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a b s t r a c t 

Remarkably, mammalian sperm maintain a substantive proportion of their progressive swimming speed 

within highly viscous fluids, including those of the female reproductive tract. Here, we analyse the dig- 

ital microscopy of a human sperm swimming in a highly viscous, weakly elastic mucus analogue. We 

exploit principal component analysis to simplify its flagellar beat pattern, from which boundary element 

calculations are used to determine the time-dependent flow field around the sperm cell. The sperm flow 

field is further approximated in terms of regularised point forces, and estimates of the mechanical power 

consumption are determined, for comparison with analogous low viscosity media studies. This highlights 

extensive differences in the structure of the flows surrounding human sperm in different media, indicat- 

ing how the cell-cell and cell-boundary hydrodynamic interactions significantly differ with the physical 

microenvironment. The regularised point force decomposition also provides cell-level information that 

may ultimately be incorporated into sperm population models. We further observe indications that the 

core feature in explaining the effectiveness of sperm swimming in high viscosity media is the loss of 

cell yawing, which is related with a greater density of regularised point force singularities along the axis 

of symmetry of the flagellar beat to represent the flow field. In turn this implicates a reduction of the 

wavelength of the distal beat pattern — and hence dynamical wavelength selection of the flagellar beat 

— as the dominant feature governing the effectiveness of sperm swimming in highly viscous media. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Viewed in slow motion, the sperm flagellum reveals a grace-

ul choreography, concealing the complex regulation of thousands

f dynein molecular motors converting ATP into mechanical work

nd ultimately travelling waves of curvature along the flagellum

 Brokaw, 1971; Lindemann and Leisch, 2010; Smith et al., 2009b ).

his movement, and its interaction with the surrounding fluid, in-

uces local fluid flows ( Dresdner and Katz, 1981 ), propels the cell

orward ( Gray and Hancock, 1955 ) and, most remarkably, the pro-

ressive velocity is relatively conserved even as the viscosity of

he surrounding media increases by multiple orders of magnitude

 Smith et al., 2009b ). 
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Such resilience is poorly understood for sperm, but vital in nav-

gating numerous highly viscous microenvironments en-route to

he egg in the female reproductive tract ( Suarez and Pacey, 2006 ).

onetheless, one hypothesis for this resilience is that with in-

reased resistance, whether viscous or structural, the flagellum

urvature is less so that the hypothesized geometric clutching of

yneins is reduced, as detailed extensively by Lindemann (1996) .

n particular, more dyneins contract in a flagellum bend as it is of

onger wavelength ( Lindemann, 1996 ), at least in the proximal re-

ion of the flagellum ( Smith et al., 2009b ). This mechanism thus

n turn suggests that there are more dynein contractions per unit

ime on average for a sperm swimming in a highly viscous medium

nd also, because the flagellum does slowdown at least a cer-

ain amount, there may be a greater force per contraction given

he observed monotonic increase in contractile force with reduced

ynein contraction velocity ( Oiwa and Takahashi, 1988 ). However

uch concepts for the mechanisms that govern the remarkable abil-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.jtbi.2018.02.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.02.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ishimoto@kurims.kyoto-u.ac.jp
https://doi.org/10.1016/j.jtbi.2018.02.013
http://creativecommons.org/licenses/by/4.0/


2 K. Ishimoto et al. / Journal of Theoretical Biology 446 (2018) 1–10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

m  

p  

m  

O  

t  

a

 

t  

f  

t  

a  

r  

r  

b  

1  

s  

1  

(  

b  

w  

a  

s

 

c  

y  

G  

o  

m  

a  

D  

m  

s

 

a  

w  

w  

t  

T  

h  

b  

i  

t  

G

2

 

M  

(  

p  

a  

h  

d  

a  

ψ

ψ

f

S

T  

d  

s  
ity of sperm to swim in highly viscous media, and their relative

importance in the sperm response, remain at the level of hypothe-

sis. As a consequence, there is extensive further scope for compara-

tive studies of sperm in different rheologies, especially as viscosity

extensively regulates sperm behaviour in vivo ( Kirkman-Brown and

Smith, 2011 ). 

Similarly, differences in the fluid flows induced by sperm flag-

ellar beating with changes in the surrounding medium are likely

to inform our understanding of how the physical microenviron-

ment influences the mechanical interaction of sperm with each

other, obstacles, surfaces and even the egg. Such differences may

also be important in appreciating how the local transport of sig-

nalling molecules changes with different rheologies ( Dresdner and

Katz, 1981 ). With the exception of a low-resolution study compar-

ing the fluid flow induced by activated and hyperactivated hamster

sperm ( Dresdner and Katz, 1981 ), only the fluid flows surround-

ing an activated swimming human sperm cell in a low viscosity in

vitro fertilization medium have been analysed in detail ( Ishimoto

et al., 2017 ). This study revealed a remarkably simple approxima-

tion to the fluid flow structure. In particular, in the reference frame

of the swimming cell an oscillatory flow was induced, approxi-

mately corresponding to two triplets of regularised forces offset to

either side of the flagellum turning on and off in a manner cor-

responding to a principal and reverse wave propagating down the

flagellum. This prospectively allows simple, verified, analytical ex-

pressions to be used to represent the flow fields associated with

sperm swimming. As a first consideration, this would in turn en-

able the integration of single cell dynamics and sperm-sperm in-

teractions in population models of sperm, as well as motivating

analogous studies for the flows induced by sperm and other mi-

croswimmers, in fluid media with different rheologies. 

Hence, in this paper we will firstly recapitulate the digital cap-

ture of the flagellum waveform for a human sperm swimming

in a dilute solution of methylcellulose, which has a viscosity of

about 150 times that of water and in vitro fertilization media

( Smith et al., 2009b ). Following a standard principal component

analysis (PCA) of the flagellar waveform to reduce its kinematics

to a low dimensional expansion of PCA modes ( Ma et al., 2014;

Werner et al., 2014 ), as detailed in Section 2 , we will use boundary

element computational fluid dynamics ( Pozrikidis, 1992 ) to deter-

mine the surrounding flow field. 

