
PHYSICAL REVIEW B 97, 224306 (2018)

Lattice thermal conductivities of two SiO2 polymorphs by first-principles calculations
and the phonon Boltzmann transport equation
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Lattice thermal conductivities of two SiO2 polymorphs, i.e., α quartz (low) and α cristobalite (low), were
studied using first-principles anharmonic phonon calculation and linearized phonon Boltzmann transport equation.
Although α quartz and α cristobalite have similar phonon densities of states, phonon frequency dependencies
of phonon group velocities and lifetimes are dissimilar, which results in largely different anisotropies of the
lattice thermal conductivities. For α quartz and α cristobalite, distributions of the phonon lifetimes effective to
determine the lattice thermal conductivities are well described by energy and momentum conservations of three
phonon scatterings weighted by phonon occupation numbers and one parameter that represents the phonon-phonon
interaction strengths.
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I. INTRODUCTION

Recent computing power has enabled quantitative and
systematic calculation of lattice thermal conductivity by using
the combination of first-principles calculations and solutions
of linearized phonon Boltzmann transport equation [1–19]. In
this study, we applied this calculation to α quartz (low) and α

cristobalite (low) of SiO2. For the other polymorphs, the re-
search on lattice thermal conductivity calculation of stishovite
and CaCl2-type SiO2 in wide pressure and temperature ranges
was reported by Aramberri et al. [20].

The α quartz and α cristobalite are the SiO2 polymorphs. β
cristobalite occurs at 1470 ◦C upon heating α quartz through
the theoretical sequence of β quartz (573 ◦C) and β tridymite
(870 ◦C) and turns into the metastable α-cristobalite phase
upon cooling. High activation energy barrier between α quartz
and α cristobalite prevents the transition from α cristobalite
to α quartz so that they can exist at ordinary temperature and
pressure. Crystal structures of α quartz and α cristobalite are
shown in Fig. 1. The numbers of atoms in the unit cells (na)
are 9 and 12, respectively. Both are made of SiO4 tetrahedra
connected by their vertices. Si atom is located at the center of
each tetrahedron and O atoms are at the vertices.

The difference of these crystal structures is described by
the patterns of the tetrahedron linkages. SiO4 tetrahedra are
more densely packed in α quartz. As a result, the volume per
formula unit is more than ten percent smaller in α quartz.
Their lattice parameters [21,22] are shown in Table II. Their
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space-group types are P 3221 (trigonal) for α quartz and
P 41212 (tetragonal) for α cristobalite, by which both of them
in principle have anisotropic thermal conductivity tensors
with two independent elements, κxx and κzz. Although κxx

and κzz of α quartz were reported [23], only its average value
is known for α cristobalite [24].

The aim of this study is to understand their difference in lat-
tice thermal conductivity. Indeed α quartz shows much larger
anisotropy in lattice thermal conductivity than α cristobalite as
presented in this study. This was investigated from microscopic
properties due to phonons. By the long range interaction among
atoms and softer low frequency phonon modes, we were re-
quired to conduct more careful calculations than we usually do
in conjunction with our software development [25,26]. These
computational details and comparisons of calculations with
experiments are presented in Sec. II. Results of lattice thermal
conductivity calculations and their analysis are presented in
Sec. III. We show similarity and dissimilarity between α quartz
and α cristobalite in mode contributions of lattice thermal
conductivities and distributions of phonon properties as a
function of phonon frequency. Then the characteristics of three
phonon scatterings are discussed.

II. METHOD OF CALCULATION

A. Computational details

We solved linearized phonon Boltzmann transport equa-
tion with single-mode relaxation time approximation [15,27].
We abbreviate this approximation as RTA. For the phonon
and lattice thermal conductivity calculations, we employed
PHONOPY [28] and PHONO3PY [15] software packages. Unless
specially denoted, q-point sampling meshes of 19 × 19 × 19
and 19 × 19 × 14 were used for the lattice thermal conduc-
tivity calculations of α quartz and α cristobalite, respectively.
The isotope scattering effect calculated by the second-order
perturbation theory [15,29] was found negligibly small at
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FIG. 1. Crystal structures of α quartz (left) and α cristobalite
(right). The space-group types are P 3221 and P 41212, respectively.

300 K: 0.4% and 0.3% reductions in κxx and κzz of α quartz,
respectively, and 0.3% and 0.1% reductions in κxx and κzz of
α cristobalite, respectively. Therefore it was not included.

The experimental lattice parameters of α quartz [21] and
α cristobalite [22] were used for all calculations in Sec. III.
Choice of the lattice parameters can have a large impact to the
lattice thermal conductivity since it is known that decreasing
(increasing) lattice parameters increases (decreases) lattice
thermal conductivity as has been well studied as pressure
dependence of lattice thermal conductivity for many years
[30–34]. In Sec. II B, we present calculated lattice thermal con-
ductivity values obtained using experimental and calculated
lattice parameters.

