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We investigate the instability of a classical Yang-Mills field in an expanding geometry under a color
magnetic background field within the linear regime. We consider homogeneous, boost-invariant, and time-
dependent color magnetic fields simulating the glasma configuration. We introduce the conformal
coordinates which enable us to map an expanding problem approximately into a nonexpanding problem.
We find that the fluctuations with finite longitudinal momenta can grow exponentially due to parametric
instability. Fluctuations with finite transverse momenta can also show parametric instability, but their
momenta are restricted to be small. The most unstable modes start to grow exponentially in the early stage
of the dynamics, and they may affect the thermalization in heavy-ion collisions.
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I. INTRODUCTION

Recent developments in physics of high-energy heavy-
ion collisions have unveiled the property of the quark-gluon
plasma (QGP) and have raised a puzzle in the preequili-
brium dynamics before the QGP formation. High-energy
heavy-ion collision experiments have been performed
extensively at the Relativistic Heavy-Ion Collider (RHIC)
at Brookhaven National Laboratory and LHC at CERN.
Theoretical analyses of data based on hydrodynamical
approaches are found to be successful in explaining various
observables such as hadron momentum spectra and collec-
tive flows in the nucleus-nucleus collisions [1–3]. The
hydrodynamical analyses suggest that QGP formed at the
RHIC and LHC would be a strongly interacting fluid
rather than a weakly interacting gas. However, it should
be noted that the hydrodynamical models still pose a puzzle.
The early thermalization required by the hydrodynamical
analyses appears inconsistent with perturbative QCD results,
such as those given by the bottom-up scenario [4,5]. To
resolve the puzzle, we need deeper understanding of the
dynamical nature of the initial stage of the created matter,
say, in view of far-from-equilibrium dynamics of non-
Abelian gauge theory.
The initial stage of relativistic heavy-ion collisions may

be well described by the effective theory based on the
notion of the color glass condensate [6,7]. It is shown that
the longitudinal color-flux tubes which consist of both
color electric and magnetic fields should be formed right
after the collision of two nuclei. This state with the
longitudinal color-flux tube is called glasma [8]. The time
evolution of the low-energy sector is well described by
classical Yang-Mills (CYM) theory as the first approxima-
tion although quantum fluctuations can significantly affect

the dynamics. For instance, quantum fluctuations would
trigger plasma instabilities, which in turn might cause the
emergence of chaoticity, turbulent spectra, rapid particle
production, and thermalization [9–12].
Glasma instabilities in heavy-ion collisions have been

extensively discussed. Among them, longitudinal fluctua-
tions are found to cause an instability in glasma [13–18].
One possible underlying mechanism of the instabilities is
the non-Abelian analog of the Weibel instability [19–22],
which leads to an exponential amplification of the color
magnetic field and current in anisotropic systems. The
longitudinal color magnetic field may also induce the
Nielsen-Olesen instability [23–28], which is the exponen-
tial growth of gauge fluctuations caused by the anomalous
Zeeman effect in spin-1 systems.
Recently, it has been suggested that the CYM field

under a time-dependent homogeneous color magnetic
background field shows instability in a nonexpanding
geometry [29]. It has been clarified that the origin of the
instability is parametric instability and the CYM field in a
homogeneous background has multiple instability bands
extending to the transverse as well as the longitudinal
momentum directions [30]. The parametric instability is
ubiquitous in physics from classical mechanical problems
on a pendulum to quantum field theories [31], as well as
in the cosmic inflation [32]. These results suggest that the
parametric instability may also play an essential role in the
thermalization process in heavy-ion collisions.
From a phenomenological point of view, it is natural to

ask ourselves whether and how the parametric instability
found in a nonexpanding geometry persists in an expanding
geometry. In general, background fields decrease in time
due to the expansion, so one may expect that the instability
would disappear or at least become less significant than in
the nonexpanding geometry. However, the detailed studies
of a scalar field theory suggest that the parametric*tsutsui@ruby.scphys.kyoto‑u.ac.jp
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instability can keep significance even in an expanding
geometry [33,34].
In this article, we investigate the instability of the CYM

field in an expanding geometry in the linear regime.
Specifically, we focus on the system with the longitudinal
color magnetic field which is homogeneous, boost invariant,
and time dependent. We also assume the one-dimensional
Bjorken expansion. The background field considered here
damps due to the expansion and at the same time oscillates in
time. We introduce a natural chronological variable called
conformal time which enables us to map an expanding
problem into a nonexpanding problem. Then, the relevant
equation is found to have a form of a temporally periodic-
driven equation like f̈ þ p2f þ λcn2ðt; kÞf ¼ 0. This
equation involves the Jacobi elliptic function cnðt; kÞ
and is called Lamé’s equation for a constant momentum
p and a constant coefficient λ. Lamé’s equation shows an
exponential instability at λ ¼ −1 and 2 for a small
momentum p. In the expanding case, the equation of
motion is found to contain an effective momentum, which
is a function of the initial momentum and the conformal
time and has decreasing longitudinal and increasing
transverse components in time. As a result, fluctuations
with finite longitudinal momenta tend to be unstable due
to the parametric instability, while those with a finite
transverse momentum can also show instability but their
momenta are restricted to small values.
This article is organized as follows. In Sec. II, we

introduce the conformal time and derive equations of
motion of a CYM field in an expanding geometry. We
also discuss properties of a homogeneous, boost-invariant,
and time-dependent background field. In Sec. III, we give
a brief outline of the Floquet theory and the instability band
structure of Lamé’s equation as a useful tool to understand
the expanding problem. In Sec. IV, we show the results of
the linear stability analysis. Finally, we summarize our
results and give concluding remarks in Sec. V. In
Appendix A, we show the explicit form of the linearized
equation of motion of fluctuations. In Appendix B, we
comment on the origin of a linearly divergent solution. In
Appendix C, we give a quantitative discussion on the
growth rate.

II. CLASSICAL YANG-MILLS FIELD IN AN
EXPANDING GEOMETRY

In this section, we derive the equation of motion (EOM)
of the CYM field in an expanding geometry under a
color magnetic background field, which is homogeneous,
boost invariant, and time dependent. In Sec. II A, we
introduce the conformal time for the sake of mapping
the expanding problem into a nonexpanding problem. In
Sec. II B, we discuss properties of the background field. In
Sec. II C, we show an explicit form of the linearized EOM
of fluctuations.

A. Expanding geometry and conformal time

We introduce the proper time τ and the space-time
rapidity η to describe boost-invariant longitudinal expan-
sion. They are defined by

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; ð1Þ

η ¼ 1

2
log

tþ z
t − z

: ð2Þ

The action of the CYM field in the τ-η coordinate is
given by

S ¼
Z

dτd2x⊥dη
ffiffiffiffiffiffi
−g

p �
−
1

4
gμνgλσF a

μλF
a
νσ

�
: ð3Þ

Here, F a
μν ¼ ∂μAa

ν þ ∂νAa
μ þ fabcAb

μAc
ν is the field

strength tensor, and fabc is the structure constant. The
coupling constant is included in the definition of the gauge
field Aa

μ. The explicit form of the metric gμν is given by

gμν ¼ diagð1;−1;−1;−1=τ2Þ; ð4Þ

gμν ¼ diagð1;−1;−1;−τ2Þ; ð5Þ

det gμν ≡ g ¼ −τ2: ð6Þ

Gauss’s law in the τ-η coordinate is expressed as

DiEa
i þDηEa

η ¼ 0; ð7Þ

where the color electric fields are defined as Ei ¼ τ∂τAi

(i ¼ x, y) and Eη ¼ 1
τ ∂τAη. The covariant derivative is

given by Dμ ¼ ∂μ − iAμ.
It is useful to see how the gauge field decreases by

the expansion of the system. The Bjorken solution of the
longitudinally expanding hydrodynamics tells us that the
energy density decreases as ϵ ∝ τ−4=3 [35]. Provided that
this behavior also applies to the gauge field, we expect
that the amplitude of the gauge field decreases as
A ∝ τ−1=3, since the energy density of CYM fields contains
terms proportional to A4. Motivated by this observation,
let us consider the following time-dependent scale
transformation [33],

