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Abstract: Remote sensing data from multi-source optical and SAR (Synthetic Aperture Radar)
sensors have been widely utilized to detect forest dynamics under a variety of conditions. Due to
different temporal coverage, spatial resolution, and spectral characteristics, these sensors usually
perform differently from one another. To conduct statistical modeling accuracies evaluation and
comparison among several sensors, a linear statistical model was applied in this study for retrieval
and comparative analysis based on remote-sensing indices from optical sensors of ALOS AVNIR-2
(Advanced Land Observing Satellite Advanced Visible and Near Infrared Radiometer type 2),
Landsat-5 TM (Thematic Mapper), MODIS NBAR (Moderate Resolution Imaging Spectroradiometer
Nadir BRDF-Adjusted Reflectance), and the SAR sensor of ALOS PALSAR (Advanced Land
Observing Satellite Phased Array type L-band Synthetic Aperture Radar), respectively. This modeling
used the forest leaf area index (LAI) as the field measured variable. During modeling, six optical
vegetation indices were selected for evaluation and comparison between the three optical sensors,
while simultaneously, two radar indices were calculated for the comparison between ALOS AVNIR-2
and PALSAR sensors. The gap between the spatial resolution of remote-sensing data and field plot
size can account for the different accuracies found in this study. This study provides a reference for the
selection of remote-sensing data types and spatial resolution in specific forest monitoring applications
with different data acquisition costs and accuracy needs. Normally, at regional and national scales,
remote sensing data with 30 m spatial resolution (e.g., Landsat) could provide significant results in
the statistical modelling and retrieval of LAI while the MODIS cannot always meet the requirements.

Keywords: optical sensors; forest monitoring; leaf area index; vegetation index; PLS regression

1. Introduction

With significant developments in remote-sensing technology, a variety of satellites and sensors
with different spatial, spectral, and temporal resolutions have been quickly developed. The launch of
the Earth Resources Technology Satellite “ERTS-1” (i.e., Landsat-1) in the early 1970s is considered
a milestone in the history of the development of satellite remote sensing. SEASAT, launched in 1978,
was the first civilian satellite designed for remote sensing of the Earth’s oceans with the first spaceborne
synthetic aperture radar (SAR). In 1999, the first commercial satellite (IKONOS) collecting very high
resolution imagery was launched. By far, more than 6000 satellites have been launched, over 60%
of which serve military purposes. Those for civilian and scientific use mainly include the series of
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Landsat, meteorological, ocean, geodetic, astronomical observation, and communications satellites.
These satellites provide sufficient spatial and temporal coverage of high quality data at various scales.
As a result, the potential of using remote-sensing techniques as a monitoring tool for forest ecosystems
has been adequately recognized. Multi-source optical and radar data, including the widely recognized
Landsat records [1], high spatial resolution Quickbird imagery [2], and time-series SPOT (Systeme
Probatoire d’Observation de la Terre)-VEGETATION images [3] as well as L-band PALSAR data [4],
have been widely utilized to monitor the forest status and its dynamics under various circumstances.

All remote sensing-based modeling can be traditionally classified into two major categories:
physical and statistical. Physical models always follow the physical mechanisms of the remote-sensing
systems and can be continuously improved by adding necessary knowledge. However, it is usually
challenging to make clear the physical mechanisms of the interaction between surface objects and
remote sensing signals, with the appropriate models also potentially being quite complex. On the other
hand, statistical models are based on the correlation relationships between remotely sensed variables
and land surface measurements. These types of models are usually site-limited. However, there are
clear advantages in terms of the convenience for development, effectiveness for calculations, and fewer
demands for input data [5].

In consideration of the limitations of specific physical models in data sources as well as input
variable requirements, the statistical modeling approaches are suited for applications under different
environmental conditions and imaging systems due to the above-mentioned advantages [6]. Thus,
the simple linear regression model was chosen in this study for accuracy comparisons among different
optical sensors with varied resolutions, as well as between optical and SAR sensors.

The leaf forms the main surface for matter and energy exchange between the vegetation canopy
and the atmosphere. Leaf area index (LAI), which is the ratio of foliage area to ground area, is proposed
as a key variable in the study of forest ecosystems and their development [7]. Chen and Black proposed
using half of the total green leaf area in order to take into account the effective photosynthetic area
in the case of non-flat leaves [8]. LAI can be used to characterize the canopy–atmosphere interface of
an ecosystem and is related to precipitation, radiation extinction, canopy microclimate, atmospheric
nutrient deposition, and interception as well as water, carbon, and energy exchanges with the
atmosphere [9]. It plays a key role in the studies of various fields, including climate change, environment
management [10], and vegetation surveys [11]. It can both be retrieved from remote-sensing data and
measured using developed canopy analyzer devices [8]. In this study, it was selected as the field
measured variable to correlate with remote sensing-based spectral reflectance or its transformations.

