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Abstract

We construct a formal transformation from a Schrödinger type equation that has

a Stokes curve of loop type to a modified Bessel type equation near the loop. We also

prove the transformation series are formal series of Gevrey 1.

§1. Introduction

The purpose of this article is to construct a WKB theoretic transformation from a

Schrödinger equation with a Stokes curve of loop type to a modified Bessel‐type equation
near the Stokes curve. In the exact WKB analysis, several transformation theories to

canonical forms had been established in these two decades. In [AKT1], Aoki, Kawai

and Takei gave a transformation from a Schrödinger equation to the Airy equation near

a simple turning point. Using this transformation, they analyzed the discontinuity of

the Borel transform of a WKB solution of the Schrödinger equation at its movable

singularities and gave another proof of the Voros connection formula ([V], §6). They
also considered the case where two simple turning points are connected by a Stokes

curve and constructed a transformation from the Schrödinger equation to the Weber

equation near the Stokes curve. The singularity structure of the Borel transformed

WKB solutions of those equations was analyzed in the second part [AKT2] of their

papers under the condition that the two turning points are sufficiently close together.
On the other hand, Koike established a transformation theory near a simple pole of
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the potential of the Schrödinger equation [K]. Recently, Kamimoto, Kawai and Takei

have investigated the so‐called \mathrm{M}2\mathrm{P}\mathrm{l}\mathrm{T} operator by a careful and heavy computation

[KKT]. We note that all those theories have not treated the case where a Stokes curve

forms a loop. This type of degeneration of Stokes curves is observed as frequent as

the degeneration of the Weber type treated in [AKT1] (cf. [T]) and plays a role in

the theory of the cluster algebra [IN]. A modified Bessel‐type equation is the simplest
differential equation whose Stokes curve forms a loop around one of the poles. In this

article, we construct a WKB theoretic transformation from a Schrödinger equation that

has a loop‐type Stokes curve to the modified Bessel equation on an open set containing
the Stokes curve.

If we employ the modified Bessel equation as a canonical form, we expect that we

can construct a transformation in the simply connected open set containing the loop
when the pre‐transformed equation has one and only one double pole inside the loop.
It will be discussed in the forthcoming paper as well as an investigation of connection

automorphisms concerning the loop‐type degeneration of Stokes curves.

The plan of this paper is as follows. In section 2, we state our main results.

We construct the transformation series in Section 3. In Section 4, we give estimation

of the transformation series constructed in Section 2. This estimation ensures Borel

transformability of the series.

§2. Statements of the main results

We consider the following one‐dimensional Schrödinger equation with a large pa‐

rameter  $\eta$ :

(2.1) (-\displaystyle \frac{d^{2}}{d\tilde{x}^{2}}+$\eta$^{2}Q(\tilde{x}))\tilde{ $\psi$}(\tilde{x},  $\eta$)=0.
Here Q(\tilde{x}) is a meromorphic function defined on an open set  U\subset C. We assume that

(2.1) has a simple turning point  p_{0} (i.e., a zero of Q(\tilde{x}) of order 1). A Stokes curve

emanating from the turning point p_{0} is a curve defined by

{\rm Im}\displaystyle \int_{p_{0}}^{\tilde{x}}\sqrt{Q(\tilde{x})}d\tilde{x}=0.
It is well known that there are three Stokes curves emanating from p_{0} (cf.[KT]). We

define the notion of the loop formed by the Stokes curves.

Definition 2.1. Let s_{0}, s_{1} and s_{2} be germs at p_{0} of the Stokes curves emanating
from p_{0} . Let S_{0} and S_{1} be the Stokes curves which are extensions of the germs s_{0} and

s_{1} , respectively. We may assume that S_{0} and S_{1} are contained in U . We say that s_{0} and
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s_{1} form a loop if S_{0}=S_{1} as a set. Further, we say that the Stokes curves emanating
from the turning point p_{0} form a loop if two of the germs emanating from p_{0} form a

loop.

Under the above notation, we have the following proposition.

Proposition 2.2. Suppose that the Stokes curves of the equation (2.1) emanat‐

ing from p_{0} form a loop  $\gamma$ . Then there exist a small open neighborhood  V of the loop
and two Gevrey 1 series

x=\displaystyle \sum_{j\geq 0}x_{j}(\tilde{x})$\eta$^{-j}, c=\sum_{j\geq 0}c_{j}$\eta$^{-j}
which enjoy the following properties:

(1) Each x_{j}(\tilde{x})(j\geq 1) is holomorphic on V.