∂τ ¼ τ−1=3∂θ; ð8Þ

Aa
i ¼ τ−1=3Aa

i ; ð9Þ

Aa
η ¼ τ−1=3Aa

η ; ð10Þ

whereA and A denote the gauge fields in the τ-η coordinate
and in the scaled coordinate, respectively. We introduce the
new chronological variable called conformal time θ. The
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relation between the conformal time and the proper time is
explicitly given by

τðθÞ ¼
�
2

3
θ

�
3=2 ≡ ~θ3=2: ð11Þ

Taking the Schwinger gauge Aa
τ ¼ 0, the action in the new

coordinate reads

S ¼
Z

dθd2x⊥dη
�
1

2
ð∂θAa

i Þ2 −
1

2

1

9~θ2
Aa
i A

a
i −

1

4
~Fa
ij
~Fa
ij

þ 1

~θ3

�
1

2
ð∂θAa

ηÞ2 −
1

2

7

9~θ2
Aa
ηAa

η −
1

2
~Fa
ηi
~Fa
ηi

��
: ð12Þ

From now on, the capital letters denote all space compo-
nents as I; J;… ¼ x; y; η, and the lower letters only trans-
verse components as i; j;… ¼ x; y. The field strength
tensor and covariant derivative in the new coordinate are
defined by

~Fa
μν ¼ ~∂μAa

ν þ ~∂νAa
μ þ fabcAb

μAc
ν; ð13Þ

~Dab
I ¼ ~∂Iδ

ab þ facbAc
I ; ð14Þ

~∂I ¼ τ1=3∂I ¼ ~θ1=2∂I: ð15Þ

In the action Eq. (12), the overall time dependence
coming from the metric is absorbed into the coefficient of
the quadratic terms and the spatial derivatives, so that the
action has a similar form to that in a nonexpanding
geometry. The Euler-Lagrange equation is given by

∂2
θA

a
i þ

1

9~θ2
Aa
i −

1

~θ3
~Dη

~Fa
ηi − ~Dj

~Fa
ji ¼ 0; ð16Þ

∂θ

�
1

~θ3
∂θAa

η

�
þ 7

9~θ5
Aa
η −

1

~θ3
~Di
~Fa
iη ¼ 0: ð17Þ

Substituting Eqs. (8), (9), and (10) into Eq. (7), we see
that Gauss’s law is expressed in terms of the conformal
variables as

~Di

�
∂θAa

i −
Aa
i

2θ

�
þ 1

~θ3
~Dη

�
∂θAa

η −
Aa
η

2θ

�
¼ 0: ð18Þ

B. Background field configuration

In this subsection, we introduce the gauge configuration
which makes a homogeneous and boost-invariant longi-
tudinal color magnetic field. In order to extract the essential
ingredients of the non-Abelian gauge theory in a simple
manner, we consider color SU(2). The color magnetic field
in the τ-η coordinate is defined by

Ba
I ¼ ϵIJK

�
∂JAa

K −
1

2
ϵabcAb

JA
c
K

�
: ð19Þ

From Eqs. (8) and (9), the color magnetic field in terms of
the conformal variables are expressed as

Ba
I ¼ ϵIJK

�
~∂JAa

K −
1

2
ϵabcAb

JA
c
K

�
: ð20Þ

We assume that the gauge field itself is also homogeneous
and boost invariant. One possible realization of the gauge
configuration is given by

Aa
i ¼ ~AðθÞðδa1δiy þ δa2δixÞ; ð21Þ

Aa
η ¼ 0; ð22Þ

which fulfills the above requirements and exactly satisfies
Gauss’s law. Taking the configuration Eq. (21), only the
second term in Eq. (20) remains. This is the generalization
of the nonexpanding case [29,30]. We also mention that
there exists not only color magnetic fields but also
transversely polarized color electric fields.
The EOM of the background field is now given by

∂2
θ
~Aþ 1

4θ2
~Aþ ~A3 ¼ 0: ð23Þ

The second term comes from the quadratic term in the
action which makes it difficult to get exact solutions
analytically. Nonetheless, the qualitative behavior is well
understood in some limiting cases as we shall show.
In the earlier time θ ≪ 1= ~A, the self-interaction term ~A3

can be neglected, and the EOM is reduced to a linear
equation. Suppose that the initial condition is given as
~A ¼ ffiffiffiffiffiffi

B0

p
and ∂θ

~A ¼ 0 at θ ¼ θ0; then, the solution is
given by

~AðθÞ≃
ffiffiffiffiffiffiffiffi
B0θ

θ0

s �
1 −

1

2
log

θ

θ0

�
: ð24Þ

The nonlinear term dominates over the linear term in
Eq. (23) after a time, and the EOM becomes nonlinear but
solvable at the later times θ ≫ 1= ~A where the linear term is
negligible. The background field should behave as

~AðθÞ≃ B1=2
eff cnðθB1=2

eff þ Δ; 1=
ffiffiffi
2

p
Þ; ð25Þ

where cnðθ; kÞ is the Jacobi elliptic function of modulus k,
which is a periodic function in time of which the period
is T ¼ 4KðkÞ. KðkÞ is the complete elliptic integral of the
first kind. Specifically, T ≃ 7.42 for k ¼ 1=

ffiffiffi
2

p
. This is

nothing but the homogeneous background field discussed
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in Refs. [29,30] in the nonexpanding geometry with a
phase shift Δ quantifying the earlier time effects.
In our setup, B1=2

eff is the only dimensionful scale, and its
strength depends on the initial condition. It is convenient to
introduce dimensionless quantities so as to normalize the
final amplitude of the background gauge field in accor-
dance with Eq. (25); that is, the final amplitude of ~A=B1=2

eff is

normalized to unity, and the combination θB1=2
eff is the

dimensionless time variable.
Figure 1 shows the numerical solution of the EOM

Eq. (23) rescaled by the final amplitude B1=2
eff . We also show

the solution of the linear equation Eq. (24), the Jacobi
elliptic function, and the shifted Jacobi elliptic function
Eq. (25). At the initial time, the initial gauge field and its
derivative are chosen to be θ0 ¼ 0.01, ~Aðθ0Þ ¼ 1 and
d ~A=dθðθ0Þ ¼ 0, respectively. The final amplitude and
the time shift are found to be B1=2

eff ≃ 4.68 and Δ≃ 1.69.
Thus, the numerical result in Fig. 1 starts from
θ0B

1=2
eff ≃ 0.01 × 4.68.

The linear solution Eq. (24) fails to reproduce the
numerical solution at θB1=2

eff ≳ 1 as expected. Let us
compare this time with the transition time from the linear
to the nonlinear regime θtr obtained from the balance
condition 1=θtr ∼ ~AðθtrÞ. Ignoring the logarithmic correc-
tion, we get θtr ∼ ðθ0=B0Þ1=3 from Eq. (24). By assuming
θtrB

1=2
eff ∼ 1, we find Beff ∼ ðB0=θ0Þ1=3 ¼ ð1=0.01Þ1=3 ≃

4.64 for the present initial condition, which deviates from
the numerical results only by around 1%.
Before finishing this subsection, we comment on the

physical time scale. From Eqs. (9), (11), (24), and (25), the
solutions at the earlier and later times in the original τ-η
coordinate are given by

A1
yðτÞ ¼ A2

xðτÞ ¼ τ−1=3 ~AðθÞ

≃

8>><
>>:

ffiffi
3
2

q
B3=4
eff

h
1 − 1

3
log

�
τ
τ0

�i
ðθB1=2

eff ≪ 1Þ;
B1=2
eff

τ1=3
cn
�
3
2
τ2=3B1=2

eff þ Δ; 1ffiffi
2

p
�

ðθB1=2
eff ≫ 1Þ;

ð26Þ

respectively. Equation (26) tells us the strength of the
background gauge field. If the initial strength at τ0 ¼
ð2θ0=3Þ3=2 is given by the saturation scale Qs, we get the
relation between the physical and conformal scales,

Qs ¼
ffiffiffi
3

2

r
B3=4
eff ; Qsτ ¼

2

3
ðθB1=2

eff Þ3=2: ð27Þ

For instance, we can evaluate the proper time as
Qsτ ¼ 0.67, 3.46 and 21.1 for θB1=2

eff ¼ 1, 3 and 10,
respectively.

