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Paperfolding and modular functions

Dedicated to Professor Takashi Aoki on the occasion of his 60th birthday

By

Ahmed SEBBAR*

Abstract

The two lacunary series x +(2) = >, <, 22" x_(z) = Zn>0(—1)"z2n and £(2) = o, sn2",
S2n = Sn,S2n+1 = (—1)™ are all connected to the paperfolding. We study their behaviours at
z = 1 and some of their relations to modular functions. We also investigate the zeros of their
partial sums.

§1. Introduction

This work concerns some analytic questions behind the paperfolding. One of its main
objectives is the study of the generating series

(1.1) £(2) =D sa2", |2 <1

n>1

where (s,,) is the paperfolding sequence defined by
Son = Spn, Sant1 = (_1)71, ne Z—I—-
The origin of the function £(z) has to be found in the two functions

(12) () =D () = 3 <,

n>0 n>0

which in turn are related to the paperfolding through their expansions in continued
fractions [4], [1], [15]. The function x4 (z) is sometimes called Fredholm series though its
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use is probably much more older. To study the values of the Fredholm series at algebraic
points, the classical Liouville’s theorem is not powerful enough. Mahler introduced a new
approach for studying arithmetic properties of certain functions satisfying a functional
equation f(z%) = R(z, f(2)). With his method he was able to show that for an algebraic
o
n 1
number a with 0 < a < 1, Z,‘iio a?", is transcendental. For example k = Z 52 is
n=0
transcendental. This result was first proved by Kempner in 1913. The series (1.2) verify

the functional equations

(1.3) X+(2) =2+ x+ (2, x-(2) =z = x_(2%).

Our interest in x4, x—,€& will be from the angle of continued fractions, already consid-
ered in [4], [1], [15] and also by means of modular forms and the main objective is to
study their singularities on the unit circle as well as their oscillations when x — 17.
The relationship between y+ and automorphic functions is as follows: the first power
series x4 is related to the fourth powers of the Jacobi theta functions and the second
X— is related to an eta product and to the modular curve Xy(14). This is the content
of theorems (6.4), (6.5) of this work. Consequently x4, x— which seem very different,
are, in some sense, connected between them: the n-function is a f-function. We will
present at the end of section (6) an argument due to P. Bundschuh [3] showing that
the presumed relation between x4 and x_ cannot be in any way of algebraic nature.
The theorem (4.1) gives a new presentation of a celebrated identity of Hardy. We give
it here for two reasons: to insist on the fact that the oscillations are essentially due to

the functional equations (1.3), the associated homogeneous equations of which is just

1
loglog —
x

f(z?) = f(x) whose solutions are the periodic functions of the variable 553
0g

of period log 2, hence the evoked oscillations. The second reason is that the shape of
Hardy’s relation is not due to the lacunarity in an essential way. The series (1.1) is not
lacunar but presents similar aspect, maybe more elaborate.

Our main references for modular forms and theta functions are Zagier [24] and Ono
[17]. In what follows, we set z = 2™ 371 > 0.

Definition 1.1. The theta function, associated to the Dirichlet character v is
the series given by

0ulr) = 00() = e = 3w
if ¢ is even, and if v is odd, by

01/1( _ 01/1 Z w 27,7rn T Z ,w
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The summations are over positive integers, unless v is the trivial character, in which
case the summation is over all integers.
In the case of a trivial character, we write 6, = 6 and we know that
o0

Hl—z (14 2212 :iz”Q
—00

We recall first the definition of the Jacobi-Legendre symbol. If p is an odd prime and
a € Z, then

1 if pfa and2? =a(modp) hasasolution,

<g>= 0 if pla,
p .

—1 if pfa and2?=a(modp) does not haveasolution.

If b is a positive odd integer, we extend the definition of the Legendre symbol by
() -11(:)
b j=1 pj

where b = H p; is the prime decomposition. We retain that the sequence
=1

—4
(X_4(n) = (7>> is 4-periodic
n>1
—4
((—)) =(1,0,-1,0,1,0,—1,0,---).
n n>1

The connection of the character x_4 with the Gaussian integers Z[i| = {a+1ib : a,b € Z}
will also be important in this work.
For later use we remind that the Dedekind eta function is

(1.4) - %lojl—z —2242(— ) 3”*":§:(12> 5

—0o0 =1

3

Hence the eta function is a theta function and in fact if y12 = (12), then

(1'5) n= 9X127

12 1 for m =41 (mod 12 )
Xi2(m) = | — | =
m -1 for m = £5 (mod 12) .
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On the other hand, we have the identity [17] (p.17):

0(z) = 0(t) = n°(27)n *(m)n ?(47),

which can be considered as an inversion of (1.5).

§2. Various linked series and the High indices theorem

In general the singularities or the behaviors of a Dirichlet series
o
f(s) = ZaneA"S, Ao <A1 <...
n=0

depend on the coefficients (a,,) and the exponents (\,,). However there are circumstances
where only the exponents determine the behavior of the sum or the singularities of the
series on the boundary of the domain of convergence. An example of a such situation
is given by the outstanding Tauberian theorem of Hardy and Littelwood [9] (Theorem
114, p.173):

Theorem 2.1 (High-Indices Theorem). If f(z) =) 7 agz" converges for
0 < z < 1 where the exponents ny are positive integers satisfying the lacunarity condi-
tion
Ng+1
n

>qg>1

and if f(r) — A as x — 17, then the infinite series ZZO:O ay, converges and its sum is

A.