(2) The function x_{0}(\tilde{x}) is biholomorphic on V and satisfies

x_{0}(p_{0})=c_{0},

where c_{0} is a real positive number defined by

(2.2) c_{0}=\displaystyle \frac{1}{4$\pi$^{2}}(\int_{ $\gamma$}\sqrt{Q(\tilde{x})}d\tilde{x})^{2}
(3) The following relation is formally satisfied:

(2.3) $\eta$^{2}Q(\displaystyle \tilde{x})=$\eta$^{2}(\frac{\partial x}{\partial\tilde{x}})^{2}\frac{x-c}{x^{2}}-\frac{1}{2}\{x;x
Here \{x;\tilde{x}\} designates the Schwarzian derivative defined as fo llows:

\displaystyle \{x;\tilde{x}\}=\frac{x'''}{x'}-\frac{3}{2}(\frac{x''}{x'})^{2}
Here and hereafter we denote d^{ $\alpha$}x_{j}/d\tilde{x}^{ $\alpha$} by x_{j}^{( $\alpha$)}( $\alpha$=0,1,2, \ldots) . We also denote,

as usual x^{(.1)}x^{(.2)}
, \mathrm{j} , \mathrm{j} ,

. . . by x_{j}', x_{j} . . .

, respectively. Throughout this paper, we consider

a relation between WKB solutions (see [KT]).

Theorem 2.3. Suppose that the Stokes curves of the equation (2.1) emanating

from p_{0} form a loop  $\gamma$ . Let \tilde{ $\psi$}(\tilde{x},  $\eta$) be a WKB solution of the equation

(-\displaystyle \frac{d^{2}}{d\tilde{x}^{2}}+$\eta$^{2}Q(\tilde{x}))\tilde{ $\psi$}(\tilde{x},  $\eta$)=0.
Let x(\tilde{x},  $\eta$) and c be the series given in Proposition 2.2. Then there exists a WKB

solution  $\psi$(x,  $\eta$) which satisfies the following two conditions:

\displaystyle \tilde{ $\psi$}(\tilde{x},  $\eta$)=(\frac{\partial x(\tilde{x}, $\eta$)}{\partial\tilde{x}})^{-\frac{1}{2}} $\psi$(x(\tilde{x},  $\eta$),  $\eta$) ,
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(2.4) (-\displaystyle \frac{d^{2}}{dx^{2}}+$\eta$^{2}\frac{x-c}{x^{2}}) $\psi$(x,  $\eta$)=0.
The theorem can be proved by using Proposition 2.2. We note that Stokes curves

of (2.4) form a loop (Fig. 1).

Fig. 1 Fig. 2

Fig. 3

The Fig. 2 and Fig. 3 are the examples that the Stokes curves which enjoy the hypothesis
in Theorem 2.3. When a potential has the form -x(x-2)/((x+i)(x-i)(x+10))^{2}
(resp., (x-1/2)/((x-1/4)(x-1/3)) ), Stokes curves form the loop as in Fig. 2 (resp.,
Fig. 3). It is noteworthy that there are two poles counting multiplicity in the domain

surrounded by the Stokes curve which forms a loop (see Lemma 61.1 in [S]).

§3. Construction of the transformation series

Let us prove Proposition 2.2. Comparing the coefficients of $\eta$^{-n+2}(n\in \mathbb{Z}_{\geq 0}) in

(2.3), we have

(3.1) Q(\displaystyle \tilde{x})=\frac{x_{0}(\tilde{x})-c_{0}}{x_{0}^{2}(\tilde{x})}(x_{0}'(\tilde{x}))^{2},
(3.2) (x_{0}-c_{0})x_{1}'+\displaystyle \frac{2c_{0}-x_{0}}{2x_{0}}x_{0}'x_{1}=\frac{x_{0}'}{2}c_{1},
(3.3) (x_{0}-c_{0})x_{n}'+\displaystyle \frac{2c_{0}-x_{0}}{2x_{0}}x_{0}'x_{n}=\frac{x_{0}'}{2}c_{n}+R_{n}(x_{k_{1}}^{( $\alpha$)}, c_{k_{2}} : 0\leq $\alpha$\leq 3,0\leq k_{1}, k_{2}\leq n-1) ,
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where n\geq 2 and R_{n} is given by the following formula:

R_{n}=\displaystyle \frac{x_{0}'}{2}(x_{0}-c_{0}) \displaystyle \sum_{j+k--n,1\leq j,k\leq n-1}\frac{x_{j^{X}k}}{x_{0}^{2}}
+\displaystyle \frac{x_{0}^{2}}{4(x_{0}')^{2}} \displaystyle \sum_{k+l+ $\mu$--n-2,0\leq k,l, $\mu$\leq n-2}(-1)^{l}\sum_{$\mu$_{1}+\cdots+$\mu$_{l}= $\mu$}\frac{x_{k}'''}{(x_{0}')^{l}}x_{$\mu$_{1}+1}'

. x_{$\mu$_{l}+1}'

-\displaystyle \frac{1}{2x_{0}'}\sum_{n_{1}+m_{1}+j+t+l_{1}=n},(-1)^{l_{1}}x_{m_{1}}'x_{n_{1}}'(x_{j}-c_{j})\sum_{s_{1}+s_{2}+\cdots+s_{l_{1}}=t}\prod_{1\leq h\underline{<}l_{1}} \displaystyle \sum_{j+k--s_{h}+1,0\leq j,k\leq n-1}\frac{x_{j^{X}k}}{x_{0}^{2}}
-\displaystyle \frac{3x_{0}^{2}}{8(x_{0})^{3}}\sum_{k_{1}+k_{2}+l+ $\mu$=n-2}\sum_{$\mu$_{1}+\cdots$\mu$_{l}= $\mu$}\frac{(-1)^{l}(l+1)}{(x_{0})^{l}}x_{k_{1}}''x_{k_{2}}''x_{$\mu$_{1}+1}' . x_{$\mu$_{l}+1}'.