With regard to the spectral characteristics of green vegetation in specific bands, they reflect
their own biophysical features and environmental impacts. Thus, the surface reflectance of some
specific spectral bands can be used to establish regression models with biophysical parameters [5,6].
Nevertheless, considering the differences in the wavelength range and bandwidth among different
optical sensors, direct comparisons using single-band reflectance are limited and spectral indices can be
derived and applied to improve the accuracy. As demonstrated in many previous studies, vegetation
index (VI), a combination of single band of remote sensing data, can be treated as a simple, effective,
and experienced characterization of ground vegetation conditions [12]. Previous studies have proven
that the VI usually shows a good correlation with a variety of physiological and ecological parameters
and hence can be widely used to diagnose a range of biophysical vegetation parameters, including
canopy structural parameters [13], LAI [14], fractional vegetation cover [15], and above-ground biomass
(AGB) [16]. Consequently, the VI was chosen as the remote-sensing extracted variable to form those
linear regression models.

There is remote-sensing data from a wide variety of optical and radar sensors which had been
adopted for forest detection, monitoring, and management. For example, Arroyo et al. integrated
LiDAR (Light Detection and Ranging) data and high spatial resolution satellite imagery (Quickbird-2)
to estimate riparian biophysical parameters and land cover types in Queensland, Australia [17].
Andersen et al. utilized a combination of ground plots, LiDAR strip sampling, multispectral and
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radar imagery, as well as classified land cover information to estimate forest biomass resources in
interior Alaska [18]. Furthermore, MODIS (Moderate Resolution Imaging Spectroradiometer), ALOS
PALSAR (Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar)
and Landsat TM (Thematic Mapper) data had been selected to estimate forest LAI [19], growing stock
volume [20], and aboveground carbon storage [21], respectively. The optical images and SAR datasets
were also used for the forest disturbance detection and recovery monitoring [22,23]. As shown, these
data have considerably different temporal coverage, spatial resolution, and even imaging mechanisms,
hence demonstrating quite different performances among the various sensors. In the actual forest
monitoring and management, we usually do not need the remote sensing data with the highest spatial
resolution. In some cases, data with 30 m spatial resolution can meet the requirements, thus data with
a spatial resolution of 10 m or even 1 m are unnecessary. Furthermore, remote sensing data with higher
spatial resolution usually have higher acquisition costs. Thus, considering this, the actual needs and
accuracy requirements should be fully evaluated to seek the most appropriate remote sensing data.

To make the statistical modeling accuracies evaluation and comparison among various sensors
more direct and targeted, in this case, linear regression modeling was conducted using field measured
LAI values and remote-sensing indices. These indices were calculated from four sources of data: ALOS
AVNIR-2, Landsat-5 TM, MODIS NBAR (Nadir BRDF-Adjusted Reflectance), and ALOS PALSAR.
These data were acquired at relatively close dates in 2010. During the modeling, six diverse optical
vegetation indices were selected for the evaluation and comparison among the three optical sensors
with different spatial resolutions. Following this, two radar indices defined in a similar form of
corresponding optical indices were determined for the comparison between AVNIR-2 and PALSAR
sensors. Both single-variable-based and multiple-variable-based modeling were performed, with the
results being verified by cross-validation and then compared.

2. Materials and Methods

2.1. Study Area

The Greater Hinggan Mountain area, which spans the northern part of Heilongjiang Province
and the Inner Mongolia Autonomous Region of China, is the watershed area of the Mongolian
Plateau in the west and the flat Songliao Plain in the east. Its geographic coordinates range between
50◦11′–53◦33′ N in latitude and 121◦12′–127◦00′ E in longitude (Figure 1). The region has a total length
of over 1200 km, a width of 200–300 km and an average altitude of 573 m. It is an important climatic
zone, having a typical continental cold–temperate monsoon climate with warm summers and cold
winters. The average annual temperature of the whole mountain area is −2.8 ◦C, with an average
annual precipitation of 746 mm [11].

The Greater Hinggan Mountain area is China’s northernmost and largest state-owned modern
forest area, with a total ground area of 8.46 × 106 ha and a forest-covered area of 6.46 × 106 ha.
The forest coverage is around 76.40%, providing a total stand volume of up to 5.01 × 108 m3, which
accounts for around 7.8% of the total national stand volume of China. It is a mixed forest area
dominated by coniferous species, such as Mongolian pine (Pinus sylvestris) and Larch (Larix gmelini),
and broad-leaved species, such as Birch (Betula platyphylla) and Aspen (Populus davidiana).