An immediate consequence of this result is that, due to the divergence of the series
Z an, an = *1 if n is a power of 2 and a,, = 0 otherwise, the radial limits

lim yi(re’), 0<a <27

r—1-
do not exist. Moreover, while the series x(x) is unbounded in [0,1), the alternating
series x_ () verifies 0 < 2 — 2% < y_ () <z < 1 in that interval. Actually [8, 10] as
x — 17 the series x_(z) oscillates round = = % with amplitude 2.75 x 1073, and is

1
asymptotically periodic in loglog — of period log2. The series x_(z) has another
x

log 2
attractive peculiarity. By means of formal manipulations we can find, starting from

x_ (), another solution of the functional equation f(z) = z — f(z%). In fact

Yo (2) = S (-1
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2" (Jog z)™
DIEIPPELES
m)!
n>0 m>0
But very formally

Z(_l)n Z Qnm(iz!g Z)m _ Z (loij)m Z(_zm)n

n>0 m>0 m>0 ’ n>0
-y (log z)™
= | .
= ml(1+2m)

We obtain in this way another solution x_ _(2) of f(2) = z— f(2?) which is, furthermore,
an entire function of log z and a holomorphic function in the disc {|z — 1| < 1} if, for
example, the principal branch of the logarithm is chosen.

Proposition 2.2.  The infinite product

-1 (- 5)

is the unique solution of the functional equation

h(r) = (1 - T)h(%), h(0) = 1.

It represents an entire function of zero exponential type with the following expansion

o 2TL "
M) = 1+T; 1—20)(1—2n1)-.-(1—2)

and hence

] - on dr
h(%) :1+;(1_2n)(1_2n—1)(1—2)d7’n

is a well defined infinite order differential operator with

M (2) =0, B () =0,

The functions x4+ share the following analytic property: the associated Dirichlet se-
ries are solutions of infinite order differential operators, hence the line of convergence are
natural boundaries. It is possible to show that actually, the Dirichlet series associated to
(1.2) cannot be continued analytically across the line of convergence 37 = 0, z = %™,
This means that the power series have the unit circle as a natural boundary [15], [20].
This is another reading of the High Indices theorem.

The functions x4 (z) have also some deep arithmetical properties. K.Mahler showed
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n

in [12] that for every d > 2, the value of Z 2~%" at any no zero algebraic number is
n>0
transcendental.

§3. Continued fractions

We will refer to [4], [1], [15] for a large presentation of paperfolding. A sheet of
paper can be folded once right half over left or left half over right

z’—"\<f

We start with a sheet of paper and fold it in half in the positive sense. The resulting
piece is now folded in a half, always in the positive sense and so forth. After its unfolding
the sheet exhibits the pattern

(3.1) VVAVVAAVVVAAVAA-:--

If we encode the binary sequence by V = +1, A = —1, we obtain the paperfolding

sequence (sy)n>1 satisfying

Son = Sp,m > 1;  Sopt1 = (—1)",n>0
or, equivalently
(3.2) 5, = (=1)% if n=2%1+2b).

We have a general result concerning the expansion of formal power series in continued
fractions:

Theorem 3.1 (Artin).  Let n be an integer. Any formal power series

fX)= > bXeQ(Xxh)

—oco<i<n
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can be expanded uniquely into continued fractions
1
f(X)=ao+ "
a; +
1 a9 _I_ e
- [a07a17a’27 o ]
where a; € Q[X] and dega; > 0 for i > 0.
The expansion in continued fractions of X (z Z 22" is of particular interest.
n>0
It begins as follows [11], [21] :
1 1 1
5 =——=[0,2-1,2+1]
z oz 1
z—1+
z+1
1 1 1
S+ = =[0,2-1,2+2,2,2—1].
-t 2t 0,z2—1,242,2,2 — 1]
More generally if n = 2" and
1 1 1 D
__|__2_|_..._|_W :@ = [0,a1,a2,~~~
z oz z n
with ¢, (z) = 22", then
1 1 1 1 Pn 1
—+—2+"'+22—m+'22m—+1 n+a—[0,a1,a2,-'-,an—l,an-l-l,an— ; aal]
In other words if i is the word a1, as, - ,a,, that is 2 = |0, U] then
n
2 — =0, WP W]
Qn q'n,

with the notation

w?U:aflaaﬁf" yAn—1,0n + 1,an — 1,

This defines an operator S : W — E??W, so that

33) WS WPw S U S ﬁ?%?ﬂ%ﬁ%?ﬁﬁ%ﬁﬁﬁgg N

and the expansion in continued fractions of X (z Z z-
n>0

> ¥ =8%—-1z+1]= lim §"[z—1,z+1], S"=
=~ n—oo

Thus we have the following table

2" s formally given by

-0 .S (n—times).
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n 1 2 31415 6 7| 8 9 (10|11 |12 13| 14| 15
folds VIV I|A]|V |V ANl VI VIV IA|AN]|VIAN]A
arrows || = | = |« | =2 | =2 |« |« | = | 2| =2 ||| 2|« |«
(—=1)mo 1 1 ]1-111 1 {-1-1]1 1 1 {-1(-1}17]-1]-1

The three lines are identical if we attribute to V and — the value 1 and to A and

< the value -1.

§4. Hardy’s identity through differences equations

We give an interpretation of an identity of Hardy by using some differences equa-
tions [8]. This identity reads, for 0 < z < 1:

» 1 1 o (—=1)" t(log1/z)"
(4.1) Z 22" = —— log(log 1/x) + = — -
= log 2 2 log?2 = nl(2n —1)
1 —2kim ~
_ T log 1 2kim [ log 2
log2]§SO <log2>(0g /%)

We consider the power series

1 z"

a” —1n!