We will proceed to also reduce the fluid flow to a low dimen-

sional expansion of PCA modes, which can be subsequently ap-

proximated by the flow fields associated with a small number of

regularised point force solutions ( Ishimoto et al., 2017 ). Further

analyses are performed to document mechanical measures, such

as the rate of viscous dissipation. In turn, these mechanical mea-

sures and their associated flow fields will be compared to those

emerging from human sperm swimming in low viscosity in vitro

fertilization media, to further document and describe how sperm

swimming and its associated mechanics is altered with a substan-

tive increase in the viscosity of the surrounding media. 

Finally, we will also discuss our comparative observations in the

context of potential mechanisms governing the quite remarkable

observation that progressive sperm swimming speeds are roughly

maintained despite multiple order of magnitude increases in the

surrounding fluid viscosity. 

2. Methods 

2.1. Flagellar waveform 

2.1.1. Image acquisition 

Further details of the experimental method may be found in

Smith et al. (2009b) . To summarise, human samples were col-

lected from a normozoospermic research donor and sperm with
he highest progressive motility, sufficient to penetrate approxi-

ately 2 cm into a capillary tube on the timescales of the ex-

eriment, were imaged in detail. This imaging took place approxi-

ately 10–20 μm from the capillary tube inside surface, using an

lympus (BX-50) microscope, together with a positive phase con-

rast lens (20 × /0.40 ∞ /0.17 Ph1 and depth of field ∼ 5.8 μm) and

 Hamamatsu Photonics C9300 CCD camera. 

In particular, the Smith et al. (2009b) study firstly reported

hat the characteristics of these analysed cells differed extensively

or different penetration media. In addition the study observed

hat with a fixed penetration medium, the sperm flagellum beat

nd swimming behaviour of these highly motile sperm were well-

epresented by an individual cell. Thus, analogously, we analyse a

epresentative individual sperm, whose swimming and flagellum

eat was captured in the above study as part of observations for

9 cells swimming within a sperm penetration medium based on

upplemented Earle’s Balanced Salt Solution and an addition of

% methylcellulose. This is referred to as high viscosity medium

HVM) below. These observations and subsequent analysis will also

e contrasted with those for a representative individual sperm,

hose swimming and flagellum beat was captured in the Smith et.

l. study ( Smith et al., 2009b ) as part of observations for 16 cells

wimming within a watery – low viscosity – medium (LVM). 

Measurements of the high viscosity medium’s properties were

onducted with a Bohlin CVO120 HR cone-and-plate rheometer

ielded a storage modulus of G 

′ = 0 . 76 Pa and a shear modulus of

 

′′ = 4 . 16 Pa at a frequency of f = 5 Hz, i.e. an angular frequency

f ω = 2 π f = 10 π rad s −1 . Fitting with a linear Maxwell fluid

odel in turn revealed a fluid relaxation time of λ = 0 . 006 s and

n effective viscosity of 0.14 Pa · s, with a small Deborah number of

e = 2 π fλ = ωλ = 0 . 19 ≈ 0 . 2 and thus the fluid exhibits a similar

agnitude of viscosity compared to midcycle mucus, though with

ignificantly less elasticity ( Khan et al., 1977; Smith et al., 2009b ). 

The location of the flagellum in the microscope focal plane, as

 function of arclength s , measured from the cell head, and time t

as extracted from the imaging data via bespoke MATLAB ©soft-

are ( Smith et al., 2009b ). Hence the angle between the flagellum

angent and the sperm head, denoted ψ( s, t ) is readily extracted.

hese digitised waveforms, which are essentially planar, do not ex-

ibit extensive curvature in the proximal region of the flagellum

ut possess a distal meander ( Fig. 1 a and b), and this dynamics

s generally associated with the tapering accessory structures of

he mammalian flagellum with increasing arclength ( Fawcett, 1975;

affney et al., 2011; Lindemann, 1996 ). 

.1.2. Dimensional reduction of the flagellar waveform 

As previously implemented for bull spermatozoa by

a et al. (2014) and human spermatozoa in our previous study

 Ishimoto et al., 2017 ), and reviewed in Werner et al. (2014) ,

rincipal component analysis (PCA) is used to decompose the

ngle ψ for the data-set acquired by the digital capture of the

uman sperm flagellum waveform, as summarised in Fig. 1 . In

etail, with a uniform discretisation of the arclength s 1 , . . . , s m 

,

nd time, t 1 , . . . , t n , one can construct the n × m angle matrix

 iα = ψ(t i , s α) , its temporal average 

¯
 α = 

1 

n 

n ∑ 

p=1 

ψ pα

or any i ∈ { 1 , . . . , n } and the covariance matrix, 

 αβ = 

1 

n 

n ∑ 

i =1 

(ψ iα − ψ̄ α)(ψ iβ − ψ̄ β ) . 

he eigenvectors of the latter m × m matrix provide an m -

imensional basis for the flagellar wave, which we order by the

ize of the associated eigenvalues λ ≥ . . . ≥ λm 

. Each eigenvector,
1 
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Fig. 1. The sperm flagellar waveform and its reconstruction, presented with the 

length and timescales nondimensionalised by the flagellar length, L , and the beat 

period time, T . (a) Superimposed snapshots of the digitally captured flagellar wave- 

form with its head translated to the origin. (b) The flagellar tangent angle, ψ( s, t ). 

Note that approximately 10% of the distal flagellum data is lost during image cap- 

ture. (c) The first three PCA modes of the flagellum angle, ψ , with ψ̄ (s ) denoting 

the temporal average of ψ( s, t ). (d) The trajectory of the first two PCA mode coef- 

ficients (blue), with the associated limit cycle orbit, in the phase space (red). (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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Fig. 2. The reconstructed approximation to the flagellar waveform as the limit cy- 

cle of the closed trajectories in the 2-dimensional flagellar shape PCA phase space. 