2.2. Remote-Sensing Data

In order to investigate and compare the application accuracy of optical remote-sensing data,
the multi-source optical images of ALOS AVNIR-2, Landsat TM, and MODIS were selected for
the comparative study in consideration of their different technical characteristics, especially spatial
resolution. As described in Table 1, ALOS AVNIR-2 provides 10 m spatial resolution images with
a repeat cycle of 46 days, while Landsat-5 TM has a spatial resolution of 30 m and temporal revisit cycle
of 16 days. The MODIS aboard the Terra and Aqua satellites, operating in tandem, view the entire
Earth’s surface every one to two days, acquiring data in 36 spectral bands with ground resolutions of
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250/500/1000 m. As these optical sensors have different objectives and show their specific advantages
in different fields, the retrieval of LAI formed the focus of a more targeted comparative study. The same
simple inversion method of statistical regression modeling was selected for the retrieval. Regarding the
statistical modeling accuracies evaluation and comparison between optical and SAR sensors, it seems
challenging since they have totally different physical mechanisms and data characteristics. In order to
minimize the needless effects of other uncontrollable factors, the optical sensor of AVNIR-2 and radar
sensor of PALSAR aboard the same ALOS satellite were chosen for comparison. PALSAR is an active
microwave sensor using the L-band frequency under three observation modes to achieve cloud-free
and day-and-night land observations (Table 2). Considering the data temporal coverage in the study
area, the year of 2010 was determined as the time window for the three types of sensors.
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Figure 1. Location of the study area in the Greater Hinggan Mountains [11]. The background is the
mosaic of two Landsat TM (Thematic Mapper) scenes acquired on 15 and 24 June 1987 (Red: band 4;
Green: band 3; Blue: band 2).

Table 1. Radiometric characteristics of data from ALOS AVNIR-2 (Advanced Land Observing Satellite
Advanced Visible and Near Infrared Radiometer type 2), Landsat-5 TM (Thematic Mapper), and MODIS
NBAR (Moderate Resolution Imaging Spectroradiometer Nadir BRDF-Adjusted Reflectance) sensors.

Satellite Sensor Bands Wavelength
Range (µm)

Spatial
Resolution (m)

Swath
Width (km)

Repeat
Cycle (days)

ALOS AVNIR-2

1 0.42–0.50

10 (at Nadir) 70 (at Nadir) 46
2 0.52–0.60
3 0.61–0.69
4 0.76–0.89

Landsat-5 TM

1 0.45–0.52

30
185 16

2 0.52–0.60
3 0.63–0.69
4 0.76–0.90
5 1.55–1.75
6 10.4–12.5 120
7 2.08–2.35 30

Terra/Aqua MODIS

1 0.620–0.670
250

2330 (cross
track) 1-2

2 0.841–0.876
3 0.459–0.479

500
4 0.545–0.565
5 1.230–1.250
6 1.628–1.652
7 2.105–2.155
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Table 2. Technical characteristics of the PALSAR (Phased Array type L-band Synthetic Aperture
Radar) sensor.

Mode
Fine

ScanSAR Polarimetric
FBS FBD

Chirp bandwidth 28 MHz 14 MHz 14 MHz, 28 MHz 14 MHz
Polarization HH or VV HH+HV or VV+VH HH or VV HH+HV+VH+VV

Incident angle 8–60 deg. 8–60 deg. 18–43 deg. 8–30 deg.

Resolution
Range 7–44 m 14–88 m 100 m 24–89 m

Azimuth
10 m (2 looks)

100 m
10 m (2 looks)

20 m (4 looks) 20 m (4 looks)

Swath width 40–70 km 40–70 km 250–350 km 20–65 km
Bit length 5 bits 5 bits 5 bits 3 or 5 bits
Data rate 240 Mbps 240 Mbps 120 or 240 Mbps 240 Mbps

Center frequency 1270 MHz (L-band)
Radiometric accuracy scene: 1 dB/orbit: 1.5 dB

