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Abstract

We construct an anti-de-Sitter (AdS) geometry from a conformal field theory (CFT) defined on a general 
conformally flat manifold via a flow equation associated with the curved manifold, which we refer to as 
the primary flow equation. We explicitly show that the induced metric associated with the primary flow 
equation becomes AdS whose boundary is the curved manifold. Interestingly, it turns out that such an AdS 
metric with conformally flat boundary is obtained from the usual Poincare AdS by a simple bulk finite 
diffeomorphism. We also demonstrate that the emergence of such an AdS space is guaranteed only by the 
conformal symmetry at boundary, which converts to the AdS isometry after quantum averaging, as in the 
case of the flat boundary. As a side remark we show that a geometry with one warped direction becomes an 
Einstein manifold if and only if so is its boundary at the warped direction, and briefly discuss a possibility 
of a little extension beyond AdS/CFT correspondence by using a genuine Einstein geometry.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The holographic principle [1,2] provides a new perspective to investigate quantum gravity on 
space–time with a fixed boundary. Generally in order for holography to hold in two systems, 
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there has to exist a mechanism to invalidate extra infinite degrees of freedom which the bulk 
system usually possesses. In the AdS/CFT correspondence [3], which is a testable realization of 
holography [4,5], diffeomorphism invariance clearly plays a key role to kill such extra degrees 
of freedom. Thus it is important to reveal how diffeomorphism invariance is encoded in the dual 
field theory living on a boundary.

The AdS/CFT correspondence, due to its holographic property, can be explored by extend-
ing the dual geometry gradually from a fixed boundary and constructing the dual gravitational 
theory from CFT [6,7] (see also [8–10]). One natural interpretation of the emergent AdS radial 
direction from CFT is a conventional renormalization group (RG) scale [3]. This interpretation 
was realized for a relevant RG flow from UV CFT to IR one by constructing the corresponding 
dual gravity solution [11–13] (see also [14] and references therein), though a direct analysis by 
finding out the cut-off of Wilsonian renormalization corresponding to the sharp cut-off in the 
AdS radial direction is difficult to achieve due to the appearance of non-locality in the bulk [15]. 
There were also different approaches to see a correspondence between a certain renormaliza-
tion scale and the emergent AdS radial direction by using the entanglement entropy [16–18], 
the stochastic quantization [19], the bilocal field in vector models [20], and the flow equation 
[21–23]. Recently how the Einstein equation is encoded in the boundary side was investigated 
[24–26]. See also [27,28].

So far these analyses were almost all restricted to the asymptotic Poincare or global AdS space 
and payed attention to only conformal structure on the boundary [29,30]. However, since the bulk 
theory enjoys diffeomorphism invariance, there is no reason for these analyses to be restricted on 
a particular AdS background. It should be possible for these analyses to be generalized to those 
on a different AdS with a more general curved boundary which admits CFT to live.

This paper aims at making progress in this direction by using the flow equation approach 
[21–23]. A flow equation was introduced to specify how to smear operators so as to resolve 
a UV singularity in the coincidence limit [31], which turned out to help numerical simulation 
in lattice QCD [32–35]. Recently it was proposed that a one higher dimensional geometry is 
emergent associated with a flow equation [21–23] and it turned out that the direction of the 
free flow time precisely matches the AdS radial direction for a generic conformal field theory 
on the flat background [36]. The goal of this paper is to generalize this result to an arbitrary 
conformally flat manifold in accord with the AdS/CFT correspondence. For this end we construct 
a flow equation for a scalar primary operator on the conformally flat background preserving the 
conformally symmetric structure, which we refer to as the primary flow equation. We find that 
the induced metric associated with the primary flow equation for a generic CFT describes an AdS 
space whose boundary is the conformally flat manifold. We also show that such an AdS metric 
connects to the usual Poincare AdS metric by a bulk finite diffeomorphism. This new result may 
be regarded as a consequence of the fact that the bulk theory has diffeomorphism invariance.