C. Equation of motion of fluctuations

We write down the linearized EOM of fluctuations on
top of the background gauge field Eq. (21). This is easily
done by shifting Aa

I → Aa
I þ aaI in Eqs. (16) and (17) and

keeping terms of order Oða1Þ. The resultant EOM of
fluctuations aaI is given by

∂2
θa

a
i þ

1

9~θ2
aai þ ½Ω2ð ~AÞ�abij abj þ ½Ω2ð ~AÞ�abiη abη ¼ 0; ð28Þ

1

~θ3
L2
ηaaη þ

7

9~θ5
aaη þ ½Ω2ð ~AÞ�abηj abj þ ½Ω2ð ~AÞ�abηηabη ¼ 0;

ð29Þ

where L2
η and Ω2

I are defined by

L2
η ¼

d2

dθ2
−
2

~θ

d
dθ

; ð30Þ

and

½Ω2�abij ¼ −
�
~Dkð ~AÞ ~Dkð ~AÞ þ

1

~θ3
~Dηð ~AÞ ~Dηð ~AÞ

�
ab
δij

þ ð ~Dið ~AÞ ~Djð ~AÞ þ 2i ~Fijð ~AÞÞab; ð31Þ

½Ω2�abiη ¼ 1

~θ3
ð ~Dið ~AÞ ~Dηð ~AÞ þ 2i ~Fiηð ~AÞÞab; ð32Þ

½Ω2�abηj ¼ 1

~θ3
ð ~Dηð ~AÞ ~Djð ~AÞ þ 2i ~Fηjð ~AÞÞab; ð33Þ

½Ω2�abηj ¼ −
1

~θ3
ð ~Dkð ~AÞ ~Dkð ~AÞÞab; ð34Þ

-1

 0

 1

 2

 0  2  4  6  8  10

A- /B
1/

2
ef

f

θ Beff
1/2

numerical sol.
Jacobi cn

Jacobi cn (shifted)
linear sol.

FIG. 1. Background field ~A in an expanding geometry. We
show the numerical solution of the EOM Eq. (23) rescaled by the
asymptotic amplitude (red solid line), the linear solution Eq. (24)
(blue dash-dotted line), the shifted Jacobi elliptic function
Eq. (25) (green dotted line), and the Jacobi elliptic function
(green dashed line). The temporal variable θ and the amplitude ~A
are normalized by the asymptotic amplitude B1=2

eff .
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respectively. The color indices ab appear in the covariant
derivative ~D and the field tensor ~F. Ω2 depends on
conformal time not only explicitly but also implicitly
through the background gauge field ~AðθÞ. Here and in
the later discussions, we adopt the unit B1=2

eff ¼ 1. Namely,

all variables are normalized by B1=2
eff such as θB1=2

eff

and aaI =B
1=2
eff .

Even though we consider the color magnetic back-
ground, both the transverse momenta pi and the longi-
tudinal momentum pη are well defined because the
background gauge field does not depend on spatial coor-
dinates. Therefore, it is useful to introduce the Fourier
representation of the EOM, Eqs. (28) and (29), through

aaI ðθ; x; y; ηÞ ¼
Z

d3p
ð2πÞ3 a

a
I ðθ; px; py; pηÞeiðpxxþpyyþpηηÞ:

ð35Þ

It should be noted that we can set py ¼ 0 without loss
of generality from rotational symmetry in the transverse
plane. The matrix Ω2 at py ¼ 0 becomes block diagonal as
Ω2 ¼ diagðΩ2

4;Ω2
5Þ, as found in the nonexpanding

case [30].
In the later discussion, we consider finite pη modes

(pη ≠ 0, pT ¼ 0) and finite pT modes (pη ¼ 0, pT ≠ 0).
From now on, pT denotes a transverse momentum. The
EOMs of these modes at later times have the form of

d2aaI
dθ2

þ k2effðθÞaaI þ λcn2ðθ þ ΔÞaaI ¼ RðθÞ; ð36Þ

and d2=dθ2 is replaced with L2
η for the longitudinal

component aaη . Here, we defined the effective momenta
k2effðθÞ for convenience. RðθÞ denotes an inhomogeneous
term. The effective momenta for the transverse and
longitudinal components of the finite pη (finite pT)
modes, k2eff ¼ k2ηT and k2ηη (k2TT and k2Tη), are defined by
Eqs. (37)–(41) below. The explicit forms of the EOMs
[namely, RðθÞ] are summarized in Appendix A.
For finite pη modes (pT ¼ 0), we find the effective

momenta of the transverse and longitudinal components of
fluctuations aai and aaη given by

k2ηTðθÞ≡M2
TðθÞ þ

p2
η

~θ2
¼ 1þ 9p2

η

4θ2
; ð37Þ

k2ηηðθÞ≡M2
ηðθÞ ¼

7

4θ2
; ð38Þ

where M2
T and M2

η are effective masses defined by

M2
TðθÞ ¼

1

9~θ2
¼ 1

4θ2
; M2

ηðθÞ ¼
7

9~θ2
¼ 7

4θ2
: ð39Þ

Note that k2ηT and k2ηη decrease in time monotonically.
In the same manner, we define the effective momenta for

finite pT modes (pη ¼ 0) by

k2TTðθÞ≡M2
TðθÞ þ ~θp2

T ¼ 1

4θ2
þ 2

3
θp2

T; ð40Þ

k2TηðθÞ≡M2
ηðθÞ þ ~θp2

T ¼ 7

4θ2
þ 2

3
θp2

T: ð41Þ

In contrast to the finite pη modes Eqs. (37) and (38), k2TT
and k2Tη increase at later times.
Before we close this section, we comment on the

similarities and differences in EOMs in the expanding
and nonexpanding geometries. The forms of EOMs
expressed by using the conformal variables Eqs. (28) and
(29) are similar to those in a nonexpanding geometry. For
example, the background field at later times is described by
the elliptic function; then, the Eq. (36) is similar to Lamé’s
equation, which appears in the nonexpanding geometries
and discussed in the next section. In addition, Ω2 is block
diagonalized in the same way as in the nonexpanding case
[30]. On the other hand, the form of EOMs in the expanding
geometry is different from that in the nonexpanding geom-
etry in the appearance of the time dependence of the effective
transverse and longitudinal momenta. Thus, the original
problem defined in the expanding geometry is mapped into
the nonexpanding problem where the momenta of the
fluctuations depend on time.

III. FLOQUET THEORY

In general, a temporally periodic-driven system can show
instability due to the resonance between an external force
and eigenmodes of the system. The resultant instability is
called parametric resonance or parametric instability. It is
well known that the Floquet theory is best suited to analyze
instabilities of temporally periodic-driven systems. Floquet
theory provides the criteria whether the solution is expo-
nentially divergent, polynomially divergent, or bounded. In
the expanding problem, Floquet theory is not directly
applied but gives some insights into the growth rates in
the expanding geometry. An account of the Floquet theory
is given in our previous paper [30]. In this section, we
recapitulate them to be self-contained in a brief way.
Let us consider Lamé’s equation

f̈ þ ½p2 þ λcn2ðt; kÞ�f ¼ 0: ð42Þ

Here, p and λ are control parameters of this equation. It
should be noted that, at later times, EOMs in the expanding
geometry, Eq. (36), become the Lamé equation if we ignore
the time dependence of the effective momenta and the
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inhomogeneous terms. In the context of the CYM theory,
the cases with p ≪ 1 and λ ¼ �1, 2, 3 are important. Let us
define a fundamental matrix by ΦðtÞ¼ððf1; _f1Þt;ðf2; _f2ÞtÞ,
where ffigði¼1;2Þ are independent and complete solutions
of the Lamé equation. If ΦðtÞ is a fundamental matrix, or in
this specific case a Wronskian matrix, Φðtþ TÞ is also a
fundamental matrix due to the periodicity of the elliptic
function, where T is the period of the elliptic function.
The criterion of the existence of unstable solutions is

expressed in terms of the monodromy matrixM defined by
Φðtþ TÞ ¼ ΦðtÞM which is regular and time independent.
By construction, the fundamental matrix is also regular, and
we get

M ¼ Φð0Þ−1ΦðTÞ: ð43Þ

Because the Wronskian detΦ is constant in time, we also
find detM ¼ μ1μ2 ¼ 1. The eigenvalues of M are called
characteristic multipliers, and we denote them as μ1 and μ2.
These multipliers are the solutions of the characteristic
equation: μ2 − ðtrMÞμþ 1 ¼ 0.
One can easily show that the solution of the Lamé

equation must have the following form,

ΦðtÞ ¼ FðtÞ exp
�
ðlogMÞ t

T

�
; ð44Þ

where FðtÞ is a T-periodic matrix of which the specific
form is irrelevant to our discussion. It is useful to define the
characteristic exponent or growth rate by γ ¼ ðlog μÞ=T.
Thus, the eigenvalues of the monodromy matrix determine
the stability of the solution. The complete classification is
listed below:
(1) If jtrMj > 2, the solution is exponentially divergent.
(2) If jtrMj ¼ 2, the solution is (anti)periodic or linearly

divergent.
(3) If jtrMj < 2, the solution is bounded.

