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We present the numerical solution of the leading order QCD evolution equation for the orbital angular 
momentum distributions of quarks and gluons and discuss its implications for the nucleon spin sum rule. 
We observe that at small-x, the gluon helicity and orbital angular momentum distributions are roughly of 
the same magnitude but with opposite signs, indicating a significant cancellation between them. A similar 
cancellation occurs also in the quark sector. We explain analytically the reason for this cancellation.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Over the past decades, tremendous effort has been poured into 
determining the partonic helicity contributions to the nucleon spin. 
It has been known for quite some time that quarks’ helicity ��

accounts for only a quarter of the nucleon spin. A recent NLO 
global QCD analysis has found a nonzero contribution from the he-
licity of gluons �G [1]. When combined, these two contributions 
come closer to, but still fall short of the expected value of 1

2 . One 
might expect that the remaining discrepancy could be resolved by 
a precise future determination of the gluon helicity distribution 
�G(x) in the small-x region where the current theoretical uncer-
tainties are overwhelmingly large.

However, a priori there is no reason to expect that the nucleon 
spin entirely originates from partons’ helicity. As is clear from the 
Jaffe–Manohar sum rule [2],

1

2
= 1

2
�� + �G + Lq + Lg . (1)

The resolution of the spin puzzle cannot be complete without a 
full understanding of the orbital angular momentum of quarks Lq

and gluons Lg [3,4]. Unfortunately, at the moment very little is 
known about the actual value of Lq,g , and the community still has 
a long way to go in extracting them from experiments. The recent 
proposals of observables for Lq,g [5–7] as well as the first lattice 
QCD computation of Lq [8] are particularly encouraging in this di-
rection.
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SCOAP3.
In this paper, we investigate the QCD evolution of the orbital 
angular momentum. The four terms in (1) actually depend on the 
renormalization scale Q 2 [9]. Moreover, they can be written as the 
integral over Bjorken-x of the corresponding partonic distributions. 
For �� and �G , these are the usual polarized parton distributions 
��(x) and �G(x). A less known fact is that the x-distributions for 
Lq,g can also be defined [3,10–13]

Lq,g(Q 2) =
1∫

0

dxLq,g(x, Q 2). (2)

The Q 2-evolution of Lq,g(x, Q 2) has been previously studied 
in [14] by solving the renormalization group equation for the 
moments Lq,g( j, Q 2) = ∫ 1

0 dxx j−1 Lq,g(x, Q 2) and performing the 
inverse Mellin transformation. Now that we know the fully gauge 
invariant definitions of Lq,g(x, Q 2) and their detailed twist struc-
ture [12], we think it is timely and worthwhile to revisit this 
problem, by numerically solving the DGLAP-like evolution equation 
for Lq,g(x, Q 2) directly in the x-space. We shall be particularly in-
terested in the small-x behavior of Lq,g(x) which was not a focus 
of interest in [14], but is phenomenologically important in view of 
the recent controversy over the large uncertainties in �G . Indeed, 
we find that there is a significant cancellation between the helic-
ity and orbital angular momentum distributions at small-x both in 
the quark and gluon sectors. We explain analytically that such a 
cancellation is a robust feature of the evolution equation.

In this work, we restrict ourselves to the Q 2-evolution equa-
tion, and do not discuss the evolution equation in x. The latter 
requires an intricate resummation of double logarithms αs ln2 1/x
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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which has recently enjoyed renewed interest for the helicity dis-
tributions [15–19], but not yet for the orbital angular momentum 
distributions. While we push our numerical simulation down to 
very small values of x, one has to keep in mind that at some point 
the DGLAP equation breaks down, and should be smoothly taken 
over by the small-x equation. Where and how exactly this transi-
tion occurs is presently not understood.