The ALOS AVNIR-2 image was acquired on 4 September 2010, and the Landsat-5 TM data was
acquired on 2 September 2010. To maintain the consistency in acquisition date within a maximum
limit, the MODIS products of Nadir BRDF-Adjusted Reflectance data (NBAR, MCD43A4) covering
29 August–13 September (Julian day of 241–256) were used. A superimposed map of the three scenes
from AVNIR-2, Landsat-5 TM, and MODIS is shown in Figure 2. Considering the acquisition date
of the AVNIR-2 image, the PALSAR data acquired on 13 August 2010 was used in this study. It has
an incidence angle (at the scene center) of 38.701◦ as well as the dual-polarization of HH and HV.
The same approach of linear regression modeling was adopted using the same collection of field
measured LAI values. The AVNIR-2 and PALSAR images have the same spatial resolution of 10 m,
which greatly facilitates effective comparison. A superimposed map of the two images from ALOS
AVNIR-2 and PALSAR is shown in Figure 3.
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Figure 3. A superimposed map of two images from the optical sensor of AVNIR-2 and radar sensor of
PALSAR aboard ALOS. For the overlap image in the middle, there is a transparency of 50% (The red,
green, and blue colors refer to the image color compositions).

2.3. Field LAI Measurements

To collect the field data, a field forest survey was designed and conducted in July 2012 [11].
In this survey, a total of 18 plots located in the three forestry bureaus (Xilinji, Tuqiang and Amuer
in Mohe, Heilongjiang, China) of the Greater Hinggan Mountain area with a size of 10 × 10 m were
investigated and the locations of each plot were measured using a differential global positioning
system (DGPS). Following this, a series of forest parameters (e.g., tree height, diameter at breast height,
crown width, LAI) were measured. The LAI of each plot was measured using the LAI-2200 canopy
analyzer with a height of just above the canopy (with the help of stepladder) under stable weather
conditions. It makes the measured LAI the same as those near the crown of the tree (as measured by
satellite) and thus available for the statistical modeling with remote-sensing indices.

In each plot of 10 × 10 m, LAI-2200 measurements were performed for five measuring points
(red points in Figure 4) and an average value was calculated for the plot. The LAI-2200 device enables
fast, non-destructive, and on-site computation of LAI from measurements made above the canopy,
which are utilized to determine canopy light interception at five angles. These data are fit to a radiative
transfer model to estimate LAI and some other parameters. This device measures up to a 360◦

azimuthal view for each zenith angle. It provides a large sample area for good spatial averaging. It can
measure small plots and isolated plants. When measuring the plot values, the sampling regulations
and measuring methods are the same for coniferous forest and broad-leaved forest.

Although there were two years between the acquisition dates of remote-sensing images and field
data collection, the study can still be conducted as the main objective was focused on the comparison
of the statistical modeling accuracies among the four sensors and the data from these sensors were
acquired at approximately the same time.
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2.4. Data Pre-Processing

The ALOS AVNIR-2 and Landsat-5 TM images were pre-processed by radiometric calibration,
atmospheric correction, geometric correction, and orthorectification. After this, the surface reflectance
of the study area was acquired. As the field sampling plots were located in the mountainous area
where the terrain fluctuates greatly, terrain correction was applied using ASTER GDEM (Advanced
Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model) data.
The MODIS NBAR data has already standardized reflectance to a nadir view, thus minimizing
artifacts in the sample related to variable geometry. Additionally, the NBAR spectral bands are
comparable to those of Landsat TM, as summarized in Table 1. The PALSAR data used is the level
1.1 data which corresponds to single look complex (SLC) products, provided in slant range geometry.
It was pre-processed to back-scatter the intensity of (Sigma0: σ◦) images through ALOS de-skewing,
multi-look (one look in range direction and four looks in azimuth direction), speckle filter (median
filter with window size of 3 × 3 pixels), as well as SARSim-Terrain correction (SRTM data; Root Mean
Square threshold < 0.5 pixel) using the tools of NEST (Next ESA SAR Toolbox).

Since the ALOS AVNIR-2 and PALSAR imagery, Landsat-5 TM and MODIS NBAR data have
completely different spatial resolutions of 10, 30, and 500 m, respectively, while the LAI data were
acquired from field survey sampling plots with a size of 10 × 10 m, the images of Landsat-5 TM and
MODIS NBAR were resampled to that of 10 m, making the spectral values extracted from optical
images to be in the same spatial scale as the measured LAI values.