For more complete discussions about linear divergence, see
also Appendix B. Figure 2 shows that the real part of the

growth rates of Lamé’s equation for λ ¼ �1; 2 and 3. The
growth rate has a maximum at p2 ¼ 0 for λ ¼ −1 and 2, the
values of which are 0.66 and 0.23, respectively. For λ ¼ 1
and 3, the exponential growth rates are equal to zero at
p ¼ 0, and the solutions are bounded or diverge at most
linearly [30].

IV. STABILITY ANALYSIS

In this section, we perform a linear stability analysis for
fluctuations by solving the EOMs, Eqs. (28) and (29),
around the background field (21). We first show the
numerical results in Sec. IVA, and then in the following
subsections, we shall give a semianalytical analysis in some
limits, which helps to understand the numerical results.
We shall only show the results for finite pη modes (pη ≠ 0,
pT ¼ 0) and finite pT modes (pη ¼ 0, pT ≠ 0), which
should be sufficient to see how instabilities emerge in an
expanding system. The details including all explicit expres-
sions of the equations are presented in Appendix A.

A. Numerical results

We choose the initial conditions for fluctuations so that
Gauss’s law Eq. (18) is satisfied, which leads to

i ~pi _aai þ ~θ−30 i ~pη _aaη −
1

3~θ0
ði ~piaai þ ~θ−30 i ~pηaaηÞ

þ ϵabcδb2ð ~Aðθ0Þ _acx − _~Aðθ0ÞacxÞ
þ ϵabcδb1ð ~Aðθ0Þ _acy − _~Aðθ0ÞacyÞ ¼ 0; ð45Þ

where ~pI ¼ ~θ1=20 pI . We can choose the initial transverse
components as aai ¼ 1 and ∂θaai ¼ 0 in the rescaled
dimensionless unit [36]. The initial longitudinal compo-
nents are determined by Gauss’s law. The initial condition
of the background field is the same as that shown in
Sec. II B; θ0B

1=2
eff ≃ 0.01 × 4.68, ~A=B1=2

eff ≃ 1=4.68, and

∂θ
~A=B1=2

eff ¼ 0 in the rescaled dimensionless unit.
Figures 3 and 4 show the numerical results of squared

fluctuation amplitudes obtained by solving the EOM given
by Eq. (29) for finite pη and finite pT modes, respectively.
For comparison, we show the exponential functions e2γ0θ

by black solid lines in those modes where exponential
growth is expected. The comparison shows that there are
several exponentially unstable modes. The amplitudes of
aAþ and aB− components in finite pη modes obey the Lamé
equation with λ ¼ −1 at later times and have a growth rate
γ0 ≃ 0.66. The Lamé equation with λ ¼ −1 describes the
most unstable mode also in the nonexpanding geometry.
Therefore, we conclude that the parametric instability
emerges also in the expanding geometry for finite pη

modes. Finite pT modes also show instability when pT
is small but finite.
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FIG. 2. Growth rates in Lamé’s equation. We show the real
part of the growth rates for λ ¼ −1 (red solid line), λ ¼ 1 (blue
dashed line), λ ¼ 2 (magenta dotted line), and λ ¼ 3 (green dot-
dashed line).
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We also find that unstable modes grow exponentially
after some times or in a limited time regime and show
oscillating behavior outside of the exponential regime.
The transitions between the oscillating behavior and the
exponential growth occur at certain times marked by
vertical lines in Figs. 3 and 4. For typical momenta,
say p2

η ¼ 1.0, the exponential growth is observed in the
shaded areas while fluctuation amplitudes just oscillate
outside the areas. The oscillatory behavior in the earliest
stage is caused by the nonperiodic evolution of the
background field.
In the following subsections, we interpret these numeri-

cal results in detail, namely, clarifying the difference
between finite pη modes and pT modes. In Sec. IV B,
we discuss the evolution in the earliest stage. In Secs. IV C
and IV D, we estimate the growth rates and the transition
times of the unstable modes. In Sec. IV E, we discuss the
applicability range of the linear stability analysis. Finally,
in Sec. IV F, we comment on the physical time scale of the
parametric instability and the relevance to the heavy-ion
experiments.

B. Earliest stage

We discuss the behavior of fluctuations in the earliest
stage characterized by θ ≪ 1. In this stage, the effective
momenta give rise to the most singular terms k2eff ∝ θ−2,
which is much larger than the background field ~A ∼ θ1=2 as
given in Eq. (24).

The EOMs for finite pη modes in the earliest stage read

äai þ k2ηTðθ; pηÞaai ¼ fðθÞ; ð46Þ

L2
ηaaη þM2

ηðθÞaaη ¼ fðθÞ: ð47Þ

Here, fðθÞ denotes higher order terms in θ which are
irrelevant in this stage. Both of the effective momenta, k2ηT
and k2ηη ¼ M2

η given in Eqs. (37) and (38), are proportional
to θ−2. The general solutions for the transverse components
are given by aai ¼ cθ1=2þ3ipη=2 þ c:c: where c is an arbi-
trary constant; one sees that the pη dependence of k2ηT
causes the oscillating behavior of the solution. The longi-
tudinal components do not have pη dependence, and the
general solutions are given by aaη ¼ c1θ1=2 þ c2θ7=2.
For finite pT modes, we have

∂2
θa

a
i þM2

TðθÞaai ¼ Oðθ−2=3; θÞ; ð48Þ

L2
ηaaη þM2

ηðθÞaaη ¼ Oðθ−2=3; θÞ; ð49Þ

where Oðθ−2=3; θÞ indicates that the term is of order
Oðθ−2=3Þ or OðθÞ. In the earliest stage, pT dependence
appears inOðθÞ terms, as found in Eqs. (40) and (41). Note
that EOM of the transverse components has the same form
as that of the background field; then, the general solution is
given by aai ¼ c1θ1=2 þ c2θ1=2 log θ. The solution for the
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FIG. 3. Squared fluctuation amplitudes in finite pη modes. We show the time evolution of fluctuations in finite pη modes for
p2
η ¼ 1.0, 2.0, and 3.0. Black solid lines in the upper panels show exponential function e2γ0θ with γ0 ¼ 0.66. The vertical lines show

the transition times for each momentum mode. The transition times of aAþ, aB− are given by 2.46, 3.40, and 4.13 for each
momentum mode. The transition time of a3η is 1.97 and independent of pη. Shaded areas show the time regime where exponential
growth is expected for p2

η ¼ 1.0.
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longitudinal components grows in time with the same time
dependence as the solution of finite pη modes.
From the above arguments, we find that fluctuation

amplitudes in both finite pη and pT modes behave as
a ∝ θ1=2þ (higher order of θ) in the earliest stage, except
for the logarithmic corrections in θ. The fluctuation
amplitude in the τ-η coordinate is given by τ−1=3a from
Eqs. (9) and (10); then, they will not grow as a function of
the proper time, i.e. τ−1=3aðτÞ ∝ τ−1=3θðτÞ1=2 ¼ Oðτ0Þ, if
we ignore logarithmic corrections. The numerical results
are in good agreement with the above discussion. In fact,
no exponential growth is found in Figs. 3 and 4 at the
earliest stage.

C. Growth rates

We shall now discuss exponential instability of fluctua-
tions. In Figs. 3 and 4, there are some exponentially
growing modes, namely, aAþ and aB−

components of the
finite pη modes and aax and aay components with p2

T ¼ 0.1.