Second- and third-order force constants were calculated
using the supercell approach with finite atomic displacements
of 0.03 Å [15,35]. The supercells of 6 × 6 × 6 (1944 atoms)
and 4 × 4 × 4 (768 atoms) of the unit cells were used for the
calculations of the second-order force constants of α quartz
and α cristobalite, respectively. Use of larger supercells is
in general important to compute phonon-phonon scattering
channels with better accuracy. For α quartz, it was necessary
to take into account the long-range interaction to remove
imaginary acoustic modes in the vicinity of � point. We expect
real-space interaction range among three atoms effective for
lattice thermal conductivity is relatively shorter than that of
the second-order force constants. Therefore, for the third-
order force constants, we chose 2 × 2 × 2 supercells (72 and
96 atoms). Our supercell choices for α quartz and α cristobalite
are considered reasonable after the examinations as presented
in Sec. II B.

Running many supercell first-principles calculations for
the third-order force constants is the most computationally
demanding part throughout the lattice thermal conductivity cal-
culation. To omit the computations of parts of force constants
in some means, e.g., using real-space cutoff distance, can ease
its total computational demand. However we filled all elements
of the supercell force constants. Nevertheless our attempts and
remarks on using the cutoff distance for computing third-order
force constants, that we avoided, are presented in the Appendix.

Nonanalytical term correction [36–38] was applied to dy-
namical matrices to treat long range dipole-dipole interactions.

Though impact of nonanalytical term correction to lattice
thermal conductivity is often negligible for crystals containing
a number of atoms in their unit cells such as α quartz (9 atoms)
and α cristobalite (12 atoms), it turned out to be useful for α

quartz to remove imaginary acoustic modes near � point in
conjunction with using the larger supercell. This was achieved
by the reciprocal space summation of dipole-dipole interaction
contributions shown in Eq. (73) of Ref. [38] by Gonze and Lee
although the simpler approach by Wang et al. [39] could not
solve this problem.

For the first-principles calculations, we employed the plane-
wave basis projector augmented wave method [40] within the
framework of density functional theory (DFT) as implemented
in the VASP code [41–43]. The generalized gradient approxima-
tion (GGA) of Perdew, Burke, and Ernzerhof revised for solids
(PBEsol) [44] was used as the exchange correlation potential.
A plane-wave energy cutoff of 520 eV was employed. The
radial cutoffs of the PAW datasets of Si and O were 1.90 and
1.52 Å, respectively. The 3s and 3p electrons for Si and the
2s and 2p electrons for O were treated as valence and the
remaining electrons were kept frozen. Reciprocal spaces of the
α-quartz supercells used for the calculations of the third- and
second-order force constants were sampled by the 3 × 3 × 3
mesh and at only � point, respectively. The former mesh was
shifted by a half grid distance in c∗ direction from the �-point
centered mesh. For the α-cristobalite supercells, the reciprocal
spaces were sampled by the 2 × 2 × 2 and 1 × 1 × 1 meshes
with half grid shifts along all three directions from the �-point
centered meshes, respectively. To obtain atomic forces, the
total energies were minimized until the energy convergences
became less than 10−8 eV.

Static dielectric constant tensors and Born effective charge
tensors were calculated from density functional perturbation
theory as implemented in the VASP code [45,46]. These tensors
were symmetrized by their space-group and crystallographic-
point-group operations. A sum rule was applied to the Born
effective charge tensors following Ref. [38]. For these cal-
culations, the plane-wave cutoff energy of 600 eV was used.
The reciprocal spaces of the α quartz and α cristobalite were
sampled by the 12 × 12 × 12 and 8 × 8 × 8 k-point sampling
meshes, respectively. The former mesh was shifted by a half
grid distance along c∗ direction and the later mesh was shifted
by half grid distances along all three directions from the
�-point centered meshes.

B. Choices of exchange correlation potentials
and convergence criteria

We performed a series of lattice thermal conductivity
calculations against different exchange correlation potentials,
solutions of linearized phonon Boltzmann transport equation,
and convergence criteria. We present our calculation results
on them. After these examinations, we chose the calculation
settings described in Sec. II A, which are considered to give
results accurate enough for our discussion.

In Fig. 2, convergences of lattice thermal conductivities
with respect to the number of sampling phonon modes in
Brillouin zones are presented. For both α quartz and α

cristobalite, the lattice thermal conductivities converge well by
∼105 phonon-mode sampling points. Since we needed more
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FIG. 2. Lattice thermal conductivities of α quartz and α cristo-
balite calculated at 300 K with different q-point sampling meshes
using the PBEsol exchange correlation potential. Experimental lattice
parameters were employed for these calculations. The lattice thermal
conductivities are plotted as a function of a number of sampled phonon
modes, i.e., product of a number of sampled q points and 3na, where
na = 9 for α quartz and na = 12 for α cristobalite.

sampling phonon modes to converge the curve shapes of
spectrum-like plots such as phonon density of states (DOS), we
chose the 19 × 19 × 19 and 19 × 19 × 14 q-point sampling
meshes for α quartz and α cristobalite, respectively.