2. Evolution equation

Let us express the four terms in (1) as the first moment in 
Bjorken-x of the corresponding partonic distribution functions

��(Q 2) =
∑

f

1∫
0

dx(�q f (x, Q 2) + �q̄ f (x, Q 2)),

�G(Q 2) =
1∫

0

dx�G(x, Q 2),

Lq(Q 2) =
∑

f

1∫
0

dx(L f (x, Q 2) + L̄ f (x, Q 2)),

Lg(Q 2) =
1∫

0

dxLg(x, Q 2), (3)

where f is the flavor index. The polarized quark �q f (x), anti-
quark �q̄ f (x) and gluon �G(x) helicity distributions are standard, 
whereas the orbital angular momentum distributions for quarks 
L f (x), antiquarks L̄ f (x) and gluons Lg(x) are perhaps less famil-
iar. Their operator definitions in the light-cone gauge (A+ = 0) 
were first introduced in [11] (see also [10]). The fully gauge in-
variant definitions of Lq,g(x) in QCD have been obtained in [12]1

(see, also, [3,13]) where it has been shown that Lq(x) and Lg(x)
are not usual twist-two distributions, but have both the twist-two 
(‘Wandzura–Wilczek’) and genuine twist-three components, so like 
the g2(x) structure function for the transversely polarized nucleon.

In this paper we only consider the singlet distributions

��(x, Q 2) ≡
∑

f

(�q f (x, Q 2) + �q̄ f (x, Q 2)),

Lq(x, Q 2) ≡
∑

f

(L f (x, Q 2) + L̄ f (x, Q 2)). (6)

The four distributions ��(x, Q 2), �G(x.Q 2). Lq,g(x, Q 2) satisfy 
the renormalization group equation in Q 2. For ��(x) and �G(x), 
this is the well-known DGLAP equation which reads, to leading or-
der,

1 In Ref. [12], Lq,g (x) have been defined such that

1∫
−1

dxLthere
q (x) = Lq ,

1∫
−1

dxLthere
g (x) = Lg . (4)

These are related to the present convention as (note that Lg (x) is an even function 
of x)

⎧⎨
⎩

∑
f Lhere

f (x) = Lthere
q (x),∑

f L̄here
f (x) = Lthere

q (−x),
Lhere

g (x) = 2Lthere
g (x) (x > 0). (5)
d

d ln Q 2

(
��(x)
�G(x)

)

= αs(Q 2)

2π

1∫
x

dz

z

(
�Pqq(z) �Pqg(z)
�P gq(z) �P gg(z)

)(
��(x/z)
�G(x/z)

)
, (7)

where

�Pqq(z) = C F

(
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

)
, (8)

�Pqg(z) = n f (2z − 1) , (9)

�P gq(z) = C F (2 − z) , (10)

�P gg(z) = 6

(
1

(1 − z)+
− 2z + 1

)
+ β0

2
δ(z − 1) , (11)

with C F = N2
c −1

2Nc
= 4

3 , n f being the number of flavors and β0 =
11 − 2n f

3 .
The corresponding equation for Lq,g(x, Q 2) has been implicitly 

derived in [10] to one-loop and explicitly written down in [5]. Be-
cause Lq,g(x) have a twist-two component, they mix with �q(x)
and �G(x) under renormalization as

d

d ln Q 2

(
Lq(x)
Lg(x)

)

= αs

2π

1∫
x

dz

z

(
P̂qq(z) P̂qg(z) � P̂qq(z) � P̂qg(z)
P̂ gq(z) P̂ gg(z) � P̂ gq(z) � P̂ gg(z)

)

×

⎛
⎜⎜⎝

Lq(x/z)
Lg(x/z)
��(x/z)
�G(x/z)

⎞
⎟⎟⎠ , (12)

where

P̂qq(z) = C F

(
z(1 + z2)

(1 − z)+
+ 3

2
δ(1 − z)

)
, (13)

P̂qg(z) = n f z(z2 + (1 − z)2) , (14)

P̂ gq(z) = C F (1 + (1 − z)2) , (15)