As we shall see below, the growth rates of them are nicely
described by utilizing the Floquet analysis in the non-
expanding geometry which was worked out in the previous
work [30]: the (time-dependent) effective momenta in the
expanding geometry are mapped in the contour map of
the instability bands for the nonexpanding geometry. In the
following analysis, we shall first recapitulate and utilize
the results in the previous work for later convenience.
In Fig. 5, we show the maximal growth rate in the

nonexpanding geometry as a function of transverse and
longitudinal momenta. The contour maps are obtained for
Ω2

4 and Ω2
5 sectors, separately. Figure 5 clearly shows the

band structure of the parametric instability. The boundaries
of instability bands are depicted by gray solid lines. We
note that the zero momentummode is most unstable, and its
growth rate is given by

γ0 ≃ 0.66: ð50Þ
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FIG. 4. Squared fluctuation amplitudes in finite pT modes. We show the time evolution of fluctuations in finite pT modes for
p2
T ¼ 0.1, 0.5, and 1.0. In the upper and middle panels, the growth rates of the function e2~γθ are given by ~γ ¼ 0.57 for p2

T ¼ 0.1. Two
transition times are indicated with vertical lines for each momentum mode. In the Ω2

5 sector which includes a
1
x, a2y, a3x, the first transition

time is given by 0.38, 0.39, and 0.41 for p2
T ¼ 0.1, 0.5, and 1.0, respectively. In the Ω2

4 sector which includes a1y, a2x, a3y, the first
transition time is given by 0.39 and 0.41 for p2
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These results in the nonexpanding geometry enable us to
estimate the growth rates of the numerical solutions in the
expanding geometry by paying attention to the time
dependence of the effective momenta.
Let us evaluate the growth rates in the finite pη modes by

using the growth rates in the nonexpanding geometry. We
neglect terms with negative powers of θ and obtain the
asymptotic EOMs as

d2aaI
dθ2

þ λcn2ðθ þ ΔÞaaI ¼ RðθÞ; ð51Þ

where λ ¼ �1, 2, or 3, and we have replaced the back-
ground field with its asymptotic form, ~A∼cnðθþΔ;1=

ffiffiffi
2

p Þ
shown in Eq. (25). These equations are nothing but
Lamé’s equation with inhomogeneous terms RðθÞ. [See
Eqs. (A5)–(A12) for full expression of RðθÞ and details of
the derivation.] The solutions are unstable for λ ¼ −1 and 2

due to the parametric instability as we show in Fig. 2. Their
growth rates are given by those of the zero momentum
mode in the nonexpanding geometry and are found to be
γ ¼ 0.66 and γ ¼ 0.23 for λ ¼ −1 and λ ¼ 2, respectively.
We summarize instability properties of finite pη modes in
Table I.
For the finite pT modes, we need to be cautious about

the nonmonotonic dependence of the effective momenta
on θ. The EOMs of the finite pT modes are given in
Eqs. (A15)–(A23). The effective transverse momentum
Eq. (40) first decreases, takes a minimum at a finite
positive value, and increases again with increasing θ. We
expect that the maximum growth rate may be evaluated at
which kTT has the minimum value. In both Ω2

5 and Ω2
4

sectors, the growth rate at the minima of kTT , marked by
squares in Fig. 5, reads

~γ ≃ 0.57 ð52Þ

for p2
T ¼ 0.1.

We now examine the growth rates estimated from the
Floquet analysis by comparing them with the numerical
results in the expanding geometry. In the upper panels of
Fig. 3, we compare the numerical results of finite pη modes
with exponential functions expð2γ0θÞ shown by the solid
line, where γ0 is the growth rate of the zero momentum
mode obtained in the nonexpanding geometry, Eq. (50).
The numerical solutions are plotted for p2

η ¼ 1.0, 2.0, and

3.0. The unstable components are aAþ ¼ ða1x þ a2yÞ=
ffiffiffi
2

p

and aB− ¼ ða1y − a2xÞ=
ffiffiffi
2

p
of which the asymptotic growth

rate is expected to be γ ¼ 0.66 from the (inhomogeneous)
Lamé equation Eq. (51) with λ ¼ −1. As expected, the
growth rates for aAþ and aB− in the expanding geometry
approach the upper bound determined by those in a
nonexpanding geometry. We have found that other com-
ponents such as a3A− and a3η exhibit only oscillating
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FIG. 5. Maximal growth rates as functions of transverse and
longitudinal momenta for Ω2

4 sector (top) and Ω2
5 sector (bottom)

in the nonexpanding geometry. The band boundaries denoted by
gray solid lines are determined by jγjmax ¼ 0.01. Black squares
denote the minimum values of kTT . In both sectors, min kTT ¼
0.20 and γ ¼ 0.57 for p2

T ¼ 0.1.

TABLE I. The classification of the asymptotic behavior for
finite pη (pT ¼ 0) modes. Here, aA� ¼ ða1x � a2yÞ=

ffiffiffi
2

p
and

aB� ¼ ða1y � a2xÞ=
ffiffiffi
2

p
. *For the aA− component at pη ¼ 0, the

inhomogeneous term RðθÞ vanishes and shows only linear
divergence as ordinal instability of Lamé’s equation with λ ¼ 1.

Sector Component λ RðθÞ Instability Growth rate

Ω2
5

aAþ −1 RðθÞ ≠ 0 Exponential γ ¼ 0.66
Ω2

5
aA− þ1 (*)RðθÞ ≠ 0 Exponential* γ ¼ 0.23

Ω2
4

aBþ þ3 RðθÞ ¼ 0 Linear � � �
Ω2

4
aB− −1 RðθÞ ¼ 0 Exponential γ ¼ 0.66

Ω2
5 a3x þ1 RðθÞ ¼ 0 Linear � � �

Ω2
4 a3y þ1 RðθÞ ¼ 0 Linear � � �

Ω2
5 a1η þ1 RðθÞ ≠ 0 Linear � � �

Ω2
4 a2η þ1 RðθÞ ≠ 0 Linear � � �

Ω2
5 a3η þ2 RðθÞ ≠ 0 Exponential γ ¼ 0.23
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behavior within the time range shown in Fig. 3, although,
according to Table I, a3A− and a3η can be unstable. This is
due to the fact that they have too small a growth rate. In
principle, one will find the exponential growth of these
components by carrying out unreasonably long-time sim-
ulation, where the linear analysis is no longer valid.
Let us turn to the finite pT modes. In Fig. 4, we compare

the exponential functions expð2~γθÞ with numerical solu-
tions. Here, a1y, a2x, and a3y belong to the Ω2

4 sector, and a1x,
a2y, and a3x belong to the Ω2

5 sector. At earlier times, the
growth rate Eq. (52) agrees well with that of the numerical
solutions for p2

T ¼ 0.1. As the effective momenta become
large, the numerical solutions deviate from the exponential
functions expð2~γθÞ. This behavior is in accordance with the
fact that there is no significant instability band in the high
transverse momentum region.

D. Transition times

We now discuss the temporal regime where the expo-
nential growth is expected. The main difference between
nonexpanding and expanding geometries comes from the
time dependence of the effective momenta k2eff ¼ k2ηT , k

2
ηη,

k2TT , or k
2
Tη, defined in Eqs. (37), (38), (40), and (41). They

control the transition between oscillating behavior and the
exponential growth; when k2eff is in the instability bands of
the corresponding nonexpanding case, we can expect
exponential growth. The shaded area in the top left panel
of Fig. 3 shows the temporal regime, where exponential
growth is expected.
Figure 6 shows the time dependence of the effective

momenta k2ηT , k
2
ηη, and k2TT . The horizontal lines correspond

to the boundaries of the instability bands. For finite pη

modes, the effective momenta (37) and (38) decrease in
time, and then the infrared band structure of the nonex-
panding geometry is relevant and responsible for the
emergence of instabilities. Two horizontal lines in the
top panel of Fig. 6 represent the longitudinal momenta
on the boundaries of the instability band around the zero
momentum region, 0.41 for the Ω2

4 sector and 0.81 for the
Ω2

5 sector. Using the momentum on the boundary point pbη,
we define the transition time θtr by

p2
bη ¼ k2ηTðθtrÞ ¼ M2

TðθtrÞ þ 9p2
η=4θ2tr; ð53Þ

p2
bη ¼ k2ηηðθtrÞ ¼ M2

ηðθtrÞ ð54Þ

for transverse and longitudinal components, respectively.
Note that the latter has no pη dependence. Specifically, the
transition time of the most unstable modes aAþðp ¼ 0Þ and
aB−ðp ¼ 0Þ reads p2

bη ¼ M2
TðθtrÞ. Then, we obtain

θtrðpη ¼ 0Þ≃ 0.78; ð55Þ

with p2
bη ¼ 0.41. The transition times at p2

η ¼ 1.0 are
θtr ¼ 2.46 (1.46) for aAþ and aB− (a3η) components. The
transition times defined here are denoted by vertical lines
in Fig. 3.
For finite pT modes, there is a finite time interval in

which the effective momenta stay inside of the instability
bands. Two horizontal lines in the lower panel of Fig. 6
represent the transverse momenta on the band boundaries,
1.64 for the Ω2