In Table I, experimental and calculated lattice thermal
conductivities are presented. For the calculations, we employed
RTA [15,27] and direct [11,15] solutions of linearized phonon
Boltzmann transport equation, and the obtained values were
close to each other for α quartz and α cristobalite. Therefore,
we decided to use the RTA solution, since, compared with
the direct solution, it has an advantage in analyzing results
more easily and intuitively by its closed form of lattice thermal
conductivity formula.

Due to crystal symmetries of α quartz (trigonal) and
α cristobalite (tetragonal), both lattice thermal conductivity

TABLE I. Experimental and calculated lattice thermal conductiv-
ities κ (W/m-K) of α quartz and α cristobalite at room temperature.
In the calculations, RTA and direct solutions of linearized phonon
Boltzmann transport equation are compared. Only the average values
κav were given in the report by Kunugi et al. For the calculations and
experiment by Kanamori et al., we show average values, here simply
defined as κav = (2κxx + κzz)/3, to make rough comparisons.

κxx κzz κav

Expt. by Kanamori et al.a 6.49 13.9 8.97c

Expt. by Kunugi et al.b 7.15
α quartz

RTA 4.9 10.7 6.8c

Direct solution 5.1 10.9 7.0c

Expt. by Kunugi et al.b 6.15
α cristobalite RTA 6.4 7.6 6.8c

Direct solution 6.6 7.2 6.8c

aReference [23].
bReference [24].
cκav = (2κxx + κzz)/3.

tensors have only two degrees of freedom, κxx and κzz. α

quartz exhibits largely anisotropic lattice thermal conductivity
whereas that of α cristobalite is more isotropic as shown in
Table I. From the experimental measurement of α quartz by
Kanamori et al. [23], the ratio κzz/κxx is around 2, which is
well reproduced by our calculation. However the calculations
of κxx and κzz underestimate the experimental values. There is
another experimental measurement of powder sample reported
by Kunugi et al. [24]. By taking κav = (2κxx + κzz)/3 as an av-
eraged value along orientations, the calculation underestimates
the experiment. In the same report by Kunugi et al., they also
showed the measurement of powder α cristobalite, which is
overestimated by the calculation. Since in this study, phonon-
defect collisions are not considered for simplicity, calculations
should tend to overestimate the experiments. In α cristobalite,
many defects are created during the phase transition from the
cubic β cristobalite to tetragonal α cristobalite upon cooling.
Therefore it is reasonable that the calculation overestimates
the experiment in α cristobalite. In α quartz, the calculation
underestimates more than 20% relative to the experimental
value by Kanamori et al. This absolute amount of error can
occur depending on the choice of the exchange correlation
potential or the lattice parameters, which are discussed below,
however the fact that the calculation underestimates the exper-
iments is unusual. We consider that DFT with these popular
exchange correlation potentials such as PBEsol are difficult
to predict the lattice thermal conductivity of α quartz as good
as that can be achieved for a majority of other compounds.
By the report by Linnera and Karttunen on Cu2O, the use of
PBE0 hybrid functional [47,48] with 25% Hartree-Fock and
75% PBE exchange improved the calculated lattice thermal
conductivity compared with using PBE [47], where the former
gave a roughly two times larger value than the latter [49].
Like this example, to obtain even better quantitative result,
we probably need a better treatment of many body interaction
of electrons although the qualitative result of α quartz would
remain unchanged. In addition, the use of hybrid functionals
is highly computationally demanding to apply to the lattice
thermal conductivity calculation of α quartz and it is beyond
our current computational resource. Therefore we employed
the exchange correlation potential of PBEsol rather than a
hybrid functional method.

It is not always the case that we can fortunately refer to
experimental lattice parameters on lattice thermal conductivity
calculations. Therefore it is of interest to see how much
different lattice thermal conductivities are calculated using
the lattice parameters determined by the first-principles cal-
culations and those calculated with the experimental lattice
parameters. In Table II, the experimental lattice parameters
[21,22] of α quartz and α cristobalite and those optimized by
calculations are presented. For the calculations, we employed
the exchange correlation potentials of PBEsol, local density
approximation (LDA) according to Ceperly and Alder as
parameterized by Perdew and Zunger [50,51], and GGA in the
Perdew-Burke-Ernzerhof form (PBE) [47]. Thermal expansion
was not considered in the calculations. The calculated lattice
parameters were underestimated by LDA and overestimated
by PBEsol and PBE.