(4.2) G(2) =G(z,a) =Y

n>1

where a # 1 is a given positive real number. The function G is an entire function

solution of the functional equation

(4.3) Glzr0) = G, %).

We introduce the new variable u, 2 = —a" and the function
(4.4) H(u) = —2G'(2).

Then

(4.5) H(u+1) — H(u) = jo(u) = a¥e™".

The function j, belongs to the Schwartz space S(R) of infinitely differentiable functions
f such that u”f™) is bounded on R. In particular each of the two series ZmZO Ja(u +
m), >u>1Ja(u —m) converges uniformly on compact sets of R.

Theorem 4.1.  The equation (4.5) has three entire solutions K(u) = K(u,a),
Ki(u) = Ki(u,a) and Ka(u) = Ka(u, a), with
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1)n+1 (n+1)u

(1) K(u) = =350 ST 25
(2) Ki(w) = s Jalu —m).
(3) Ka(u) = = 3,150 Jalu+m).

(4) K(u) =Kq(u) if a>1; Ku)=~Ka(u) if a<1l.

(5) Ki(u) — Kao(u) = P(u) is a periodic function of period 1 given by
ZI\ (1 . 2m7r> 2n7rz'u.
loga

(6) The map which carries K1(u) on Kao(u) is represented by the functional relation
(4.3)

G(z,a) = —G(2, 1),

a’ a
(7) The following identity holds for all a > 1

S oL ().

n>1 ) m>1

The proof of the theorem is based on the difference equation (4.5). Since the second
member j, is in the Schwartz space S(R), we can solve this equation by right iteration,

d
left iteration or localization. More explicitly, let D be the differentiation operator T
x

By Taylor’s formula the equation (4.5) takes the form

(€” = 1) H(u) = ja(w)

or
(1—eP) ’H(u) = ja(u —1).
The formal inverse of the operator (1 —e™") is Z e "D so that the equation (4.5) has
n>0

the solution g (u) = Z Ja(u —m) which is in fact an entire function, the series being
m>1
a series of holomorphic functions on C uniformly convergent on compact sets.

The equation (4.5) written in the form (1 — e?) #(u) = —ja(u) can be solved formally

by right iteration Ko(u) = —3_ < ja(u+m) and we obtain an another entire solution.
The third method to solve (4.5) is by the localization method. We define the operator
1
D'=—b
D y
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hence the equation (4.5) gives

(4.6) (eDl;l)H(u) :/Ouja(a:) da.

is holomorphic in the disc centered at the origin and of radius 2w

The function

and has the power series expansion

z _Oobnn 5
62—1_2)5'2’ |z| < 2m.
n=

The coefficients b,, are the Bernoulli numbers

1 1
67 3 s, V4 307

1
b0:17 b1:_§7 b2:

A formal solution of the equation (4.6) is

Ka(a) = D 4alw) + 3 22 D"D ()

n<1

and an easy calculation shows that

’C3(u) g Z (_1)maum

= ml(amtl —1)°

We observe that we have recovered the function Kz(u) = K(u) from which we derived
the difference equation (4.5).
The difference K1 (u) — K2(u) is a solution of the homogenous equation

Hu+1)—H(u)=0

so it is a periodic function of period 1. The Fourier coefficients can be computed
as in the preceding section. The map a — l is a homeomorphism from (0, 1) onto
(1, +00), so we can suppose in the sequel a > 1, z = a“. The relation (4.3) gives
—2G'(z,a) = EG/(E,l
integrate from —oo to u the identities

> dalw —m) = Ki(z) = K(z)

m>1

/u Ja(x —m)dx = lo_gla (e_“u_m - 1)

—00

1
) which is equivalent to Ki(u) = Kao(1 — u, 5) Finally if we

and use

we obtain the last statement of the proposition.
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Remark 4.1.  'We have seen that Hardy’s identity can be considered as a con-
nexion formula between two solutions to the same difference equation. In principle
other connexion formulas could be obtained by considering other solutions. However,
according to the asymptotic formula

IT(x + 1y)| = V2me 2l |y|m_% (L+7r(zy),

where as |z + iy| tends to oo, r(z,y) tends to 0, uniformly in the strip |z| < a where «
is a constant, the connexion

+00
Ki(u) — Ko(u) = P(u) = Z T(1 — 2nmid)e? miv,

1
with A = oaa’ is very small on the real axis; two different solutions of the same
oga
difference equation can be very close. This has been pointed out, in another context,

by Ramanujan and Hardy (see the discussion in [2]; Entry 17) and also, more recently,
by Tricomi [23] who found that for a =2 or A = 1 = 1.442695... one has for every

og 2
real value =
|P(x) — 1] < 0.0000099.

On the other hand Berndt quotes in [2] the approximation

(S )

1 orlo
2 (1 +0.0000098844 cos | 25 L 9872711 ) ) .
T log 2

We would like to investigate how the functional relations (4.3) and (4.4) can be
linked to modular properties of some Eisenstein series. The function (4.2)

n

Gl2) = Zanl—l%

n>1

1
is an entire function of order 1 and of exponential type —. Its Borel transform is
a
(4.7) B(z,a) = Z ;z_(”ﬂ) |z| > 1
’ “an—1 ’ a

Now we consider

(4.8) E(z a) =€) =)

n>1

1
a™ —1

2", |a] > 1.

This function has some interesting properties. We first prove
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Proposition 4.2.  The function £(z, a) has a meromorphic continuation to the
whole plane with simple poles at a™, n € Z, and with corresponding residues a™.