(a) The reconstructed flagellar tangent angle, ψ rec ( s, t ) during one beat cycle. The 

timescale and lengthscale are non-dimensionalised by the beat cycle period T and 

the flagellar length L . (b) Superimposed snapshots of the reconstructed flagellar tan- 

gent angle, non-dimensionalised as in (a). (c) Superimposed snapshots of the com- 

putational sperm with this waveform freely swimming during one beat cycle. (d) 

The Fourier spectrum for the reconstructed flagellar tangent angle, which empha- 

sises a dominant frequency in the flagellum beat. (e) The swimming trajectory for 

the head-tail junction over one beat period of the virtual sperm, with the recon- 

structed flagellar waveform moving in the high-viscosity medium (HVM), is plotted 

in green, with coordinates provided in the Supporting Material. The associated net 

displacement during one beat cycle is shown via the dotted arrow. For comparison, 

the analogous trajectory for the low viscosity medium (LVM) is given in purple, to- 

gether with the net displacement via the associated dotted arrow ( Ishimoto et al., 

2017 ). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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fl  
lso known as a PCA mode, thus corresponds to a set of angles at

he discretised values of s , and thus effectively a flagellum shape.

he PCA decomposition then approximates the flagellum angles

( s, t ) as a time dependent weighted linear sum of these shapes.

he first three eigenvectors, associated with eigenvalues λ1 , . . . , λ3 ,

re plotted in Fig. 1 c. In particular, truncating the PCA decompo-

ition to include only the first two PCA modes nonetheless cap-

ures 96.9% of the cumulative variance, that is (λ1 + λ2 ) / trace (S) =
 . 969 , while truncating with only the first three modes captures

7.6%. Thus, respectively there is a 3.1% and 2.4% variation in the

agellar shape that is not accounted for on restricting the PCA

ode decompositions. Hence using the first two or three PCA

ode terms in the PCA decomposition leads to an extensive reduc-

ion and simplification of the data-set but yet with highly limited

rror. 

The first p time-dependent coefficients of a PCA decomposition

or a beating flagellum also define a trajectory in a p -dimensional

hase space and for p = 2 with the current waveform, we find an

pproximately circular phase trajectory as plotted in Fig. 1 d. Fur-

hermore, by using a phase parameter to describe this time de-

endent trajectory, a phase space limit cycle can be determined, as

iven by the red curve in Fig. 1 d ( Kralemann et al., 2008; Ma et al.,

014 ). In particular, note that this limit cycle averages the dynam-

cs over multiple flagellar beat patterns, and does not deviate ex-

ensively from individual data points. Hence fluctuations within a

ingle flagellum beat of an individual cell are not large and the use

f the limit cycle also reduces the impact of such fluctuations on

he analysis pursued later. 

It is also immediately apparent that these approximately circu-

ar limit-cycle trajectories contrast markedly with the dumbbell-

ike phase-trajectories and limit cycles associated with human

perm flagellar beating in a low viscosity in vitro fertilisation

edium (see Ishimoto et al., 2017 ). A further difference between

he low and high viscosity data for a human sperm is that the ad-
ition of the third PCA mode in the high viscosity case does not

ead to marked improvement in capturing the flagellum shape, due

o the absence of extensive deformation in the proximal region of

he flagellum. Hence the first two PCA modes are sufficient to cap-

ure the characteristic properties of the flagellar waveform. Hence,

ereafter, we consider the flagellum beat associated with the p = 2

imensional PCA phase plane trajectory of Fig. 1 d and the corre-

ponding angle, denoted ψ rec ( s, t ) is given as a heat map in Fig. 2 a

nd via a plot of this angle as a function of arclength for numerous

xed snapshots of time in Fig. 2 b. The latter highlights the cur-

ature in the distal region of the flagellum due to the rapid an-

le changes in this region. The Fourier spectrum of ψ rec ( s, t ) with

espect to the time is also displayed in Fig. 2 d, which highlights

 dominant first Fourier mode. This, together with the structure

f Fig. 2 a, emphasises that a dominant single temporal frequency

ropagates in a travelling wave along the flagellum. 

.2. Hydrodynamics of Stokes and linear Maxwell flow 

As characterized by a very small Reynolds number, the fluid

ow around a swimming sperm is essentially inertialess. Hence,
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Fig. 3. The tapering flagellum used for the power calculations, where in contrast to 

velocity field and trajectory calculations, which are insensitive to such details, the 

flagellum profile has a non-trivial, but modest, influence on the modelling predic- 

tions. 
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with σ denoting the stress tensor one has the momentum balance

∇ · σ = 0 , which is supplemented by incompressibility ∇ · u = 0

for the velocity field u . We also have no-slip conditions on the

sperm and the glass surface, estimated to be roughly 15 microns

below the swimming sperm ( Ishimoto et al., 2017; Smith et al.,

2009b ), together with suitable boundary conditions at spatial infin-

ity. The latter conditions here are simply that of no-flow. To detail

the boundary conditions, let the region external to the swimmer

be denoted by �( t ), with a time-dependent sperm cell boundary S ,

and let any fixed boundary surfaces be denoted by S ∗ . Thus 

u (x , t) = u S (x , t) for x ∈ S, u = 0 for x ∈ S ∗, 

and u → 0 as | x | → ∞ , 

where u S ( x , t ) is the velocity at point x and time t on the surface

of the sperm cell. In particular, this can be written in terms of the

velocity, U , and angular velocity � of a cell fixed reference frame,

without loss defined by an origin at the head-flagellum junction

and axes fixed in the cell body, together with the known, arclength

and time dependent, velocity of the flagellum relative to this cell

fixed frame. A constitutive relation is required to close these equa-

tions. For a Newtonian fluid, the stress tensor is given by 

σi j = −pδi j + τi j , i, j ∈ { 1 , 2 , 3 } , 
for a pressure field p , the Kronkecker delta δij , and a deviatoric

stress tensor 

τ = 2 μD , where D i j = 

1 

2 

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 

)

with μ the constant viscosity of the fluid. In contrast for a linear

Maxwell fluid the deviatoric stress tensor is instead given by 

λ
∂τ

∂t 
+ τ = 2 μD , 

where λ is the elastic relaxation time. The presence of a time

derivative entails that the memory-less property of Stokes flow is

not inherited by the dynamics of a linear Maxwell fluid and thus

one must also give initial conditions. For definiteness we assume

that sufficiently in the past, at t ≤ t 0 , the sperm and flow are sta-

tionary and the pressure constant, without loss zero, though the

impact of the initial conditions decays on a timescale of λ , so that

once t − t 0 � λ the impact of the initial conditions is negligible. 

2.3. The computational virtual sperm 

In the Appendix we firstly demonstrate that, in the absence of

inertia, predictions for the velocity and trajectories of the sperm

cell are unchanged between linear Maxwell and Newtonian fluids.

Thus, given the high viscosity medium is characterised by a lin-

ear Maxwell fluid with De ≈ 0.2, boundary element methods can

be used to calculate the linear and angular velocities of the cell, to-

gether with its trajectory and surrounding flow field given the flag-

ellar waveform of Fig. 2 ( Ishimoto and Gaffney, 2014; 2016; 2017 ). 