As shown in Table III, with the calculated lattice parameters,
larger lattice thermal conductivities of α quartz and α
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TABLE II. Experimental and calculated lattice parameters of α

quartz and α cristobalite. For the calculations, LDA, PBEsol, and PBE
exchange correlation potentials were used and compared.

a (Å) c (Å)

Expt.a 4.913 5.405
Calc./LDA 4.873 5.374

α quartz
Calc./PBEsol 4.960 5.453

Calc./PBE 5.028 5.518

Expt.b 4.971 6.928
Calc./LDA 4.956 6.887

α cristobalite
Calc./PBEsol 5.045 7.036

Calc./PBE 5.092 7.114

aReference [21].
bReference [22].

cristobalite were obtained by the exchange correlation
potentials that give smaller lattice parameters (Table II)
following the general trend of the volume dependence, i.e.,
κLDA > κPBEsol > κPBE with V0,LDA < V0,PBEsol < V0,PBE,
where V0 is the volume of the unit cell. When using the exper-
imental lattice parameters, the lattice thermal conductivities
were calculated in the opposite order, κPBE > κPBEsol > κLDA.
From these calculations, we can see distinguishable effects by
the choices of the exchange correlation potentials: One is in
determining lattice parameters and the other is in calculating
forces on atoms. However since the values and the ratios
κzz/κxx in Table III are close enough, we consider that any
choice given here is found a reasonable choice.

We investigated the effects on calculated lattice thermal
conductivities by different choices of supercell size used for the
calculation of the third-order force constants and finite atomic
displacement distance and plane-wave cutoff energy used for
the calculations of the second- and third-order force constants.
The k points of the supercell reciprocal spaces were sampled
with equivalent density meshes to those written in Sec. II A
except for that of 3 × 3 × 2 supercell of α cristobalite where
the 2 × 2 × 2 sampling mesh shifted in half grid distances
along all directions from the �-point centered mesh was used.

TABLE III. Calculated lattice thermal conductivities κ (W/m-K)
of α quartz and α cristobalite at 300 K with respect to the choices
of lattice parameters (see Table II) and the exchange correlation
potentials (XC func.) of PBEsol and LDA.

Lattice params. XC func. κxx κzz

Calc./LDA LDA 4.9 10.8
Calc./PBEsol PBEsol 4.2 8.7

Calc./PBE PBE 3.7 6.9
α quartz

Expt. LDA 4.3 9.2
Expt. PBEsol 4.9 10.7
Expt. PBE 5.5 12.1

Calc./LDA LDA 5.7 6.6
Calc./PBEsol PBEsol 5.2 5.9

Calc./PBE PBE 5.2 5.8
α cristobalite

Expt. LDA 5.3 6.1
Expt. PBEsol 6.4 7.6
Expt. PBE 7.2 8.7

TABLE IV. Calculated lattice thermal conductivities κ (W/m-K)
of α quartz and α cristobalite at 300 K with respect to supercell
size used to calculate third-order force constants and plane-wave
energy cutoff (eV) and atomic displacement distance used to calculate
second- and third-order force constants.

Supercell Displacement PW cutoff κxx κzz

2 × 2 × 2 0.03 520 4.9 10.7
3 × 3 × 2 0.03 520 4.7 10.3
2 × 2 × 3 0.03 520 4.7 10.5
1 × 1 × 1 0.03 520 4.4 9.5

α quartz
2 × 2 × 2 0.03 600 5.0 10.8
2 × 2 × 2 0.03 440 4.9 10.6
2 × 2 × 2 0.01 520 5.1 11.0
2 × 2 × 2 0.05 520 4.2 9.5

2 × 2 × 2 0.03 520 6.4 7.6
3 × 3 × 2 0.03 520 6.3 7.4
2 × 2 × 1 0.03 520 5.7 6.6

α cristobalite
1 × 1 × 1 0.03 520 5.0 5.3
2 × 2 × 2 0.01 520 6.4 7.6
2 × 2 × 2 0.05 520 6.2 7.4

These results show, for both α quartz and α cristobalite, that
2 × 2 × 2 supercells are the reasonable choices considering
the tradeoff of convergences of the lattice thermal conduc-
tivity values and the required computational demands (see
Appendix) with respect to our current computational resource.
It also shows the use of the primitive unit cells for third-order
force constants calculations is not a bad choice if a purpose is
the rough estimation.

The choice of 0.05 Å displacement distance induces de-
crease of lattice thermal conductivity for α quartz. This is
considered due to inclusion of higher order anharmonicity. In
general, decreasing the displacement distance, numerical error
in force constants is magnified. The results by the choice of
0.01 Å displacement distance give similar results with those
by 0.03 Å. This means that the numerical errors and inclusions
of higher order anharmonicity are managed to be small by
the choice of 0.03 Å displacement distance for our computer
simulation settings (Table IV).