In fact, from the definition, we see that for |z] < 1

6z, )~ £(2, a) = —
so that )
&(z, a) :ZZ PR

n>1

This last series converges uniformly on compact sets of C\ {a",n € Z,}; the result
follows.
Let B(t) be the function defined for 0 < ¢ < oo by

,_1 ™ ¢ 2t
B(t) = 7 = 5t + 2mt5=(1, ¢*™).

Proposition 4.3.  The function B wverifies the functional relation
1
B(t) + B(;) = 0.
In particular B(1) =0 or

n 1 1
E - = —0.001
2 o r— 5 3 0.0018779

The proof of the proposition is an immediate consequence of the modular transfor-

mation law of the Eisenstein series

1 n 1 ITNT
(49)  Ga(m)=—+ > g =~ T 2™ ai(n) =) d
n>1 n>1 d|n

which satisfies, for all (a ?) € SLy(Z),
v

) = o+ 02Ga(r) - 1D,

at + [
G2(77’—|—5

We obtain the desired formula by choosing « =§ =0, = —1,v=1and 7 =it, t > 0.
Now we show that the basic function (4.8) is related to the Eisenstein series G.
We shall suppose ¢q € C, |¢| < 1 and introduce

n

(4.10) (e q) =D =

n>1

q’I’L
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and
ZTL
411 L= —
(4.11) e =3 o
0
We clearly have x(z, q¢) = zaf(z, q). For |z| <1
z 1
2 - R
x(z 9) = €00, 2)
1
and for |z| > ¢ and a = 7 and from (4.7)
1.1 1 g
B(Z, CL) - ;g(;, CL) - ;X(;: Q)

Theorem 4.4.  Let F(z,q) be defined for |z| <1 by

1 1

F(Z,Q) = (1_q)(1_qz)(1_q z) - 1+nz>;l (1_Q)(1—q ) (1—qn)zn
Then F'(z,q)
X(’Z? q) =z F(Z,Q)

The argument is classical and we repeat it here for the sake of completeness, we
refer to ([18], Chapter 12) for more developments on F'(z,q). First we have

59 = F(z,q)

for

[ =Y o Z C S g

n>1 n>1 " m>0
= Z Z (" Z log =log F(z,q).
m>0n>1 m>0

On the other hand if F(z,q) Z cp 2", then the relation F(z,qz) = (1 — 2)F(z,q)
n>0
gives
co=1, ¢c,(1—-¢")=cp_1, n=>1,

so that

F(z,q) =1+ ZBk(q)zk, Bi(q) =

= 1-1-g(1—¢*)..(1-¢")
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Remark 4.2.  The power series (4.10) and (4.11) defined initially for a € C, |a| # 1
can also be considered for a = €™ for irrational a. Although denominators 1 — ™"
never vanish, their modulus |1 — e!™%| can become very small (phenomenon of small
divisors).

§ 5. Two families of polynomials, The Erd6s-Turan theorem

Jentzsch showed that if a power series has a finite radius of convergence then every
point of its circle of convergence is a limit point of zeros of its partial sums. Szegd
sharpened the theorem of Jentzch by proving that for a power series with finite radius
of convergence there is an infinite sequence of partial sums, the zeros of which are
equi-distributed in Hermann Weyl sense. The meaning of this term is as follows: let
P, (z) be a sequence of polynomials, let the degree of P,(z) be m,, and suppose that
lim m,, = co. The number of the zeros of the polynomial P,(z) in the sector

n—oo
{z€C, a<argz < f}

is called N, (a, 8). We say that the zeros of the sequence P, (z) are equi-distributed if
foralla,€R, B —a <27:

Nn(aaﬁ) = %mn +O(mn)

For a polynomial P(z) = ag + a1z + -+ - a,2" € C[z], apa,, # 0, we introduce

laol +[aa| + - -~ |an|

1P|l =
Vaoay|
and N(«, 3) as above.
Theorem 5.1 (Erdos-Turan).  For each polynomial as above and for every o, 3

reals with 0 <  — a < 27, we have

|N(Oé,6) -

B < 16vilog 1P|l
27

This theorem make precise the o(m,, )-term in Jentzch-Szégo result and clarifies the
angular distribution of the zeros.

The polynomial sections P, ( Z z2k,Qn = Z(—l)kz2k,n > 1 are very lacunar
k=0
with [|P,] = ||@Qn] = n+1, degP = deg @,, = 2". The zeros of P,, and @,, are thus

equi-distributed:
b —a

lim —N a1 (o, ) = 5

n—oo 2N
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n
We can not say as much about the polynomials S,,(z) = Z spx® where sy, is the paper-
k=1
folding sequence, given by (3.2). But the three family of polynomials P, (2), @, (2), Sn(2)

have all their zeros contained in the set {0} U {5 < |z|] < 2}, as does every polynomial

whose coefficients are 0, £1. Furthermore each P,(z) have only one real zero z, which
is negative and z, < z,41. The first twelve zeros z,, are:

z1 = —1.000000000000000000000000000000000000000000000000000000000000000000000

z2 = —0.682327803828019327369483739711048256891188581897998577803 7286066398967

z3z = —0.6592895449569986283320207591165189714731785041876226862903442110856223

z4 = —0.6586275727947914281155763976034397132031395200298308926274658839407222

zs = —0.6586267543014505676645776925986416538401407882505332206733236057119207

ze = —0.6586267543001639224134760102227554371362052786117330805918318056595727

z7 = —0.6586267543001639224134728305795016459409327962398551705216177085272378

zg = —0.658626754300163922413472830579501645940932796220436587062804 7777374586
8299975130224075993074098734387763223946874982322867952183799081653559185989
744257402868967105119981765674169220114927141874085437