P̂ gg(z) = 6
(z2 − z + 1)2

(1 − z)+
+ β0

2
δ(z − 1) , (16)

� P̂qq(z) = C F (z2 − 1) , (17)

� P̂qg(z) = n f (1 − z)(1 − 2z + 2z2) , (18)

� P̂ gq(z) = C F (z − 1)(−z + 2) , (19)

� P̂ gg(z) = 6(z − 1)(z2 − z + 2) . (20)

Integrating both sides of (12) over x from 0 to 1, we obtain

d

d ln Q 2

(
Lq

Lg

)
= αs

2π

(− 4
3 C F

n f
3 − 2

3 C F
n f
3

4
3 C F −n f

3 − 5
6 C F − 11

2

)⎛
⎜⎜⎝

Lq

Lg

��

�G

⎞
⎟⎟⎠ ,

(21)

in agreement with [9]. One can check that2

2 In fact, d
2 ��(Q 2) = 0 to this order.
d ln Q
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Fig. 1. The x-distributions at Q 2 = 10 GeV2 in the democratic model. In the small-x
region it is more convenient to use the rapidity variable Y = ln 1/x.

d

d ln Q 2

(
1

2
��(Q 2) + �G(Q 2) + Lq(Q 2) + Lg(Q 2)

)
= 0, (22)

that is, the total angular momentum 1
2 is conserved.

3. Numerical results

In this section we show the result of our numerical simulation 
of the coupled equations (7) and (12) directly in the x-space. We 
set n f = 3 throughout and use the one-loop running coupling con-
stant αs(Q 2) = 4π

β0 ln Q 2/�2 with � = 0.25 GeV. The initial scale is 
chosen to be Q 2

0 = 1 GeV2. As for the initial condition, in prin-
ciple one should draw guidance from the existing global analysis 
fits [1,20–24]. However, this is not practical for the present pur-
pose due to several reasons. Firstly, since our primary interest is 
in the small-x region, the details of parameterization in the large-x
region are presumably not very important. Besides, currently the 
uncertainties of �G(x) in the small-x region are enormous. More-
over, there has been no global analysis study of the orbital angular 
momentum distribution. (There are, however, some model calcula-
tions [26–28] and an estimate in the Wandzura–Wilczek approxi-
mation [29].) We therefore restrict ourselves to the following very 
simple models:

• Democratic model
The nucleon spin is equally distributed to the four terms in (1)
at the initial scale. The distributions are nonsingular as x → 0. 
For simplicity, we assume they are constant in x.

��(x, Q 2
0 ) = 1

4
, �G(x, Q 2

0 ) = 1

8
,

Lq(x, Q 2
0 ) = 1

8
, Lg(x, Q 2

0 ) = 1

8
, (23)

• Helicity dominance model
Initially the helicity contributions alone saturate the sum rule. 
We try

��(x, Q 2
0 ) = Aqx−0.3(1 − x)3,

�G(x, Q 2
0 ) = Ag xag (1 − x)3,

Lq(x, Q 2
0 ) = Lg(x, Q 2

0 ) = 0, (24)

where Aq and Ag are fixed by the conditions ��(Q 2
0 ) = 1

4 and 
�G(Q 2

0 ) = 3
8 . We vary the parameter ag to explore different 

possibilities.3

Fig. 1 shows ��(x), �G(x), Lq(x), Lg(x) in the democratic 
model as a function of x (left) and rapidity Y ≡ ln 1/x (right) at 

3 Refs. [1,24] found a positive and large value ag ≈ 1 ∼ 1.6, whereas Ref. [23]
found a slightly negative value ag ≈ −0.15. The uncertainties to these values are 
quite large, on the order of a few hundred percent.
Fig. 2. Solid line: The integral (25) as a function of xmin at Q 2 = 10 GeV2 (left) and 
Q 2 = 100 GeV2 (right). The dashed line includes only the quark and gluon helicity 
contributions.