III. RESULTS AND DISCUSSION

In RTA, lattice thermal conductivity κ is written in a closed
form [27]:

κ = 1

NV0

∑
λ

Cλvλ ⊗ vλτλ, (1)

where N and V0 are the number of unit cells in the system and
volume of the unit cell, respectively. The suffix λ represents the
phonon mode as the pair of phonon wave vector q and branch
j , λ ≡ (q,j ), and similarly we denote −λ ≡ (−q,j ). Cλ is the
mode heat capacity given as

Cλ = kB

(
h̄ωλ

kBT

)2 exp(h̄ωλ/kBT )

[exp(h̄ωλ/kBT ) − 1]2
, (2)

where ωλ = ω(q,j ) is the phonon frequency, T is the tem-
perature, and h̄ and kB denote the reduced Planck constant
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FIG. 3. Phonon band structures and DOS of (a) α quartz and (b) α cristobalite. In the DOS plots on the right hand sides of the band structures,
the solid and dotted curves depict the partial DOS of Si and O, respectively, and the curves under shadow show the total DOS. The special point
symbols of wave vectors follow the convention provided in the Bilbao crystallographic server [52].

and Boltzmann constant, respectively. vλ is the phonon group
velocity defined as the gradient of the phonon energy surface:

vλ = ∇qω(q,j ). (3)

τλ is the single-mode relaxation time and we use phonon
lifetime as τλ. We calculated phonon lifetime τλ = 1

2�λ(ωλ) by
[15,35]

�λ(ω) = 18π

h̄2

∑
λ′λ′′


(−q + q′ + q′′)Nλ′λ′′(ω)|�−λλ′λ′′ |2, (4)

where

Nλ′λ′′(ω) = (nλ′ + nλ′′ + 1)δ(ω − ωλ′ − ωλ′′) + (nλ′ − nλ′′ )

× [δ(ω + ωλ′ − ωλ′′) − δ(ω − ωλ′ + ωλ′′ )], (5)

with nλ = [exp(h̄ωλ/kBT ) − 1]−1 as the phonon occupation
number at equilibrium. �λλ′λ′′ gives the phonon-phonon inter-
action strength among three phonons calculated from second-
and third-order force constants. 
(q + q′ + q′′) ≡ 1 if q +
q′ + q′′ = G otherwise 0, where G is the reciprocal lattice
vector. This constraint comes from the lattice translational
invariance that appears inside �λλ′λ′′ [15], however it is made
visible in Eq. (4) for the analysis given below. More details such
as the phase convention, coefficients, and �λλ′λ′′ are found in
Ref. [15].

Phonon band structures and DOS of α quartz and α

cristobalite are shown in Figs. 3(a) and 3(b), respectively.
These phonon structures in their shapes show reasonable agree-
ments with previous calculations and experiments reported in
Refs. [37,53–57]. Between α quartz and α cristobalite, their
total and partial DOS curves are analogous. In detail, the
position of the first peak of α quartz from 0 THz is located
at higher phonon frequency than that of α cristobalite. Their
first peak positions roughly correspond to M and L points of
α quartz and M point of α cristobalite in respective phonon
band structures. These low phonon modes are considered to be
made of rigid unit motions of SiO4 tetrahedra [58–60], i.e., the
phonon band structures at low frequencies reflect the different
styles of the tetrahedron linkages.

To visualize phonon mode contribution to lattice thermal
conductivity, we define κ(ω) as

κ(ω) ≡ 1

NV0

∑
λ

Cλvλ ⊗ vλτλδ(ω − ωλ) (6)

to be

κ =
∫ ∞

0
κ(ω)dω. (7)

Compared with phonon DOS written as 1/N
∑

λ δ(ω − ωλ),
Eq. (6) is considered as a weighted DOS and each weight
Cλvλ ⊗ vλτλ/V0 is understood as a microscopic contribution
of phonon mode λ to lattice thermal conductivity at ωλ. In
Fig. 4(a), κ(ω) of α quartz and α cristobalite are drawn as
a function of phonon frequency at 300 K. We can see large
peaks below 5 THz, where the phonon modes determine more
than 50% of κxx and κzz of α quartz and α cristobalite. The
curve shapes of κ(ω) are similar to those of the phonon DOS
below their first peaks. Therefore it is considered that the
number of states is the dominating factor of the lattice thermal
conductivities in these phonon frequency ranges. Above 5 THz,
κ(ω) are relatively small, however they contribute little by little
to κ up to ∼25 THz.