zg = —0.658626754300163922413472830579501645940932796220436587062804 7777374586
8299975130224075993074026308163445925523062324487795701245654471086611436057
295820443839306149053769731049528666760996220137777720

z10 = —0.658626754300163922413472830579501645940932796220436587062804 7777374586
8299975130224075993074026308163445925523062324487795701245654471086611436057
295820443839306149053769731049528666760895468423506261

z11 = —0.658626754300163922413472830579501645940932796220436587062804 7777374586
8299975130224075993074026308163445925523062324487795701245654471086611436057
295820443839306149053769731049528666760895468423506261

z12 = —0.658626754300163922413472830579501645940932796220436587062804 7777374586
8299975130224075993074026308163445925523062324487795701245654471086611436057
295820443839306149053769731049528666760895468423506261

The sequence (zk) converges very rapidly to the unique negative real zero of x4 (z).
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§6. x+,x— and modular forms

§6.1. Elliptic curves

This section is a complement of our work [20]. We give an idea on the relation
connecting some lacunary series (like x4, x—) and elliptic curves and modular forms,
taking into account, of course, the existence of a strong relationship between these two
last concepts. The reason is that the moduli of elliptic curves are expressible in terms
of modular forms of the parameter 7, 7 > 0. Moreover, in the 1950’s a precise relation
between elliptic curves and modular forms was formulated, first by Taniyama, then by
Shimura and Weil. We refer to [5] for a thorough presentation. Let E be an elliptic
curve defined over Q, say by an equation y? = 423 — ax — b with rational integers a,
b. For every prime p not dividing the discriminant A = a® — 27b%, we get an elliptic
curve over the finite field F}, with this equation. We therefore have its zeta function,
the numerator of which has the shape 1 — apt + pt?, with a, defined by counting the
number of solutions to the congruence y? = 423 — ax — b (mod p),

1 —ap,+p=4(Fp).

Note that §(F)) is actually one more than the number of solutions to the congruence,
since F has one point at infinity in the projective plane. Following Hasse, we consider
the infinite product

L(E,s) = H(l —ab™* +p' )7
P

Then Wiles’ theorem, conjectured by Taniyama, Shimura and Weil, is [5]

Theorem 6.1 (Modularity theorem).  Let E be an elliptic curve E over Q with
conductor N; there exists f(7), a cusp form of weight 2 for To(N), such that L(f,s) =
L(E,s).

In a very simplified way, Wiles’ theorem says that if an elliptic curve F, say defined
by an equation of the form f(x,y) =0, f(x,y) € Z[z,y], and for any prime p not dividing
its discriminant, let E(F},) the number of solutions to the congruence f(x,y) = 0 mod
p including the point(s) at infinity, written in the form E(F,) =14 p —ap(F). Then
the integer a,(E) is the p—th Fourier coefficient of a cusp form of weight 2, associated
to I'o(IV). Here, N is the conductor of E.
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§6.2. n-products

We recall first some properties of the Dedekind n-function
o

2imT

(1.4), n(r) =2 J] (1 —€*™7). It satisfies [18]

n=1

n(r+1)=n(r), 7 (—%) = V—imn(7)

and for all (a b) € SLy(Z)
cd

. (C” i b) — e(a,b, e, d)(cr + d) 3 (r)

cT +d
where
e(a,b,c,d) = e for ¢=0 and d=1,
e(a,b,c,d) = e (T =5@)-%) for >0
and

n=1

The interest in the n-function lies in the following theorem [17] p.18:

Theorem 6.2. Let N a positive integer and let f(z) = Hnrd (dz) be an n-
d|N
product, rq € Z. If N is such that

Z drqg =0 (mod 24),

AN
Nra _ 0 (mod 24).
d|N
Then
F(E5) = x@e +arre
for all

(ZZ) € Ty(N) = { (ZZ) € SLs(Z) : ¢ = 0 (mod N)}

where k = %Zdw rq. The character x is defined by the Legendre-Jacobi symbol

(d) = ((—Z)ks) s Hdrd.

d|N
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More interesting for us is the example of the n-product

(6.1) S(r) = n(r)n2r)n(7r)n(147).

It is one of the exactly 30 cusp forms, with multiplicative coefficients, of the forms

S
1 7" (axr), a.tr €N,
k=1

discovered by D.Dummit, H.Kisilevskii and J.McKay [6]. It is a newform ([5], [17]) of
weight 2 whose Mellin transform agrees with the Hasse-Weil L-function of the (isogeny
class of the) elliptic curve of equation

vV ray+y=2>—2a.

This curve is modular, of conductor 14 and is generally denoted by Xo(14). We will
soon meet this curve by another method.

§6.3. Main results

We continue to use the previous notations except that z is replaced by ¢, according
to a current usage.

xe@=> d¢" x(@=> (-D"", l¢g <1.
n>0 n>0

We fix an odd positive integer I. let f be a modular form in M5(2l), that is of weight
2 on the group I'g(2]). We assume that f is an eigenform of the Hecke operator 7'(2),
which is defined by

T(2): f=7 a;n)gd" =Y ar(2n)q"
n>0 n>0
It is known that the only eigenvalues of T'(2) on newforms in Ms(2n) are +1 [22]. Let
€ be the eigenvalue of f, and assume that it equals £1. Then for all n
af(2n) = eas(n)

In other words, we have

f=ar(0)+ > arm)xq")

n odd

Now for an arithmetical function a(n) with (1) = 1 we define &(n) by

> (2

n>1 n>1

—1

We have the following lemma, easily proved by taking Mellin transforms.
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Lemma 6.3. Let F,G be two formal power series in q, and let a(n) be arith-

metical function with «(1) =1, then

if and only if

n>1

We now assume that f is normalized, i.e. af(1) = 1. Then we can apply the lemma
to deduce

xel@= Y, ag(n)(f(nz) —as(0).

n>1,nodd

We look at some examples. The first nonzero space is M3(2). It is 1-dimensional
and T'(2) is the identity. Let E be the unique normalized modular form in Ms(2).