Fig. 3. The Y = ln 1/x distribution in the helicity dominance model with ag = −0.6
at Q 2 = 10 GeV2 (left) and at Q 2 = 100 GeV2 (right).

Fig. 4. Solid line: The integral (25) as a function of xmin at Q 2 = 10 GeV2 (left) and 
Q 2 = 100 GeV2 (right) in the helicity dominance model. The dashed line includes 
only the helicity contributions.

Q 2 = 10 GeV2. We find that at small-x, ��(x) and Lg(x) turn 
negative and significantly cancel Lq(x) and �G(x), respectively. In 
Fig. 2, we plot the quantity

1∫
xmin

dx

(
1

2
��(x) + �G(x) + Lq(x) + Lg(x)

)
, (25)

as a function of xmin at Q 2 = 10 GeV2 (left) and Q 2 = 100 GeV2

(right). For comparison, we also plot the helicity part alone ∫ 1
xmin

dx 
( 1

2 ��(x) + �G(x)
)

(dashed line). Depending on the value 
of Q 2, the helicity contribution undershoots (small-Q 2) or over-
shoots (large-Q 2) the total spin 1/2. In either case, in this model 
the helicity contribution becomes the dominant part of the total 
spin, although initially it has the same magnitude as the orbital 
angular momentum contribution.

Fig. 3 shows the result for the helicity dominance model with 
ag = −0.6 at Q 2 = 10 GeV2 (left) and Q 2 = 100 GeV2 (right). Al-
though ��(x) is initially positive and has a power-law divergence, 
after the evolution again it turns negative and partly cancels Lq(x). 
Lg(x) is initially zero, but it quickly develops a strong singular-
ity and significantly cancels �G(x). Fig. 4 is the plot of (25) in 
this model. We see that even though the orbital angular momen-
tum vanishes at Q 2 = 1 GeV2, already at Q 2 = 10 GeV2 it plays 
a crucial role to fulfill the spin sum rule. We also notice that very 
little orbital angular momentum is generated in the large-x region, 
x > 0.1. The result for ag = −0.3 is qualitatively similar. ��(x)
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Fig. 5. The quark (solid line) and gluon (dashed line) contributions to the nucleon 
spin in the democratic model (left) and the helicity dominance model (right) at 
Q 2 = 10 GeV2.

turns negative even though initially it is as strongly divergent as 
�G(x).

Comparing the two models, we see that the growth of orbital 
angular momentum at small-x is mainly governed by the param-
eter ag , rather than the initial value Lg(Q 2

0 ). If the initial helicity 
distribution is singular ag < 0, a significant amount of orbital an-
gular momentum is generated at small-x. It is thus important to 
better constrain the value ag in future global analyses. Finally, in 
Fig. 5 we plot the quark and gluon contributions to the nucleon 
spin

1∫
xmin

dx

(
1

2
��(x) + Lq(x)

)
,

1∫
xmin

dx
(
�G(x) + Lq(x)

)
, (26)

separately in the two models at Q 2 = 10 GeV2. Due to the can-
cellation, the two curves flatten quickly in the democratic model. 
In the helicity dominance model, a gradual rise of the gluon an-
gular momentum is observed down to x ∼ 10−3, implying that the 
cancellation is not complete.

4. Analytical insights

The significant cancellation between �G(x) and Lg(x) and also 
between ��(x) and Lq(x) we found numerically in the previous 
section is phenomenologically important and calls for a theoreti-
cal explanation. Let us try to understand by analytical means how 
such a cancellation can arise from the structure of the evolution 
equation.