Anisotropy of lattice thermal conductivity, i.e., the ratio
κzz/κxx , is larger in α quartz than in α cristobalite. The phonon
mode contributions to the anisotropic κ are discussed using
cumulative lattice thermal conductivity given by

κc(ω) =
∫ ω

0
κ(ω′)dω′. (8)

Obviously limω→∞ κc(ω) = κ from Eq. (7). The ratios
κc

zz(ω)/κc
xx(ω) are shown in Fig. 5, where α quartz and α

cristobalite present similar behaviors, although their intensities
are different. Increasing phonon frequency from 0 THz, their
ratios rapidly increase at low phonon frequencies and start to
decrease gently until the ratios become κzz/κxx . This difference
is exhibited in distributions of vλ ⊗ vλ that are written in
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FIG. 4. (a) Mode contributions of lattice thermal conductivities
κ(ω) at 300 K and (b) distributions of direct-vector-products of group
velocities w(ω) [see Eq. (9)] calculated for α quartz and α cristobalite
with respect to phonon frequency. Both in (a) and (b), dotted and solid
curves depict their xx and zz components, respectively.

analogy to κ(ω) of Eq. (6) as

w(ω) ≡ 1

NV0

∑
λ

vλ ⊗ vλδ(ω − ωλ). (9)

w(ω) are shown in Fig. 4(b). Below 5 THz, the ratio between
wzz(ω) and wxx(ω) is clearly larger in α quartz than in α

cristobalite.
Comparing Figs. 4(a) and 4(b), increasing phonon fre-

quency, κ(ω) more quickly decrease after first large peaks
than w(ω) in both α quartz and α cristobalite. This is due to
phonon frequency dependencies of Cλτλ, however the effect
of Cλ to the curve shapes of κ(ω) with respect to those of
w(ω) is small since Cλ is approximately constant ∼kB at 300 K
below 10 THz. In Fig. 6, τλ are plotted by dots as a function of
phonon frequency. Increasing phonon frequency from 0 THz,
the phonon lifetimes decrease quickly and then keep roughly
constant with relatively small values. Both α quartz and α

FIG. 5. Ratios between zz and xx elements of cumulative lattice
thermal conductivities, κc

zz(ω)/κc
xx(ω), in α quartz (solid curve) and

α cristobalite (dashed-dotted curve) at 300 K.

FIG. 6. Phonon lifetimes of α quartz and α cristobalite at 300 K
with respect to phonon frequency. Each dot corresponds to one phonon
mode. The points are sampled on the 19 × 19 × 19 mesh for α quartz
and 19 × 19 × 14 mesh for α cristobalite in the respective Brillouin
zones.

cristobalite show the same trend but with different rate of
decrease, which clearly impacts the shapes of κ(ω) in Fig. 4(a),
e.g., κ(ω) of α cristobalite corresponding to the second peak
of w(ω) at ∼3 THz is removed by the decrease of τλ.

Recalling Eq. (4), τλ is constructed from the wave vec-
tor constraint 
(q + q′ + q′′), weighted energy conservation
Nλ′λ′′ (ωλ), and |�λλ′λ′′ |2. To make our discussion simple, we
replace |�λλ′λ′′ |2 by a constant value P̃ if q + q′ + q′′ = G or
by 0 otherwise. As an attempt, we use P̃ = P̃av defined as an
average of |�λλ′λ′′ |2 by

P̃av ≡ 1

(3na)3N2

∑
λλ′λ′′

|�λλ′λ′′ |2 = 1

3naN2

∑
λ

Pλ, (10)

where Pλ is that for one phonon mode [15]:

Pλ ≡ 1

(3na)2

∑
λ′λ′′

|�λλ′λ′′ |2. (11)

Since (3na)2NP̃av of α quartz and α cristobalite give the
equivalent values as shown in Table V, we expect that they
have similar phonon-phonon interaction strengths.

With P̃ , �λ(ω) is reduced to

�̃λ(ω) = 18π

h̄2 P̃
∑
λ′λ′′


(−q + q′ + q′′)Nλ′λ′′(ω). (12)

In Eq. (12), the summation on the right hand side is made
of three phonon scattering channels weighted by phonon
occupation numbers, which can be computed from the second-
order force constants. The lattice thermal conductivities calcu-
lated with P̃ = P̃av and τ̃λ = (2�̃λ)−1, that we denote κ̃ , are
presented in Table V. These values are one order of magnitude
smaller than the values in Table I, however the anisotropies

TABLE V. P̃av (meV2) [see Eq. (10)] and lattice thermal conduc-
tivities κ̃ (W/m-K) of α quartz and α cristobalite calculated using P̃av

at 300 K. To align the scale of P̃av between α quartz and α cristobalite,
(3na)2N are multiplied with corresponding P̃av, where na = 9 and
N = 19 × 19 × 19 for α quartz and na = 12 and N = 19 × 19 × 14
for α cristobalite.

(3na)2NP̃av κ̃xx κ̃zz

α quartz 2.67 0.54 1.16
α cristobalite 2.78 1.00 1.17
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FIG. 7. κ̃(ω), mode contributions of lattice thermal conductivities
of α quartz and α cristobalite calculated with P̃ = P̃av at 300 K as a
function of phonon frequency. Dotted and solid curves depict κ̃xx and
κ̃zz, respectively.

