x, y) .

Denote by S the set of formal power series of the form f=\displaystyle \sum_{n\geq 1}\frac{a_{n}}{n}x^{n} with a_{n}\in R.
It is an R‐module. On S we dene the following operators with integers m\geq 1 and

 $\lambda$\in R :

(Frobenius) Ff(x) =\displaystyle \sum_{n\geq 1}\frac{a_{mn}}{n}x^{n},

(Verschiebung) Vf (x)=\displaystyle \sum_{n\geq 1}\frac{a_{n}}{n}x^{mn},

(Witt operator) []f(x)=\displaystyle \sum_{n\geq 1}\frac{a_{n}}{n}$\lambda$^{n}x^{n}.

Note that []f(x) corresponds to the change of variable x\mapsto $\lambda$ x . Thus any formal group

isomorphism can be decomposed into a strict isomorphism followed by a Witt operator.

The following theorem characterizes the strict formal logarithms of 1‐CFGLs.

Theorem 4. f\in S is the strict fo rmal logarithm of a 1‐CFGL over R if and

only if f^{0or} each prime p there exist $\lambda$_{p,i}\in R such that

F_{p}f=\displaystyle \sum_{i\geq 1}V_{i}[$\lambda$_{p,i}]f.



Atkin and SwINNERTON‐Dyer congruences 277

For the remaining discussion, assume that for any maximal ideal \wp of  R with

residual characteristic p ,
the completion of the localization of R at \wp is an unramied

ring extension of \mathbb{Z}_{p} . Let $\sigma$_{\wp} be the ring automorphism of R sending r\in R to r^{$\sigma$_{\wp}}\equiv r^{p}

mod \wp . On the submodule  S_{p} of S of formal power series of the form g=\displaystyle \sum_{i\geq 0}\frac{a_{p^{i}}}{p^{i}}x^{p^{i}},
for each  $\mu$\in R we dene the Hilbert operator \{ $\mu$\} : it sends g to \displaystyle \{ $\mu$\}g=\sum_{i\geq 0}\frac{a_{p^{i}}}{p^{i}}$\mu$^{$\sigma$_{\wp}^{i}}x^{p^{i}}
Then the Witt operators on S_{p} are generated by F_{p}, V_{p} and the Hilbert operators.

Theorem 5. Suppose f=\displaystyle \sum_{n\geq 1}\frac{a_{n}}{n}x^{n}\in S is the strict formal logarithm of a

1‐CFGL over R as above. Then there are unique $\mu$_{p,i}\in R such that

F_{p}f_{(p)}=\displaystyle \sum_{i\geq 0}V_{p^{i}}\{$\mu$_{p,i}\}f_{(p)} ,
where f_{(p)}=\displaystyle \sum_{i\geq 0}\frac{a_{p^{i}}}{p^{i}}x^{p^{i}}

The theorem above asserts the following relation on coefficients of f_{(p)} :

a_{p^{n+1}}=\displaystyle \sum_{i=0}^{n}p^{i}a_{p^{n-i}}$\mu$_{p,i}^{$\sigma$_{\wp}^{n-i}}=\sum_{i=0}^{n}p^{i}$\mu$_{p,i}a_{p^{n-i}}^{$\sigma$_{\wp}^{i+1}},
where the last equality is due to the commutativity relation \{ $\mu$\}V_{p}=V_{p}\{$\mu$^{$\sigma$_{\wp}}\} . This

leads to the following general congruences:

(3.2) a_{mp^{n+1}}\displaystyle \equiv\sum_{i=0}^{n}p^{i}$\mu$_{p,i}a_{mp^{n-i}}^{$\sigma$_{\wp}^{i+1}} mod \wp^{n+1}, \forall n, m\geq 1.

When a_{p}\not\equiv 0 mod \wp ,
i.e.  p is ordinary for the 1‐CFGL, then (3.2) can be reduced

to a 2‐term congruence

(3.3) a_{mp^{n+1}}\equiv$\alpha$_{p}a_{mp^{n}}^{$\sigma$_{\wp}} mod }; \forall n, m\geq 1,

for a some \wp‐adic unit $\alpha$_{p}.

Theorem 6. Let f, \wp and $\mu$_{p,i} be as in Theorem 5. Let g(x)=\displaystyle \sum_{n\geq 1}\frac{b_{n}}{n}x^{n}
be the strict fo rmal logarithm of a 1‐CFGL over R which is strictly isomorphic to the

1‐CFGL of which f is the strict fo rmal logarithm. Then

(3.4) b_{mp^{n+1}}\displaystyle \equiv\sum_{i=0}^{n}p^{i}$\mu$_{p,i}b_{mp^{n-i}}^{$\sigma$_{\wp}^{i+1}} mod }; \forall n, m\geq 1.

§3.3. ASD congruences for elliptic curves continued

To resume our discussion in §3.1, one can construct a 1‐CFGL associated to the

elliptic curve E : y^{2}=x^{3}+Ax+B as follows. In a neighborhood V of the point
at innity, each point P=(x, y) on E is marked by  $\xi$(P)=-\displaystyle \frac{x}{y} . Given P_{1}, P_{2} in



278 \mathrm{W}\mathrm{E}\mathrm{N}‐Ching Winnie Li and Ling Long

V ,
one can compute P3=P_{1}+P_{2} under the group law on E and express  $\xi$(P_{3}) as

a formal power series in  $\xi$(P_{1}) and  $\xi$(P_{2}) with coefficients in \mathbb{Z} . This formal power

series satises all axioms of the 1‐CFGL with \displaystyle \frac{dx}{2y} expanded in powers of  $\xi$=-\displaystyle \frac{x}{y} as

its invariant differential. Namely, \displaystyle \frac{dx}{2y} gives rise to a 1‐CFGL over \mathbb{Z} which is naturally
identied with the innitesimal group law of the elliptic curve around the point at

innity. Honda [Hon68] proved that this formal group is strictly isomorphic to the

formal group constructed from the L‐function L(E, s)=\displaystyle \sum_{n\geq 1}b_{n}n^{-s} of E/\mathbb{Q} . Thus

both group laws yield congruence relations with the same $\mu$_{p,0}, $\mu$_{p,1} , by Theorem 6. It

follows from the denition of L(E, s) as an Euler product that its coefficients b_{n} satisfy
the relation b_{p}=p+1-\#[E/\mathrm{F}_{p}] and

b_{np}-b_{p}b_{n}+pb_{n/p}=0, \forall n\geq 1

for all primes p not dividing the conductor N of E . For such p we have $\mu$_{p,0}=b_{p},
$\mu$_{p,1}=-1 and $\mu$_{p,j}=0 for j\geq 2 so that (3.1) holds.

§4. ASD‐type congruences and Dwork�s result

§4.1. ASD congruences for Legendre family of elliptic curves

For an integer r\geq 1 and $\alpha$_{i}, $\beta$_{i}\in \mathbb{C} with $\beta$_{i}\not\in \mathbb{Z}_{\leq 0} ,
the hypergeometric series {}_{r}F_{r-1}

is dened by

{}_{r}F_{r-1}\displaystyle \left\{\begin{array}{lllll}
$\alpha$_{1} & \cdots & ' & $\alpha$_{r} & \\
$\beta$_{1} & \cdots & $\beta$_{r-1} &  & x
\end{array}\right\}=\sum_{k=0}^{\infty}\frac{($\alpha$_{1})_{k}($\alpha$_{2}.)_{k}\cdots($\alpha$_{r})_{k}}{($\beta$_{1})_{k}\cdot\cdot($\beta$_{r-1})_{k}} . \displaystyle \frac{x^{k}}{k!},
which converges for |x|<1 . Here (a)_{k}:=a\cdot(a+1)\cdots(a+k-1) is the Pochhammer

symbol. This series satises an order r ordinary differential equation in x . Denote by

{}_{r}F_{r-1}[_{$\beta$_{1},,$\beta$_{r-1}}$\alpha$_{1}.'..'$\alpha$_{r};x]_{n} the truncation of the series after the x^{n} term.