2.5. Multivariate Selection and Calculation

In this study, when building the relationships between optical vegetation indices (VIs) and field
measured LAI, the impact of soil background and atmosphere was taken into account and thus, six
indices were finally selected and statistically correlated to field measured LAI. These indices were
the Ratio Vegetation Index (RVI) [24], Difference Vegetation Index (DVI) [25], Normalized Difference
Vegetation Index (NDVI) [26], Soil-Adjusted Vegetation Index (SAVI) [27], Atmospherically Resistant
Vegetation Index (ARVI) [28], and Enhanced Vegetation Index (EVI) [29], which were expressed as
Equations (1)–(6), respectively

RVI = ρNIR/ρRed (1)

DVI = ρNIR − ρRed (2)

NDVI = (ρNIR − ρRed)/(ρNIR + ρRed) (3)

SAVI = (1 + L1)·(ρNIR − ρRed)/(ρNIR + ρRed + L1) (4)
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ARVI = (ρNIR − ρRB)/(ρNIR + ρRB) (5)

EVI = 2.5·(ρNIR − ρRed)/(ρNIR + C1 · ρRed − C2 · ρBlue + L2) (6)

where ρNIR,ρRed, and ρBlue denote the reflectance in the near-infrared, red and blue bands, respectively.
Then ρRB = ρRed − γ(ρBlue − ρRed) and γ, which indicates that the radiation correction coefficient of
the optical path is assumed to be the recommended value (by Kaufman) of 1. The parameter L1 in
Equation (4) indicates a soil adjusted coefficient, which is normally assumed to be 0.5 for most regions.
In Equation (6), we set C1 = 6.0, C2 = 7.5 and L2 = 1, which was used in the production of MODIS
VI products.

Considering the derivation methodology and application fields of optical vegetation indices
(e.g., NDVI and EVI), it was proposed that we should derive some similar indices from the radar
backscattering coefficients. In a similar way to RVI and NDVI, two radar indices were available to be
calculated, namely Radar Ratio Vegetation Index (RRVI) and Radar Normalized Difference Vegetation
Index (RNDVI). They are defined by

RRVI = σ0HH/σ0HV (7)

RNDVI = (σ0HV − σ0HH)/(σ0HV + σ0HH) (8)

where σ0HH and σ0HV indicate the backscattering coefficient in HH and HV polarization, respectively.
After calculating the six optical indices and two radar indices, the Pearson correlation analysis

was performed. With those showing significant correlations, linear regression models were established
and subsequent ANOVA (Analysis of Variance) was conducted (Table 3). It should be noted that the
cross-validation was incorporated in the statistical modeling since the number of field survey plots
was not sufficient for the independent verification.

Taking into account the accuracy and applicability of the model, the partial least squares
(PLS) regression algorithm was selected. PLS regression is a statistical model, which tries
to find the multidimensional direction in the space of predictors that explains the maximum
multidimensional variance direction in the variable space of observations [30]. The principal
component analysis (PCA) was combined in the PLS regression to enable the smallest necessary
number of orthogonal components.

3. Results

3.1. Univariate Modeling Using Optical VIs

3.1.1. ALOS AVNIR-2 Data

The modeling results based on AVNIR-2 data are shown in Table 3(a) and Figure 5. As expressed
in the table, the correlation coefficient (R > 0.7) and determination coefficient (R2 > 0.5) were both
quite high and the Standard Error of the Estimate (SEE) was particularly small. The significant
probability (Sig. < 0.01) indicated the accuracy and applicability of these models. Among the six VIs,
RVI performed best with the highest R2 (0.798) and R (0.893), followed by ARVI (R2 = 0.718) and NDVI
(R2 = 0.652). The regression model based on DVI showed the lowest correlation.
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Table 3. The model summary and ANOVA (Analysis of Variance) of single-VI-based models.
The indices were derived from (a) ALOS AVNIR-2; (b) Landsat-5 TM; (c) MODIS NBAR and (d)
ALOS PALSAR data.

Independent Variables a R R2 SEE b F Statistics Sig.

(a) ALOS AVNIR-2

RVI 0.893 0.798 0.349 63.318 0.000 **
DVI 0.720 0.517 0.539 17.186 0.001 **

NDVI 0.808 0.652 0.458 29.987 0.000 **
SAVI 0.766 0.586 0.499 22.733 0.000 **
ARVI 0.848 0.718 0.412 40.853 0.000 **
EVI 0.773 0.596 0.493 23.685 0.000 **

(b) Landsat-5 TM

RVI 0.823 0.677 0.441 33.585 0.000 **
DVI 0.625 0.391 0.606 10.279 0.006 **

NDVI 0.750 0.562 0.513 20.567 0.000 **
SAVI 0.693 0.480 0.560 14.783 0.001 **
ARVI 0.756 0.570 0.509 21.281 0.000 **
EVI 0.702 0.493 0.553 15.538 0.001 **