The rest of this paper is organized as follows. In Sec. 2 we fix the setup and collect the standard 
technique of a conformal map to construct a CFT on a conformally flat manifold. In Sec. 3 we 
determine the primary flow equation. In Sec. 4 we compute the induced metric for this flow in 
a CFT on the conformally flat background, which turns out to describe the AdS space whose 
boundary is the conformally flat manifold. In Sec. 5 we demonstrate that the emergence of the 
AdS space is assured by the conformal symmetry as in the case of the flat boundary shown in 
[36]. Sec. 6 is devoted to summary and discussion. In Appendix A we prove that the induced 
metric obtained in Sec. 4 describes an AdS space by explicit computation. In Appendix B we 
show that a geometry with one warped direction becomes an Einstein manifold if and only if its 
boundary at the warped direction is also an Einstein one.
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2. Conformal map of conformal field theory

In this section we fix our setup in this paper and collect the standard technique to study a CFT 
on a conformally flat manifold by using a conformal map.

Let us consider a real d-dimensional conformally flat manifold Md . From the definition, there 
exists a conformal map from a local patch Rd to a neighborhood around each point in Md such 
that1

�x = �(x), �x ∈ Md, x ∈R
d . (2.1)

The distance in a local patch is measured by ds2 = δμνdxμdxν with μ, ν = 1, · · · , d , while that 
in the space Md is

(ds2)Md
= gμν(�x)d�μ

x d�ν
x = g

1
d (x)δμνdxμdxν, (2.2)

where g
1
d (x) is a conformal factor associated with the curved manifold.

Take the d-dimensional sphere Md = S
d with the radius L as an example. In this case, a con-

formal map which covers the neighborhood around the north pole is given by a stereographic 
projection from the north pole (L, 0) to the d-dimensional plane (0, Rd):

�0
x = x2 − 4L2

x2 + 4L2 L, �μ
x = 4L2

x2 + 4L2 xμ, (2.3)

where x2 = δμνx
μxν and the sphere is embedded into Rd+1. The conformal factor is computed 

from the embedding metric as

g
1
d (x) =

(
4L2

x2 + 4L2

)2

. (2.4)

We are interested in a CFT on Md which contains a primary operator O(�x) with a general 
conformal dimension �. To construct such a CFT on Md , we prepare a CFT on a local patch Rd

containing a primary operator O(x) with the conformal dimension �, whose conformal trans-
formation is given by

δconfO(x) = (−δxμ∂xμ − �

d

∂δxμ

∂xμ
)O(x),

δxμ = aμ + ωμ
νx

ν + λxμ + bμx2 − 2xμ(bνx
ν),

(2.5)

where aμ, ωμν , λ and bμ are infinitesimal parameters of the translation, the rotation, the dilata-
tion and the special conformal transformation, respectively. The scalar primary operator inserted 
at �x is related to the one at x by the pull-back of the conformal map:

� ∗ O(�x) := U−1
� O(�x)U� = g− �

2d (x)O(x), (2.6)

where U� is a unitary transformation which maps a state on Rd to the corresponding one on Md .
Since the vacuum states on two spaces are related as |0〉Md

= U�|0〉Rd , correlation functions 
on Md are related to those on Rd as

1 For simplicity, we consider a Riemannian manifold with the Euclidean signature in this paper. A generalization to a 
different signature is straightforward by changing signs suitably. Thus, strictly speaking, the word “AdS” in the main text 
should read “Euclidean AdS”.
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〈O(�x1)O(�x2) · · ·O(�xn)〉Md

= g− �
2d (x1)g

− �
2d (x2) · · ·g− �

2d (xn)〈O(x1)O(x2) · · ·O(xn)〉Rd

where 〈O〉Xd
= Xd

〈0|O|0〉Xd
with Xd = Md, Rd . For example, the two point function of the 

scalar primary operator on Md is evaluated as

〈O(�x)O(�y)〉Md
= g− �

2d (x)g− �
2d (y)