Let E_{ $\lambda$} : y^{2}=x(x-1)(x- $\lambda$) be the Legendre family of elliptic curves. Its

Picard‐Fuchs equation is an order 2 hypergeometric differential equation with the unique

holomorphic solution near zero (up to scalar multiples) equal to {}_{2}F_{1}[^{\frac{1}{2},\frac{1}{2}}1; $\lambda$] . Expand

 $\omega$=\displaystyle \frac{dx}{2\sqrt{x(x-1)(x- $\lambda$)}}=\sum_{n\geq 1}\frac{a_{n}}{n}$\xi$^{n}\frac{d $\xi$}{ $\xi$} with  $\xi$=-\displaystyle \frac{x}{y} . Then a_{n}=0 for n even. Using a

formula due to Beukers (see [Dit90, pp. 272]), one gets that a_{n} is the coefficient of x^{n-1}

in (x(x-1)(x- $\lambda$))^{\frac{n-1}{2}} for odd n . Thus

(4.1) a_{2k+1}={}_{2}F_{1}[^{-k_{1}-k}; $\lambda$](-1)^{k}
As -k is a negative integer, the above hypergeometric series terminates at x^{k} . When
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 $\lambda$\in \mathbb{Q} ,
the ASD congruence (3.1) for ordinary prime p is equivalent to

(4.2) \displaystyle \frac{{}_{2}F_{1}[^{\frac{1-p^{\mathrm{s}}}{2},\frac{1-p^{\mathrm{s}}}{2}}1; $\lambda$]}{{}_{2}F_{1}[\frac{1-p^{\mathrm{s}-1}}{2},\frac{1-p^{\mathrm{s}-1}}{2}1; $\lambda$]}\equiv(\frac{-1}{p})$\beta$_{p, $\lambda$} \mathrm{m}\mathrm{o}\mathrm{d} p^{s}, \forall s\geq 1
where $\beta$_{p, $\lambda$} is the unit root of T^{2}-(p+1-\#[E_{ $\lambda$}/\mathrm{F}_{p}])T+p and hence only depends on

the residue of  $\lambda$ in \mathrm{F}_{p} . For details, see [KLMSY].
We proceed to compare the above with some results of Dwork, which is a special

case of Theorem 2 [Dwo69].

Theorem 7 (Dwork, [Dwo69]). Let p>2 be a fixed prime and let K be a com‐

plete p ‐adic field with R its ring of integers and p a unifo rmizer. Let B(n) be an R‐valued

sequence. Let F(X) :=\displaystyle \sum_{n\geq 0}B(n)X^{n} . Suppose that for all integers n\geq 0, m\geq 0,

s\geq 1,

(1) B(0) is a unit in R ;

(2) \displaystyle \frac{B(n)}{B([\frac{n}{p}])}\in R ;

(3) \displaystyle \frac{B(n+mp^{\mathrm{s}+1})}{B([\frac{n}{p}]+mp^{\mathrm{s}})}\equiv\frac{B(n)}{B([\frac{n}{p}])}\mathrm{m}\mathrm{o}\mathrm{d} p^{s+1}.
Then

F(X)\displaystyle \sum_{j=mp^{\mathrm{s}}}^{(m+1)p^{\mathrm{s}}-1}B(j)X^{pj}\equiv F(X^{p})\sum_{j=mp^{\mathrm{s}+1}}^{(m+1)p^{\mathrm{s}+1}-1}B(j)X^{j} \mathrm{m}\mathrm{o}\mathrm{d} B(m)p^{s+1}R[[X]].

Intuitively, the condition (3) is about certain p‐adic continuity of B(n)

\overline{B([\frac{n}{p}])} �
as a

function of n . It is satised by the p‐adic (Morita) Gamma function $\Gamma$_{p}(x) ,
which

is a continuous function from \mathbb{Z}_{p} to \mathbb{Z}_{p}^{\times} such that $\Gamma$_{p}(0)=1 and for any x\in \mathbb{Z}_{p},
$\Gamma$_{p}(x+1)/$\Gamma$_{p}(x)=-x if p\nmid x and $\Gamma$_{p}(x+1)/$\Gamma$_{p}(x)=-1 otherwise. It is known that

$\Gamma$_{p}(n+mp^{s+1})\equiv$\Gamma$_{p}(n)\mathrm{m}\mathrm{o}\mathrm{d} p^{s+1} ,
for more details, see [Coh07].

From denition,

n!=(-1)^{n+1}$\Gamma$_{p}(1+n)\cdot p^{[n/p]}[n/p] !.

Thus

(4.3) \displaystyle \frac{\left(\begin{array}{l}
2n\\
n
\end{array}\right)}{(_{[n/p]}^{2[n/p]})}=-\frac{$\Gamma$_{p}(1+2n)}{$\Gamma$_{p}(1+n)^{2}}s_{n,p},
where s_{n,p}=1 if n-p. [\displaystyle \frac{n}{p}]<p/2 ; and s_{n,p}=p(2[\displaystyle \frac{n}{p}]+1) otherwise.
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By properties of $\Gamma$_{p}(x) and s_{n,p} ,
for any positive integer k, B(n)=(\displaystyle \frac{(\frac{1}{2})_{n}}{n!})^{k} satisfy

all the conditions of Theorem 7. When k=2
,

Theorem 7 implies that for  $\lambda$\in \mathbb{Z}_{p} such

that E_{ $\lambda$} has ordinary reduction modulo p ,
there exists a unit $\alpha$_{p, $\lambda$}\in \mathbb{Z}_{p} such that

(4.4) \displaystyle \frac{{}_{2}F_{1}[^{\frac{1}{2},\frac{1}{2}}1; $\lambda$]_{p^{\mathrm{s}}-1}}{{}_{2}F_{1}[^{\frac{1}{2},\frac{1}{2}}1;$\lambda$^{p}]_{p^{\mathrm{s}-1}-1}}\equiv$\alpha$_{p, $\lambda$} \mathrm{m}\mathrm{o}\mathrm{d} p^{s} ,
for all s\geq 1.

Unlike $\beta$_{p, $\lambda$} above, $\alpha$_{p, $\lambda$} may vary if we replace  $\lambda$ by  $\lambda$^{p} . However, (\displaystyle \frac{-1}{p})$\beta$_{p, $\lambda$}=$\alpha$_{p,\hat{ $\lambda$}}
where \hat{ $\lambda$} is the Teichmüller lift of  $\lambda$ modulo  p\mathbb{Z}_{p} to \mathbb{Z}_{p} . In fact, the discrepancy between

(4.4) and (4.2) basically lies in the differences between the Witt operators and Hilbert

operators introduced earlier. Using the result of Dwork and Ditters [Dit90], Kibelbek

showed that if we let A(n)={}_{r}F_{r-1}[^{\frac{1}{21},}; $\lambda$]_{n-1} ,
then \displaystyle \sum\frac{A(n)}{n}x^{n} is the strict formal

logarithm of a 1‐CFGL over \mathbb{Z}[1/M][] for some integer M [Kib13]. In [KLMSY], \mathrm{a}

geometric interpretation of these 1‐CFGLs was given explicitly based on [Sti87]. By

relaxing the condition of Theorem 7, Dwork�s result implies that truncated hypergeo‐
metric series with rational upper parameters (and lower parameters to be all1�s) give
rise to CFGLs, integral at almost all primes, which are not necessarily 1‐dimensional. It

is natural to ask whether one can find isomorphic formal groups arising from an explicit

algebraic equation. In fact, many of them are realized using hypersurfaces in weighted

projective spaces, including many of geometric objects being Calabi‐Yau manifolds.

Meanwhile, for the untruncated hypergeometric series, they correspond to objects like

periods, which we will illustrate using the Legendre family below.

§5. ASD congruences, periods, differential equations, and related topics

§5.1. Periods, Picard‐Fuchs equations, and modular forms

A period of an elliptic curve E is an integral \displaystyle \int_{ $\gamma$}\frac{dx}{2y} over  $\gamma$\in H_{1}(E, \mathbb{Z}) . In general,

these are transcendental numbers. For the Legendre family, the variation of the periods,

p(t)=\displaystyle \int_{$\gamma$_{t}}\frac{dx}{2\sqrt{x(x-1)(x-t)}} ,
is captured by its Picard‐Fuchs (PF) equation alluded to in

the previous section. Near 0 ,
the unique (up to scalar multiple) holomorphic solution

of this PF equation is {}_{2}F_{1}[^{\frac{1}{2},\frac{1}{2}}1 ; t] . There is a choice of the cycles $\gamma$_{t} to make p(t)\mathrm{a}

holomorphic function in t so that p(t)=C {}_{2}F_{1}[^{\frac{1}{2},\frac{1}{2}}1 ; t] for C an algebraic multiple

of  $\pi$ [BB87]. It is well‐known that the Legendre family represents elliptic curves with

2‐torsion points, whose moduli space  X(2) is parametrized by the classical modular
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lambda function  $\lambda$(z) :=16\displaystyle \cdot\frac{ $\eta$(2z)^{4} $\eta$(z/2)^{2}}{ $\eta$(z)^{6}} . Setting t= $\lambda$(z) ,
one has

(5.1) {}_{2}F_{1}[^{\frac{1}{2},\frac{1}{2}}1; $\lambda$(z)]=$\theta$_{3}^{2}(z) ,

where $\theta$_{3}(z)=\displaystyle \sum_{n\in \mathbb{Z}}q^{n^{2}/2} with q=e^{2 $\pi$ iz} is a Jacobi theta function of weight \displaystyle \frac{1}{2}.

§5.2. Complex multiplication and results of Chowla‐Selberg

When the elliptic curve E over a number field has complex multiplication, i.e. its

endomorphism ring \mathfrak{R} over \mathbb{C} is an order of an imaginary quadratic field K=\mathbb{Q}(\sqrt{-d})
with fundamental discriminant -d

,
all periods are algebraic multiples of a transcenden‐

tal number b_{K} , depending on K . The Selberg‐Chowla formula [SC67] describes a choice

of b_{K} :

(5.2) b_{K}:= $\Gamma$(\displaystyle \frac{1}{2})\prod_{0<a<d} $\Gamma$(\frac{a}{d})^{\frac{n $\epsilon$(a)}{4h}},
where n is the order of unit group in K,  $\epsilon$ is a primitive quadratic Dirichlet character

modulo  d
,

and h is the class number of \mathbb{Q}(\sqrt{-d}) .