Since |Lg(x)|, |�G(x)| � |��(x)|, |Lq(x)| at small-x, to first ap-
proximation we may ignore ��(x) and Lq(x) altogether. The equa-
tion then reads

d

d ln Q 2

(
Lg(x)
�G(x)

)

≈ αs

2π

1∫
x

dz

z

(
6 (z2−z+1)2

(1−z)+ + β0
2 δ(z−1) 6(z−1)(z2−z+2)

0 6
(

1
(1−z)+ −2z+1

)
+ β0

2 δ(z−1)

)

×
(

Lg(x/z)
�G(x/z)

)
. (27)

Let us first consider the double logarithmic approximation (DLA) 
which is familiar in the context of the unpolarized distributions 
but can be readily generalized to the helicity distributions [30–32]. 
In this approximation, (27) reads, in the Mellin space,

d

d ln Q 2

(
Lg( j)
�G( j)

)

≈ αs

2π

(
6
j − 11

2 − n f
3

−12
j + 14

0 12 − 13 − n f

)(
Lg( j)
�G( j)

)
, (28)
j 2 3
Fig. 6. The boundary between the DLA and power-law regimes for different val-
ues of c = 0.4, 0.6, 0.8, 1 (top to bottom) in the running coupling case. Above the 
boundary, the initial power-law survives. Below the boundary, the DLA is valid.

where we expanded around the singularity at j = 0. (It is straight-
forward to include ��(x) and Lq(x), see Appendix.) Diagonalizing 
the matrix and following the standard procedure, one finds

�G(x, Q 2) ≈ ξ
1
4√

π(2Y )3/4
e

2
√

2ξY −ξ
(

13
12 + n f

18

)
�G( j0, Q 2

0 ), (29)

Lg(x, Q 2) + 2�G(x, Q 2)

≈ ξ
1
4

2
√

πY 3/4
e

2
√

ξY −ξ
(

11
12 + n f

18

)

×(Lg( j0/
√

2, Q 2
0 ) + 2�G( j0/

√
2, Q 2

0 )), (30)

where Y = ln 1/x, ξ = 12
β0

ln ln Q 2/�2

ln Q 2
0 /�2 and j0 = √

2ξ/Y is the sad-

dle point of the inverse Mellin transform. In the asymptotic region 
Y , ξ → ∞, |Lg(x) + 2�G(x)| 
 |�G(x)|, |Lg(x)|, or equivalently, 
Lg(x) ≈ −2�G(x) [5]. However, for realistic values of Y , ξ , the 
right hand side of (30) is numerically not negligible. Besides, the 
exact eigenvector in the Mellins space is

Lg( j) + 2(6 − 7 j)

6 − j
�G( j), (31)

and to obtain (30) we have approximated this as Lg( j) + 2�G( j). 
These subleading effects tend to reduce the ratio |Lg (x)/�G(x)|. 
Indeed numerically we find |Lg(x)/�G(x)| ≈ 1.

In deriving (29), it has been assumed that the DLA saddle point 
j = j0 is to the right of all poles in the complex j-plane. This may 
not be the case if the initial condition (24) has a singularity ag ≡
−c < 0. When j0 > c, the DLA saddle point rules and the initial 
power-law is washed out. On the other hand, when c > j0, an extra 
term

∼ e2ξ/c

xc
, (32)

appears, and this will dominate over (29). The boundary j0 = c
forms a two-dimensional surface in the (Y , ln Q 2, c) space as il-
lustrated in Fig. 6. A recent global analysis [25] found4 a rather 
large value 1 � c � 0.5 for �G(x) at Q 2 = 4 GeV2 and x < 10−3. 

4 More precisely, Ref. [25] computed the effective power

c ≡ ∂ ln |�G(x)|
∂ ln 1/x

, (33)

and found that the dependence of c on x is weak.
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This suggests that the power-law regime (32) indeed exists and is 
accessible in the present and future experiments.