C

(x − y)2�
= C

|�x − �y |2�
, (2.7)

where |�x − �y |2 := g
1

2d (x)g
1

2d (y)(x − y)2 and the two point function on Rd is normalized as

〈O(x)O(y)〉Rd = C

(x − y)2�
, C = 	(�)

4d/2−�πd/2	(d/2 − �)
. (2.8)

A conformal transformation of O(�x) is computed as

δconfO(�x) = (−δ�μ
x ∂�

μ
x

− �

d

∂δxμ

∂xμ
− δxμ∂μ logg

�
2d )O(�x) (2.9)

where δ�μ
x = ∂�

μ
x

∂xν δxν . Since correlation functions on Rd are invariant under any conformal 
transformation, so are those on Md :

〈δconf{O(�x1)O(�x2) · · ·O(�xn)}〉Md
= 0. (2.10)

3. Primary flow equation

In this section we construct a certain free flow equation for a primary scalar operator on a 
conformally flat background. For this purpose we begin with the one on a local patch Rd [36].

∂O(x; t)
∂t

= ∂2O(x; t), O(x;0) = O(x), (3.1)

where ∂2 = δμν∂μ∂ν . A question is how we extend this equation to the one on a conformally flat 
manifold Md respecting the structure of conformal property in the previous section.

To answer this, we request a flow equation of a scalar primary operator on Md to satisfy the 
following properties.

(i) There exists a flow time t̃ associated with Md corresponding to the flow time t on Rd such 
that the flowed operator inserted at �x is related to the flowed one at x by the pullback as 
(2.6):

� ∗ O(�x; t̃ ) =U−1
� O(�x; t̃ )U� = g− �

2d (x)O(x; t). (3.2)

(ii) The flow equation is invariant under the scale transformation.

We refer to a flow equation satisfying these conditions as the primary flow equation, which is 
determined as follows. The condition (i) fixes a differential equation consistent with (3.1) as

∂

∂t
O(�x; t̃ ) = g− �

2d (x)∂2g
�
2d (x)O(�x; t̃ ), O(�x;0) = O(�x). (3.3)

Then t̃ is determined by the condition (ii), which is met if the scaling dimension of t̃ becomes 
two. Since t̃ is associated with the manifold Md , namely t̃ is related to t through the conformal 
factor, t̃ is fixed as
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t̃ = g
1
d (x)t (3.4)

up to an overall constant. Introducing a copy of the local patch with coordinates x̃μ which is 
independent of t̃ , we obtain the primary flow equation as

∂

∂t̃
O(�x̃; t̃ ) = D · O(�x̃; t̃ ), O(�x̃;0) = O(�x̃), (3.5)

with D = g− 1
d (x̃)g− �

2d (x̃)∂̃2 ·g �
2d (x̃). Remark that (xμ, t) and (x̃μ, ̃t) are two sets of independent 

variables, which are related by xμ = x̃μ and (3.4). In what follows, however, we often abuse x̃μ

and xμ just to avoid notational clutter.
It may be instructive to mention that, in the case that O(x) has the canonical dimension as 

� = (d − 2)/2, the operator D has a conformally covariant expression such that

D = gμν∇μ∇ν − d − 2

4(d − 1)
RMd , (3.6)

where gμν , ∇μ and RMd are the metric, the covariant derivative and the scalar curvature on Md , 
respectively.