We first show that if the equation (3.1) has a holomorphic solution x_{0} ,
then c_{0} is given

by (2.2). Taking the square root of (3.1), we obtain

(3.4) \displaystyle \sqrt{Q(\tilde{x})}=\frac{\sqrt{x_{0}-c_{0}}}{x_{0}}x_{0}'.
We choose the branch of \sqrt{x-c_{0}}/x as \sqrt{x-c_{0}}>0 holds on the half line

\{x\in \mathbb{C};{\rm Re}(x-c_{0})>0, {\rm Im}(x-c_{0})=0\}

and take the half line

\{c_{0}+re^{i $\theta$};r>0\} (-2 $\pi$/3< $\theta$<0)

as the branch cut. On the other hand, the branch of \sqrt{Q(\tilde{x})} is chosen as follows: Let

s_{0}, s_{1} and s_{2} be the germs of Stokes curves of (2.1) emanating from p_{0} for which the

initial directions are $\theta$_{0}, $\theta$_{0}+2 $\pi$/3 and $\theta$_{0}-2 $\pi$/3 , respectively. This means, for example,

s_{0} is tangent to the half line \{p_{0}+re^{i$\theta$_{0}};r>0\} at p_{0} . We take the branch cut for

\sqrt{Q(\tilde{x})} so that it coincides with \{p_{0}+re^{i( $\theta$+$\theta$_{0})};r>0\} near p_{0} and that it does not

intersects the loop. We choose the branch of \sqrt{Q(\tilde{x})} so that {\rm Re}\sqrt{Q(\tilde{x})}dx>0 on s_{0}.

Then we have {\rm Re}\sqrt{Q(\tilde{x})}dx<0 on s_{1} . We may assume that s_{1} and s_{2} form the loop  $\gamma$.

The orientation of  $\gamma$ is chosen to be consistent with  s_{1} . Integrating (3.4) on  $\gamma$ ,
we find

 c_{0} , namely (2.2). Conversely, if c_{0} is given by (2.2), then we can find the holomorphic
solution x_{0} of (3.4) as follows. To discuss the existence of x_{0}(\tilde{x}) ,

we make use of the

following two functions:

(3.5) w_{1}(z)=z-\displaystyle \tan^{-1}z, w_{2}(\tilde{x})=\frac{1}{2\sqrt{c_{0}}}\int_{p_{0}}^{\tilde{x}}\sqrt{Q(\tilde{x})}d\tilde{x},
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where we set

z=\sqrt{\frac{x}{c_{0}}-1}.
Then, by integrating the both sides of the equation (3.4), we obtain

(3.6) w_{1}(z)=w_{2}(\tilde{x}) .

We can easily verify that w_{1}(z) maps the loop of the Stokes curve of the equation (2.4)
onto the closed interval [-2 $\pi$\sqrt{c_{0}}, 0] bijectively and that its derivative never vanishes

on the loop except for c_{0} . Similarly w_{2}(\tilde{x}) maps  $\gamma$ onto the same interval bijectively.

Further, their derivatives never vanish on the loops except for  p_{0} and c_{0} . Let V' be an

open set which contains  $\gamma$-\{p_{0}\} as a relatively closed subset and satisfy w_{2'}\neq 0 on

V' . The above arguments imply that if we consider the following function

z(\tilde{x})=w_{1}^{-1}(w_{2}(\tilde{x})) ,

then the function

(3.7) x_{0}(\tilde{x})=c_{0}(z(\tilde{x})^{2}+1)

is the holomorphic solution which satisfies x_{0}(p_{0})=c_{0} on V' . Furthermore the function

z(\tilde{x}) has the following expansion at \tilde{x}=p_{0} :

z(\tilde{x})=A_{0}(\tilde{x}-p_{0})^{\frac{1}{2}}(1+O(\tilde{x}-p_{0}
where A_{0} is a non‐zero constant. Thus we have found the function (3.7) is single‐valued,

holomorphic even at the starting point \tilde{x}=p_{0} and (dx_{0}/d\tilde{x})(p_{0})\neq 0 . This means that

we may define V as the union of V' and an open small disk with the center p_{0} . Next

we consider the analytic continuation of x_{0}(\tilde{x}) along  $\gamma$ . By the choice of  c_{0} ,
we have

the same equation after the continuation as (3.6) because, after the continuation, the

constants which are added to the both sides of (3.6) cancel out. This means that the

germ of x_{0}(\tilde{x}) at the end point p_{0} of the analytic continuation coincides with the germ

of x_{0}(\tilde{x}) at the starting point p_{0} . This completes the proof of the existence of (x_{0}, c_{0}) .