Example 8. b_{\mathbb{Q}(\sqrt{-4})}= $\Gamma$(\displaystyle \frac{1}{2})\frac{ $\Gamma$(\frac{1}{4})}{ $\Gamma$(\frac{3}{4})}\sim\frac{ $\Gamma$(\frac{1}{4})^{2}}{ $\Gamma$(\frac{1}{2})} , by the reection formula  $\Gamma$(x) $\Gamma$(1-

x)=\displaystyle \frac{ $\pi$}{\sin( $\pi$ x)}. Here \sim means equality up to an algebraic multiple.

Regard the invariant differential  $\omega$=\displaystyle \frac{dx}{2y} of E as an element of H_{DR}^{1}(E, \mathbb{C}) ,
the dual

of H_{1}(E, \mathbb{Z})\otimes_{\mathbb{Z}}\mathbb{C} . The endomorphism ring \mathfrak{R} of E over \mathbb{C} acts on the 2‐dimensional

space H_{DR}^{1}(E, \mathbb{C}) with  $\omega$ as a common eigenvector of R. There is another common

eigenvector  $\nu$ for \mathfrak{R} in H_{DR}^{1}(E, \mathbb{C}) ,
dened over \overline{\mathbb{Q}} and independent of  $\omega$ . Chowla and

Selberg further showed that the particular quasi‐period \displaystyle \int_{ $\gamma$} $\nu$ is an algebraic multiple of

 2 $\pi$\sqrt{-1}/b_{K} ,
hence its transcendental part is also a Gamma quotient. Putting together,

one obtains the relation

(5.3) \displaystyle \int_{ $\gamma$} $\omega$\cdot\int_{ $\gamma$} $\nu$\sim $\pi$.
From (5.1), this number b_{K} also plays a role at singular values of modular forms.

More precisely, for any weakly holomorphic (i.e. allowing poles at cusps) modular form

F with integral weight k and algebraic Fourier coefficients, it is known that  F( $\tau$)\sim
(b_{K}/ $\pi$)^{k} for all  $\tau$\in K with {\rm Im}( $\tau$)>0 ,

see [Zag08].

§5.3. ASD congruences and Gross‐Koblitz formula

It is worth mentioning that Selberg‐Chowla�s results have p‐adic analogues. Their

formula (5.2) for b_{K} inspired the Gross‐Koblitz formula [GK79]. Let $\pi$_{p}\in \mathbb{C}_{p} be a fixed
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root of x^{p-1}+p=0 . Let  $\varphi$ be the Teichmüller character. The Gross‐Koblitz formula

states that under a suitable normalization depending on the choice of  $\pi$_{p} and the choice

of an additive character in the Gauss sum, we have the Gauss sum

(5.4) g($\varphi$^{-j})=-$\pi$_{p}^{j}$\Gamma$_{p}(\displaystyle \frac{j}{p-1}) , 0\leq j\leq p-2.
Young gave another proof of the Gross‐Koblitz formula using formal groups constructed

from the Fermat curves [You94].

§5.4. ASD congruences and p‐adic periods

In some sense, ASD congruences also describe p‐adic periods. To illustrate the idea,
we use the following example of CM elliptic curve E:y^{2}=x^{3}+x ,

with endomorphism

ring \mathfrak{R}=\mathbb{Z}(\sqrt{-1}) due to the order 4 automorphism (x, y)\mapsto(-x, \sqrt{-1}y) . If we expand
n-1

\displaystyle \frac{dx}{2y}=\sum_{n\geq 1}a_{n}$\xi$^{n}\frac{d $\xi$}{ $\xi$} with  $\xi$=\displaystyle \frac{-x}{y} ,
we have a_{n}=(\overline{\frac{n-12}{4}}) when n\equiv 1 mod4, and a_{n}=0

otherwise by the formula of Beukers [Dit90, pp. 272] alluded to before.2 For a prime

p\equiv 1 mod4, E is ordinary, and the ASD congruence is reduced to a 2‐term relation:

using (4.3) we have, for all n\equiv 1 mod4,

\displaystyle \left(\begin{array}{l}
\frac{np^{r}-1}{2}\\
\frac{np^{r}-1}{4}
\end{array}\right)/\left(\begin{array}{l}
\frac{np-1}{2}\\
\frac{np^{r-1}-1}{4}
\end{array}\right)=-\frac{$\Gamma$_{p}(\frac{1+np^{r}}{2})}{$\Gamma$_{p}(\frac{3+np^{r}}{4})^{2}}=\frac{$\Gamma$_{p}(\frac{1-np^{r}}{4})^{2}}{$\Gamma$_{p}(\frac{1-np^{r}}{2})},
where the last equality follows from the p‐adic analogue of the reection formula for

the Gamma function $\Gamma$_{p}(x)$\Gamma$_{p}(1-x)=(-1)^{x_{0}} with x_{0}\in\{1, 2, \cdots, p\} being the residue

of x\mathrm{m}\mathrm{o}\mathrm{d} p . As  r\rightarrow\infty
,

we find the limit $\alpha$_{p} in (3.3) is $\alpha$_{p}=\displaystyle \frac{$\Gamma$_{p}(\frac{1}{4})^{2}}{$\Gamma$_{p}(\frac{1}{2})} . This is a p‐adic

analogue of the period computed via Selberg‐Chowla formula in Example 8.

§5.5. An example of weakly holomorphic differentials

Consider the Fermat curve E : x^{3}+y^{3}=1 with (x, y)=(0,1) as the origin.
Its endomorphism ring is \displaystyle \mathfrak{R}=\mathbb{Z}[\frac{1-\sqrt{-3}}{2}] . Two linearly independent eigenvectors of \mathfrak{R}

in H_{DR}^{1}(E, \mathbb{C}) are  $\omega$=\displaystyle \frac{dx}{y^{2}}=\sum_{n\geq 1}a_{n}x^{n}\frac{dx}{x} ,
a holomorphic differential, and  $\nu$=\displaystyle \frac{xdx}{y}=

\displaystyle \sum_{n\geq 2}b_{n}x^{n}\frac{dx}{x} ,
a differential of second kind. At p\equiv 1 mod3, which are ordinary primes

for E
,

we have

a_{p^{n}}=\left(\begin{array}{l}
-\frac{2}{3}\\
\frac{p^{n}-1}{3}
\end{array}\right) and b_{2p^{n}}=\left(\begin{array}{l}
-\frac{1}{3}\\
\frac{2(p^{n}-1)}{3}
\end{array}\right).
For details, see Example 6.3 of [Kat81]. By the discussion in §3, a_{p^{n}}/a_{p^{n-1}}\equiv$\alpha$_{p}
\mathrm{m}\mathrm{o}\mathrm{d} p^{n} for all n\geq 1 ,

where $\alpha$_{p} can be written in terms of p‐adic Gamma product.

2Another way to derive a formula for a_{n} is to use (4.1) for E_{-1} : y^{2}=x(x-1)(x+1) which is

isomorphic to E over \mathbb{Q}(\sqrt{-1}) . This approach requires an additional evaluation of Kummer to

reach our conclusion.
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However, numerical data seem to indicate deeper congruence relations:

(5.5) a_{p^{n}}\displaystyle \equiv$\alpha$_{p}a_{p^{n-1}} \mathrm{m}\mathrm{o}\mathrm{d} p^{2n}, b_{2p^{n}}\equiv\frac{p}{$\alpha$_{p}}b_{2p^{n-1}} \mathrm{m}\mathrm{o}\mathrm{d} p^{2n-1}
§5.6. Another p‐adic analogue of Selberg‐Chowla relation,

Ramanujan‐type congruences

For the Legendre family, H^{1}(E_{t}, \mathbb{C}) is generated by $\omega$_{t} ,
a holomorphic differential,

and \partial_{t}$\omega$_{t} ,
see [Kat73]. Thus, the quasi‐period of E_{t} can be written as a linear com‐

bination of {}_{2}F_{1}[^{\frac{1}{2},\frac{1}{2}}1;t] and its derivative with respect to t . Similar to (5.1), one can

relate the quasi‐period to an explicit modular form of weight -1 . For details, see §3.4
of [CDLNS]. Using the well‐known formula of Clausen:

(5.6) {}_{2}F_{1}\left\{1-1 & c,c &  & x\right\}={}_{3}F_{2}[^{\frac{1}{2}}, 1-c1,1

�

c_{;}-4x(x-1)],
which holds for c, x\in \mathbb{C} such that both hypergeometric series converge, when E_{t} has

complex multiplication, one can express the formula (5.3) as

(5.7) \displaystyle \sum_{k=0}^{\infty}(\frac{(\frac{1}{2})_{k}}{k!})^{3}(-4t(t-1))^{k}(ak+1)=\frac{ $\delta$}{ $\pi$},
for some computable algebraic numbers a,  $\delta$ depending on  t . The derivation is given in