We now show that in the power-law regime, the ratio
Lg(x)/�G(x) is directly related to the ‘Regge intercept’ c. For this 
purpose we look for a solution whose leading singularity is of the 
form

Lg(x, Q 2) ≈ A(Q 2)
1

xc
, �G(x, Q 2) ≈ B(Q 2)

1

xc
. (34)

In order for the first moments to be finite, we assume 1 > c. (The 
boundary value c = 1 is actually interesting, see below.) Substitut-
ing (34) into (27), we can perform the z-integral analytically.5 In 
practice, the lower limit of the integral can be sent to zero since 
the neglected terms are subleading in x. We thus obtain

d

d ln Q 2

(
A(Q 2)

B(Q 2)

)
≈ αs

2π

(
α β

0 δ

)(
A(Q 2)

B(Q 2)

)
, (35)

where

α = 6

(
−Hc−1 − 2

c + 1
+ 1

c + 2
− 1

c + 3

)
+ β0

2
, (36)

β = 6

(
3

c + 1
− 2

c + 2
+ 1

c + 3
− 2

c

)
, (37)

δ = 6

(
−Hc−1 + 1

c
− 2

1 + c

)
+ β0

2
. (38)

(Hx = x 
∑∞

k=1
1

k(x+k)
is the harmonic number.) α, β, δ are the 

anomalous dimensions [10] analytically continued to noninteger 
values j → c.6 Eq. (35) can be readily solved as

B(Q 2) = C(ln Q 2/�2)
2δ
β0 ,

A(Q 2) = C
β

δ − α
(ln Q 2/�2)

2δ
β0 + C ′(ln Q 2/�2)

2α
β0 , (39)

where C, C ′ are the integration constants. Since δ > 0 and δ > α

for 1 ≥ c ≥ 0, the second term in A is formally subleading (though 
it may not be numerically subleading in practice). This gives

Lg(x, Q 2)

�G(x, Q 2)
≈ β

δ − α
= − 2

c + 1
, (40)

for sufficiently large Q 2. We see that Lg(x) and �G(x) have op-
posite signs at small-x, and that Lg (x) is larger in magnitude than 
�G(x). The DLA corresponds to the limit c → 0 where the anoma-
lous dimensions diverge and the distributions depend logarithmi-
cally on x (instead of a power-law).

Similarly, the small-x behavior of ��(x) is governed by the ex-
ponent c. Keeping only �G(x) from (34) on the right hand side of 
(7), one finds

d

d ln Q 2
��(x) ≈ n f αs

2π

1∫
x

dz

z
(2z − 1)�G(x/z)

≈ −n f αs

2π

1 − c

c(1 + c)
�G(x). (41)

5 To be more precise, since (34) is valid only for x 
 x0 with some x0 < 1, one has 
to divide the z-integral into different regions ∫ 1

x dz = ∫ x/x0
x dz + ∫ 1

x/x0
dz. It is easy to 

see that only the second integral, where the form (34) can be used, contributes to 
the leading singularity.

6 The entries in (28) are the first two terms of α, β, δ in the limit c → 0.
Fig. 7. Lower curve: ��(x)/�G(x) from (42) as a function of c with n f = 3; Upper 
curve: Lq(x)/�G(x) from (44).

This immediately gives

��(x)

�G(x)
≈ −n f

1 − c

δc(1 + c)

= −n f
1 − c

c(1 + c)
[

6
(
−Hc−1 + 1

c − 1
1+c

)
+ β0

2

] . (42)

The ratio is plotted in Fig. 7 (lower curve). ��(x) has an opposite 
sign to �G(x) and its magnitude is strongly suppressed as c → 1. 
This is consistent with the numerical results in the previous sec-
tion. Finally, for the quark orbital angular momentum, we find

d

d ln Q 2
Lq(x) ≈ n f αs

2π

1∫
x

dz

z

(
z(z2 + (1 − z)2)Lg(x/z)

+ (1 − z)(1 − 2z + 2z2)�G(x/z)
)

≈ n f αs

2π

1 − c

c(1 + c)2
�G(x), (43)

so that

Lq(x) ≈ n f
1 − c

δc(1 + c)2
�G(x) ≈ −��(x)