κ̃zz/κ̃xx are well reproduced, and as shown in Fig. 7, the
curve shapes of the mode contributions of lattice thermal
conductivities, denoted by κ̃(ω), are almost identical to those
of κ(ω) presented in Fig. 4(a).

In Fig. 8, Pλ of α quartz and α cristobalite are plotted as a
function of phonon frequency. Their distributions are similar
except at low phonon frequency domains where the phonon
DOS are small, which indicates that the different styles of
linkages of SiO4 tetrahedra in their crystal structures impact
little to determine the phonon-phonon interaction strengths. In
Fig. 8, there are four characteristic phonon frequency domains.
The locations of these domains synchronize with the phonon
DOS shown in Figs. 3(a) and 3(b). Between 0 to 15 THz,
Pλ are roughly constant, by which, apart from their different
magnitudes, similar phonon frequency dependencies of τ̃λ to
those of τλ are obtained as shown in Fig. 9. This enables the
curve shapes of κ̃(ω) to become equivalent to those of κ(ω).
Since more than 90% of the lattice thermal conductivities of α

quartz and α cristobalite are recovered in κ(ω) below 15 THz,
having a good estimate of the constant value, e.g., P̃ ∼ P̃av ×
10−1, it is considered possible to predict the lattice thermal
conductivities without computing third order force constants.
Pλ start to increase from ∼15 THz to the phonon band gap at
∼25 THz. The two small domains above 30 THz correspond
to respective two localized phonon bands. The ratio of Si
and O partial DOS gradually increases by increasing phonon
frequency below 15 THz. This represents that SiO4 rigid

FIG. 8. (3na)2Pλ of α quartz and α cristobalite with respect to
phonon frequency. Here (3na)2 is multiplied with Pλ to align the scale
between α quartz and α cristobalite. Each dot corresponds to one
phonon mode. The points are sampled on the 19 × 19 × 19 mesh for
α quartz and 19 × 19 × 14 mesh for α cristobalite in the respective
Brillouin zones.

FIG. 9. τ̃λ, phonon lifetimes of α quartz and α cristobalite calcu-
lated with P̃ = P̃av at 300 K as a function of phonon frequency (black
dots). To compare, τλ × 10−1 (Fig. 6) are shown as the gray dots
behind the black dots. The points are sampled on the 19 × 19 × 19
mesh for α quartz and 19 × 19 × 14 mesh for α cristobalite in the
respective Brillouin zones.

units vibrate translationally at lower phonon frequencies and
rotationally at increasing phonon frequencies. Above 15 THz,
it is considered that the larger Pλ, i.e., larger anharmonicity,
arises due to phonons that distort SiO4 tetrahedron units.

IV. SUMMARY

The lattice thermal conductivity calculations were per-
formed for α quartz and α cristobalite using first-principles
anharmonic phonon calculation and linearized phonon Boltz-
mann transport equation. Since direct and RTA solutions gave
similar values of the lattice thermal conductivities that also
agree well with the experimental values, we focused on our
discussion using the RTA solutions and phonon frequency
dependencies of the phonon properties. The mode contri-
butions of the lattice thermal conductivities κ(ω) show the
characteristic differences of phonon mode contributions to
the lattice thermal conductivities between α quartz and α

cristobalite. Below 2 THz for α cristobalite and 3 THz for
α quartz, phonon DOS and vλ ⊗ vλ determines the shapes of
κ(ω). Above 5 THz, κ(ω) becomes much smaller than those
below 5 THz following the phonon frequency dependence
of τλ. The large difference of anisotropies in the lattice
thermal conductivities of α quartz and α cristobalite was
found. This is mainly attributed by the distributions of the
phonon group velocities below 5 THz. The distributions of
the phonon lifetimes effective to determine the lattice thermal
conductivities around room temperature were well described
by the momentum conservation 
(q + q′ + q′′), the energy
conservation weighted by the phonon occupation numbers
Nλ′λ′′ (ωλ), and a parameter P̃ that represents the phonon-
phonon interaction strengths.
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APPENDIX: EFFECT OF USING REAL-SPACE CUTOFF
TO CALCULATE SUPERCELL THIRD-ORDER

FORCE CONSTANTS

Use of real-space cutoff distance to compute third-order
force constants in the supercell approach may drastically
reduce computational demand of lattice thermal conductivity

calculation. However it should be used carefully since the
side effect such as degradation of the numerical quality has
not been well understood. In this Appendix, we provide our
examinations on the effect of using a cutoff distance for
the third-order force constants calculations. There are many
possible ways to cut off third-order force constants. Below, we
explain our scheme and show the convergence analysis.