However, boundary element methods cannot be used analo-

gously to exactly determine the mechanical power consumption

( Ishimoto and Gaffney, 2016 ) for sperm swimming in HVM. The

exact expression is given by 

P = 

∫ 
S 

f hyd (x ′ ) · u (x ′ ) dS x ′ , (1)

where f hyd is the surface traction on the cell surface S and its exact

determination by boundary element methods is limited to New-

tonian media. Nonetheless, as demonstrated in the Appendix via

scaling relationships, using Newtonian theory as a proxy for linear

Maxwell theory results in estimates for the power, P , that are ac-

curate to a relative error of about 100De% ≈ 20%, which is sufficient

for our purposes. 
The computational human spermatozoon has a prolate ellip-

oidal head which is deformed to generate a typical human sperm

ell body shape, with analytical expressions for the shape of the

perm head given in previous studies ( Ishimoto and Gaffney, 2014;

016 ). For many simulations, the cell body is connected to a cylin-

rical flagellum of length L = 56 μm (e.g. Smith et al., 2009a )

nd diameter d = 250 nm, as shown in Fig. 2 c. The latter is

learly an underestimate in the proximal region of the mammalian

perm flagellum, where the diameter is about 1 μm (e.g. Fig. 5 in

oolley, 2003 ) and an overestimate in the distal region where the

ammalian flagellum loses its accessory structures ( Fawcett, 1975;

indemann and Mitchell, 2007 ). However, previous studies show

hat there is essentially no difference in modelling predictions of

elocities with the boundary element method and a prescribed

aveform for flagellar diameters in the range of 0.1–1 μm, e.g. Fig.

 of Ishimoto and Gaffney (2014) . This is also observed here for the

redicted fluid flows and therefore the simpler, cylindrical, flagel-

um is used for flow calculations below. However, for power cal-

ulations the flagellum profile can have a modest but non-trivial

mpact and hence for such calculations below we work specifically

ith a tapering flagellum, as depicted in Fig. 3 , where the most

roximal flagellum diameter is 1 μm. 

. Results 

.1. Time-averaged flow field 

For simplicity, the fluid velocity field relative to the sperm

ead-tail junction is determined via BEM in the absence of ex-

ernal boundaries. The magnitude of the resulting time-averaged

elocity field is presented in the flagellar beat plane (defined as

he xy plane), and in a plane perpendicular to the beat plane (de-

ned as the yz plane) in Fig. 4 via the colourbar, with the projected

treamlines in white. Since the swimmer is force-free, the magni-

ude of the velocity field associated with sperm swimming scales

ith r −2 in the far-field (Figure not shown), where r is the dis-

ance from the head-flagellum junction. Hence the multipole ex-

ansion for the far flow field is not proportional to a Stokeslet

ut instead a Stokeslet-dipole, λG 

d , where G 

d is a Stokeslet-dipole,

riented such that the forces lie on the time-averaged symmetry

xis and push fluid away from the cell along this axis. Thus when

> 0 ( Smith and Blake, 2009 ) the one can observe fluid moving

way from the cell along its long axis and the sperm is a pusher

wimmer; the converse with λ< 0 is defined as a puller swimmer.

nsurprisingly, one can infer the time-averaged swimming of the

perm corresponds to a pusher, by inspection of Fig. 2 , as also ob-

erved for sperm swimming in a low viscosity in vitro fertilisation

edium ( Ishimoto et al., 2017 ). 

.2. Coarse-graining the flow field 

.2.1. Dimensional reduction of the time-dependent flow field 

The time dependent flow field surrounding the sperm has been

alculated using the reconstructed flagellar waveform, and is pre-

ented in a reference frame co-moving with the sperm as a movie

n the Supporting Material. Its complexity is illustrated by the
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Fig. 4. The time-averaged fluid flow around a human sperm swimming in high vis- 

cosity medium (HVM), relative to the sperm head-tail junction. The velocity mag- 

nitude is given in units of L / T via the colourbar. (a) The time-averaged flow field 

magnitude is given by the colourbar and the projections of the streamlines in the 

beating plane of the flagellum, which is defined as the xy plane, are given in white. 

(b) The analogous plot for the time-averaged flow field in the plane perpendicular 

to the beating plane, defined as the yz plane. 
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hanges in the direction of the flow ahead of the sperm and hence

e apply PCA to the fluid flow field to simplify its structure, with-

ut an extensive loss of accuracy or information. Consider a uni-

orm discretisation of time, t 1 , . . . , t n and let m denote the num-

er of mesh points in a spatial discretisation of the physical do-

ain, with α ∈ { 1 . . . 3 m } indexing the set (e q 1 (α) , x q 2 (α) ) . Here,

espectively, q 1 ( α) ∈ {1, 2, 3} is the axis associated with α, and

 2 (α) ∈ { 1 , . . . , m } is the mesh point associated with α. Defining

 iα = e q 1 (α) · u (t i , x q 2 (α) ) , and the velocity field time average 

¯
 α = 

1 

n 

n ∑ 

p=1 

u pα, i ∈ { 1 . . . n } , 

ne can construct the covariance matrix 

 

v el 
αβ = 

1 

n 

n ∑ 

i =1 

(u iα − ū α)(u iβ − ū β ) , 

f dimension 3 m × 3 m , thus allowing the implementation of PCA.

ence, we have a collection of spatially homogeneous, temporally

onstant velocity fields for the PCA modes, the first five of which

re plotted in Fig. 5 . Furthermore, the PCA expansion for the veloc-

ty field is simply a weighted sum of such PCA modes, with time

ependent coefficients, and the cumulative variances for the first n

erms, denoted c n , are given by c 1 = 0 . 628 , c 2 = 0 . 901 , c 3 = 0 . 935 ,

 4 = 0 . 956 , c 5 = 0 . 969 . Hence, even just an expansion with first

wo modes captures more than 90% of the variation in the flow

eld. 