4 sector and 1.75 for the Ω2
5 sector. All

unstable components are transverse aai , so the transition
time θtr is defined by

p2
bT ¼ k2TTðθtrÞ ¼ M2

TðθtrÞ þ
2

3
θtrp2

T: ð56Þ

Since effective momenta are not monotonic in time, there
are two transition times. For instance, the first transition
time at p2

T ¼ 0.1 is θtr ¼ 0.39 (0.38) for the Ω2
4 (Ω2

5) sector,
which is the starting time of the exponential growth. The
second transition time is θtr ¼ 24.6 (26.2) for the Ω2

4 (Ω2
5)

sector, which is the finishing time of the exponential
growth. Thus, this mode has a finite time interval in which
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an exponential growth is expected for small pT . Indeed,
unstable behavior is clearly observed in Fig. 4 at p2

T ¼ 0.1.
We discuss the behavior of high transverse momentum

modes. In contrast to the finite pη modes, the effective
momentum of the transverse modes always has a minimum
value at kTT > 0. As a result, fluctuations with higher pT
can only have a smaller growth rate. This is the reason
why any exponential growth is not clearly identified for
these modes.

E. Applicability of the linear analysis

We discuss the applicability range of the linear analysis
that we have adopted. To this end, we focus on the zero
momentum mode which shows the strongest instability.
Recalling that the unstable behavior emerges after the

transition time θtr, the typical time interval θlin in which the
linear approximation is valid is estimated as

θlin ¼ θtr þ θgrow; ð57Þ

where θgrow is the time scale at which the amplitude of the
most unstable mode becomes comparable to that of the
background field. As we saw in the previous section,
the most unstable mode is the zero momentum mode,
and its asymptotic growth rate is well described by that in
the nonexpanding geometry. Let us denote the growth rate
by γ0. Then, the time scale θgrow is approximately given by

A ∼ a0eγ0θgrow : ð58Þ

Here, A and a0 denote the amplitudes of the background
field and initial fluctuation. Equations (57) and (58) lead to

θlin ∼ θtr þ
1

γ0
log

A
a0

: ð59Þ

If we write the gauge coupling constant g explicitly, the
fluctuation amplitude a is initially of order Oð1Þ, and the
background field gA is of order Oð1Þ. Thus, the ratio of
the amplitude of the background field to that of the initial
fluctuation parametrically becomes A=a0 ∼ 1=g. In the
weak coupling regime where, say, g ¼ 10−3, Eq. (59) reads
θlin ≃ 11 because of Eqs. (50) and (55).
In Fig. 3, we display the time evolution of fluctuations

within the time region θ < θlin. In this time interval,
only aAþ and aB− components show instability. We also
found that not only low-momentum modes but also high-
momentum modes, say p2

η ¼ 3.0, show instability. Even
when the initial longitudinal momentum is large so that it is
located outside the unstable region shown in Fig. 5, it can
eventually become small enough to enter the unstable
region due to its time dependence. We emphasize that this
feature differs from the nonexpanding case.

F. Physical time scale

Finally, we should estimate the physical scale of the
transition times. In order to do that, it is instructive to see
the results in the original coordinate instead of the
conformal coordinate. We illustrate the numerical solution
of aAþðpηÞ and a1xðpTÞ as a function of the proper time in
Fig. 7. Vertical lines indicate the transition times. The time
interval shown in Fig. 7 is 0 < τ < τlin ¼ 2θ3=2lin =3≃ 24.3,
where the linear analysis is valid. We also show the time
evolution of the background field in the inset figure for
comparison. The time evolution of the unstable modes is
well described by the exponential function. For instance,
the squared amplitude of aAþðpηÞ agrees well with

τ−1=3e2γ0ð3τ=2Þ2=3 denoted by the black solid line, where
γ0 ≃ 0.66 is the largest growth rate given in Eq. (50). This
figure shows that these modes start to grow exponentially
in the early stage of the dynamics even in the original
coordinate.
As we have seen in Sec. II, all quantities are scaled by the

strength of the background magnetic field Beff in our setup.
By using the relation between the conformal and proper
times in Eq. (27) and the empirical value of the saturation
scale, Qs ≃ 1 GeV for the RHIC or Qs ≃ 2 GeV for the
LHC, the transition time for the fastest growth modes (aAþ
and aB−) is estimated as

τt ¼
2

3
ðθtB1=2

eff Þ3=2
1

Qs

≃
	
0.53ð1.12Þ fm=c for the RHIC;

0.26ð0.56Þ fm=c for the LHC
ð60Þ

for p2
η ¼ 1.0ð3.0Þ. These fastest growth modes can emerge

in the dynamics of relativistic heavy-ion collisions. In heavy-
ion experiments, the rapidity gaps between the projectile and
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Inset figure shows the time evolution of the background field as a
function of proper time.
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target are about ΔY ¼ 10.7 in the RHIC and 17.4 in the
LHC. The rapidity gap gives the lower bound of the
longitudinal momentum of fluctuations; in order to observe
half a wavelength of the fluctuation, ΛηΔY ∼ π is required.
For the RHIC and LHC, we find Λ2

η ∼ 0.08 and Λ2
η ∼ 0.03,

respectively. The typical momenta of the fastest growth
modes, say p2

η ¼ 1.0ð3.0Þ, are sufficiently larger than these
lower bounds.
We also estimate the physical scale of the instability of

finite pT modes. In Fig. 7, the small transverse momentum
mode with p2

T ¼ 0.1B−3=2
eff grows as fast as finite pη modes.

In the physical unit, this value is estimated as
pT ≃ 0.3Qs ≃ 0.3 − 0.6 GeV. In heavy-ion collisions, a
significant portion of particles are produced in the region
pT < 0.3Qs, and the instability can be relevant.
These results suggest that the parametric instability

might be relevant in the dynamics of CYM field in an
expanding geometry.

V. CONCLUSIONS

We have studied the instability of the CYM field in an
expanding geometry under the longitudinal color magnetic
background which is homogeneous, boost invariant, and
time dependent. We have introduced the conformal vari-
ables and mapped the expanding problem approximately
into the nonexpanding problem. Since the background
gauge field at later times is described by the elliptic
function in the conformal coordinate, we can carry out
the stability analysis in a semianalytic way in the expanding
geometry on the basis of the Floquet theory in a non-
expanding geometry by introducing the time-dependent
effective momenta.
We have performed a linear stability analysis of fluctua-

tions on top of the oscillating background field. We have
elucidated that the EOM of fluctuations at later times in the
expanding geometry has the same form as in the non-
expanding geometry. At the same time, the EOM in the
expanding geometry contains the effective momentum
which is a function of the initial momentum and the
conformal time. As a result, we have found that the
expanding system under the time-dependent background
field can show parametric instability, but the instability
emerges in a different way from the nonexpanding
geometry.
The way of growth is qualitatively different between

finite pη and finite pT modes. Since the longitudinal
effective momentum decreases monotonically, unstable
fluctuations with finite pη grow exponentially after the
transition from the oscillating behavior in the earliest stage.
The remarkable point is that not only low-momentum
modes but also high-momentum modes show parametric
instability. On the other hand, since the transverse effective

momentum is not monotonic in time, exponential growth in
finite pT modes is limited in a particular temporal interval.
In this regime, effective momenta are small and located
within the instability band, and then fluctuations can grow
exponentially. In accordance with the band structure found
in the nonexpanding geometry, only the modes with small
pT show significant instability. Finally, we have estimated
the physical scale of the transition times. For finite pη

modes, the typical unstable modes start to grow at τ≃
0.26ð0.53Þ fm=c at LHC (RHIC) energy. These results
suggest that the parametric instability could be relevant to
the gluodynamics in heavy-ion collisions.
One of the notable points is that the parametric instability

emerges at early times in some classes of field theories as
discussed, for example, in cosmic inflation [32]. The
appearance of the parametric instability seems to be a
universal phenomenon in field theories including the Yang-
Mills theory. While we have established that the parametric
instability emerges under the color magnetic background
fields in the homogeneous system, there are still unsolved
and interesting questions. One is associated with the
robustness of the parametric instability. It is nontrivial
whether this instability is relevant or not to inhomogeneous
systems, in particular glasma evolution from a more
realistic initial condition. It is also important to investigate
how the parametric instability affects the particle produc-
tion where the nonlinear interaction of the gluon fluctua-
tions must be taken into account. Investigations of these
problems are beyond the scope of the present work and left
as future problems.
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APPENDIX A: THE LINEARIZED EOM
OF FLUCTUATIONS IN AN
EXPANDING GEOMETRY