(c) MODIS NBAR

RVI 0.687 0.471 0.518 8.920 0.014 *
DVI 0.578 0.334 0.582 5.019 0.049 *

NDVI 0.664 0.440 0.533 7.879 0.019 *
SAVI 0.591 0.349 0.575 5.373 0.043 *
ARVI 0.668 0.446 0.531 8.051 0.018 *
EVI 0.644 0.415 0.545 7.094 0.024 *

(d) ALOS PALSAR

RRVI 0.834 0.695 0.429 36.465 0.000 **
RNDVI 0.833 0.694 0.429 36.380 0.000 **

a Independent variables include constant; Dependent variable is measured LAI; b SEE: Standard Error of the
Estimate; * Significant correlation (0.01 < Sig. ≤ 0.05); ** Extremely significant correlation (Sig. ≤ 0.01).
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3.1.2. Landsat-5 TM Data

Based on the six indices derived from TM, linear models were established. The model summary
and ANOVA result are shown in Table 3(b), from which it was concluded that the six indices were all
extremely significant and could be used to estimate the regional LAI individually (Sig. < 0.01).

Among the six indices, it was still RVI that had the highest linear correlation with field measured
LAI and simultaneously, DVI showed the least correlation. Compared to those from AVNIR-2-based
indices, the linear models established using TM-based indices had lower statistical modeling accuracies,
which was characterized by lower R, R2, and higher SEE. This may be due to the effect of spatial
resolution. The inconsistency between the spatial resolution (30 m) and the size of field plots (10 m)
can account for the reduced accuracy.

3.1.3. MODIS NBAR Data

Due to the broad swath width of up to 2330 km for the MODIS sensor, all the field survey plots
were within the MODIS coverage of one scene (h25v03). However, because of the low spatial resolution
of MODIS NBAR data (500 m) and relatively close distance between some plots, sometimes two or
even three field plots were within one MODIS pixel and hence only 12 groups of LAI data could be
identified in the image. For those gathered in the same pixels, the average LAI value was calculated to
be correlated with corresponding indices extracted from the image.

The linear correlation and modeling results are shown in Table 3(c), from which it was found that
the regression models based on indices from MODIS NBAR were significant (Sig. < 0.05). RVI still
achieved the highest linear correlation with measured and partly averaged LAI while DVI showed the
least. Compared with the results from AVNIR-2 and TM, the correlations were overall much lower
and the SEE were much higher. It is probably due to the reduction in the number of sample points in
addition to the increase in inconsistency between the spatial resolution (500 m) and field plot size.

3.2. Multiple-Variable-Based Modeling

All of the above linear regression models are single-VI-based. However, multiple-variable-based
models usually achieve a higher modeling accuracy and a lower error. The results of multiple-variable-based
models using PLS regression were shown in Table 4.

The figures in this table indicated that the achieved accuracy of PLS regression model was
significantly higher than those acquired from single-variable-based models. Similar as that in
single-VI-based modeling, the accuracy of PLS regression model was also determined by the data



ISPRS Int. J. Geo-Inf. 2017, 6, 179 11 of 16

source (i.e., sensor type). When the six indices calculated from AVNIR-2 were taken as the input
independent variables, the achieved R2 was the highest while, in comparison, values from MODIS
NBAR resulted in the lowest correlation between the predicted and observed parameters. It suggested
that a higher spatial resolution of optical data results in a higher accuracy for LAI retrieval based on
the sensor utilized here. Additionally, it should be noted that the optimal number of components,
which entered the final PLS regression model, was slightly affected by the original data source.

Table 4. The result of multiple-indices-based PLS (partial least squares) regression model. The indices
were derived from ALOS AVNIR-2; Landsat-5 TM; and MODIS NBAR.

Sensors R R2 Optimal No. of Components Sig.

ALOS AVNIR-2 0.968 0.937 4 0.000 **
Landsat-5 TM 0.889 0.790 3 0.000 **
MODIS NBAR 0.826 0.682 5 0.000 **

** Extremely significant correlation (Sig. ≤ 0.01).

3.3. Comparison of Correlation between VIs

As most vegetation indices rely on the spectral signatures of the same blue, red, and near-infrared
bands of optical imagery, typically they show a strong correlation with one another. The result of PLS
regression modeling reflects this autocorrelation to some extent. When building the linear models
using the six indices individually, some always performed better than the others. To explore and
compare the correlation among indices, the Pearson correlation was performed and the coefficients
between any two of the six indices derived from ALOS AVNIR-2, Landsat-5 TM, and MODIS NBAR
data were calculated. By summarizing and comparing each sensor, it was found that RVI, NDVI, and
ARVI formed one group, within which, a high correlation with each other can be achieved. Similarly,
the remaining three indices of DVI, SAVI, and EVI also showed a relatively high correlation with each
other and hence were gathered into another group. However, when referring to their correlations
with field measured LAI shown in Table 3, the two groups had completely different performance.
The group consisting of RVI, NDVI, and ARVI always gave higher R2 and lower SEE than those from
DVI, SAVI, and EVI, regardless of the type of sensors. However, it should be noted that there were two
years between the image and field LAI data acquisition dates which had an impact on this result.