[CDLNS]. Formulas of this type include

\displaystyle \sum_{k=0}^{\infty}(\frac{(\frac{1}{2})_{k}}{k!})^{3}(6k+1)\frac{1}{4^{k}}=\frac{4}{ $\pi$}
by Ramanujan. These so‐called Ramanujan‐type formulas for  1/ $\pi$ were first given by
Borwein‐Borwein [BB87] and Chudnovsky‐Chudnovsky [CC88]. Later, van Hamme dis‐

covered several surprising  p‐adic analogues of Ramanujan‐type formulas for 1/ $\pi$[\mathrm{v}\mathrm{H}97].
For instance, he conjectured that for each prime p>3

(5.8) k=0\displaystyle \frac{p-1}{\sum 2}(\frac{(\frac{1}{2})_{k}}{k!})^{3}(6k+1)\frac{1}{4^{k}}\equiv(\frac{-1}{p})p \mathrm{m}\mathrm{o}\mathrm{d} p^{4},
where (_{p} is the Legendre symbol. This conjecture was proved in [Lon11]. More

generally, we have

Theorem 9 (Theorem 1 of [CDLNS] with d=2 ). Given  $\lambda$\in\overline{\mathbb{Q}}^{\times} such that \mathbb{Q}( $\lambda$)
is totally real and | $\lambda$|<1f0or all embeddings, let t=\displaystyle \frac{1-\sqrt{1- $\lambda$}}{2} . Assume that the elliptic
curve E_{t} : y^{2}=x(x-1)(x-t) has complex multiplication. Let a be the algebraic number
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in (5.7) f^{0orE_{t}} . For each odd prime p>3 unramied in K=\mathbb{Q}(t) such that a,  $\lambda$ can be

embedded in \mathbb{Z}_{p}^{\times} and E_{t} has good reduction at any prime ideal of the ring of integers of
K dividing (p) ,

we have

\displaystyle \sum_{k=0}^{p-1}(\frac{(\frac{1}{2})_{k}}{k!})^{3} (ak+1)$\lambda$^{k}\displaystyle \equiv \mathrm{s}\mathrm{g}\mathrm{n}\cdot(\frac{1- $\lambda$}{p}) .

p \mathrm{m}\mathrm{o}\mathrm{d} p^{2},

where (\displaystyle \frac{1- $\lambda$}{p}) is the Legendre symbol of the residue class modulo p of  1- $\lambda$
,

and sgn =\pm 1,

equal to 1 if and only if p is ordinary for E_{t}.

Meanwhile, numerical data suggest the following ASD‐type congruences for all

integers n\geq 1 , extending the conjecture by Zudilin which is the case n=1 :

(5.9)

\displaystyle \sum_{k=0}^{p^{n}-1}(\frac{(\frac{1}{2})_{k}}{k!})^{3}(ak+1)$\lambda$^{k}\equiv \mathrm{s}\mathrm{g}\mathrm{n}\cdot(\frac{1- $\lambda$}{p})\cdot p\cdot\sum_{k=0}^{p^{n-1}-1}(\frac{(\frac{1}{2})_{k}}{k!})^{3}(ak+1)$\lambda$^{k} \mathrm{m}\mathrm{o}\mathrm{d} p^{3n}

§5.7. Supercongruences and complex multiplication

In [CDE86], Chowla, Dwork, and Evans gave an improvement of the ASD congru‐

ence related to §5.4 as follows: for p\equiv 1 mod4

\left(\begin{array}{l}
\frac{p-1}{2}\\
\frac{p-1}{4}
\end{array}\right)\equiv(-4)^{\frac{p-1}{4}}(a+b\sqrt{-1}) \mathrm{m}\mathrm{o}\mathrm{d} p^{2} ,
where p=a^{2}+b^{2} with a\equiv 1 mod4.

Here \sqrt{-1} is a fixed unit in \mathbb{Z}_{p} of order 4, and b is chosen so that a+b\sqrt{-1} is a unit

in \mathbb{Z}_{p} . Such a congruence, which is stronger than what can be predicted by the theory
of formal group, is called a supercongruence. Examples of supercongruences include

(5.5) and (5.9) above. Here, we focus on the cases with complex multiplication. Using

properties of the p‐adic Gamma function, Coster [Cos88] was able to extend the above

result to

(5.10) \left(\begin{array}{l}
\frac{p^{r}-1}{2}\\
\frac{p^{r}-1}{4}
\end{array}\right)/\left(\begin{array}{l}
\frac{p-1}{2}\\
\frac{p^{r-1}-1}{4}
\end{array}\right)\equiv(-4)^{\frac{p^{r-1}(p-1)}{4}}(a+b\sqrt{-1}) \mathrm{m}\mathrm{o}\mathrm{d} p^{2r} ,
with a, b as above.

Coster and van Hamme have the following further generalization. We use P_{k}(x) to

denote {}_{2}F_{1}[^{-k_{1}1+k};\displaystyle \frac{1-x}{2}] ,
which is a degree‐k polynomial known as the kth Legendre

polynomial.

Theorem 10 (Coster and van Hamme, [CVH91]). Let d be a square‐fr ee posi‐
tive integer, and K=\mathbb{Q}(\sqrt{-d}) . Suppose that the elliptic curve

\mathcal{E} : Y^{2}=X(X^{2}+AX+B)
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over K has complex multiplication by an order of the ring of integers of K. Let p be a

prime split in K such that A, B
,

and the square roots of \triangle=A^{2}-4B can be embedded

in \mathbb{Z}_{p}^{\times} . Then there exists $\alpha$_{\mathcal{E},p}\in \mathbb{Z}_{p} such that

\displaystyle \lim_{r\rightarrow\infty}P_{\frac{p^{r}-1}{2}}(\frac{A}{\sqrt{\triangle}})/P_{\frac{p^{r-1}-1}{2}}(\frac{A}{\sqrt{\triangle}})=$\alpha$_{\mathcal{E},p}.
Moreover,

(5.11) P_{\frac{mp^{r}-1}{2}}(\displaystyle \frac{A}{\sqrt{\triangle}})\equiv$\alpha$_{\mathcal{E}},{}_{p}P_{\frac{mp^{r-1}-1}{2}}(\frac{A}{\sqrt{\triangle}}) \mathrm{m}\mathrm{o}\mathrm{d} p^{2r} \forall odd  m\geq 1.

In the heart of their proof lies a special Frobenius lifting that commutes with the

endomorphism ring \mathfrak{R} of \mathcal{E} . This Frobenius arises from a p‐isogeny sending t=-\displaystyle \frac{X}{Y} to

a degree‐p rational function of t . Using the above theorem and Clausen�s formula (5.6),
one has

Theorem 11 (Kibelbek, Long, Moss, Sheller, Yuan, [KLMSY]). Let  $\lambda$\neq 1 be

an algebraic number such that \tilde{E}_{ $\lambda$} : y^{2}=(x-1)(x^{2}-\displaystyle \frac{1}{1- $\lambda$}) has complex multiplication.
Let p be a prime such that  1- $\lambda$ can be embedded in \mathbb{Z}_{p}^{\times} and \tilde{E}_{ $\lambda$} has good reduction

modulo p\mathbb{Z}_{p} . Then

{}_{3}F_{2}[^{\frac{1}{2},\frac{1}{2}\frac{1}{2}}1,1; $\lambda$]_{\frac{p-1}{2}}=k=0\displaystyle \frac{p-1}{\sum 2}(\frac{(\frac{1}{2})_{k}}{k!})^{3}$\lambda$^{k}\equiv(\frac{1- $\lambda$}{p})$\alpha$_{p,$\lambda$^{2}} \mathrm{m}\mathrm{o}\mathrm{d} p^{2}
where (\displaystyle \frac{1- $\lambda$}{p}) is the Legendre symbol as befo re, $\alpha$_{p, $\lambda$} is the unit root of X^{2}-[p+1-

\#(\ovalbox{\tt\small REJECT} $\lambda$/\mathrm{F}_{p})]X+p if \tilde{E}_{ $\lambda$} is ordinary at p ; and $\alpha$_{p, $\lambda$}=0 if \tilde{E}_{ $\lambda$} is supersingular at p.

As a corollary, one can deduce the following type of results that are difficult to

prove directly.