.2.2. Regularised Stokeslet decomposition 

Following our previous study Ishimoto et al. (2017) , we ap-

roximate the steady PCA modes with regularised Stokeslets

 Cortez, 2001 ), which are more convenient than point singulari-

ies as they allow the representation of forces that manifest over

ifferent lengthscales without large numbers of singularities. We

roceed by expanding the velocity field of PCA mode s , denoted

˜ 
 

s (x ) , via 

˜ 
 

s (x ) = 

K s ∑ 

k =1 

f (s,k ) · G ε(s,k ) (x , x (s,k ) 
0 

) , 
here 

 ε = 

(r 2 + 2 ε2 ) I + rr 

(r 2 + ε2 ) 3 / 2 

s a regularised Stokeslet ( Cortez, 2001 ), with r = x − x (s,k ) 
0 

, r = | r| ,
nd I denotes the identity tensor. Least squares fitting is used

o determine the position of each singularity x ( s, k ) together with

he associated magnitude f ( s, k ) and regularization parameter ε( s, k ) ,

ith the latter representing the lengthscale over which each force

ontribution acts in the regularised Stokeslet decomposition. The

umber of singularities in the summation, K s , is determined by

he minimal number that yield a reasonable fit for each flow PCA

ode, in this case K 1 = 3 , K 2 = 4 for the lowest 2 modes and the

esulting coefficients for this decomposition of PCA modes are de-

ailed in the Supporting Material. 

To generate an approximation of the velocity field using reg-

larised singularities, we project the 3 m dimensional vector u i α
f the original velocity field onto the span of the velocity vec-

ors ˜ u s α = e q 1 (α) · ˜ u 

s (x q 2 (α) ) , s ∈ { 1 , . . . , Q} for each time point

 ∈ { 1 , . . . , n } . The resulting projection at timepoint i is thus a

eighted linear summation of the ˜ u s α, and hence also a weighted

inear summation of regularised Stokeslets. For the latter summa-

ion the coefficients in general vary with the timepoint i but are

he same for each collection of regularised Stokeslets approximat-

ng a given PCA mode. 

This approximation to the original velocity field at timepoint i ,

t meshpoint q 2 ( α) and in the direction q 1 ( α) is denoted u ∗Q 
iα

and

an be used to construct the 3 m × 3 m covariance matrix 

 

∗Q 
αβ

= 

1 

n 

n ∑ 

i =1 

(u 

∗Q 
iα

− ū 

∗Q 
α )(u 

∗Q 
iβ

− ū 

∗Q 
β

) , (2) 

ith the temporal average ū ∗Q 
α defined analogously to the average

f the observed velocity field. Then the ratio trace ( S ∗Q )/trace( S vel )

s a measure of the proportion of the variance in the original flow

hat is captured by regularised Stokeslet approximation of the Q -

evel PCA mode expansion. In turn, the cumulative contribution

ate for the regularised Stokeslet approximation to the Q = 2 PCA

xpansion is 0.878, which is very close to the cumulative variance

f the Q = 2 PCA decomposition, namely c 2 = 0 . 901 . 

Therefore, the lowest two flow PCA modes are each well ap-

roximated by a regularised forces, with no net force acting on

he sperm with three and four lateral forces along the flagellum,

orresponding to K 1 = 3 , K 2 = 4 , as summarized in Fig. 6 a. Focus-

ng on the forces active along the flagellum, the two modes of lat-

ral forces in the high viscosity medium are oscillatory and out of

hase with respect to arclength variation, as observed in Fig. 6 a.

heir respective time-dependent coefficients are given in the Sup-

orting Information and exhibit both an oscillation and a phase-

ag, as seen in the phase plane trajectory of Fig. 6 b and the plot of

oefficients with time in Fig. 6 c. In addition the arclength and tem-

oral phase lags are such that these two standing waves combine

o give a travelling wave along the flagellum to good approxima-

ion. 

For instance, mode 2 has a time-dependence in phase with

in ( ωt ) from Fig. 6 c, while mode 1 is approximately in phase with

cos (ωt) . Noting that y in this plot decreases along the flagellum,

he spatial dependence of the mode 2 contribution is in phase with

in (k (y + ξ )) , with ξ ∼ 0.55, while mode 1 has a spatial depen-

ence in phase with − cos (k (y + ξ )) . This may be as inferred by

oting that mode 2 is of zero magnitude at y = −ξ , and increasing

s y decreases from y = −ξ , while mode 1 is of peak negative am-

litude at y = −ξ . There is clearly also an arclength modulation of

he wave amplitude, summarised by the function A ( y ), and so we
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Fig. 5. The first five PCA modes of the time-dependent fluid velocity field. With the same units of L / T for velocity used in Fig. 4 , the velocity magnitude of the flow projected 

on the flagellum beat plane, the xy plane, is given by the colourbar, with the projection of the streamlines onto the beat plane given in white. 
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have that the sum of the two standing waves is approximately 

A (y ) [ cos (ωt) cos (k (y + ξ )) − sin (ωt) sin (k (y + ξ )) ] 

= A (y ) cos (k (y + ξ ) + ωt) , 

which is an amplitude-modulated travelling wave in the negative

y -direction, towards the distal flagellum. Associated with this wave

are the corresponding lateral forces on the sperm cell body, as

given by the regularised stokeslets near y = 0 in Fig. 6 a. 

A further, perhaps counter-intuitive, feature of high viscosity

swimming is that the majority of the forces in the regularised

Stokeslet expansion are predominantly lateral. In particular, the

proportion of the forces along the axis of symmetry of the sperm

cell are small in comparison to a sperm swimming in a low vis-

cosity, in vitro fertilization, medium as may be inferred by com-

paring Fig. 6 a, with Fig. 6 d, with the latter taken from Ishimoto

et al. (2017) . Hence even though the forces along the flagellum

ultimately are responsible for progressive motility, they are sub-

dominant within the local forces exerted the sperm flagellum in

high viscosity media. A final contrast with the low viscosity re-

sults is that in high viscosity swimming, the coefficient for the

leading order Stokeslet-dipole in the far-field multipole expansion

is always positive throughout the beat cycle in a high viscosity

medium. This is pusher swimming, in contrast to low viscosity

human sperm motility, where the cell periodically behaves like a

puller, even though its beat period averaged behaviour is that of a

pusher ( Ishimoto et al., 2017 ). 