Since the two point function of the flowed primary field on a local chart is known as [36]

〈O(x; t)O(y; s)〉Rd = 1

(t + s)�
F

(
(x − y)2

t + s

)
, (3.7)

where F is a smooth function depending on each CFT, that on Md is determined by using 
eq. (3.2) as

〈O(�x; t̃ )O(�y; s̃)〉Md
= 1

η̃�+
F

(
|�x − �y |2

η̃+

)
(3.8)

where

η̃+ := g
1

2d (x)g
1

2d (y)(t + s) = g
1

2d (y)

g
1

2d (x)
t̃ + g

1
2d (x)

g
1

2d (y)
s̃. (3.9)

Then the two point function of the normalized flow field

σ(�x; t̃ ) := 1√
〈O(�x; t̃ )O(�x; t̃ )〉Md

O(�x; t̃ ) =
√

(2t̃ )�

F (0)
O(�x; t̃ ) (3.10)

is given by

〈σ(�x; t̃ )σ (�y; s̃)〉Md
=

(
2
√

t̃ s̃

η̃+

)�

F̄

(
|�x − �y |2

η̃+

)
, (3.11)

where F̄ (x) = F(x)/F (0).
Note that the normalized flow field on Md satisfies eq. (3.2) with the vanishing conformal 

dimension:

U−1
� σ(�x; t̃ )U� = � ∗ σ(�x; t̃ ) = σ(x; t). (3.12)
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4. Induced metric of CFT on a conformally flat manifold

4.1. Induced metric

The induced metric is defined by

g̃MN(z) := R2
〈
∂σ (�x; t̃ )

∂zM

∂σ(�x; t̃ )
∂zN

〉
Md

, (4.1)

where zM = (xμ, 
√

2dt̃), wM = (yμ, 
√

2ds̃) and R is an arbitrary length parameter. Then the 
induced line element is given by

ds2 = G̃MN(Z)dZMdZN = g̃MN(z)dzMdzN, (4.2)

where ZM = (�
μ
x , τ̃ ) with τ̃ = √

2dt̃ . Explicitly the induced metric is computed as2

g̃τ̃ τ̃ (z) = R2 �

τ̃ 2 ,

g̃τ̃μ(z) = gμτ̃ (z) = −R2 �

τ̃

∂

∂xμ
log{g 1

2d (x)},

g̃μν(z) = R2�

[
∂

∂xμ
log{g 1

2d (x)} ∂

∂xν
log{g 1

2d (x)} + δμνg
1
d (x)

τ̃ 2

]
,

(4.4)

where we use 2dF̄ ′(0) = −�. Remark that there appear nontrivial off-diagonal elements.
An explicit calculation in Appendix A leads to

GMN(z) = −�g̃MN(z), � = −d(d − 1)

2R2�
, (4.5)

where GMN(z) is the Einstein tensor. As a result the induced metric turns out to be the d + 1
dimensional (Euclidean) AdS space (� < 0) at d > 1, whose radius is given by RAdS = R

√
�. 

In addition, since

lim
τ̃→0

ds2 = R2�

τ̃ 2

(
dτ̃ 2 + g

1
d (x)δμνdxμdxν

)
+ O(τ̃−1), (4.6)

the metric g̃MN(z) indeed describes the (local) AdS space in d + 1 dimensions with the d di-
mensional curved space Md as its boundary.3

2 In the previous example of the d dimensional sphere, Md = S
d , these are computed by using (2.4) as

g̃τ̃μ(z) = gμτ̃ (z) = R2 �

τ̃

2xμ

x2 + 4L2
,

g̃μν(z) = R2�

(
4L2

r2 + 4L2

)2 [
4xμxν

(4L2)2
+ δμν

τ̃2

]
.

(4.3)

3 The total AdS space whose boundary is Md is obtained by gluing a set of local AdS spaces whose boundaries are 
open covering of Md , as is usual with the standard construction of a manifold.
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4.2. Diffeomorphism and AdS metrics

In this subsection, we show that the metric g̃MN(z) is obtained from the usual Poincare AdS 
metric by a finite diffeomorphism. The AdS metric in the Poincare patch is given by

ds2
PAdS = R2�

τ 2

(
dτ 2 + δμνdxμdxν

)
, (4.7)

which was obtained as the result of the induced metric of a CFT on the flat space Rd [36]. 
Under the d + 1 dimensional finite diffeomorphism that (xμ, τ) → (x̃μ, τ̃ ) with x̃μ = xμ and 
τ̃ = τg