FIG. 10. Lattice thermal conductivities at 300 K with respect to cutoff distances of atomic pairs used to compute third-order force constants
employing (a) α-quartz 3 × 3 × 2 supercell (162 atoms), (b) α-quartz 2 × 2 × 2 supercell (72 atoms), (c) α-quartz unit cell (9 atoms), (d)
α-cristobalite 3 × 3 × 2 supercell (216 atoms), (e) α-cristobalite 2 × 2 × 2 supercell (96 atoms), and (f) α-cristobalite unit cell (12 atoms). The
selected cutoff distances are those closest to but below (a) 2, . . . ,11 Å, (b) 2, . . . ,8 Å, (c) 2, 3, 3.5, and 4 Å, (d) 2, . . . ,12 Å, (e) 2, . . . ,10 Å,
and (f) 2, . . . ,5 Å, respectively. The filled circles depict κzz/2 for α quartz and κzz for α cristobalite, and the open circles show κxx . The cross
symbols present the numbers of supercells with displacements that were used to compute the third-order force constants with the respective
cutoff distances. The rightmost points correspond to the results obtained without using the cutoff distances. Lines are eye guides.
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1. Scheme

We calculate supercell third-order force constant element
from two atomic displacements and a force on an atom by
[15],

�αβγ (lκ,l′κ ′,l′′κ ′′) � −Fγ [l′′κ ′′; u(lκ),u(l′κ ′)]
uα(lκ)uβ(l′κ ′)

, (A1)

where uα(lκ) means the finite displacement of the atom at
the position r(lκ) along the αth Cartesian axis. The indices l

and κ denote the lattice point and the atom in the unit cell,
respectively. Fγ [l′′κ ′′; u(lκ),u(l′κ ′)] gives the force that the
atom l′′κ ′′ experiences by two atomic displacements u(lκ) and
u(l′κ ′). Here it is assumed that we can obtain forces on all atoms
in the supercell at once by each supercell calculation with
a pair of atomic displacements. This assumption is currently
normal in the DFT calculations since the computation of forces
from existing electronic wave function requires relatively small
computation.

Our cutoff distance Rcut is used to collect all the displaced
atomic pairs whose distances

√
|r(lκ) − r(l′κ ′)|2 are shorter

than Rcut. The set of these pair displacements fills all supercell
third-order force constant elements except for the elements
whose three atoms are mutually more distant than Rcut.

2. Results

In this section, we present calculated lattice thermal con-
ductivities using different cutoff distances and see the conver-
gences in α quartz and α cristobalite using different supercell
sizes. We employed 3 × 3 × 2 and 2 × 2 × 2 supercells and
unit cells for these examinations. The computations of third-
order force constants using the 3 × 3 × 2 supercells were
computationally very demanding for our current computational
resource to fill all the elements, but not with the 2 × 2 × 2. For
α quartz, one 3 × 3 × 2 supercell calculation was five times
more computationally demanding than one 2 × 2 × 2 supercell
calculation. For α cristobalite, that was nine times because
of the denser k-point sampling for the 3 × 3 × 2 supercell
calculation of α cristobalite.

The purpose to use the cutoff distance is to obtain accurate
third-order force constants with reasonable computational
demand though it is safer to compute all elements of supercell
force constants to avoid a sudden cut of those elements since it
is difficult to predict what happens after Fourier transformation
of the third-order force constants with the cut.

In Figs. 10(a), 10(b) and 10(c), the lattice thermal con-
ductivities of α quartz calculated against the cutoff distances
are shown for three different supercell sizes. The lattice
thermal conductivities generally decrease increasing the cutoff
distance in these supercell sizes. It looks that each lattice
thermal conductivity converges toward its rightmost point that
corresponds to the full calculation where all elements of the
supercell third-order force constants were filled. In Fig. 10(b),
at the rightmost point, the lattice thermal conductivity increases
in contradiction to the tendency of decreasing with increasing
the cutoff distance. This is considered a visible effect of the
cut of the supercell third-order force constants elements. For α

cristobalite as shown in Figs. 10(d), 10(e) and 10(f), the conver-
gence is achieved at relatively shorter cutoff distance of ∼4 Å.
This is about the distance between two atoms in neighboring
SiO4 tetrahedra. However the calculation of the third-order
force constants with the 3 × 3 × 2 supercell using ∼4 Å cutoff
distance is already more computationally demanding than the
full calculation with the 2 × 2 × 2 supercell. Therefore the
supercell size has to be chosen systematically along with
the choice of the cutoff distance. Comparing Figs. 10(a) and
10(d), we can see lattice thermal conductivity of α cristobalite
converges more quickly than that of α quartz. For α quartz,
it is difficult to define the convergence criterion to choose the
cutoff distance for the accurate lattice thermal conductivity
calculation.

For a purpose of the rough estimation, any choice of the
cutoff distance and supercell size seems acceptable in the
present case of α quartz and α cristobalite. In these SiO2

polymorphs, the first nearest neighbor distance is well isolated
because of SiO4 tetrahedra. This may be the reason why the
atomic interaction range effective to determine lattice thermal
conductivity is found to be short.
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