3.3. Swimming velocity, power and efficacy 

We use the limit cycle reduction of the digitally captured flag-

ellar wave in a high viscosity medium (see Fig. 2 c). Denoting the

time-average during one beat period as a bracket, 〈 〉 , the progres-

sive swimming velocity and hydrodynamic power consumption are

respectively given by 

|〈 V 

HV M 〉| = 5 . 1 × 10 

−2 L 

T HV M 

, 〈 P HV M 〉 = 3 . 1 × 10 

−2 μ
HV M L 3 

(T HV M ) 2 
, 

where V is the swimming velocity, L is the flagellum length, T

the beat period and μ the viscosity with the label HVM refer-

ring to high viscosity media. These values can be contrasted with

the values for the human sperm in a watery low viscous medium

( Ishimoto et al., 2017 ), for which we have 

|〈 V 

LV M 〉| = 1 . 2 × 10 

−1 L 

T LV M 

, 〈 P LV M 〉 = 2 . 3 × 10 

−2 μ
LV M L 3 

(T LV M ) 2 
, 

where the label LVM refers to low viscosity media. 

Note that the viscosity scales by a factor of about 155 between

the high and low viscosity media and the beat period is 2.3 times

as long in the high viscosity medium ( Smith et al., 2009b ). Hence

we have the ratio of average dimensional velocities and powers are
iven by 

|〈 V 

HV M 〉| 
|〈 V 

LV M 〉| ≈ T LV M 

T HV M 

5 . 1 × 10 

−2 

1 . 2 × 10 

−1 
= 0 . 18 , 

〈 P HV M 〉 
〈 P LV M 〉 ≈

(
T LV M 

T HV M 

)2 
μHV M 

μLV M 

9 . 89 × 10 

−5 

1 . 1 × 10 

−3 
= 3 . 9 . 

ote that despite an increase in viscosity of over 150 times, the

rogressive velocity reduces only by a factor of ≈ 5, with an in-

rease in the power output of only a factor of ≈ 4. 

Further note that the ratio of progressive velocities is strongly

nfluenced by the fact that in low viscosity, there is extensive

perm cell yawing as reported in Smith et al. (2009b) and Ishimoto

t al. (2017) , and also shown in Fig. 2 e. In contrast, if velocity mag-

itudes are taken before averaging and comparison, which takes

nto account the lateral movements of the cell in low viscosity me-

ia due to cell yawing, the ratio of dimensional velocities is given

y 

〈| V 

HV M |〉 
〈| V 

LV M |〉 ≈ 0 . 048 . 

n particular, this change in velocity is due to cell yawing in the

ow viscosity medium since 〈 | V 

LVM | 〉 ≈ 3.8| 〈 V 

LVM 〉 |. 
Swimming efficiency is regularly considered in theoretical stud-

es, and is defined via the ratio of the power needed to push a

phere of the same volume as the cell to the mechanical power

f the swimming motion at the same mean speed. It is thus pro-

ortional to the ratio of the square velocity to power ( Shum et al.,

010 ). However, our focus does not concern mechanical energy us-

ge relative to driving a sphere, which addresses the impact of

orphology for instance, but rather a comparison of the progres-

ion distance of a sperm cell for each unit of mechanical energy

or motility in low and high viscosity media. Given power is en-

rgy per unit time and velocity is distance per unit time, we thus

equire the ratio of velocity to power to access the distance trav-

lled per unit of mechanical energy, which is equivalent to the re-

iprocal of the “cost of transport” used in allometric scaling studies

e.g. Bale et al., 2014 ). Hence we define efficacy as the progressive

wimming speed per unit of power consumption for the swimming

perm explicitly by 

= 

|〈 V 〉| 
〈 P 〉 , (3)

here the brackets denote beat cycle averaging and we explore

ow this efficacy changes between swimming in high and low vis-

osity media. 

First we note that with u f ( s, t ) denoting the flagellum veloc-

ty, as a function of flagellum arclength and time and relative to

he reference frame fixed in the sperm cell body, the underlying

quations and boundary conditions for the fluid flow exhibit the
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Fig. 6. (a) The regularised Stokeslet approximation for the first two PCA modes of the velocity field induced by sperm swimming in high viscosity medium. The origin, size 

and direction of the arrows give the location, magnitude and direction of the force singularities. The circle radius corresponds to the regularization parameter, ε. (b) The 

phase space of the first two PCA modes for the velocity field associated sperm swimming in the high viscosity medium, with the colour evolving with increasing time, from 

blue at early time to yellow. (c) A time plot of the coefficients for the first two PCA modes in the phase space trajectory depicted by (b) in terms of the non-dimensional 

time, t / T , where T is the beat period. (d)(e)(f) For comparison, the regularised Stokeslet approximation for the first two PCA modes of the velocity field due to a sperm 

swimming in a low viscosity medium , as determined by Ishimoto et al. (2017) are presented in (d) with the low viscosity analogues of (b)(c) given by (e),(f). Reproduction 

of (d)(e)(f) with permission from Ishimoto et al. (2017) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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(μ, p, u , σ, u f ) → (�μ, �p, u , �σ, u f ) . 

ence, if the viscosity increases by a factor of � and the flagel-

um waveform is the same, then a solution of the sperm swim-

ing problem is obtained with the same swimming speed and the

ower expenditure increased by a factor of �. Thus for fixed kine-

atics, that is a fixed flagellum waveform, and an increase in the

iscosity by a factor of � we have the efficacy ζ reduces by factor

f � and the viscosity-efficacy ratio 

:= 

μHV M ζ HV M 

μLV M ζ LV M 

s unity. 

Of course, the waveform does not remain unchanged with

hanges in viscosity. If on increasing the viscosity by a factor of

, the resulting changes of the flagellum result in an efficacy that

s higher than the scaling result with fixed kinematics, then η will

e greater than one. In other words, on comparing swimming in

wo viscosities differing by a factor of � = μHV M /μLV M , then a

iscosity-efficacy ratio of η > 1 characterises a change in waveform

hat produces more progressive velocity per unit of mechanical

ower consumption in the higher viscosity medium relative to the

/ � reduction associated with keeping the waveform fixed. 

Explicitly calculating η from the data we find 

= 

μHV M 

μLV M 

|〈 V 

HV M 〉| 
|〈 V 

LV M 〉| 
〈 P LV M 〉 
〈 P HV M 〉 ≈ 155 × 0 . 18 × 1 

3 . 9 

≈ 7 . 2 . 

ence, the change in the sperm flagellum waveform results in sub-

tantially greater efficacy in moving through a viscous fluid com-

ared to swimming with the same waveform. A fundamental ques-

ion is whether the data presented here can also suggest why the
aveform change might lead to this improvement of progressive

elocity per unit power and we explore this further below. 