1
2d (x), we have

dτ = g
−1
2d (x)

[
dτ̃ − τ̃

∂

∂xμ
log{g 1

2d (x)}dxμ

]
, (4.8)

which leads to

ds2
PAdS → R2�

τ̃ 2

[
dτ̃ 2 − 2τ̃

∂

∂xμ
log{g 1

2d (x)}dxμdτ̃

+
(

τ̃ 2 ∂

∂xμ
log{g 1

2d (x)} ∂

∂xν
log{g 1

2d (x)} + g
1
d (x)δμν

)
dxμdxν

]
. (4.9)

This gives the metric identical to the one in eqs. (4.4). Therefore the induced metric in the 
previous subsection must describe the AdS space, since it connects to the Poincare AdS by a 
finite diffeomorphism, although the resulting metric has a different boundary, Md . This is a 
consequence of the fact that the choice of the AdS solution in the Poincare patch breaks the 
diffeomorphism invariance at boundary.

5. Bulk symmetry from boundary symmetry

In this section we prove that the emergence of the AdS space is assured only by the confor-
mal symmetry at boundary without explicit calculation. This was shown in the case of the flat 
boundary in [36]. Here we argue that this is the case also for a conformally flat boundary.

Following [36] we decompose the infinitesimal conformal transformation for the normalized 
field σ on a local patch derived from (2.5) as

δconfσ(x; t) = δdiffσ(x; t) + δextraσ(x; t), (5.1)

where

δdiffσ(x; t) = −(δ̄t∂t + δ̄xμ∂μ)σ (x; t),
δextraσ(x; t) = 4R2t2bμ∂μ(∂t + � + 2

2t
)σ (x; t) (5.2)

with δ̄xμ = δxμ + 2dR2tbμ, δ̄t = (2λ − 4(bμxμ))t . Then, using eq. (3.12), we derive the con-
formal transformation to the normalized flow field on Md as

δconfσ(�x; t̃ ) = δdiffσ(�x; t̃ ) + δextraσ(�x; t̃ ), (5.3)

where
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δdiffσ(�x; t̃ ) = (−δ̄t̃∂t̃ − δ̄�μ
x ∂μ)σ (�x; t̃ ), (5.4)

δextraσ(�x; t̃ ) = 4g− 1
d (x)t̃2bμ(∂μ log{g 1

d (x)} + ∂μ)

(
∂t̃ + � + 2

2t̃

)
σ(�x; t̃ ), (5.5)

with δ̄t̃ = δ̄t g
1
d (x) + δ̄xν t̃ ∂ν log{g 1

d (x)}, δ̄�μ
x = δ̄xν ∂�

μ
x

∂xν .
Let us show that the induced metric (4.1) is invariant under the transformation δdiff:

δdiffg̃MN(z) = lim
w→z

∂

∂zM

∂

∂wN
(δconf − δextra)〈σ(�x; t̃ )σ (�y; s̃)〉Md

= − lim
w→z

∂

∂zM

∂

∂wN
δextra〈σ(�x; t̃ )σ (�y; s̃)〉Md

, (5.6)

where we used the conformal symmetry of correlation functions (2.10):

δconf〈σ(�x; t̃ )σ (�y; s̃)〉Md
= 0.