Corollary 12. For all primes p>3 ,
we have

(5.12) \displaystyle \frac{p-1}{\sum 2}i=1\left(\begin{array}{l}
2i\\
i
\end{array}\right)\sum_{j=1}^{i}\frac{1}{i+j}\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p.
Moreover, numerical data suggest that for any ordinary prime p>3 satisfying the

above condition and any m, n\geq 1 and m odd

(5.13) {}_{3}F_{2}[^{\frac{1}{2},\frac{1}{2}\frac{1}{2}}1,1 ;  $\lambda$]_{\frac{mp^{n}-1}{2}}\displaystyle \equiv(\frac{ $\lambda$-1}{p})$\alpha$_{p,$\lambda$^{2}}{}_{3}F_{2}[^{\frac{1}{2},\frac{1}{2}\frac{1}{2}}1,1 ;  $\lambda$]_{\frac{mp^{n-1}-1}{2}} \mathrm{m}\mathrm{o}\mathrm{d} p^{3n}

In [R‐V01], Rodriguez‐Villegas made several conjectures on supercongruences relating
truncated hypergeometric series to Hecke eigenforms. Many of his conjectures have been

proved and often the proofs rely on results like (5.12).
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§5.8. ASD congruences and Fuchsian ordinary differential equations

Apéry numbers play an important role in transcendence. Using them Apéry showed

the irrationality of zeta values  $\zeta$(2) and  $\zeta$(3) . Here, we will focus on the sequence

A(n)=\displaystyle \sum_{k=0}^{n}\left(\begin{array}{l}
n\\
k
\end{array}\right)\left(\begin{array}{l}
n+k\\
k
\end{array}\right)={}_{3}F_{2}[^{-n}, -n,n+1_{;1]}1,1
that is related to  $\zeta$(2) . This sequence satises several surprising ASD‐type congruences.

In [Beu85], Beukers showed that for a prime p>3,

(5.14) A(mp^{n}-1)\equiv A(mp^{n-1}-1) \mathrm{m}\mathrm{o}\mathrm{d} p^{3n}, \forall m, n\geq 1.

In [SB85], Stienstra and Beukers proved that for prime p>3, n\geq 1 and odd m\geq 1,

(5.15) A(\displaystyle \frac{mp^{n}-1}{2})-a_{p}A(\frac{mp^{n-1}-1}{2})+(\frac{-1}{p})p^{2}A(\frac{mp^{n-2}-1}{2})\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{n},
where a_{p} is the pth Fourier coefficient of  $\eta$(4z)^{6} appeared before. Stienstra‐Beukers

conjectured that (5.15) holds \mathrm{m}\mathrm{o}\mathrm{d} p^{2n} . When m=n=1
,

the conjecture was proved

by Ishikawa [Ish90] and Ahlgren [Ahl01].
Now we briey explain the geometry behind the above results using the viewpoint of

[Beu87]. It is well‐known that \displaystyle \sum_{n\geq 0}A(n)t^{n} satises a second order ordinary differential

equation (ODE)

(5.16) t(t^{2}-11t-1)\displaystyle \frac{d^{2}F(t)}{dt^{2}}+(3t^{2}-22t-1)\frac{dF(t)}{dt}+(t-3)F(t)=0.
In [Hon71], Honda asked \backslash \backslash what algebraic differential equations(yield� formal groups that

are integral for almost all primes�. Based on [Dwo69] Honda in [Hon72] constructed

formal power series satisfying linear ODEs that yield formal groups related to the Fermat

curves. The coefficients of these power series are similar to the sequence used in (5.10).
Honda�s question concerns when a given linear Fuchsian (i.e. with regular singularities

only) ODE Lf=0 arises from a Picard‐Fuchs equation. A deep theorem of Katz

says that Picard‐Fuchs equations are globally nilpotent, see [Kat70] for terminology
and details. Let  $\Sigma$ denote the set of regular singularities of  Lf=0 . In particular, we

restrict ourselves to second order ODE. Recall that given such a Fuchsian ODE, one

can construct a monodromy representation

 $\rho$:$\pi$_{1}(\mathbb{C}P^{1}\backslash  $\Sigma$, u_{0})\rightarrow GL_{2}(\mathbb{C})

of the fundamental group $\pi$_{1}(\mathbb{C}P^{1}\backslash  $\Sigma$, u_{0}) ,
where u_{0} is any nonsingular point on the base

curve [Yos87]. In particular, if {\rm Im} $\rho$ can be embedded to  SL_{2}(\mathbb{R}) ,
then the image {\rm Im} $\rho$ is

a Fuchsian group [Shi71]. In this case, the local holomorphic solution of  Lf=0 (under
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suitable assumption) is a weight‐1 automorphic form of the Fuchsian group {\rm Im} $\rho$ ,
like

(5.1), see [Sti85]. Upon knowing the local monodromy matrix at each singular point, one

can tell whether {\rm Im} $\rho$ has cusps or not. One can further ask whether {\rm Im} $\rho$ is commensu‐

rable with  SL_{2}(\mathbb{Z}) . When the ODE has only 3 singularities, i.e. being a hypergeometric
differential equation, the answer is known due to classication of arithmetic triangular

groups [Tak77]. Next in line are second order ODEs with 4 singularities, like (5.16). For

(5.16), the monodromy group {\rm Im} $\rho$ is isomorphic to  $\Gamma$^{1}(5) mentioned in §2. The modular

curve for $\Gamma$^{1}(5) has genus 0 and we can pick as a Hauptmodul t=\displaystyle \frac{E_{2}}{E_{1}}=q^{1/5}+\cdots,
where E_{1}, E_{2} are weight‐3 Eisenstein series for $\Gamma$^{1}(5) that appeared in §2. Like (5.1),
when we specify t as a modular function for $\Gamma$^{1}(5) , \displaystyle \sum_{n\geq 0}A(n)t^{n} is a weight‐1 modular

form and \displaystyle \frac{dt}{dq^{1/5}} is a weight‐2 modular form. Putting together one can verify that

\displaystyle \sum_{n\geq 0}A(n)t^{n}\frac{dt}{t}=E_{1}\frac{dq_{5}}{q_{5}}, q_{5}=q^{1/5}
where E_{1}(z) is a Hecke eigenform for all Hecke operators T_{p} when p>5 with 1 as an

eigenvalue. Thus Beukers� result (5.14) modulo p^{n} can be explained via Proposition 3

and Theorem 6 as we are expressing E_{1}\displaystyle \frac{dq_{5}}{q_{5}} in terms of t
,

which is another local uni‐

formizer at innity. Meanwhile, we emphasize that the change of variable as described

in Proposition 3 does not preserve supercongruences in general. See [CCS10] for some

conjecture similar to (5.14) satised by Apéry‐like sequences.

To see (5.15) we adopt a similar viewpoint. Let t_{2}=\sqrt{t} . Thus t_{2}E_{1}=\sqrt{E_{1}E_{2}} is

the weight‐3 cusp form mentioned in §2. Then

t_{2}E_{1}\displaystyle \frac{dq_{10}}{q_{10}}=\sum_{n\geq 0}A(n)t_{2}^{2n+1}dt_{2}\overline{t_{2}}, q_{10}=q^{1/10}
Motivated by results of Beukers on Apéry numbers, Zagier [Zag09] did an extensive

computer search for rational numbers a, b,  $\lambda$ such that the differential equation

(5.17) (t(t^{2}+at+b)F'(t))'+(t- $\lambda$)F(t)=0

has a solution in \mathbb{Z}[[t]] . Among his findings are cases where the monodromy groups are

finite and ODEs are equivalent to those of hypergeometric series. The most interesting

sporadic cases have 4 genuine singularities and innite monodromy groups, in which the

monodromy group is isomorphic to an index‐12 subgroup of SL_{2}(\mathbb{Z}) . Zagier conjectured
that there are no other (a, b,  $\lambda$) giving rise to ODE with solutions in \mathbb{Z}[[t]] . For the

sporadic cases, his conjecture is actually implied by an earlier conjecture by Chudnovsky‐

Chudnovsky on special globally nilpotent Lamé ODEs with 4 singularities, see [CC88,
Conjecture 2].
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§6. Weight‐k ASD congruences for noncongruence modular forms

As alluded to earlier, congruences that are stronger than what commutative formal

group laws predict are harder to achieve, and their existence is usually due to extra

symmetry like complex multiplication and/or special choice of the local uniformizer as

well as the Frobenius lifting. However, in the realm of noncongruence modular forms of

weight k>2 ,
one can always achieve supercongruence. This is due to the very special

local uniformizer q=e^{2 $\pi$ iz} ,
the Frobenius lifting q\mapsto q^{p} and their relation with the

Gauss‐Manin connection. For details, see Katz [Kat73].