:2i+2 > d qn:%(egw‘f),

n>0 \d|n,dodd

where, with a classical notation for two other Jacobi theta functions

bol)= S aF. = > g%

n=0 (mod2) n=1 (mod2)

In particular, we have

d|n,dodd

Summarizing we find (Compare with [15])

Theorem 6.4.

X+@) =57 D an(n)(6i(nz) +0i(nz) —1).

n>1,nodd

Remark 6.1.  In spite of this relation, the functions x4 and theta functions present
different behavior at 1:

Zx N NS NZ3 Z 2 ~log(1 - x)
21—z 2\/—log:c’ log 2

We now consider the function x_: the first even level where T'(2) has eigenvalue
—11is | = 14. The space M5(14) is 4-dimensional. It contains a unique cusp form S,
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which is also the unique eigenform of 7'(2) with eigenvalue —1. We can normalize it so
that ag(1) = 1. Its Fourier expansion is, with ¢ = %™, 37 > 0:

S(7) — g P23+ 205+ T — Bt q® —2¢1% — 4™ — gt 1 16 1 6g1T — 18
12419 — 2021 + 2424 — 5¢25 + 420 + 4677 + ¢® — 602 — 47" — 3?2 — 643 + ¢3F
12437 — 2438 + 843 + 6¢*! + - -

It can be described in closed form using the Dedekind eta function by

S(r) = n(r)n27)n(7r)n(147)

already met in (6.1). This is a concrete example of the Modularity Theorem (6.1). The
L-series of S is the L-function of the elliptic curve X (14):

E:y’+ay+y=2a’—2

given by

Z as(n) _ H 1
I P i PR
where
tE(Fy) = {(z.y) € Fp:y* +ay +y =2’ —a}.
Now the series x_ can be given by n-function as follows

Theorem 6.5. With ¢ = €™, 37 > 0 and x_(q) = Z(—l)”an, we have
n>0

xX-(q) = Z ag(n)n(nm)n2nT)n(Tnr)n(ldnT).
n>1,n odd
Like in theorem (6.4), we can rewrite the identity in the last theorem by using four

theta functions and the identity (1.5).

Definition 6.1.  For each a € N, we define the theta series 8¢ , by

2

96,a(Q) - Z qg_4 .

n€Z,n =a (mod 12)

According to (1.5), n = 01 — 06 5, hence

Corollary 6.6.

X-(@) =Y (-DF* = Y asn)

k>0 n>1, nodd

Z { % } 06,0,1 (nT)QG,az (277’7—)96»@3 (777/7—)06,0,4 (1477/7') ’

a1,a2,a3,a4=1,5 (mod 12)

Here {%} =€, where ¢ =n (mod 3) with — 1 <e < +1.
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According to the fact that the n-function is also a #-function, we are tempted to
think that there must be some hidden relationship between x4 and x_. This relation
should be highly transcendental. Below we sketch that, at least in one respect, there is
no hope for “relationships” of algebraic nature. This observation and the accompanied
proof were communicated to us by Peter Bundschuh [3]:

Let d > 2 be an integer and consider the two power series

o0

X+(z;d) := Z(:I:l)nzdn, |z| < 1.

n=0

They are Mahler’s functions:
x(z;3d) = £xa (2% d) + 2

with x4 (2;2) = x1(2), x—(2;2) = x_(2). Using solely this fact, the Theorem 3.2.2 in
[16] leads to the result that, for any d > 2, the two functions x4 (z;d) and x_(z;d) are
algebraically independent over the rational function field C(z). Using this result, the
Theorem 4.2.1, combined with the Theorem 4.5.1 of [16], implies that, for any integer
d > 2 and for any complex number a with 0 < |a| < 1, we have for the transcendence
degree

trdeggQ (a, x+(a; d), x—(a;d)) > 2.

In particular (and this is the message of theorem 4.2.1 in [16] alone) if a as above is
algebraic, then x4 (a;d), x—(a;d) are algebraically independent over the rational field

Q.

Remark 6.2.  This latter conclusion can also be deduced from the Theorem 3.4.3
of [16] by choosing

n= 27 (bl(gl))k = (17 ]-7 ]-7 ]-7 e ')7 (bgf))k‘ - (17_17 17_17 o )

§ 7. More examples of Mahler’s functions

§ 7.1. Definition and examples

The two fundamental functions in this work

xi(2) = 2 x-(2) =) (-1, |zl <1,

n>0 n>0

are special cases of what we called a Mahler’s function according to [12, 13, 14]. Mahler
developped a method to prove transcendence and algebraic independence of values at
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algebraic points of locally analytic functions satisfying a more general functional equa-
tions of the form
f(z") = R(z. f(2))
where R(z,y) denotes a rational function with coefficients in a number field.
We would like to give two other examples, related to the present work, with their
corresponding expansions. For the first one we consider the formal series:

[e.9] [e.9]

1) =TI =22) = S (-1, 2] < 1,

(tn)n>0 is the Thue-Morse sequence defined by ¢y = 0 and for n € N*

ton =1t
t2n+1 - 1 - tn

0110100110010110 - - -

The first terms are

and we can see by elementary manipulations that f and y are related by

fo) =Tl =22 =[] e e,
n=0 k=1
We clearly have
f(z)
f(z2) = 1 _ Z2

so f(z) is a Mahler’s function. Our other example of a Mahler’s function will be the
main topic of the next subsection.