The Pearson correlation coefficients between the same indices from different sensors were also
calculated (Table 5). Results showed that the absolute values of correlation among indices were
greatly affected by the sensor type. The correlation between the same indices from AVNIR-2 and TM
were always significant and apparently higher than those from the other two pairs. The correlation
between the same indices from AVNIR-2 and MODIS were the lowest and statistically insignificant.
This indicated that the images with close spatial resolution normally resulted in higher correlations
between the same indices calculated from the data. It demonstrated the importance and significance of
the data source (sensor type) in remote-sensing estimation applications.

Table 5. The Pearson correlation coefficients between the same indices from different sensors: ALOS
AVNIR-2 and Landsat-5 TM; Landsat-5 TM and MODIS NBAR; ALOS AVNIR-2 and MODIS NBAR;
as well as ALOS AVNIR-2 and PALSAR.

Sensors RVI/RRVI DVI NDVI/RNDVI SAVI ARVI EVI

AVNIR-2 and TM 0.819 ** 0.678 ** 0.826 ** 0.716 ** 0.791 ** 0.674 **
TM and MODIS 0.353 * 0.274 0.281 0.266 0.368 * 0.208
AVNIR-2 and MODIS 0.218 0.108 0.165 0.111 0.206 0.118
AVNIR-2 and PALSAR 0.422 * 0.335 *

* Significant correlation (0.01 < Sig. ≤ 0.05); ** Extremely significant correlation (Sig. ≤ 0.01).
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3.4. Comparison with PALSAR Indices

As PALSAR is aboard the same ALOS satellite with AVNIR-2, they have the same spatial coverage
over the two forestry bureaus of Tuqiang and Amuer in the mountain area. The same 18 LAI sampling
values were utilized to establish the linear regression models based on the two radar indices of RRVI
and RNDVI. The modeling results are shown in Table 3(d) and Figure 6. As shown, the correlation
coefficient and determination coefficient were both high (R2 = 0.695 for RRVI and 0.694 for RNDVI).
The significant probability represented the reliability of the modeling. Compared to the results from
AVNIR-2-based linear regression modeling using the indices of RVI (R2 = 0.798) and NDVI (R2 = 0.652),
no significant differences existed.

Through the Pearson correlation between the two indices, a strong collinearity was found
(R = 0.998). Thus, only one variable of RRVI was included when multiple-variable stepwise regression
analysis was performed. However, when correlated to the corresponding optical indices (RVI-RRVI
and NDVI-RNDVI) calculated from AVNIR-2, relatively lower correlation coefficients were acquired
(Table 5). It indicated that a weak collinearity existed, although there was the same spatial resolution
between the data from AVNIR-2 and PALSAR sensors. The radar indices have brought in some new
information, which will make a combination of the two types of data very interesting.
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4. Discussion

4.1. Sensor Features and Statistical Modeling Evaluation

In the single-variable-based regression modeling, the linear models using AVNIR-2-derived
indices gave the ‘best’ relative performance, characterized by the highest R2 and lowest SEE. Conversely,
the correlations based on MODIS-derived indices were overall much lower and the SEE was much
higher. It was probably due to the reduction of the number of sample points and the increase in
inconsistency between the spatial resolution and field plot size. Normally, lower spatial resolution
results in higher spatial heterogeneity within each pixel. Resampling of remote-sensing images from
low to high spatial resolution has no effect on actual resolution. Thus, the inconsistency between the
spatial resolution (30 m, 500 m) and the size of field plots (10 m) can account for a higher heterogeneity
and reduced accuracy for TM- and MODIS-based retrieval. This was also demonstrated in some
previous studies. For example, Tian et al. found that LAI retrieval errors at coarse resolution were
inversely related to the proportion of the dominant land cover in such pixels. Further, large errors
in LAI retrievals were incurred when forests were minority biomes in non-forest pixels compared to
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when forest biomes are mixed with one another, and vice versa [31]. Fan et al. concluded that the
mean values of effective LAIs retrieved from high-resolution pixels were always equal to or larger
than the effective LAIs retrieved from corresponding coarse-resolution pixels [32]. All these findings
were good reflections and demonstrations of scale effect in LAI studies combining remote-sensing
techniques with field measurements.