§6.1. ASD congruences for weakly holomorphic modular forms

Let  $\Gamma$ be a finite index subgroup of  SL_{2}(\mathbb{Z}) . Assume that the modular curve X_{ $\Gamma$} has

a model over \mathbb{Q} , the cusp at \infty is a \mathbb{Q}‐rational point with cusp width m . The completion
of the local ring \mathcal{O}_{X_{ $\Gamma$},\infty} at \infty is isomorphic to \mathbb{Q}[[t]] for some t satisfying  $\delta$ t^{m}=q with

 $\delta$\in \mathbb{Q}^{\times} . Recall that there is an integer M
,

divisible by the widths of the cusps of  $\Gamma$

and the primes  p where the cusps are no longer distinct under reduction of X_{ $\Gamma$} at p,

such that for any integer k\geq 1 ,
the space of weight‐k modular forms for  $\Gamma$ has a basis

whose  t‐expansions have coefficients in \displaystyle \mathbb{Z}[\frac{1}{M}] . Given a subring R of \mathbb{C} such that 6M is

invertible in R ,
the modular curve X_{ $\Gamma$} has a model dened over R and X_{ $\Gamma$}(R) contains

the cusp innity, let M_{k}^{wk}( $\Gamma$, R) be the set of weakly holomorphic (i.e., holomorphic on

the upper half‐plane and meromorphic at all the cusps) weight k modular forms for  $\Gamma$

whose  t‐expansions at \infty have coefficients in  R . Denote by S_{k}^{wk}( $\Gamma$, R) the submodule

of functions in M_{k}^{wk}( $\Gamma$, R) with vanishing constant terms at all the cusps. The Fourier

coefficients a_{n}(f, c) of f\in M_{k}^{wk}( $\Gamma$, R) at any cusp c of  $\Gamma$ are integral over  R . A modular

form f\in M_{k}^{wk}( $\Gamma$, R) is called weakly exact if n^{-(k-1)}a_{n}(f, c) is integral over R for each

n<0 and each cusp c of  $\Gamma$ . Write  S_{k}^{wk-ex}( $\Gamma$, R) (resp. M_{k}^{wk-ex}( $\Gamma$, R) ) for the collection

of weakly exact forms in S_{k}^{wk}( $\Gamma$, R) (resp. M_{k}^{wk}( $\Gamma$, R Assume k\geq 2 . The linear map

D=q\displaystyle \frac{d}{dq} iterated k-1 times maps M_{2-k}^{wk}( $\Gamma$, \mathbb{C}) into S_{k}^{wk}( $\Gamma$, \mathbb{C}) by Bol�s identity [Bol].
Furthermore, given f\in M_{2-k}^{wk}( $\Gamma$, R) ,

at each cusp c of  $\Gamma$ with cusp width  m_{c} ,
we have

a_{n}(D^{k-1}f, c)=(\displaystyle \frac{1}{m_{c}})^{k-1}n^{k-1}a_{n}(f, c) ,
which shows that Df lies in S_{k}^{wk-ex}( $\Gamma$, R)

since 1/m_{c}\in R by assumption.

Using geometric interpretations of weakly exact forms, Kazalicki and Scholl in

[KS13] identied the quotient space

DR( $\Gamma$, R, k):=\displaystyle \frac{S_{k}^{wk-ex}( $\Gamma$,R)}{D^{k-1}(M_{2-k}^{wk}( $\Gamma$,R))}
with the p‐adic de Rham space which plays a key role in the proof of the Scholl congru‐
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ence (2.4) [Sch85, §3]. Similarly dene

DR^{*}( $\Gamma$, R, k):=\displaystyle \frac{M_{k}^{wk-ex}( $\Gamma$,R)}{D^{k-1}(M_{2-k}^{wk}( $\Gamma$,R))}.
As there are no holomorphic forms of negative weight, S_{k}( $\Gamma$, R) is contained in DR( $\Gamma$, R, k)
and M_{k}( $\Gamma$, R) in DR^{*}( $\Gamma$, R, k) . In fact, the following two short exact sequences hold

due to Serre duality:

0\rightarrow S_{k}( $\Gamma$, R)\rightarrow DR( $\Gamma$, R, k)\rightarrow S_{k}( $\Gamma$, R)^{\vee}\rightarrow 0

and

0\rightarrow M_{k}( $\Gamma$, R)\rightarrow DR^{*}( $\Gamma$, R, k)\rightarrow S_{k}( $\Gamma$, R)^{\vee}\rightarrow 0,

where S_{k}( $\Gamma$, R)^{\vee} is the R‐linear dual of S_{k}( $\Gamma$, R) . Suppose that S_{k}( $\Gamma$, R) has R‐rank

d=d(k) . The above exact sequences imply that DR( $\Gamma$, R, k) and DR^{*}( $\Gamma$, R, k) are

locally free R‐modules of rank 2d and 2d plus the rank d'(k) of the weight k Eisenstein

series in M_{k}( $\Gamma$, R) , respectively.
It was shown in [ASD71] and [Sch85] that there is a positive integer M such that

the d‐dimensional space S_{k}( $\Gamma$) has a basis consisting of functions whose t‐expansions
at the cusp \infty have coefficients in  R=\displaystyle \mathbb{Z}[\frac{1}{M}] and their q‐expansions are integral over

R . For any prime p\nmid M ,
we have R contained in \mathbb{Z}_{p} (embedded in \mathbb{C} ). Further, for

p>k-2 ,
there is an endomorphism $\phi$_{p} on DR^{*}( $\Gamma$, \mathbb{Z}_{p}, k) leaving DR( $\Gamma$, \mathbb{Z}_{p}, k) in‐

variant, arising from the Frobenius lifting originated in the map q\mapsto q^{p} on the Tate

curves. Its characteristic polynomial H_{p}(T) on DR( $\Gamma$, \mathbb{Z}_{p}, k) lies in \mathbb{Z}[T] ,
and coin‐

cides with the characteristic polynomial of the geometric Frobenius at p under the

2d‐dimensional Scholl representations recalled in §2. Thus all roots of H_{p}(T) are alge‐
braic integers with the same absolute value p^{(k-1)/2} ,

and the non‐real complex roots

can be paired off as \{ $\alpha$, p^{k-1}/ $\alpha$\} . The characteristic polynomial of $\phi$_{p} on the quotient

DR^{*}( $\Gamma$, \mathbb{Z}_{p}, k)/DR( $\Gamma$, \mathbb{Z}_{p}, k) also lies in \mathbb{Z}[T] ,
with all roots of absolute value p^{k-1} (cf.

[KS13]). Kazalicki and Scholl proved in [KS13] that the congruences (2.4) satised by
the cusp forms in S_{k}( $\Gamma$, \mathbb{Z}_{p}) also hold for weakly holomorphic forms in M_{k}^{wk-ex}( $\Gamma$, \mathbb{Z}_{p}) ,

although with weaker moduli. Since to study the behavior at another cusp amounts to

replacing  $\Gamma$ by a conjugate, we only consider the cusp at innity.

Theorem 13 ([KS13]). Let  p>k-1 be a prime such that p\nmid 6M . Suppose f=

\displaystyle \sum a_{n}(f)q^{n/m} in M_{k}^{wk-ex}( $\Gamma$, \mathbb{Z}_{p}) is annihilated by h($\phi$_{p})f^{0or} some polynomial h(T)=

\displaystyle \sum_{j=0}^{r}A_{j}T^{j}\in \mathbb{Z}[T] dividing the characteristic polynomial of $\phi$_{p} on DR^{*}( $\Gamma$, \mathbb{Z}_{p}, k) . Then

\displaystyle \sum_{j=0}^{r}p^{(k-1)j}A_{j}a_{n/p^{j}}(f)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{(k-1)\mathrm{o}rd_{p}n} , for all n\geq 1.
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Example 14. The space S_{12}^{wk-ex}(SL_{2}(\mathbb{Z}), \mathbb{Z}) is a \mathbb{Z}‐module spanned by \triangle(z)=

\displaystyle \sum_{n\geq 1}$\tau$_{n}q^{n} and

g(z) :=E_{4}(z)^{6}/\triangle(z)-1464E_{4}(z)^{3}=q^{-1}-1432236q+51123200q^{2}+39826861650q^{3}+\cdots :

As is well‐known, the Fourier coefficients $\tau$_{n} of \triangle satisfy the recursion

$\tau$_{np}-$\tau$_{p}$\tau$_{n}+p^{11}$\tau$_{n/p}=0 for all n\geq 1 and all primes p.

Kazalicki and Scholl showed that, for every prime p\geq 11 ,
the Fourier coefficients a_{n}(g)

of g satisfy

a_{np}(g)-$\tau$_{p}a_{n}(g)+p^{11}a_{n/p}(g)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{11\mathrm{o}rd_{p}n} for all n\geq 1.

§6.2. ASD congruences for cusp forms

The stronger congruences (2.4) satised by cusp forms f\in S_{k}( $\Gamma$, \mathbb{Z}_{p}) established by
Scholl in [Sch85] resulted from the fact that $\phi$_{p} on DR( $\Gamma$, \mathbb{Z}_{p}, k) actually sends S_{k}( $\Gamma$, \mathbb{Z}_{p})
into p^{k-1}DR( $\Gamma$, \mathbb{Z}_{p}, k) . The extra multiple p^{k-1} accounts for the higher exponent in the

moduli. More precisely, the Fourier coefficients a_{n}(f) of f at the cusp \infty satisfy the

congruence

\displaystyle \sum_{j=0}^{2d}p^{(k-1)j}A_{j}a_{n/p^{j}}(f)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{(k-1)(1+\mathrm{o}rd_{p}n)} ,
for all n\geq 1,

where d is the dimension of S_{k}( $\Gamma$) and H_{p}(T)=\displaystyle \sum_{j=0}^{2d}A_{j}T^{j} is the characteristic poly‐
nomial of $\phi$_{p}.