In this Appendix, we show the explicit form of the
linearized EOM of fluctuations in the color magnetic
background Eq. (21). The symbolic form of the EOM is
given by Eq. (29). Without loss of generality, the coefficient
matrix Ω2 is decomposed into two independent sectors Ω2

4

and Ω2
5 due to the rotational symmetry in the transverse

direction. In the momentum representation, the explicit
forms of them are given by
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ð½Ω2
4�αβÞ ¼

0
BBBBB@

~p2
x þ ~θ−3 ~p2

η þ ~A2 2 ~A2 0 −2i ~A ~px

2 ~A2 ~θ−3 ~p2
η þ ~A2 −~θ−3 ~pη ~px −i ~A ~px

0 −~θ−3 ~pη ~px
~θ−3ð ~p2

x þ ~A2Þ −~θ−3i ~A ~pη

2i ~A ~px i ~A ~px
~θ−3i ~A ~pη ~p2

x þ ~θ−3 ~p2
η þ ~A2

1
CCCCCA; ðA1Þ

ð½Ω2
5�ABÞ ¼

0
BBBBBBBB@

~θ−3 ~p2
η −~θ−3 ~pη ~px − ~A2 0 ~θ−3i ~A ~pη

−~θ−3 ~pη ~px
~θ−3ð ~p2

x þ ~A2Þ 0 ~θ−3i ~A ~pη −~θ−32i ~A ~px

− ~A2 0 ~p2
x þ ~θ−3 ~p2

η −i ~A ~px −~θ−3i ~A ~pη

0 −~θ−3i ~A ~pη i ~A ~px
~θ−3 ~p2

η þ ~A2 −~θ−3 ~pη ~px

−~θ−3i ~A ~pη
~θ−32i ~A ~px

~θ−3i ~A ~pη −~θ−3 ~pη ~px
~θ−3ð ~p2

x þ 2 ~A2Þ

1
CCCCCCCCA
; ðA2Þ

where ~pI ¼ ~θ1=2pI and we use the following notation:
α;β;…¼ð1y;2x;2η;3yÞ and A;B;…¼ð1x;1η;2y;3x;3ηÞ.
For the sake of the stability analysis performed in

Sec. IV, we consider two specific limits pη ≠ 0, pT ¼ 0

(finite pη modes) and pη ¼ 0, pT ≠ 0 (finite pT modes). In
these limits, the coefficient matrices (A1) and (A2) are
further decomposed to lower rank matrices:

Ω2
4 ¼

	
diagðΩ2

B;Ω�2
C Þ ðfinite pη modesÞ

diagðΩ2
E;Ω2

GÞ ðfinite pT modesÞ ; ðA3Þ

Ω2
5 ¼

	
diagðΩ2

A;Ω2
CÞ ðfinite pη modesÞ

diagðΩ2
D;Ω2

FÞ ðfinite pT modesÞ : ðA4Þ

In the case of finite pη modes (pη ≠ 0, pT ¼ 0), the
EOM is decomposed into four independent sectors A, B, C,
and C�. The EOM of the A-sector is given by

äAþ þ k2ηTaAþ − ~A2aAþ ¼ 0; ðA5Þ

äA− þ k2ηTaA− þ ~A2aA− þ
ffiffiffi
2

p
i~θ−5=2pη

~Aa3η ¼ 0; ðA6Þ

L2
ηa3η þM2

ηa3η þ 2 ~A2a3η −
ffiffiffi
2

p
i~θ1=2pη

~AaA− ¼ 0; ðA7Þ

L2
η ¼

d2

dθ2
−
2

~θ

d
dθ

; ðA8Þ

where aA� ¼ ða1x � a2yÞ=
ffiffiffi
2

p
, k2ηT ¼ M2

T þ 9p2
η=4θ2, and

M2
T ¼ M2

x ¼ M2
y ¼ 1=4θ2. Dots denote derivatives with

respect to conformal time θ. The EOM of the B-sector reads

äBþ þ k2ηTaBþ þ 3 ~A2aBþ ¼ 0; ðA9Þ

äB− þ k2ηTaB− − ~A2aB− ¼ 0; ðA10Þ

where aB� ¼ ða1y � a2xÞ=
ffiffiffi
2

p
. The EOMs of the C- and

C�-sectors have the same form: for the C-sector,

ä3x þ k2ηTa
3
x þ ~A2a3x − i~θ−5=2pη

~Aa1η ¼ 0; ðA11Þ

L2
ηa1η þM2

ηa1η þ ~A2a1η þ i~θ1=2pη
~Aa3x ¼ 0; ðA12Þ

and for the C�-sector,

ä3y þ k2ηTa
3
y þ ~A2a3y þ i~θ−5=2pη

~Aa2η ¼ 0; ðA13Þ

L2
ηa2η þM2

ηa2η þ ~A2a2η − i~θ1=2pη
~Aa3y ¼ 0: ðA14Þ

We note that M2
η ¼ 7=4θ2.

In the case of finite pT modes (pη ¼ 0, pT ≠ 0), the
EOM is decomposed into four independent sectorsD, E, F,
and G. For of the D- and E-sectors, we get

ä1x þM2
Ta

1
x − ~A2a2y ¼ 0; ðA15Þ

ä2x þ k2TTa
2
y − ~A2a1x − i~θ1=2px

~Aa3x ¼ 0; ðA16Þ

ä3x þM2
Ta

3
x þ ~A2a3x þ i~θ1=2px

~Aa2y ¼ 0; ðA17Þ

and

ä1y þ k2TTa
1
y þ ~A2a1y þ 2 ~A2a2x − 2i~θ1=2px

~Aa3y ¼ 0; ðA18Þ

ä2y þM2
T þ ~A2a2x þ 2 ~A2a1y − i~θ1=2px

~Aa3y ¼ 0; ðA19Þ

ä3y þ k2TTa
3
y þ ~A2a3y þ i~θ1=2px

~Að2a1y þ a2xÞ ¼ 0; ðA20Þ

respectively. The EOM of the F- and G-sectors is given by

L2
ηa1η þ k2Tηa

1
η þ ~A2a1η − 2i~θ1=2px

~Aa3η ¼ 0; ðA21Þ
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L2
ηa3η þ k2Tηa

3
η þ 2 ~A2a3η þ 2i~θ1=2px

~Aa1η ¼ 0; ðA22Þ

and

L2
ηa2η þ k2Tηa

2
η þ ~A2a2η ¼ 0; ðA23Þ

respectively. Here, we use the notion of the effective
momenta, k2TT ¼ M2

T þ 2θp2
x=3 and k2Tη ¼ M2

η þ 2θp2
x=3.

In the following subsections, we give the solutions
of the EOM in the early stage θ ≪ 1 and the late
stage θ ≫ 1.