In the multiple-variable-based modeling, the PLS regression algorithm was adopted. Compared
to the single-variable-based modeling, a higher correlation was acquired for each sensor type, while the
relative trend among sensors was maintained. The PLS regression provides the description of available
data using a minimum number of adjustable components and, consequently, maximum precision
and stability of regression model. In addition to the PLS regression, stepwise regression analysis was
also conducted to build models using the whole collection of six indices as the input independent
variables. Comparison of the stepwise regression modeling among the three optical sensors gave
similar conclusions with those from PLS regression analysis. The result indicated that only partial
indices entered the multiple regression models, while most were removed due to an insignificant
impact or collinearity between variables. For different optical sensors, those that entered the final
models all differed. For example, there were two multiple regression models produced when using the
indices from ALOS AVNIR-2 as input. The RVI that showed the highest correlation with LAI entered
both, while EVI was the other variable included in the second model. Comparison of the stepwise
regression modeling among the three optical sensors provided a similar conclusion to that from PLS
regression analysis.

4.2. Future-Oriented Points for Improvements

Although some positive results have been obtained in this scenario, there are many aspects which
could be discussed and improved.

First, there were only 18 sample plots used for regression modeling because of the hot weather
and difficult sampling conditions in the forests in the Greater Hinggan Mountain area. In order to
expand the scope of this trial process, it is advisable to investigate more sample plots in future work
for modeling and validation in larger scales.

Because of the physical mechanisms of optical and radar remote-sensing systems, the optical
sensors are well suited for capturing horizontally distributed characteristics and changes represented
by spectral signatures, while SAR is reasonably advantageous for the characterization of vertical
features. LAI is such a basic and crucial characterization of forest attributes, both horizontally and
vertically. This study revealed a satisfactory accuracy in LAI retrieval based on linear regression
modeling using both optical and SAR data. Furthermore, as LAI remains consistent while the spatial
scale changes, it is a crucial parameter fit for multi-scale ecological studies [33]. In this study, the
linear statistical modeling method was adopted using remote sensing images with totally different
spatial resolution. However, for some physically-based models, although they can be applied to
scaling LAI retrievals [31], their accuracy and efficiency can be further improved. Nevertheless, it is
believed that comparatively higher accuracy will be achieved when using biomass data to correlate
with SAR derived variables for statistical modeling [34]. It is due to the deep penetration of microwave
signals of the L-band into forest canopy and the subsequent interaction with not only leaves, but
branches and trunks [35]. Compared to LAI, above-ground biomass can better characterize this
complex interaction and correlate with backscatter intensity or derived indices more closely, especially
for the cross-polarization as it is sensitive to volume scattering [36].

Finally, the optical image used in this study is only the multispectral data with varied spectral
and spatial resolutions. The SAR data comes from the L-band PALSAR sensor alone. In future
studies, other types of data can be used—including hyperspectral imagery (e.g., Hyperion) and other
active remote-sensing data (e.g., LiDAR, X-band, and C-band SAR)—to explore their potential for
the estimation of LAI as well as other ecological parameters. In addition, the synergic application of
simultaneously combining optical images with SAR data should be considered in future studies.
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5. Conclusions

In this study, the statistical modeling of data from three optical sensors of ALOS AVNIR-2,
Landsat-5 TM, MODIS NBAR as well as a SAR sensor of ALOS PALSAR were evaluated and compared
through statistical linear modeling with the measured LAI. Six optical vegetation indices were used
for the evaluation and comparison among the three optical sensors, and simultaneously, two radar
indices were calculated for the comparison between ALOS AVNIR-2 and PALSAR data. The results
indicated that the higher spatial resolution of remote sensing data was, the higher the achieved
accuracy in the single-variable-based modeling. The heterogeneity resulting from the gap between
different remote sensing data spatial resolutions and field plot sizes contributed to the difference in
the accuracy of the obtained results. Normally, during the retrieval of LAI in regional and national
scales, the remote sensing data with 30 m (e.g., Landsat) was enough to provide significant results,
and those with 10 m spatial resolution (e.g., ALOS AVNIR-2 and PALSAR) can bring results with
higher accuracies regardless of the spectral indices used, while the MODIS cannot always meet the
requirements. Considering the data acquisition costs and accuracy required, in specific applications
using remote sensing techniques, the sensor types and spatial resolution should be carefully considered
to achieve a cost-efficient and accurate result. The remote sensing data with a spatial resolution of not
less than 30 m is always preferred at local scales.
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