Next we try to find (x_{n}(\tilde{x}), c_{n})(n\geq 1) . The task is to show the differential equation

(3.8) (x_{0}-c_{0})x_{n}'+\displaystyle \frac{2c_{0}-x_{0}}{2x_{0}}x_{0}'x_{n}=\frac{x_{0}'}{2}c_{n}+R(\tilde{x})
has a holomorphic solution on V . Here R(\tilde{x}) denotes a given holomorphic function on

V. We decompose (3.8) into the following two equations:

(3.9) (x_{0}-c_{0})\displaystyle \frac{du}{d\tilde{x}}+\frac{2c_{0}-x_{0}}{2x_{0}}x_{0}'u=\frac{x_{0}'}{2},
(3.10) (x_{0}-c_{0})\displaystyle \frac{dv}{d\tilde{x}}+\frac{2c_{0}-x_{0}}{2x_{0}}x_{0}'v=R(\tilde{x}) .
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Both equations have singularity only at p_{0} in V . Furthermore, they have the unique

holomorphic solution at p_{0} as the characteristic exponent is equal to − \displaystyle \frac{1}{2} . We denote

those holomorphic solutions by u^{0}(\tilde{x}) and v^{0}(\tilde{x}) . Note that x_{n}(\tilde{x})=c_{n}u^{0}(\tilde{x})+v^{0}(\tilde{x})
gives a holomorphic solution of (3.8) at p_{0} . Now we consider the analytic continuation

of x_{n}(\tilde{x}) along  $\gamma$ . Using  t=x_{0}(\tilde{x}) as a new coordinate in V ,
the equation (3.9) can be

expressed as

(3.11) (c_{0}-t)\displaystyle \frac{du}{dt}+\frac{t-2c_{0}}{2t}u=-\frac{1}{2}.
The holomorphic solution u^{0} of (3.11) at c_{0} is written as

(3.12) u^{0}(t)=\displaystyle \frac{t}{2(t-c_{0})^{\frac{1}{2}}}\int_{c_{0}}^{t}\frac{1}{s(s-c_{0})^{\frac{1}{2}}}ds.
We denote the loop formed by the Stokes curves of (2.4) by $\gamma$_{1} . By the construction of

x_{0} ,
we have x_{0}( $\gamma$)=$\gamma$_{1} . The orientation of $\gamma$_{1} is chosen to be consistent with  $\gamma$ . Then

the analytic continuation  u^{1} of u^{0} along $\gamma$_{1} is given by

(3.13) u^{1}(t)=\displaystyle \frac{t}{2(t-c_{0})^{\frac{1}{2}}}(\int_{$\gamma$_{1}}\frac{1}{s(s-c_{0})^{\frac{1}{2}}}ds+\int_{c_{0}}^{t}\frac{1}{s(s-c_{0})^{\frac{1}{2}}}ds)
(3.14) =u^{0}(t)+ $\lambda$ H(t) ,

where

 $\lambda$=\displaystyle \int_{$\gamma$_{1}}\frac{1}{2s(s-c_{0})^{\frac{1}{2}}}ds,
and H(t)=t/(t-c_{0})^{\frac{1}{2}} is a solution of the homogeneous equation

(c_{0}-t)\displaystyle \frac{du}{dt}+\frac{t-2c_{0}}{2t}u=0.
Similarly we can get the analytic continuation v^{1} of v^{0} as follows:

v^{1}(t)=v^{0}(t)+\tilde{ $\lambda$}H,

where we set \tilde{ $\lambda$} as

\displaystyle \tilde{ $\lambda$}=\int_{$\gamma$_{1}}\frac{R_{n}(x_{0}^{-1}(s))}{s(s-c_{0})^{\frac{1}{2}}}ds.
Note that  $\lambda$ is different from zero. Thus we conclude that the analytic continuation of

 x_{n}(\tilde{x}) is given by

x_{n}(\tilde{x})=c_{n}u^{1}+v^{1}

(3.15) =(c_{n}u^{0}+v^{0})+(c_{n} $\lambda$+\tilde{ $\lambda$})H.
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To construct a holomorphic solution x_{n} on V, c_{n} $\lambda$+\tilde{ $\lambda$} must be equal to zero since H(t)
is not holomorphic at p_{0} . Therefore we have got the constant c_{n}=-$\lambda$^{-1}\tilde{ $\lambda$} and the

holomorphic solution x_{n}.