J. Kibelbek in his thesis [Kib11] gave an interpretation of the above (2d+1) ‐term

ASD congruences in terms of d‐CFGLs for the case k=2.

In general, due to the lack of effective Hecke operators, one does not know how

to decompose the 2d‐dimensional Scholl representations into a sum of 2‐dimensional

subrepresentations, as what happened for Deligne representations for congruence groups.

However, if extra symmetries are present, then sometimes they can be used to break

the Scholl representations. Accordingly, one can decompose Scholl congruences into

3‐term ASD congruences, resembling the congruence case. We demonstrate below a few

cases where extra symmetries are used to obtain 3‐term ASD congruences for almost all

primes and (semi‐)xed basis. More examples can be found in [LLY05, ALL08, Lon08,

FHLRV, HLV12, ALLL].

§6.3. Examples

Let $\Gamma$_{3} be an index‐3 subgroup of $\Gamma$^{1}(5) such that t3 :=\sqrt[3]{t}=\sqrt[3]{E_{2}}/E_{1} is a

Hauptmodul of the modular curve X_{$\Gamma$_{3}} . The space S_{3}($\Gamma$_{3}) is spanned by g_{1}=E_{1}t_{3} and

g_{2}=E_{1}t_{3}^{2} ,
both in \mathbb{Z}[1/3][[q^{1/15}]].
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Theorem 15 (Li, Long, Yang [LLY05]). For any prime p>3 ,
the coefficients

of g_{1}\displaystyle \pm\sqrt{-1}g_{2}=\sum_{n\geq 1}a\pm(n)q^{n/15} satisfy

a\pm(np^{r})-b_{\pm}(p)a\pm(np^{r-1})+$\chi$_{-3}(p)p^{2}a\pm(np^{r-2})\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{2r} , for r, n\geq 1,

where x-3 is the quadratic character associated to \mathbb{Q}(\sqrt{-3}) ,
and g\pm(z) :=\displaystyle \sum_{n\geq 1}b_{\pm}(n)q^{n},

q=e^{2 $\pi$ iz} are two weight‐3 normalized congruence cuspidal newfo rms of level 27 and

character x-3 whose Fourier expansions start with

 g+(z) :=q-3\sqrt{-1}q^{2}-5q^{4}+3\sqrt{-1}q^{5}+5q^{7}+3\sqrt{-1}q^{8}+9q^{10}+\cdots
 g-(z) :=q+3\sqrt{-1}q^{2}-5q^{4}-3\sqrt{-1}q^{5}+5q^{7}-3\sqrt{-1}q^{8}+9q^{10}+\cdots

Next we consider the index‐4 subgroup $\Gamma$_{4} of $\Gamma$^{1}(5) dened similarly using t_{4}=

\sqrt[4]{E_{2}}/E_{1} . Let S be the space generated by the two weight‐3 cusp forms h_{1}=E_{1}t_{4}

and h3 =E_{1}t_{4}^{3} for $\Gamma$_{4} . There is a compatible family of 4‐dimensional sub‐Scholl‐

representations of G_{\mathbb{Q}} attached to S . Consider the following four weight‐3 congruence

cuspforms dened using the  $\eta$ function:

 f_{1}(z)=\displaystyle \frac{ $\eta$(2z)^{12}}{ $\eta$(z) $\eta$(4z)^{5}}=\sum_{n\geq 1}a_{1}(n)q^{n/8},
f_{5}(z)=\displaystyle \frac{ $\eta$(2z)^{12}}{ $\eta$(z)^{5} $\eta$(4z)}=\sum_{n\geq 1}a_{5}(n)q^{n/8},
Their linear combination

f_{3}(z)= $\eta$(z)^{5} $\eta$(4z)=\displaystyle \sum_{n\geq 1}a_{3}(n)q^{n/8},
and f_{7}(z)= $\eta$(z) $\eta$(4z)^{5}=\displaystyle \sum_{n\geq 1}a_{7}(n)q^{n/8}

(6.1) f=f(z)=f_{1}(z)+4f_{5}(z)+2\displaystyle \sqrt{-2}(f_{3}(z)-4f_{7}(z))=\sum_{n\geq 1}a(n)q^{n/8}
is an eigenform of the Hecke operators at odd primes and f(8z) has level 256, weight 3,
and quadratic character x-4 associated to \mathbb{Q}(\sqrt{-1}) .

Theorem 16 (Atkin, Li, Long [ALL08]). For each prime odd p>2 ,
the space

S=\langle h_{1},  h_{3}\rangle has a basis depending on the residue of  p mod8 satisfy ing the ASD con‐

gruence (1.1) at p as fo llows.

1. If p\equiv 1 mod8, then both h_{1} and h3 satisfy (1.1) with the same A_{p}=sgn(p)a_{1}(p)
and $\mu$_{p}=1 ,

where sgn(p)=\pm 1\equiv 2^{(p-1)/4}\mathrm{m}\mathrm{o}\mathrm{d} p ;

2. If p\equiv 5 mod8, then h_{1} (resp. h3) satises (1.1) with A_{p}=4\sqrt{-1}a_{5}(p) (resp.
-4\sqrt{-1}a_{5}(p)) and $\mu$_{p}=-1 ;

3. If p\equiv 3 mod8, then h_{1}\pm h_{3} satisfy (1.1) with A_{p}=\pm 2\sqrt{-2}a_{3}(p) respectively, and

$\mu$_{p}=-1 ;
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4. If p\equiv 7 mod8, then h_{1}\pm\sqrt{-1}h_{3} satisfy (1.1) with A_{p}=\mp 8\sqrt{-2}a_{7}(p) respectively,
and $\mu$_{p}=-1.

Here, f0orj\in\{1 , 3, 5, 7 \}, a_{j}(p) is the pth Fourier coefficient of the congruence fo rm f_{j}
dened above.

In [Sch85] Scholl showed that if half of the roots of the characteristic polynomial

H_{p}(T) of $\phi$_{p} are distinct p‐adic units, then one can find a basis for S_{k}( $\Gamma$) satisfying the

3‐term ASD congruence. In his thesis J. Kibelbek constructed examples to show that

the 3‐term ASD congruence does not always hold [Kib12]. A similar example was given
in [KS13]. The example below is due to Kibelbek.

Consider the genus 2 hyperelliptic curve X over \mathbb{Q} with an affine equation y^{2}=
x^{5}+2 . The Jacobian of this this curve admits complex multiplication. By Bely�s

theorem, X\simeq X_{ $\Gamma$} for a finite index subgroup  $\Gamma$ of  SL_{2}(\mathbb{Z}) . One isomorphism is given

by letting x=-\sqrt[5]{2 $\lambda$(z)}, y=\sqrt{2-2 $\lambda$(z)} where  $\lambda$(z) is the modular lambda function

given in §5.1. In this realization, the cusp at innity has cusp width 10. On X there are

two linearly independent holomorphic differentials \displaystyle \frac{dx}{2y} and x\displaystyle \frac{dx}{2y} . Using the q‐expansion
of  $\lambda$(z) , they can be can rewritten, up to a normalization by a constant multiple, as

f_{1}\displaystyle \frac{dq^{1/10}}{q^{1/10}} and f_{2}\displaystyle \frac{dq^{1/10}}{q^{1/10}} , respectively, where

f_{1}=q^{1/10}-\displaystyle \frac{8}{5}q^{6/10}-\frac{108}{5^{2}}q^{11/10}+\frac{768}{5^{3}}q^{16/10}+\frac{3374}{5^{4}}q^{21/10}+\cdots=\sum_{n\geq 1}a_{n}(f_{1})q^{n/10}
and

f_{2}=q^{2/10}-\displaystyle \frac{16}{5}q^{7/10}+\frac{48}{5^{2}}q^{12/10}+\frac{64}{5^{3}}q^{17/10}+\frac{724}{5^{4}}q^{22/10}+\cdots=\sum_{n\geq 1}a_{n}(f_{2})q^{n/10}
They generate the space S_{2}( $\Gamma$) and the module S_{2}( $\Gamma$, \displaystyle \mathbb{Z}[\frac{1}{5}]) .