Since

δextra〈σ(�x; t̃ )σ (�y; s̃)〉Md

= −8

√
4t̃ s̃

�

(η̃+)�

(
t̃

g
1
d (x)

− s̃

g
1
d (y)

)
bμ(x − y)μ(x − y)2F ′′

(
|�x − �y |2

η̃+

)
,

which vanishes in the w → z limit, so does eq. (5.6). Explicitly

δdiffg̃MN(z) = −δ̄zK∂Kg̃MN(z) − ∂Mδ̄zKg̃KN(z) − ∂N δ̄zKg̃MK(z) = 0, (5.7)

with δ̄xμ = δxμ + g− 1
d (x)τ̃ 2bμ, δ̄τ̃ = τ̃

[
λ − 2 (b · x) + δ̄xμ ∂μ log{g 1

2d (x)}
]
. This means that 

the induced metric is invariant under the infinitesimal AdS isometry transformations expressed 
in the coordinates (xμ, τ̃ ). As a result, the induced metric has to be the AdS one since it is a 
maximally symmetric space. This completes the proof of our claim.

6. Discussion

In this paper, we have extended our previous investigation [36] on the proposal [21–23] that 
the bulk geometry is constructed from a boundary CFT on the flat background to the case with 
an arbitrary boundary CFT on curved spaces within a conformally flat class by using a canonical 
flow equation called the primary one. We have shown that the resulting induced metric becomes 
AdS whose boundary is the curved manifold. We have found that such AdS metrics can be 
constructed from the usual Poincare AdS metric by a finite diffeomorphism such that the AdS 
radial coordinate is scaled by the conformal factor with the other directions fixed. We have also 
shown that the conformal symmetry at the boundary generates the AdS isometry for the vacuum 
expectation value of the metric operator, so that the bulk geometry must be AdS with a given 
boundary, as in the case of the flat boundary.

In Appendix B, we showed that a geometry with one warped direction becomes an Einstein 
manifold if and only if so is its boundary. This geometry would be theoretically interesting be-
cause the usual AdS/CFT correspondence can be extended to a more general gravity/gauge one 
by using this geometry.4 An issue in this generalization is that it may be nontrivial whether a 

4 We would like to thank Prof. Kinya Oda for his valuable comment on this possibility.
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CFT can be realized on a genuine Einstein manifold or not. If a genuine Einstein manifold does 
not admit for any CFT to live, one needs to know what kind of quantum field theory is realized 
on the boundary Einstein manifold and corresponds to gravity theory on a bulk Einstein one. 
Further investigation of “Einstein/QFT” correspondence is awaited.

In the previous paper [36], we had shown that the induced metric associated with the free flow 
equation from the CFT on the flat boundary describes the usual Poincare AdS space as (4.7). 
Let us recast this in the following way. Since the flowed field σ is dimensionless thank to the 
(NLSM) normalization and free from the UV divergence at non-zero flow time, the Poincare 
symmetry as well as an absence of dimensionful constants in a CFT on the flat boundary demand 
the metric to be of a form such that ds2

d+1 = R2{A(x2/τ 2)dτ 2 + B(x2/τ 2)δμνdxμdxν}/τ 2. 
We had shown that the symmetry argument constrains the functions A and B to be an equal 
constant while an explicit calculation determines its value as �, so that the induced metric re-
sults in the Poincare AdS space. This kind of analysis, however, may not be available if the 
boundary space is curved. First of all, it is not guaranteed that there exists the AdS metric 
with a curved boundary in the Poincare patch. Secondly, extra dimensionful parameters such 
as the radius of the sphere existing in a curved space make the ansatz of the metric much more 
complicated. Regardless of these difficulties, the method proposed in Refs. [21–23] still works 
well for a CFT on a conformally flat boundary such as a d dimensional sphere. The induced 
metric for such a CFT was explicitly given by (4.9), which was shown to describe the AdS 
space with the boundary metric g

1
d (x)δμν . To the best of our knowledge, construction of an 

AdS metric with a general conformally flat boundary was not known, or, at least our result (4.9)
gives a new expression for such a non-trivial AdS space with the manifest Poincare symme-
try.5