§4. Estimation of x_{n}(\tilde{x}) and c_{n}

In this section, we investigate Borel transformability of the function x(\tilde{x},  $\eta$) and

the series c constructed in the previous section. It can be proved in a similar way as

in the case of the discussion about a canonical form near one simple turning point (see
[AKT1]). That is, in order to estimate x_{n}(\tilde{x}) ,

we estimate the right hand side of (3.3).
First we define an open set V as

V=\displaystyle \bigcup_{\tilde{x}\in $\gamma$}B_{r_{0}}(\tilde{x})
for a sufficiently small number r_{0}>0 ,

where B_{r_{0}} denotes the open disk of radius r_{0}

with the center \tilde{x} . We can find positive constants C_{1} and r<r_{0} so that

|x_{0}(\displaystyle \tilde{x})|, \frac{1}{|x_{0}(\tilde{x})|}, |x_{0}'(\tilde{x})|, \frac{1}{|x_{0}'(\tilde{x})|}\leq C_{1}
hold on V(r)=\displaystyle \bigcup_{\tilde{x}\in $\gamma$}\overline{B_{r}(\tilde{x})} as xÓ(p0) \neq 0 and the image of  $\gamma$ by  x_{0} coincides with $\gamma$_{1},

where \overline{B_{r}(\tilde{x})} denotes the closure of the open ball B_{r}(\tilde{x}) . Then, for each  $\epsilon$>0 ,
we have

(4.1) |x_{0}''(\tilde{x})|\leq C_{1}$\epsilon$^{-1}

(4.2) |x_{0}'''(\tilde{x})|\leq 2C_{1}$\epsilon$^{-2}

on V(r- $\epsilon$) . We want to prove the following proposition by the induction on n\in \mathbb{N}.

Proposition 4.1. There exists a positive constant C for which the following

inequalities hold f^{0or} each  $\epsilon$>0 and n\in \mathbb{N} :

(4.3) |c_{n}|\leq n!C^{n-1}$\epsilon$^{-n},

(4.4) \displaystyle \sup |x_{n}(\tilde{x})|\leq n!C^{n-1}$\epsilon$^{-n},
\tilde{x}\in V(r- $\epsilon$)

(4.5) \displaystyle \sup |x_{n}'(\tilde{x})|\leq n!C^{n-1}$\epsilon$^{-n}
\tilde{x}\in V(r- $\epsilon$)

Note that above inequalities hold for n=1 as x_{1} and c_{1} are equal to zero. To prove

the proposition we prepare the following two lemmas:

Lemma 4.2. Let U be an open small neighborhood of the loop $\gamma$_{1}, v(t) a given

holomorphic function on U. Let v(t) be a bounded holomorphic function on U, r_{1} the



Structure of a Schrödinger operator with a Stokes curve of loop type 79

maximum radius so that B_{r_{1}}(c_{0}) is contained in U. We assume that the following

differential equation has a holomorphic solution on U.

(4.6) (t-c_{0})\displaystyle \frac{du}{dt}+\frac{2c_{0}-t}{2t}u=\frac{1}{2}c+v(t) ,

where c is a constant. Then there exist positive constants N_{1}, N_{2} and N3 so that the

fo llowing inequalities hold:

(4.7) |c|\displaystyle \leq N_{1}\sup_{t\in U}|v(t)|,
(4.8) \displaystyle \sup |u(t)|\leq N_{2}\sup_{t\in U}|v(t)|,t\in B_{r_{1}}(c_{0})

(4.9) \displaystyle \sup_{t\in B_{r_{1}}(c_{0})}|\frac{du(t)}{dt}|\leq\frac{N_{3}}{r_{1}}\sup_{t\in U}|v(t)|.
Proof. By the argument in the previous section, to have the holomorphic solution,

c must be determined as follows:

(4.10) c=-$\lambda$^{-1}\tilde{ $\lambda$},

(4.11)  $\lambda$=\displaystyle \int_{$\gamma$_{1}}\frac{1}{2s(s-c_{0})^{\frac{1}{2}}}ds,
(4.12) \displaystyle \tilde{ $\lambda$}=\int_{$\gamma$_{1}}\frac{v(s)}{s(s-c_{0})^{\frac{1}{2}}}ds.
The first inequality (4.7) holds if we set the positive constant N_{1} as

N_{1}=| $\lambda$|^{-1}\displaystyle \int_{$\gamma$_{1}}|ds|\sup_{t\in$\gamma$_{1}}\frac{1}{|s||s-c_{0}|^{\frac{1}{2}}},
for we have

|c|=| $\lambda$|^{-1}|\tilde{ $\lambda$}|

\displaystyle \leq| $\lambda$|^{-1}\sup_{t\in U}|v(t)|\int_{$\gamma$_{1}}\frac{|ds|}{|s||s-c_{0}|^{\frac{1}{2}}}
\displaystyle \leq N_{1}\sup_{t\in U}|v(t)|.