1. θ ≪ 1

Assuming θ ≪ 1, the dominant term with respect
to θ is of order Oðθ−2Þ. Recalling ~A ∼Oðθ1=2Þ, other terms
depending on θ explicitly are of higher order in θ.
Collecting leading order terms, we get

äAþ þ k2ηTaAþ þOðθÞ ¼ 0; ðA24Þ

äA− þ k2ηTaA− þOðθ−3=2Þ ¼ 0; ðA25Þ

L2
ηa3η þM2

ηa3η þOðθÞ ¼ 0 ðA26Þ

for the A-sector and

äBþ þ k2ηTaBþ þOðθÞ ¼ 0; ðA27Þ

äB− þ k2ηTaB− þOðθÞ ¼ 0; ðA28Þ

for the B-sector. The EOMs of the C- and C�-sectors are
given by

ä3x þ k2ηTa
3
x þOðθ−3=2Þ ¼ 0; ðA29Þ

L2
ηa1η þM2

ηa1η þOðθÞ ¼ 0; ðA30Þ

and

ä3y þ k2ηTa
3
y þOðθ−3=2Þ ¼ 0; ðA31Þ

L2
ηa2η þM2

ηa2η þOðθÞ ¼ 0; ðA32Þ

respectively. In summary, when pη ≠ 0, pT ¼ 0, all trans-
verse components satisfy

äai þ k2ηTa
a
i ¼ 0; ðA33Þ

while all the longitudinal components obey

L2
ηaaη þM2

ηaaη ¼ 0: ðA34Þ

Thus, their general solutions are given by aai ¼
c1θ1=2þ3ipη=2 þ c:c: and aaη ¼ c1θ1=2 þ c2θ7=2, where ci
are arbitrary constants.
In the case of finite pT modes, the pT dependence

vanishes for k2TT → M2
T and k2Tη → M2

η as θ → 0. This
leads to

ä1x þM2
Ta

1
x þOðθÞ ¼ 0; ðA35Þ

ä2y þM2
Ta

2
y þOðθÞ ¼ 0; ðA36Þ

ä3x þM2
Ta

3
x þOðθÞ ¼ 0 ðA37Þ

for the D-sector and

ä1y þM2
Ta

1
y þOðθÞ ¼ 0; ðA38Þ

ä2x þM2
Ta

2
x þOðθÞ ¼ 0; ðA39Þ

ä3y þM2
Ta

3
y þOðθÞ ¼ 0 ðA40Þ

for the E-sector. We also obtain

L2
ηa1η þM2

ηa1η þOðθÞ ¼ 0; ðA41Þ

L2
ηa3η þM2

ηa3η þOðθÞ ¼ 0 ðA42Þ

for the F-sector and

L2
ηa2η þM2

ηa2η þOðθÞ ¼ 0 ðA43Þ

for the G-sector. In summary, when pη ¼ 0, pT ≠ 0, all
transverse components obey

äai þM2
Ta

a
i ¼ 0; ðA44Þ

and the general solution is given by aai ¼ c1θ1=2 þ
c2θ1=2 log θ. The solutions of longitudinal fluctuations
are equivalent to the case of pη ≠ 0, pT ¼ 0.

2. θ ≫ 1

Assuming that θ ≫ 1, terms involving θ with a negative
exponent can be neglected in the first approximation.
Recalling that ~A ∼ cnðθ; 1= ffiffiffi

2
p Þ, we can write the EOM

in the form

äAþ − cn2θaAþ ¼ 0; ðA45Þ

äA− þ cn2θaA− þOðθ−5=2a3ηÞ ¼ 0; ðA46Þ

L2
ηa3η þ 2cn2θa3η −

ffiffiffi
2

p
i~θ1=2pη

~AaA− ¼ 0 ðA47Þ

for the A-sector and
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äBþ þ 3cn2θaBþ ¼ 0; ðA48Þ

äB− − cn2θaB− ¼ 0 ðA49Þ

for the B-sector. The EOMs of the C- and C�-sectors are
given by

ä3x þ cn2θa3x þOðθ−5=2a1ηÞ ¼ 0; ðA50Þ

L2
ηa1η þ cn2θa1η þ i~θ1=2pη

~Aa3x ¼ 0; ðA51Þ

and

ä3y þ cn2θa3y þOðθ−5=2a2ηÞ ¼ 0; ðA52Þ

L2
ηa2η þ cn2θa2η − i~θ1=2pη

~Aa3y ¼ 0; ðA53Þ

respectively. Thus, we get Lamé’s equations when pη ≠ 0,
pT ¼ 0: aAþ, aB−, and a3η have exponential instability and
their growth rates are determined by the Floquet theory
independent of pη. It should be noted that aA− has only
linear instability in the first approximation, but the last term
in Eq. (A46) can be relevant at later times because a3η grows
exponentially.
On the other hand, the contribution from the background

field is washed out for finite pT modes. In the first
approximation, the dominant contribution with respect to
θ is of order OðθÞ. The EOMs of the D- and E-sectors are
given by

ä1x − cn2θa2y ¼ 0; ðA54Þ

ä2x þ 2θp2
x=3a2y þOðθ1=2Þ ¼ 0; ðA55Þ

ä3x þOðθ1=2Þ ¼ 0 ðA56Þ

and

ä1y þ 2θp2
x=3a1y þOðθ1=2Þ ¼ 0; ðA57Þ

ä2y þOðθ1=2Þ ¼ 0; ðA58Þ

ä3y þ 2θp2
x=3a3y þOðθ1=2Þ ¼ 0; ðA59Þ

respectively. The EOM of the F-sector,

L2
ηa1η þ 2θp2

x=3a1η þOðθ1=2Þ ¼ 0; ðA60Þ

L2
ηa3η þ 2θp2

x=3a3η þOðθ1=2Þ ¼ 0; ðA61Þ

and the EOM of the G-sector,

L2
ηa2η þ 2θp2

x=3a2η ¼ 0; ðA62Þ

have the same form. In summary, we find that a2x, a1y, and a3y
obey the Airy equation,

äþ 2

3
θp2

xa ¼ 0; ðA63Þ

the solution of which is given by a ¼
c1Aiðð−2p2

x=3Þ1=3θÞ þ…. The longitudinal components
satisfy the Bessel equation,

äaη −
3

θ
_aaη þ

2

3
θp2

xaaη ¼ 0; ðA64Þ

the solution of which is given by aaη ¼
c1θ2J4=3ðpx

~θ3=2Þ þ…. Therefore, these modes do not
show exponential instability in this stage.

APPENDIX B: LINEAR INSTABILITY

Floquet’s theorem states that the stability of the solution
of Lamé’s equation (42) is governed by trM. If jtrMj ¼ 2,
there is not only stable solution but also linear divergent
solution. Here, we show the origin of the linear divergence.
Suppose that μ1 and μ2 are the eigenvalues of M; the
condition jtrMj ¼ 2 is realized if and only if
μ1 ¼ μ2 ¼ �1. The monodromy matrix cannot be semi-
simple but only has the Jordan normal form due to the
degeneracy of the characteristic multiplier. If trM ¼ 2,
without loss of generality, we can take

M ¼
�
1 1

0 1

�
: ðB1Þ

The logarithm of M is now given by

logM ¼ log

�
1þ

�
0 1

0 0

��
¼

�
0 1

0 0

�
: ðB2Þ

Finally, we get

ΦðtÞ ¼ FðtÞ exp
�
0 t=T

0 0

�
¼ FðtÞ

�
1 t=T

0 1

�
; ðB3Þ

where FðtÞ is a periodic function. Actually, one solution is
periodic in time, and the another solution is linearly
divergent. The case of trM ¼ −2 can be discussed in a
parallel way, and then we get antiperiodic and linearly
divergent solutions. In general, the degeneracy occurs at the
boundaries of the instability bands.

APPENDIX C: EFFECTIVE GROWTH RATE

In Sec. IV, we have shown that the growth rates of finite
pη modes approach the upper bound which is determined
by the Floquet analysis in a nonexpanding geometry. More
quantitative discussion can be performed as follows.
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Suppose that ΦðθÞ is a Wronskian matrix of the given
second order differential equation, and let us define

Mðθ0; θÞ ¼ Φðθ0Þ−1ΦðθÞ: ðC1Þ

Mðθ0; T þ θ0Þ is equivalent to the monodromy matrix for
the periodic-driven system with period T. Thus, the
straightforward generalization of the Floquet exponents
are given by the eigenvalues of the ΓðθÞ ¼ logM=ðθ − θ0Þ,
say fγig. We call them effective growth rates.
We calculate the maximal effective growth rate for

aAþðp ¼ 0Þ and Lamé’s equation with λ ¼ −1 which is
the nonexpanding counterpart. Figure 8 shows the real part
of the effective growth rate as a function of the conformal
time. The effective growth rate of the Lamé equation agrees
well with the Floquet exponent of which the value is
approximately 0.6559 as it should be. The effective growth
rate of aAþðp ¼ 0Þ is slightly larger than that of Lamé’s
equation, but it approaches the Floquet exponent.
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