Although it is interesting to generalize our analysis to the case with a more general curved 
boundary including de-Sitter space or a gravity solution corresponding to a RG flow on a curved 
manifold, one of the most important and urgent issues in the proposal [21–23] is to clarify how 
this formalism encodes the bulk dynamics beyond the geometry. For this purpose, the equation 
of motion for (the fluctuation of) the metric must be determined by calculating, for instance, 
the 2-point correlation function of the metric operator gMN(z). Works along this direction are 
ongoing.
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Appendix A. Explicit calculation of the Einstein tensor

In this appendix we explicitly compute the Einstein tensor for the induced metric (4.4) to 
result in the (Euclidean) AdS space. The metric and its inverse are given by

g̃τ̃ τ̃ (z) = R2
AdS

τ̃ 2 , g̃τ̃μ(z) = g̃μτ̃ (z) = −R2
AdS

τ̃
Fμ(x),

g̃μν(z) = R2
AdS

[
Fμ(x)Fν(x) + δμν�

2(x)

τ̃ 2

]
, g̃τ̃ τ̃ (z) = τ̃ 2

R2
AdS

[
1 + τ 2F 2(x)

]
,

g̃τ̃μ(z) = g̃μτ̃ (z) = τ̃ τ 2

R2
AdS

Fμ, g̃μν(z) = τ 2

R2
AdS

δμν, (A.1)

where R2
AdS = R2�, �(x) = g

1
2d (x),

Fμ(x) = ∂

∂xμ
log�(x), Fμ(x) = δμνFν(x), F 2(x) = Fμ(x)Fμ(x). (A.2)

We have

∂τ̃ g̃τ̃ τ̃ = −2
R2

AdS

τ̃ 3 , ∂μg̃τ̃ τ̃ = 0, ∂τ̃ g̃τ̃μ = R2
AdS

τ̃ 2 Fμ, ∂νg̃τ̃μ = −R2
AdS

τ̃
∂νFμ,

∂τ̃ g̃μν = −2
R2

AdS�2

τ̃ 3 δμν, ∂αg̃μν = R2
AdS

[
∂α(FμFν) + 2

Fα

τ 2 δμν

]
. (A.3)

Christoffel symbol,

	K
LM = 1

2
g̃KN

[
∂Mg̃NL + ∂Lg̃NM − ∂N g̃LM

]
, (A.4)

is evaluated as

	τ̃
τ̃ τ̃ = − 1

τ̃
, 	

μ

τ̃ τ̃
= 0, 	τ̃

τ̃μ = −Fμ, 	τ̃
μν = �2

τ̃
δμν + 3τ̃FμFν − τ̃Fμν,

	
μ

τ̃ν
= − 1

τ̃
δμ
ν , 	α

μν = Fνδ
α
μ + Fμδα

ν , (A.5)

where Fμν = Fνμ := ∂μ∂ν�

�
. Then the Riemann tensor is defined as

RN
LKM := ∂K	N

LM − ∂M	N
LK + 	N

JK	J
LM − 	N

JM	J
LK = −RN

LKM, (A.6)

whose non-zero components are given by

Rτ̃
τ̃ τ̃μ = Fμ

τ̃
, Rτ̃

μτ̃ν = −
[

�

τ̃ 2 + FμFν

]
, R

μ

τ̃ τ̃ν
= δμν

τ̃ 2 , R
μ

ντ̃α
= −Fνδ

μ
α

τ̃
,

R
μ

τ̃να
= Fαδ

μ
ν − Fνδ

μ
α

τ̃
, R

μ
ναβ = �

τ̃ 2

(
δ
μ
β δνα − δμ

α δνβ

)
+ δ

μ
β FνFα − δμ

α FνFβ. (A.7)

Thus the Riemann tensor can be written as

RN
LKM = − 1

R2

(
δN
K g̃LM − δN

Mg̃LK

)
, (A.8)
AdS
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which shows that the g̃MN indeed describes the AdS space. Therefore Ricci and scalar curvatures 
are simply given as

RLM := RN
LNM = − d

R2
AdS

g̃LM, R := g̃LMRLM = −d(d + 1)

R2
AdS

. (A.9)

We finally obtain the Einstein tensor as

GMN(z) := RLM − 1

2
g̃LMR = −�g̃MN(z), � = −d(d − 1)

2R2
AdS

, (A.10)

where � is the cosmological constant.