It is easy to verify that, by the definition of c,

u(t)=\displaystyle \frac{t}{2}\int_{0}^{1}\frac{c+2v(l(t-c_{0})+c_{0})}{l^{\frac{1}{2}}(l(t-c_{0})+c_{0})}dl
is the unique holomorphic solution of (4.6). Then we have

(4.13) |u(t)|\displaystyle \leq\frac{|t|}{2}(|c|+2\sup_{s\in B_{r_{1}}(c_{0})}|v(s)|)\int_{0}^{1}\frac{dl}{l^{\frac{1}{2}}|l(t-c_{0})+c_{0}|} (t\in B_{r_{1}}(c_{0})) .
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Since |l(t-c_{0})+c_{0}|^{-1} is bounded in B_{r_{1}}(\mathrm{c}_{0}) ,
we can conclude that there exists a positive

constant N_{2} for which the following inequality holds:

|u(t)|\displaystyle \leq N_{2}\sup_{t\in U}|v(t)|.
Rewriting the equation (4.6) as

(t-c_{0})\displaystyle \frac{du}{dt}=\frac{1}{2}c+v(t)-\frac{2c_{0}-t}{2t}u(t) ,

we have

(4.14)

\displaystyle \sup_{t\in B_{r_{1}}(c_{0})}|(t-c_{0})\frac{du(t)}{dt}|\leq\frac{1}{2}|c|+\sup_{t\in B_{r_{1}}(c_{0})}|v(t)|+\sup_{t\in B_{r_{1}}(c_{0})}|\frac{2c_{0}-t}{2t}|\sup_{t\in B_{r_{1}}(c_{0})}|u(t)|
\displaystyle \leq N_{3}\sup_{t\in U}|v(t)|,

where we set

N_{3}=\displaystyle \frac{N_{1}+2}{2}+N_{2}\sup_{t\in U}|\frac{2c_{0}-t}{2t}|
Since

\displaystyle \frac{1}{2}c+v(c_{0})-\frac{1}{2}u(c_{0})=0
holds, (4.14) combined with Schwarz lemma entails (4.9). This completes the proof of

the lemma. \square 

Lemma 4.3. Let r, U, u(t) , v(t) and c be as in Lemma 4.2. Then there exists

a positive constant N' that satisfies the following inequalities:

(4.15) \displaystyle \sup_{t\in U}|u(t)|\leq N'\sup_{t\in U}|v(t)|,
(4.16) \displaystyle \sup_{t\in U}|\frac{du(t)}{dt}|\leq N'\sup_{t\in U}|v(t)|.

Proof. Let t_{1}\in B_{r_{1}}(c_{0})\backslash B_{\frac{r_{1}}{2}}(c_{0}) and t\in U\backslash B_{r_{1}}(\mathrm{c}_{0}) . The holomorphic solution

of (4.6) can be expressed as

u(t)=\displaystyle \frac{t}{(t-c_{0})^{\frac{1}{2}}}\int_{c_{0}}^{t}\frac{c+2v(s)}{2s(s-c_{0})^{\frac{1}{2}}}ds
=\displaystyle \frac{t}{(t-c_{0})^{\frac{1}{2}}}\{\int_{c_{0}}^{t_{1}}\frac{c+2v(s)}{2s(s-c_{0})^{\frac{1}{2}}}ds+\int_{t_{1}}^{t}\frac{c+2v(s)}{2s(s-c_{0})^{\frac{1}{2}}}ds\},

and we get the following inequality:

|u(t)|\displaystyle \leq|\frac{t}{(t-c_{0})^{\frac{1}{2}}}|\{|\int_{c_{0}}^{t_{1}}\frac{c+2v(s)}{2s(s-c_{0})^{\frac{1}{2}}}ds|+|\int_{t_{1}}^{t}\frac{c+2v(s)}{2s(s-c_{0})^{\frac{1}{2}}}ds|\}
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Here we have taken suitably the path of integration in U . Obviously, |s-c_{0}|^{-\frac{1}{2}} is

bounded on the path of integration. Hence we can get positive constants L_{1} and L_{2}

which satisfy the following inequalities.

(4.17) t\displaystyle \in U\backslash (c_{0})\sup_{B_{r_{1}}}|\frac{t}{(t-c_{0})^{\frac{1}{2}}}\int_{t_{1}}^{t}\frac{c+2v(s)}{2s(s-c_{0})^{\frac{1}{2}}}ds|\leq L_{1}(|c|+2\sup_{t\in U}|v(t)|)
\displaystyle \leq L_{2}\sup_{t\in U}|v(t)|.

Since t_{1}\in B_{r_{1}}(c_{0})\backslash B_{\frac{r_{1}}{2}}(\mathrm{c}_{0}) ,
we may use Lemma 4.2. Thus we find that there exists a

positive constant L3 and the first term

|\displaystyle \frac{t}{(t-c_{0})^{\frac{1}{2}}}\int_{c_{0}}^{t_{1}}\frac{c+2v(s)}{2s(s-c_{0})^{\frac{1}{2}}}ds|
is dominated by

L_{3}\displaystyle \sup_{t\in U}|v(t)|.
Hence we obtain the required inequality. Next we prove that the inequality (4.16) holds.