In particular, the absence of cell-yawing in the high-viscosity

edium does not appear to be sufficient to explain this observa-

ion in isolation, as taking the velocity magnitude before averaging

ields a viscosity-efficacy ratio of 

μHV M 

μLV M 

〈 | V 

HV M | 〉 
〈 | V 

LV M | 〉 
〈 P LV M 〉 
〈 P HV M 〉 ≈ 155 × 0 . 048 × 1 

3 . 9 

≈ 2 > 1 . 

onsequently, a contribution to the above improvement observed

n the efficacy associated with the flagellum waveform change is

bserved even when examining averaging only after taking the ve-

ocity magnitude and thus accounting for yaw. Hence, the loss of

ell yawing cannot fully explain the relatively increased efficacy

hat accompanies the change in flagellar waveform for high viscos-

ty swimming. Other factors thus contribute, such as the change in

nternal mechanics of the flagellum associated with the changed

aveform. Nonetheless, these scales also indicate that the loss

f cell yawing is the most important factor in the relative im-

rovement of progressive swimming speed per unit of mechanical

ower imparted to the surrounding fluid with waveform change

or a sperm, on comparing the mechanics of swimming in a low

iscosity and a high viscosity medium. 

. Discussions and conclusions 

We have first of all examined the flow field generated by a

perm swimming in a high-viscosity, weakly elastic, medium of di-

ute methylcellulose. Using techniques that have been previously

eported ( Ma et al., 2014; Werner et al., 2014 ) we used principal

omponent analysis (PCA) to simplify the beating pattern of the
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flagellum, via a limit cycle in the PCA phase space, and this sim-

plified beat pattern was then used to determine the velocity field

surrounding the sperm using boundary element method (BEM) cal-

culations and this field was then also approximated in terms of ve-

locity PCA modes ( Ishimoto et al., 2017 ). This velocity field was fur-

ther approximated using a small number of regularised Stokeslets

and we confirmed that such approximations nonetheless capture

most of the variance of the flow field. 

Even a superficial inspection of the high viscosity flows com-

pared to the low viscosity flow, for instance by comparing Fig. 6 a,

with Fig. 6 b, confirms the many previous observations that the sur-

rounding fluid is a major regulator of sperm behaviour ( Brokaw,

1966; Kirkman-Brown and Smith, 2011; Rikmenspoel, 1984; Smith

et al., 2009b ). Considering this contrast in more detail, we have

from previous studies ( Ishimoto et al., 2017 ) that in low viscosity

media, the overall impact of the sperm on the surrounding fluid

is effectively blinking dynamics, associated with turning the PCA

modes on and off in time, which gives rise to phase trajectories

that are approximately cross-like with only one mode active at

most timepoints during the beat cycle ( Fig. 6 e and f and Ishimoto

et al., 2017 ). In contrast for the flows induced by high viscosity

swimming we have, to a good approximation, a temporally phase-

lagged sum of two spatially phase-lagged standing waves, which

is equivalent to a travelling wave of forces propagating down the

flagellum. Such differences far exceed the fluctuations observed in

the data for an individual cell, as emphasised by the small differ-

ences between the phase plane points and the average limit cycle. 

There are also further differences, for example in high viscosity

media the sperm has always been observed to be a pusher, whilst

sperm swimming in low viscosity media are pullers at certain

points in the beat cycle. Finally, in high viscosity media the forces

induced by sperm on the surrounding fluid are predominantly lat-

eral only, in contrast to low viscosity swimming but the extent of

cell yawing is greatly reduced in high viscosity media, with the

latter observation reported in Kirkman-Brown and Smith (2011) . 

These observations emphasize that the mechanics of sperm in-

teractions with their surrounding fluid, and the surrounding flow

fields, are fundamentally altered with changes in rheology. Thus

the hydrodynamic interactions of sperm with each other, obstacles

and boundaries differ in high viscosity media, as is the means by

which a sperm exerts its influence and experiences the influence

of surrounding cells and boundaries via the surrounding flow field.

Hence, for example, a physical understanding of sperm popula-

tions or sperm behaviours in confined geometries will fundamen-

tally differ with the rheology of the surrounding media. While such

observations have been made previously ( Brokaw, 1966; Kirkman-

Brown and Smith, 2011 ), the results presented here provide a

means of quantifying and predicting the impact of such differ-

ences. For example, the regularised Stokeslet expansion may be

used to upscale individual behaviours into population level mod-

els and thus provide a prospective means for predicting how pop-

ulation level sperm behaviour depends on rheology. In turn this

will allow predictive modelling for the consideration of how sperm

population behaviours are altered by their physical microenviron-

ment. Furthermore, if such a predictive framework proves to be

informative, it can increase our understanding of how population

behaviours within the low viscosity media of standard clinical di-

agnostics and prospective sperm handling microdevices ( Lopez-

Garcia et al., 2008; Seo et al., 2007; Shao et al., 2007 ) translate

to the in vivo setting. 

Despite the increase in viscosity by two orders of magnitude,

we observe that the progressive swimming velocity and mechani-

cal power output of the flagellum in low and high viscosities are

still within an order of magnitude between the media. Further-

more, the viscosity-efficacy ratio, η increases by a factor of about

7 on comparing high and low viscosity media. In turn, this indi-
ates that the changes of the sperm flagellum waveform induce a

reater efficacy, that is velocity per unit of mechanical power or

istance per unit of mechanical energy, than would occur if the

agellum waveform was the same in the two media. Such observa-

ions are also consistent with prior modelling observations of im-

roved mean sperm velocity per unit of mean mechanical power

n high viscosity Newtonian media, deduced by simulating across a

wo-parameter family of waveforms constructed with cubic splines

nd adaptive knots to capture approximations of both low and high

iscosity beat patterns ( Wakeley, 2008 ). 