1 + c
. (44)

This is also plotted in Fig. 7 (upper curve).
The limit c → 1 is particularly interesting. In this limit,

Lg(x) ≈ −�G(x), Lq(x) ≈ −1

2
��(x). (45)

We see that the boundary value c = 1 is permissible from the sum 
rule point of view. While 

∫
�G(x) and 

∫
Lg(x) are both logarith-

mically divergent, the divergent parts cancel exactly. Interestingly, 
the first relation in (45) formally agrees with the argument in [5]
based on an operator analysis without any reference to the small-x
behavior of �G(x), Lg(x).7 It has been also observed in an explicit 
model calculation in [28].

In practice, it is difficult to numerically confirm the ratios and 
exponents obtained above. This is because the approach to the 
asymptotic regime is slow, especially due to the running of the 
coupling. For realistic values of Q 2 and x, the subleading correc-
tions which depend on the initial condition are still not negligible. 

7 In [5], there was a mistake in the normalization of Lg (x) from Section 3 on. 
Because of this, the correct relation Lg(x) ≈ −�G(x) was incorrectly presented as 
Lg (x) ≈ −2�G(x) and this coincided with the DLA result in the appendix of [5]
(where the normalization is correct), creating an apparent ‘consistency.’
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For example, in Fig. 3 we find |�G(x)| > |Lg(x)|, although asymp-
totically the inequality should be reversed, see (40). (Note that in 
this model Lg(x) = 0 initially, so the second term of A in (39) can 
be comparable to the first term.) Also, whether the Y -dependence 
is exponential e#Y or DLA-like e#

√
Y , is difficult to determine be-

cause of the limited Y -range. We however checked that as c = −ag

is increased, a DLA-like fit becomes less and less favorable.8

The picture emerging from our analysis is that, for any value 
of c between 0 and 1, among the four terms in the Jaffe–Manohar 
decomposition in the x-space,

1

2
��(x) + Lq(x) + �G(x) + Lg(x), (46)

there is a significant cancellation between the first two terms 
(quark sector) and also between the last two terms (gluon sec-
tor). Note that when c = 1 exactly, in practice one is computing 
the anomalous dimensions relevant to the first moments (3), see 
(21). Therefore, a similar cancellation occurs among the integrated 
quantities 1

2 �� + Lq and �G + Lg as was observed in [9,33]. We 
have shown that such a cancellation already occurs in the density 
space at small-x, and the deviation from exact cancellation is con-
trolled by the Regge intercept c.

5. Conclusions

In this paper we numerically solved the QCD evolution equation 
for the orbital angular momentum distributions. Compared with 
the previous work [14], our work is focused on the small-x region 
where an interesting cancellation occurs between Lg(x) and �G(x)
and also between ��(x) and Lq(x). For �G(x), such a cancellation 
has been previously suggested in [5,28] from different arguments. 
As we demonstrated analytically, in the present approach this nat-
urally follows from the structure of the evolution equation.

Our finding has an important implication for phenomenology. 
On one hand, the precise value of �G is of intrinsic interest in 
QCD, and it is certainly imperative to reduce the uncertainties of 
�G(x) in the small-x region in future experiments such as at the 
planned Electron–Ion Collider (EIC). On the other hand, this is not 
sufficient to solve the nucleon spin puzzle because a good fraction 
of the would-be spin from �G(x) at small-x is canceled by the or-
bital angular momentum in the same x-region. This suggests that 
one has to look into the orbital angular momentum in the large-x
region [6,7]. After all, this is a very natural and obvious future di-
rection of research.