Since |t-c_{0}|^{-\frac{1}{2}} is bounded in t\in U\backslash B_{r_{1}}(\mathrm{c}_{0}) ,
we can prove it without using the Schwarz

lemma. That is,

(4.18) |\displaystyle \frac{du}{dt}|\leq\frac{1}{|t-c_{0}|}(\frac{|c|}{2}+\frac{|2c_{0}-t|}{2}|u(t)|+|v(t)|)
\displaystyle \leq N' \sup |v(t)|

t\in U\backslash B_{r_{1}}(c_{0})

holds over U\backslash B_{r_{1}}(\mathrm{c}_{0}) . This fact and Lemma 4.2 entail the second inequality. This

completes the proof of the lemma. \square 

Proof of Proposition 4.1. The assumption of induction and the above lemmas imply
that there exists a positive constant N such that

(4.19) |c_{n}|\displaystyle \leq N \sup |R_{n}(\tilde{x})|,
\tilde{x}\in V(r- $\epsilon$)

(4.20) \displaystyle \sup |x_{n}(\tilde{x})|\leq N \sup |R_{n}(\tilde{x})|,
\tilde{x}\in V(r- $\epsilon$) \tilde{x}\in V(r- $\epsilon$)

(4.21) \displaystyle \sup_{\tilde{x}\in V(r- $\epsilon$)}|\frac{dx_{n}(\tilde{x})}{d\tilde{x}}|\leq N\sup_{\tilde{x}\in V(r- $\epsilon$)}|R_{n}(\tilde{x})|
hold for any sufficiently small  $\epsilon$>0 ,

where we apply the lemmas regarding U as V(r- $\epsilon$) .

Using this fact, we estimate x_{n}(\tilde{x}) under the induction hypothesis that (4.19), (4.20)
and (4.21) hold for k\leq n . To simplify the notations, we rewrite R_{n} as R_{n}=R_{n,1}-
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R_{n,2}+R_{n,3}-R_{n,4} ,
where R_{n,j}(j\in\{1,2,3,4\}) are given by

R_{n,1}=\displaystyle \frac{x_{0}'}{2}(x_{0}-c_{0})\sum_{j+k=n}\frac{x_{j^{X}k}}{x_{0}^{2}},
R_{n,2}=\displaystyle \frac{1}{2x_{0}'}n_{1}+m_{1}\mathrm{X}_{t+l_{1}=n}(-1)^{l_{1}}x_{m_{1}}'x_{n_{1}}'(x_{j}-c_{j})\sum_{s_{1}+s_{2}+\cdots+s_{l_{1}}=t}\prod_{1\leq h\underline{<}l_{1}} \displaystyle \sum_{j+k--s_{h}+1,0\leq j,k\leq n-1}\frac{x_{j^{X}k}}{x_{0}^{2}},

R_{n,3}=\displaystyle \frac{x_{0}^{2}}{4(x_{0}')^{2}}\sum_{k+l+ $\mu$=n-2}(-1)^{l}\sum_{$\mu$_{1}+\cdots+$\mu$_{l}= $\mu$}\frac{x_{k}'''}{(x_{0}')^{l}}x_{$\mu$_{1}+1}' . x_{$\mu$_{l}+1}',

R_{n,4}=\displaystyle \frac{3x_{0}^{2}}{8(x_{0})^{3}}\sum_{k_{1}+k_{2}+l+ $\mu$=n-2}\sum_{$\mu$_{1}+\cdots$\mu$_{l}= $\mu$}\frac{(-1)^{l}(l+1)}{(x_{0})^{l}}x_{k_{1}}''x_{k_{2}}''x_{$\mu$_{1}+1}' . x_{$\mu$_{l}+1}'.

Since (2x_{0}'/x_{0}^{2})R_{n,3} and (2x_{0}'/x_{0}^{2})R_{n,4} respectively have the same form as I and II in

(A.2.18) of [AKT1], we can verify that the following inequalities hold if we assume that

C>C_{1} :

(4.22) \displaystyle \sup |R_{n,3}|\leq n ! C^{n-1}$\epsilon$^{-n}\displaystyle \frac{C_{1}^{3}}{2}(1-C_{1}C^{-1})^{-1}(e^{2}C^{-1}+C_{1})C^{-1},\tilde{x}\in V(r- $\epsilon$)

(4.23) \displaystyle \sup |R_{n,4}|\leq n ! C^{n-1}$\epsilon$^{-n}\displaystyle \frac{3}{8}C_{1}^{5}C^{-1}(1-C_{1}C^{-1})^{-2}(eC^{-1}+C_{1})^{2}\tilde{x}\in V(r- $\epsilon$)

And it is also easy to get the estimation of R_{n,1} :

\displaystyle \sup |R_{n,1}|\leq n!C^{n-1}$\epsilon$^{-n}C_{1}^{3}(C_{1}+|c_{0}|)C^{-1}
\tilde{x}\in V(r- $\epsilon$)

Now let us estimate R_{n,2} . To get it, we use the following lemma([AKT1], Sublemma

2.2). Since its proof is not given in [AKT1], we prove the lemma here.