In this study we proceeded to demonstrate that a factor of ap-

roximately 4 in the viscosity-efficacy ratio arises from the loss of

awing in the high viscosity medium. Thus, while there clearly is

bout a factor of two increase in the viscosity-efficacy ratio aris-

ng from the internal mechanics of the flagellum, as might ul-

imately be explained by changes in the numbers and rates of

ynein contractions and the force-velocity curves of dynein con-

raction ( Lindemann, 1996; Oiwa and Takahashi, 1988 ), the domi-

ant contribution to the relative improvement in progression per

nit of power appears to be the loss of yawing. This is despite the

bservation that the forces exerted by the flagellum on the fluid

re predominantly lateral for the waveform in high viscosity. In-

tead, the loss of yaw might be anticipated by the high wavenum-

er of the distal flagellum beat in a more viscous medium, leading

o a cancellation of lateral forces along the flagellum at any given

nstant, compared to low viscosity swimming where the flagellum

s significantly less than two wavelengths. The changes in beat pat-

ern wavelength can also be inferred from the increase in regu-

arised Stokeslet density along the time-averaged symmetry axis

f the cell, on comparing Fig. 6 (b) with (a). However, one must

ecognise that conclusions drawn on such observations arise from

omparing the observations of two sperm flagellum waveforms, al-

eit waveforms that are representative of the most highly motile

uman sperm in the respective low and high viscosity media, as

eported previously ( Smith et al., 2009b ). 

Subject to such caveats, this study therefore highlights that

nderstanding the dominant mechanism governing the counter-

ntuitive effectiveness of progressive sperm swimming in very vis-

ous media requires a focus on wavelength selection. In particular,

ne should consider the reduction of the wavelength associated

ith the distal waveform ( Fig. 1 a) in models of beat pattern for-

ation and dynein regulation. In turn this suggests that flagellar

elf-organisation models incorporating motor-control mechanisms

 Camalet and Jülicher, 20 0 0; Hilfinger et al., 2009; Jülicher and

rost, 1997; Lindemann, 1994a; 1994b; Oriola et al., 2017; Riedel-

ruse et al., 2007 ) have the prospect of probing and predicting the

onditions for when sperm do, and do not, yaw and thus when

he dominant mechanism observed here for maintaining progres-

ion in high viscosity media given a limited power output will

e present. While current models of flagellar beating may need

efinement and further study to address such questions, one can

onetheless observe that increasing viscosity decreases the wave-

ength (e.g. Fig. 2d[inset] of Oriola et al., 2017 ), further indicating

hat the required waveform behaviour may emerge from relatively

imple biophysics. 

In summary, using PCA data reduction and boundary element

ethods we have highlighted that with an increase in viscosity

y two orders of magnitude the human sperm flagellum induces

 fluid flow that is well approximated by travelling wave of reg-

larised points forces along the flagellum, in contrast to blinking,

hat is pulsing, force singularities in low viscosity media ( Ishimoto

t al., 2017 ). Such results are likely to find application in develop-

ng population level models of sperm dynamics that upscale indi-

idual level information. Furthermore, a consideration of efficacy

or sperm swimming in high and low viscosity media emphasises

hat the loss of cell yawing is the dominant feature in explaining
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ow sperm can progress effectively with a limited power output

espite very large increases in viscosity. In turn, this loss of yaw-

ng is anticipated to be due to the increase in the density of regu-

arised forces along the time averaged symmetry axis of the cell in

CA approximations, thus indicating that understanding the dom-

nant features of sperm progression at high viscosity might be re-

uced to a problem of wavelength selection in the complex self-

rganisation of the beating pattern in the mammalian flagellum. 
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ppendix A. On the relation between Stokes flow and linear 

axwell theory 

1. Velocity fields and cell trajectories 

The Newtonian momentum equations reduce to 

∂ p 

∂x i 
+ μ∇ 

2 u i = 0 . 

ith p M and u M hereafter referring specifically to the linear

axwell solution, one has that applying the operator L := (1 +
∂ /∂ t) to the linear Maxwell fluid momentum equations gives 

∂ 

∂x i 
L p M + μ∇ 

2 u 

M 

i = 0 

ence setting 

 

M 

i = u i , p M = L 

−1 p, 

olves the bulk equations and satisfies all boundary conditions.

iven the sperm is also be imposed to be at rest for t ≤ t 0 the

bove initial conditions are also satisfied, and the inverse opera-

or L 

−1 is unique and we have a solution of the linear Maxwell

roblem with velocities identical to those of the Newtonian flow

eld problem. Since the velocity fields are predicted to be identi-

al, so is the boundary velocity at all points on the rigid cell body

nd hence the cell body motion is identical, which fixes the pre-

ictions for the velocity and angular velocity of the cell fixed frame

elative to the inertial frame, that is U and �, to be identical. Not-

ng the flagellum motion relative to the cell fixed frame is iden-

ical by model construction, we have that the motion of the cell

nd thus its trajectory are identical. An alternative, more formal,

roof of this result can also be found in recent work detailing the

onstruction of a viscoelastic boundary element algorithm for mi-

roswimming ( Ishimoto and Gaffney, 2017 ). However, the pressure
iffers between the linear Maxwell and Newtonian predictions and

ore generally so do the predictions of forces, stresses, power and

fficacy. 

2. Power calculations 

Noting that predicted velocities are indistinguishable, the me-

hanical power for the Newtonian and linear Maxwell theory are

espectively given by 

 = 

∫ 
S 

u i σi j n j dS, P M = 

∫ 
S 

u i σ
M 

i j n j dS, 

ith n j the j th component of the unit normal. Further, the Newto-

ian and linear Maxwell stress are related via 

i j = −pδi j + 2 μD i j = −L p M δi j + L τ M 

i j = L σ M 

i j = σ M 

i j + λ
∂σ M 

i j 

∂t 
, 

nd hence 

 − P M = 

∫ 
S 

u i (σi j − σ M 

i j ) n j dS = 

∫ 
S 

u i λ
∂σ M 

i j 

∂t 
n j dS. 

owever, as we have seen from Figs. 1 b, 2 a and 2 d, there is a sin-

le dominant angular frequency ω, such that 

∂ 

∂t 
∼ ω 

nd the Deborah number is given by De = λω ≈ 0 . 2 . Hence the

cale of the relative error in using the Newtonian power, P , to ap-

roximate the linear Maxwell power, P M , is given by 

P − P M 

P M 

∣∣∣∣ ∼ O 

(∫ 
S u i λωσ M 

i j 
n j dS ∫ 

S u i σ
M 

i j 
n j dS 

)
∼ O ( De ) , 

nd thus the relative error is of the scale of the Deborah number,

s used and stated in the main text. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jtbi.2018.02.013 . 
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