As already mentioned in the introduction, the DGLAP-type evo-
lution equation considered in this paper eventually breaks down 
and should be superseded by the small-x evolution equation which 
resums double logarithmic contributions (αs ln2 1/x)n . (Not to be 
confused with the DLA which resums powers of αs ln 1/x ln Q 2.) 
For the helicity distributions, it is known that such a resummation 
dynamically generates a power-law behavior [15–19]. Furthermore, 
there may be a regime where nonlinear evolution equations come 
into play, as is the case for the unpolarized distributions. Unfor-
tunately, at the moment very little is known about the small-x
resummation for the orbital angular momentum distributions. Ad-
mittedly, we may have pushed our numerical solution to too small 
values of x for which the present approach is not justified and an 
alternative approach is needed. Still, one can naturally expect that 
the rapid growth of the distributions, either due to the DLA or the 

8 For example, at Q 2 = 10 GeV2, DLA predicts �G(x) ∼ e2.53
√

Y , while our fit is 
∼ e3.06

√
Y for ag = −0.3 and ∼ e3.96

√
Y for ag = −0.6 in the helicity dominance 

model. The exponential fit instead gives e0.55Y for ag = −0.3 and e0.70Y for ag =
−0.6.
Regge behavior augmented by the QCD evolution, is smoothly con-
nected with the power-law generated by the small-x resummation. 
Clearly this issue deserves further study.
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Appendix A. DLA in the presence of quark distributions

It is straightforward to generalize (28) by including the quark 
distributions ��(x) and Lq(x).

d

d ln Q 2

⎛
⎜⎜⎝

Lq(x)
Lg(x)
��(x)
�G(x)

⎞
⎟⎟⎠

≈ αs

2π

1∫
x

dz

z

⎛
⎜⎜⎝

0 0 −C F n f
2C F 6 −2C F −12

0 0 C F −n f
0 0 2C F 12

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Lq(x/z)
Lg(x/z)
��(x/z)
�G(x/z)

⎞
⎟⎟⎠ . (A.1)

The following linear combinations diagonalize the evolution equa-
tion

S1(x) = 4

9
(Lq(x) + ��(x)) + Lg(x) + 2�G(x), (A.2)

S2(x) = Lq(x) + ��(x), (A.3)

S3(x) = 1√
16 − 3n f

2

��(x) +
⎛
⎜⎝ 2√

16 − 3n f
2

− 1

2

⎞
⎟⎠�G(x) (A.4)

≈ 0.3��(x) + 0.1�G(x), (n f = 3) (A.5)

S4(x) = 1√
16 − 3n f

2

��(x) +
⎛
⎜⎝ 2√

16 − 3n f
2

+ 1

2

⎞
⎟⎠�G(x)

≈ 0.3��(x) + 1.1�G(x), (n f = 3) (A.6)

such that

d

d ln Q 2

⎛
⎜⎜⎝

S1(x)
S2(x)
S3(x)
S4(x)

⎞
⎟⎟⎠

≈ αs

2π

1∫
x

dz

z

⎛
⎜⎜⎜⎜⎝

6 0 0 0
0 0 0 0

0 0 20
3 − 4

3

√
16 − 3n f

2 0

0 0 0 20
3 + 4

3

√
16 − 3n f

2

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

S1(x/z)
S2(x/z)
S3(x/z)
S4(x/z)

⎞
⎟⎟⎠

≈ αs

2π

1∫
x

dz

z

⎛
⎜⎜⎝

6 0 0 0
0 0 0 0
0 0 2.1 0
0 0 0 11.2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

S1(x/z)
S2(x/z)
S3(x/z)
S (x/z)

⎞
⎟⎟⎠ (n f = 3). (A.7)
4
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Asymptotically, S4(x) dominates and we have the relation

Lg(x) ≈ −2�G(x),

Lq(x) ≈ −��(x) ≈
(

2 −
√

4 − 3n f

8

)
�G(x) ≈ 0.3�G(x). (A.8)

This may be compared with the c → 0 limit of (42), ��(x) ≈
−0.25�G(x) (for n f = 3). The difference is because (42) is ob-
tained by first approximating |��(x)| 
 |�G(x)|.
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