The \ell‐adic representations attached to  S_{2}( $\Gamma$) are the dual of the Tate module of

the Jacobian of X_{ $\Gamma$} . At primes p\equiv 1 ,
4 mod5, f_{1} and f_{2} each satisfy a 3‐term ASD

congruence at p ,
as a consequence of the CM structure. For primes p\equiv 2 , 3 mod5,

H_{p}(T)=T^{4}+p^{2} . At such primes both f_{1} and f_{2} and consequently their nontrivial

linear combinations g satisfy the Scholl congruences

a_{mp^{n+2}}(g)+p^{2}a_{mp^{n-2}}(g)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{n+1}, \forall n, m\geq 1,

but no 3‐term congruences relating a_{mp^{n}}(g) , a_{mp^{n+1}}(g) and a_{mp^{n+2}}(g) would hold since

p\equiv 2 , 3 mod5 and a_{n}(f_{i})\neq 0 only when n\equiv i mod5 for i=1
,
2. On the other

hand, as explained below, the module of weakly holomorphic forms DR( $\Gamma$, \mathbb{Z}_{p}[\sqrt{2p}], 2)
does contain a basis satisfying 3‐term ASD‐type congruences as Theorem 13 for primes

p\neq 5 since H_{p}(T) factors into a product or two degree‐2 polynomials over \mathbb{Z}_{p}[\sqrt{2p}].
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The differentials of the second kind x^{2}\displaystyle \frac{dx}{2y} and x^{3}\displaystyle \frac{dx}{2y} on X give rise to two weakly

holomorphic cusp forms

f_{3}=q^{3/10}-\displaystyle \frac{24}{5}q^{8/10}+\frac{268}{5^{2}}q^{13/10}-\frac{2624}{5^{3}}q^{18/10}+\frac{24714}{5^{4}}q^{23/10}+\cdots=\sum_{n\geq 1}a_{n}(f_{3})q^{n/10},
and

f_{4}=q^{4/10}-\displaystyle \frac{32}{5}q^{9/10}+\frac{552}{5^{2}}q^{14/10}-\frac{7808}{5^{3}}q^{19/10}+\frac{97104}{5^{4}}q^{24/10}+\cdots=\sum_{n\geq 1}a_{n}(f_{4})q^{n/10}
Note that f3 and f_{4} are holomorphic at \infty but have poles at other cusps. The four forms

 f_{1}, f_{2}, f_{3}, f_{4} together span the space DR( $\Gamma$, \displaystyle \mathbb{Z}[\frac{1}{5}], 2) . It is straightforward to check that

ASD congruences at primes p\neq 5 with weaker moduli as in Theorem 13 are satised

by four linearly independent forms in DR( $\Gamma$, \mathbb{Z}_{p}[\sqrt{2p}], 2) .

§7. An application of ASD congruences

Congruence forms with algebraic Fourier coefficients are known to have bounded

denominators. A folklore conjecture asserts that a cusp form for a finite index sub‐

group of SL_{2}(\mathbb{Z}) with algebraic Fourier coefficients is a congruence form if and only
if its Fourier coefficients have bounded denominators. When the space S_{k}( $\Gamma$) is 1‐

dimensional, as discussed before, the ASD congruences hold and the associated Scholl�s

representations are modular. Using these facts, we established in [LL12] the conjecture
for the 1‐dimensional case.

Theorem 17 (Li and Long, [LL12]). Suppose that the modular curve X_{ $\Gamma$} of  $\Gamma$

has a model dened over \mathbb{Q} so that the cusp at \infty is \mathbb{Q} ‐rational with cusp width m,

k\geq 2 and S_{k}( $\Gamma$) is 1‐dimensional. Then a form f=\displaystyle \sum a_{n}(f)q^{n/m} in S_{k}( $\Gamma$) with

Fourier coefficients in \mathbb{Q} has bounded denominators if and only if it is a congruence

cusp form.

We outline the idea of the proof. As f has bounded denominators, without loss

of generality we may assume that a_{n}(f)\in \mathbb{Z} . Selberg [Sel65] proved that the Fourier

coefficients of f satisfy the following bound for some constant C :

(7.1) |a_{n}(f)|<Cn^{k/2-1/5}, \forall n\geq 1.

Meanwhile, the compatible family of \ell‐adic Scholl representations attached to  S_{k}( $\Gamma$) is

modular, that is, the associated L‐function coincides with the L‐function of a cuspidal

congruence Hecke eigenform g=\displaystyle \sum_{n\geq 1}b_{n}q^{n} of weight k
,

level N
,

character  $\chi$ ,
and
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integer coefficients. The ASD congruence established by Scholl says that there is an

integer M such that for p\nmid M

a_{np^{\mathrm{s}}}(f)-b_{p}a_{np^{\mathrm{s}-1}}(f)+ $\chi$(p)p^{k-1}a_{np^{\mathrm{s}-2}}(f)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{(k-1)s}, \forall n\geq 1.

The left‐hand side is an integer bounded by a fixed constant multiple of (np^{s})^{k/2-1/5}
for all n and s . Thus for fixed n and s large enough, the congruence becomes an

equality. This implies that, after twisting by a suitable multiplicative character  $\psi$ of

\mathbb{Z} to get rid of multiples of small primes, f_{ $\psi$}(z)=\displaystyle \sum_{n\geq 1} $\psi$(n)a_{n}(f)q^{n} and g_{ $\psi$}(z)=
\displaystyle \sum_{\geq 1} $\psi$(n)b_{n}q^{n} agree up to a nonzero scalar multiple. Since twisting by characters

preserves the congruence/noncongruence property of modular forms, we conclude that

f ,
which has bounded denominators, has to be a congruence form.

§8. Another type of congruences

Let f be a meromorphic modular function for SL_{2}(\mathbb{Z}) with Fourier coefficients

c_{n}(f)\in \mathbb{Z} , i.e., f=\displaystyle \sum_{n>-\infty}c_{n}(f)q^{n} . Fix a prime p . For a positive integer m such that

c_{p^{m}}(f)\neq 0 ,
let t_{m}(f, n)=C_{np^{m}}(f)/c_{p^{m}}(f) . Atkin had done extensive investigation on

the coefficients of the modular j‐function  j(z)=q^{-1}+744+196884q+\cdots . In [Atk67],
he proved that for  p=11,

(8.1) c_{n11^{m}}(j)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} 11^{m}, \forall m, n\geq 1,

extending results of Lehner for p=5 , 7.

Conjecture 18 (Atkin and O�Brien [AOB67] and Atkin [Atk68]). For any prime

p\neq 13 such that c_{p^{m}}(j)\neq 0_{f^{0or}} all m\geq 1,

(8.2) t_{m}(j, np)-t_{m}(j, n)t_{m}(j,p)+p^{-1}t_{m}(j, n/p)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} 13^{m}, \forall m, n\geq 1

and

(8.3) t_{m}(j, 13n)-t_{m}(j, n)t_{m}(j, 13)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} 13^{m}, \forall m, n\geq 1.

For a given prime p ,
the Atkin U_{p}‐operator sends f=\displaystyle \sum a_{n}q^{n} to U_{p}(f)=\displaystyle \sum a_{pn}q^{n}.

Thus,

\displaystyle \frac{U_{p}^{m}(j-744)}{c_{p^{m}}(j-744)}=\sum_{n\geq 1}t_{m}(j-744, n)q^{n}
The above conjecture was proved by Koike [Koi73] and Katz [Kat73, §3.13] by knowing
that a repeated application of U13 to j-744 leads to a single 13‐adic Hecke eigenform.
The other akin conjectures of Atkin for primes p\leq 23 are similarly established by
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Guerzhoy [Gue06, Gue10]. Atkin�s observations and U_{p} operator play important roles

in the development of p‐adic modular forms [Ser73, Dwo73, Kat73, Hid86, Col96, et al.].
Suppose that f=\displaystyle \sum_{n>-\infty}c_{n}(f)q^{n}\in \mathbb{Z}_{p}((q)) and c_{1}(f) is a p‐adic unit. If f

satises a 2‐term ASD congruence like (3.3) at p ,
that is, there exists a p‐adic unit $\alpha$_{p}

such that

c_{np^{m+1}}(f)\equiv$\alpha$_{p}c_{np^{m}}(f) \mathrm{m}\mathrm{o}\mathrm{d} p^{m+1} for all m\geq 0 and n\geq 1,

then c_{p^{m}}(f) is a p‐adic unit for all m\geq 0 so that t_{m}(f, n) are in \mathbb{Z}_{p} . In the congruence

above we can replace $\alpha$_{p} by c_{p^{m+1}}(f)/c_{p^{m}}(f) ,
and the resulting congruence is nothing

but the congruence of the form (8.3):

t_{m}(f, pn)-t_{m}(f, n)t_{m}(f,p)\equiv 0 \mathrm{m}\mathrm{o}\mathrm{d} p^{m+1}

Kazalicki [Kaz11] observed that a congruence of type (8.1) for p=2 is satised by
a family of noncongruence modular functions. Recently, the second author and Alyson
Denies computed the following during Sage Day 46 for a weight‐1 noncongruence form.

By Sebbar [Seb02], the space of integral weight holomorphic modular forms for $\Gamma$_{1}(5)
is a graded algebra generated by two normalized weight‐1 forms f_{1}, f_{2} ([Seb02, pp.

302 whose zeros are located at the cusps only. Let f=\sqrt{f_{1}f_{2}} ,
which is a weight‐1

noncongruence modular form. Our data suggest the following pattern:

Conjecture 19. Let p=5 . Then f0orf=\sqrt{f_{1}f_{2}}, m\geq 1 and odd n\geq 1 ,
we

have c_{5^{m}}(f)\neq 0 and

t_{m}(f, 5n)\equiv t_{m}(f, n) \mathrm{m}\mathrm{o}\mathrm{d} 5^{2m+4}
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