Lemma 4.4. The following inequality holds f^{0or} all positive integers n and l sat‐

isfy ing l\leq n

n_{1},,n_{l}\displaystyle \geq 1^{n}\sum_{n_{1}+\cdot.\cdot.\cdot.+n_{l--}}n_{1}!
. n_{l}!\leq n!

Proof. We prove the inequality by induction on l . Since

\displaystyle \sum_{n_{1}=n}n_{1}!=n!
hold, the inequality holds when l=1 . We assume that the inequality holds for  l\leq

 k . Substituting n_{k+1} with s and using induction hypothesis, we have the following
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inequality:

n_{1}+n_{2}+\displaystyle \cdot.\cdot.\cdot.+n_{k}+n_{k+1}=n\sum_{n_{1},,n_{k+1}\geq 1}n_{1}!
. n_{k}!n_{k+1}!=\displaystyle \sum_{s=1}^{n-k}s!\sum_{n_{1}+n_{2}+,.\cdot.\cdot.\cdot+n_{k}=n-sn_{1},,n_{k}\geq 1}n_{1}! . n_{k}!

\displaystyle \leq\sum_{s=1}^{n-k}s!(n-s)!
=n!\displaystyle \sum_{s=1}^{n-k}\frac{s!(n-s)!}{n!}.

Since

\displaystyle \frac{s!(n-s)!}{n!}\leq\frac{1}{n} (1\leq s\leq n) ,

we have

\displaystyle \sum_{s=1}^{n-k}\frac{s!(n-s)!}{n!}\leq 1-\frac{k}{n}.
Therefore, we have the required inequality:

\displaystyle \sum_{n_{1}+\cdots+n_{l}=n}n_{1}!
. n_{l}!\leq n !.

Thus, induction proceeds. We have finished the proof of the lemma. \square 

By (4.4) and (4.5), we have

(4.24) \displaystyle \sup_{\tilde{x}\in V(r- $\epsilon$)}|x_{k}''(\tilde{x})|\leq(k+1)!C^{k-1}e$\epsilon$^{-k-1},
(4.25) \displaystyle \sup_{\tilde{x}\in V(r- $\epsilon$)}|x_{k}'''(\tilde{x})|\leq(k+2)!C^{k-1}e^{2}$\epsilon$^{-k-2}
The hypothesis also allows us to get the following inequality for each j :

|a_{s_{j}}|\displaystyle \leq C_{1}^{2}\sum_{j+k=s_{j}+1}j!k!C^{j+k-2}$\epsilon$^{-(j+k)}
\leq C_{1}^{2}C^{s_{j}-1}$\epsilon$^{-(s_{j}+1)}(s_{j}+1)!.

Then we obtain

\displaystyle \sum_{s_{1}+\cdots+s_{l_{1}}=t}|a_{s_{1}}|
. . .

|a_{s_{l_{1}}}|\displaystyle \leq C_{1}^{-2l_{1}}\sum_{s_{1}+\cdots+s_{l_{1}}=t}$\Pi$_{h=1}^{h=l_{1}}C^{s_{h}-1}$\epsilon$^{-(s_{h}+1)}(s_{h}+1)!
\leq C_{1}^{-2l_{1}}C^{t-l_{1}}$\epsilon$^{-t-l_{1}}(t+l_{1}) !.

We also obtain the following inequality:

\displaystyle \sup_{\tilde{x}\in V(r- $\epsilon$)}|R_{n,2}|\leq n!C^{n-1}$\epsilon$^{-n}4C_{1}C^{-2}(1-C_{1}^{2}C^{-2})^{-1}
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The above inequalities about R_{n,j} show that R_{n} is dominated by

\displaystyle \sup_{\tilde{x}\in V(r- $\epsilon$)}|R_{n}|\leq n!C^{n-1}$\epsilon$^{-n}A,
where

A=C_{1}^{3}(C_{1}+|c_{0}|)C^{-1}+4C_{1}C^{-2}(1-C_{1}^{2}C^{-2})^{-1}

+\displaystyle \frac{1}{2}C^{-1}C_{1}^{3}(1-C_{1}C^{-1})^{-1}(eC^{-1}+C_{1})(\frac{3}{4}C_{1}^{2}(1-C_{1}C^{-1})^{-1}(eC^{-1}+C_{1})+1) .

Therefore if we choose C so that NA\leq 1 ,
the induction proceeds. This completes the

estimation over V.
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