Appendix B. Warped Einstein geometry

In this appendix we present another Einstein geometry whose boundary is not necessarily 
conformally flat. For this purpose we consider a generic warped geometry with one warped 
dimension, whose metric is written as

ds′ 2 = f1(τ )dτ 2 + f2(τ )ds2
M, (B.1)

where M is a general d dimensional manifold whose metric ds2
M = gμνdxμdxν independent 

of τ . We claim that this warped geometry becomes an Einstein manifold by a specific choice of 
f1,2(τ ) if and only if the base manifold M is also an Einstein one. The proof of this statement is 
given as follows.

The Einstein equation with a cosmological term is

G′
MN + g′

MN� = 0, (B.2)

where G′
MN = R′

MN − 1
2g′

MNR′ and

g′
ττ = f1, g′

μν = f2gμν, g′
μτ = 0. (B.3)

We emphasize that the cosmological term � here is not necessarily constant and could be a 
function of coordinates.

We first perform the Weyl transformation so that

ds2 = e−2φds′ 2 = gττ dτ 2 + ds2
M = gMNdxMdxN, (B.4)

where φ = 1
2 logf2(τ ), gττ = f1(τ )/f2(τ ). The Ricci tensor becomes

R′
NL = RNL − gNL∂2φ + (d − 1)(−∇N∂Lφ + ∂Nφ∂Lφ − gNL∂Mφ∂Mφ),

R′ = e−2φ(R − (2d − 1)∂2φ − d(d − 1)∂Mφ∂Mφ).
(B.5)

Since the function gττ can be absorbed in the τ coordinate by diffeomorphism, there is no non-
trivial curvature in τ direction. Thus

Rμν = RM
μν , R = RM, Rμτ = Rττ = 0. (B.6)

Therefore the Ricci tensor is computed as
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R′
μν = Rμν − gμν∂

2φ + (d − 1)(−gμνg
ττ ∂τ φ∂τφ),

R′
τν = Rτν,

R′
ττ = Rττ − gττ ∂

2φ + (d − 1)(−∇τ ∂τ φ),

R′ = e−2φ(R − (2d − 1)∂2φ − d(d − 1)gττ ∂τ φ∂τφ).

(B.7)

Thus the Einstein tensor is given as

G′
μν = Gμν + (d − 1)gμν∂

2φ + 1

2
(d − 1)(d − 2)gμνg

ττ ∂τ φ∂τφ,

G′
τν = Rτν,

G′
ττ = Gττ + 1

2
d(d − 1)∂τ φ∂τφ.

(B.8)

By using (B.6), the Einstein equation becomes

GM
μν + (d − 1)gμν∂

2φ + 1

2
(d − 1)(d − 2)gμνg

ττ ∂τ φ∂τφ + f2gμν� = 0,

Rτν = 0,

− 1

2
gττR

M + 1

2
d(d − 1)∂τ φ∂τφ + f1� = 0. (B.9)

By using the 3rd equation (B.9) the 1st equation becomes

RicMμν − 1

d
gμνR

M + (d − 1)gμν∇2φ + 2

d
f2gμν� = 0. (B.10)

Contracting with gμν leads to

� = −e−2φ d(d − 1)

2
∇2φ, (B.11)

which implies that � is dependent only on the radial coordinate τ . Then (B.9) becomes

RM = d(d − 1)(
f2

f1
∂τφ∂τφ − ∇2φ), (B.12)

which suggests that the scalar curvature RM has to be constant since the right-hand side depends 
only on τ . Plugging this back gives

RicMμν − 1

d
gμνR

M = 0, (B.13)

which, together with the constant RM, means that M is an Einstein manifold. This completes 
the proof of our claim.
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