§ 7.2. Overview on L-series

To consider the other example, we need to recall some facts on I'-function (]18],
p-30 ) and Dirichlet L-series. At the origin, the I-function has the expansion, v being
the classical Euler constant:

2

(7.1) I'(s) = % —7+% (372+%> s+ 0(s).

For our need, it is sufficient to use, instead of the Stirling formula, only ([18], p.38)
(7.2) T(s) =0 (e—%ltl |t|a—%) . s=o+it.

Let ¢ € N,q # 0 and let x be a primitive character modulo ¢q. The L-series with
character x is defined by L(s,x) = Z % We define §(x) =0if ¢ 21 and §(x) =1

n>1
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if ¢ = 1, in which case x = 1 and L(s,x) = ((s), the Riemann zeta function. We also
define k = 3 (1 —x(—1)), so K = 0 if x is even and x = 1 if x is odd. The L-series

L(s,y) = Z X(:L)

n
n>1
and otherwise admits a unique simple pole with residue 1 at s = 1. The completed

Ms0 = ()71 (255 2w

™

extends to a meromorphic function on C which is entire if x # 1

L-function

is entire if ¢ # 1 and has simple poles with residues 1 at s = 0 and s = 1 otherwise.
Furthermore it satisfies the functional equation

(7.3) A(s,x) = e()A(L = 5, %)

where

e
e(x) = Vi

and the Gauss sum associated to x:

)= Y, xl@)ems.

z (mod q)

The Dirichlet L-series L(s,x) = Z x(n) is bounded in every right plane {#ts > 1 +¢€}.
nS
n>1
According to the Phragmén-Lindel6f principle ([18] p.66, 68), for each 0 < ¢ < 1 and

for each Rs > % we have

I'(s+c¢)
I'(s)

By the Phragmén-Lindel6f principle again and the functional equation (7.3) this implies

the

< |s|°.

Lemma 7.1.  L(s, x) is of polynomial growth in each vertical strips

{s=0c+it,a<o<b, |t| > 1}.
. . : DY .
The Dirichlet L-series associated to the character | — | is
n
D\ 1
L = — ) —, Rs>1.
o0 =3 (7 )
n>1
It can be written as an infinite product over primes

Lp(s)=]] (1 — (%) p—5> _1, Rs > 1.

p
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If D =1 then Li(s) = ((s), the Riemann zeta-function, which admits a meromorphic
continuation to all the plane with a simple pole at s = 1. For all other value of D, Lp(s)

is an entire function with

( I if D=-3

if D=-4

ISR

") if D< -4

2h(D)loge .
Savons if D>1

where h(D) is the ideal class number of the quadratic field Q (\/5) and e is the funda-

mental unit of the integer subring Z+ %Z. The L-series Lp(s) satisfies a functional

equation: if we introduce

(=D)srn2T(2)Lp(s) if D <0
Lp(s) =
Dsn=2T(£)Lp(s) if D >0,

then the functional equation reads
Lp(s) = Lp(1l —s).

The constant G = L_4(2) = L (2,(=2)) = 0.9159655941- - - is the Catalan constant.
Given a fundamental discriminant D, we define the Dedekind zeta function of the field

Q (\/5> by

In particular for D = —4, we recover the Dirichlet S-function

Ca(s) =C(s)Lp(s)

H (1 _p—2s)_1 (1- 2—5)—1

p=1(4) p=3(4)

Il
—~
—_

I
.YSI

w
~—
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Since (p(s) has a simple pole at s = 1, its Laurent expansion at s = 1 is
(p(s)=c_1(s—1) " +ecg+eci(s—1)+eals—1)2+---, c 1 #0.
The Euler-Kronecker constant QQ (\/l_?) is defined by

- Co - L/D(l
D= C1 _,y—i—LD(l

~—

~—

If D =1, we merely have (p(z) = ((2), c.1 = 1,¢9 = 1 and ¢y = . We will need the

2
)
T = o
:g—log4+27—4;10g(1—e 2 k)

precise value of the Sierpinski constant [7]:

r(
o

M

v_q =log (277627

[l L

= 0.8228252496 - - -

The other example of Mahler’s functions is given by the study of the following
functional equation

z

(7.4) () = F(2) — 1.

which is as we will see, highly related to the Dirichlet S-function. We introduce the

sequence a, = ( > if n =2%(2ng + 1) and we have

2n0+1

Lemma 7.2.  Let (sp)n>0 be the sequence of the paperfolding, then

Sp = Qp, n > 0.

. —4 —1
In fact if n = 2%(2n0 + 1), 8, = (=1)". But a = <2n0+1) - <2n0+1) -

(—1)", according to a classical result (Gauss, Euler).

Theorem 7.3.  The generating function of the paperfolding sequence

£(z) = Z sn2™, 2] < 1

n>1

is a Mahler’s function. It satisfies the functional equation
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This functional equation for £(z) results immediatly from the lemma (7.2). We give
here another proof which highlights how £(z) is linked to x(z). More precisely

B 4\ B 4 ¢ notl)
S(Z)_Z(znwﬂ)z R (2n0+1>22 e

no>0, k>0
_ 2k (2no+1) _ ( —4 ) 2no+1
z = X+ (z ) .
Z <2n0+1>k220 ngo 2ng + 1

On the other hand from the functional equation y(2%) = x(z) — 2z we have

"= n%o (2no_iLI- 1> X ((Z%OH)Q)
X (e

noZO

—4
But (—) = 0 if n is even, so
n

_4 27’Lo+1 _ _4 n
Z <2n0 + 1) ‘ B Z n)”
n020

n>1
_Z 4n—|—l_Z an+43 _ __*
2
n>0 n>0 1+2
that is
o I
€)= 6() - =
X—4(n . .
The Dirichlet series L(s, x—4) Z has the following two properties
n>1
1
(1) Lis,x-a)= ] [y
p>2, p prime p p

©) L(S,X—4)=Z(4n+1 -5 Gy e (e p-ce D)

1
where ((s,a) = —— — is the Hurwitz zeta function wich reduces to Riemann
n>0 (n T a)s

zeta function for &« = 1. The Hurwitz zeta function has a meromorphic continuation
to all the plane with a simple pole at s = 1. The local analysis at the pole is given by
Lerch formulas:

1 S dt ()
]. - - —1 -_— 2 = —
ool (C(s,a) 5 — 1) ogat 2 * /0 a? 412 2™ — 1 I(«)
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and

1 c° t dt I'(«)
/ = _ = l — 2 t _——_—— = 1 .
C.(0, ) (a 2) oga — «+ /0 arctan o o2t 1 og Jon

For a@ = 1 we recover the classical Riemann zeta function formulas

lim(C(s)— ! >=l—|—2/oo ! dt =7, ('(0)=—logV2r.
0

51 s—1 2 142 e27t — 1

. .. . _ X-a(n) —4\ 1

The conclusion is that the Dirichlet series L(s,x_4) = Z s = Z (7> =
n>1 n>1

has an analytic continuation to all C as do all the Dirichlet series associated with non

principal character. From general facts, we have L (1,x—4) # 0. Actually L(s, x_4) is
the classical Dirichlet S-function and L(1,x_4) = %

Our main result concerning this function (which is not a lacunary series) is the
following decomposition formula, similar to Hardy’s (4.1):

Theorem 7.4.  Let (a,) = (s,) the sequence of the paperfolding, then

1 log 2 1
= _4) —~L _ L _4)— L _4) loglog —
g(aj) 10g2 ( 92 L(Oax 4) 7 (07X 4) + (Oax 4) (Oax 4) og log $>
2ik 2imk 2irk
_]_ mL — _ 1 m F( )L( 7X—4> ]_ T Tog2
+ E ( ? (1 m’;fn 4) (log —> + E los2 i ;OgQ (log —) )
om — x = og T

In this identity the values of the L(s, x_4) at negative integers appear. These are
related to Euler numbers by

Em
L(—m, x—4) = - m >0

which are given by the generating function

1 E,
=> =
cosht n!
n>0

1
In particular L(0, x_4) = 5 It is also known [7] that:

(1)
2m/2

Furthermore, the Euler numbers possess the following asymptotic estimate

22022\ 8y/m [(4n\ "
|E2n| ~ 71-271—{-1 ~ ﬁ (%) y (TL—>+OO)

L'(0,y_4) = log = 0.391594392 - - -
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The proof of Theorem (7.4) depend upon Mellin formulas:

[e%s) 1 a+100
I'(s) = / e v du, Rs > 0; et = % T'(z)u"*dz, a >0, u>0.
0 1T Ja—ico

and a shift of the integral path. For 0 < # < 1 and n = 2¥(2ng + 1)

k 1 aico 1\ 7
g = g% Grotl) — —/ ['(2)27%(2ny +1)7 (log —) dz
x
a

20T S _ioo

and A
— k
E(x) = Z spa = Z (—) g2 (2rotl)
n>1 k,no>0 2no + 1
or
(7.5) £(z) = — /mw 1() (1og > CLlxd)
' T %n ) 87) T1_2-¢

are of two kinds:

1\ * L(z,x_
The poles of ®(z) =TI'(z) (log 5) %

(1) Those of I': —m, m € Z, the corresponding residues are:

Res(®, —m) = (_Ti?m (logé) %

— . Its corresponding residue is

the first of the three terms on the right hand of the formula of the theorem.

and the double pole 0, being also a pole of 7

2ik
2) The other poles of which are ! W, k € Z* and are simple. The corre-
1—2-% log 2
o 1 (2ikr 1\ ~HeF L(EEL, X 4)
sponding residues are r log — —_— .
log 2 log 2 x 2" Tog2

To complete the proof of Theorem (7.4), we use the Lemma (7.1), the estimates (7.2)
and the values of the different residues in the shift to the left of the integration contour
in (7.5).

We end this section by some remarks concerning the impossibility to analytically
extend £(z). The Taylor coefficients of £(z) are +1 and do not form a periodic sequence.
Its radius of convergence is R = 1. Moreover if p(z) is a general polynomial of degree

p(2)
1—zk
sequence. This shows that £(z) has the unit circle as a natural boundary, according to
the following beautiful theorem of G. Szégo [19](p.260):

< k—1, then the Taylor coefficients of

form, from some coefficient on, a periodic
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Theorem 7.5.  Let f(2) =), <o anz"™ be a power series with only finitely many

disctinct coefficients and of radius 1. Then either the unit circle is a natural boundary

of f(2) or f(z) can be extended analytically to a rational function f(z) =

p(2)

1— 2k’

p(z2) €

Clz], k € N.
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