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We propose a new approach to circumvent the sign problem in which the integration path is optimized to
control the sign problem. We give a trial function specifying the integration path in the complex plane and
tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path
optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-
thimble method and then the construction of the integration-path contour arrives at the optimization
problem where several efficient methods can be applied. In a simple model with a serious sign problem, the
path optimization method is demonstrated to work well; the residual sign problem is resolved and precise
results can be obtained even in the region where the global sign problem is serious.
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I. INTRODUCTION

The sign problem induced by the oscillating Boltzmann
weight of the partition function in the numerical integration
for various quantum systems is serious obstruction in
the computational science; see Ref. [1] for a review.
Particularly, the sign problem attracts much more attention
recently in QCD because some new approaches to circum-
vent the sign problem have been proposed and applied.
Recent promising approaches to evade the sign problem

include the complex Langevin method [2–4] and the
Lefschetz-thimble path-integral method [5–7]. The com-
plex Langevin method is based on the stochastic quantiza-
tion and then we are free from the complex weight.
Therefore, the sign problem does not appear, but it is well
known that the complex Langevin method sometimes
provides us wrong results when the drift term shows
singular behavior in the Langevin-time evolution [8].
In comparison, the Lefschetz-thimble path-integral method
is based on the Picard-Lefschetz theory [9] and thus it
is within the standard path-integral formulation. In this
method, we construct the new integration-path contour
which is so called the Lefschetz thimbles by solving the
gradient flow starting from fixed points. Then, the partition
function can be decomposed into the summation over
contributions of relevant Lefschetz thimbles which can
be determined from the crossing behavior of conjugate
gradient flows with the original integration-path contour.
On each Lefschetz thimble, the imaginary part of the action
is constant and thus the sign problem seems to be resolved,
but there are two remnants of the original sign problem.
First one is the global sign problem: In the summation
process of relevant Lefschetz thimbles, the cancellation can
appear because imaginary parts of the action are constant
on one Lefschetz thimble but have different values on

different thimbles. The other is the residual sign problem; it
comes from the Jacobian generated by the bending struc-
ture of the new integration path. Recently, one more serious
problem in the Lefschetz-thimble path-integral method has
been discussed which is so called the singularity problem:
There are singular points and cuts on the complexified
variables of integration if the action has the square root
and/or the logarithm, explicitly and implicitly [10]. These
singularities obstruct to draw continuous Lefschetz-
thimbles in the numerical calculation of gradient flows.
In this article, we propose a new method which we call

the path optimization method to attack the sign and
singularity problem. This method is motivated by the
Lefschetz-thimble path-integral method. The main idea is
the modification of the path-integral contour by minimizing
the suitable cost function which reflects the seriousness
of the sign problem. This means that the evading the sign
problem arrives at the optimization problem. This fact
becomes the strong advantage of this method because the
optimization problem is well explored in the computational
science and thus we may use several efficient methods such
as the machine learning in the optimization process [11].
The path optimization method is demonstrated in the
simple model with the serious sign problem where the
complex Langevin method can fail.

II. COST AND TRIAL FUNCTIONS

In the path optimization method, the function which is
so called the cost function plays a crucial role to construct
the new integration-path contour on which the sign problem
is controllable. The cost function is related with the
seriousness of the sign problem with weakened weight
cancellation by minimizing the function. In this article, we
use the following cost function;

F ½zðtÞ� ¼ 1

2

Z
dtjeiθðtÞ − eiθ0 j2 × jJðtÞe−SðzðtÞÞj; ð1Þ
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with

eiθðtÞ ¼ JðtÞe−SðzðtÞÞ
jJðtÞe−SðzðtÞÞj ; eiθ0 ¼ Z

jZj ; ð2Þ

where z is the complexified variables of integration, Z is
the partition function and JðtÞ ¼ dz=dt. This function can
be expressed by using the average phase factor as

F
jZj ¼ jheiθipqj−1 − 1; ð3Þ

where

hOipq ≡
R
dtOjJe−SjR
dtjJe−Sj : ð4Þ

It should be noted that the choice of the cost function is not
unique and thus we can freely change or extend it as long as
the function reflects the seriousness of the sign problem.
To perform the optimization of Eq. (1), we need the trial

function to specify the integration-path contour. One simple
way to prepare the trial function is using the complete set,
Hm, as

zðtÞ ¼ xðtÞ þ iyðtÞ;
8<
:

xðtÞ ¼ P
m
cx;mHmðtÞ þ t;

yðtÞ ¼ P
m
cy;mHmðtÞ;

ð5Þ

with imposing the conditions, xð�∞Þ ¼ �∞; jyð�∞Þj
< ∞. If the integrand, expð−SÞ, is analytic and suppressed
rapidly enough with jxj → ∞, the integrals on the original
and modified paths are the same owing to Cauchy’s integral
theorem as long as the path does not go across singular
points of expð−SÞ. It should be noted that we do not need to
care the singular point of S if it is not a singular point of
expð−SÞ. We can extend this trial function to more
complicated form by performing the feature engineering
or the machine learning [11].

III. EXAMPLE

In this article, we consider the following partition
function as an example to demonstrate the path optimiza-
tion method. The actual form of partition function [8] is

Zp ¼
Z

dxðxþ iαÞpe−x2
2 ; ð6Þ

where α and p are input parameters and p is a positive
integer. The analytic result of Zp can be obtained from the
recurrence formula

Zp ¼ iαZp−1 þ ðp − 1ÞZp−2; ð7Þ

and the expectation value of x2 is expressed as

hx2ip ¼ Zpþ2 − 2iαZpþ1 − α2Zp

Zp
: ð8Þ

In the path optimization method, we need to care the
singular points of expð−SÞ. In the present action, the
relevant singular points exist at Imz → �∞. It should be
noted that the singular point in S at z ¼ −iα does not cause
any trouble. The factor of integrand ðzþ iαÞp leads to the
action term of −p logðzþ iαÞ and causes the singular drift
term, the drift term which diverges at z ¼ −iα, in the
complex Langevin method [8]. However, expð−SÞ is
analytic at this point as long as p is taken to be a positive
integer, then it is not necessary to care in the path
optimization method. Nevertheless, “singular point” indi-
cates this zero point in the following discussions.
In the actual optimization, we use a simplified version of

Eq. (5) based on the Gaussian function;

xðtÞ ¼ t; ð9Þ

yðtÞ ¼ c1 exp

�
−
c22t

2

2

�
þ c3: ð10Þ

The optimization is numerically performed using the
steepest descent method, dci=dτ ¼ −∂F=∂ci, and the
integration is performed using the double exponential
formula.
The optimized integration path in comparison with the

Lefschetz thimble is shown in Fig. 1. It can be seen that the
two contours overlap in the vicinity of the fixed point.
However, there are qualitative differences on the thimble
structure with varying α. In the case with α ¼ 10, Lefschetz
thimbles terminate at the singular point unlike the case with
α ¼ 15 and then the optimized integration path approaches
the singular point.
Figure 2 shows Je−S on the optimized integration path.

We can see that there is the large probability distribution
(WðtÞ ∼ jJe−Sj) with almost the constant phase near the
fixed point. Therefore, Monte-Carlo sampling works with
α ¼ 15. In comparison,WðtÞ has two peaks in the case with
α ¼ 10. The sign of ImJe−S are opposite at both peaks and
thus there are serious cancellations between them when we
take into account both peaks to the integration. If we take
into account only one peak, the wrong result comes up. The
cancellations are induced by the singular point when the
optimized integration path approaches to it: The Boltzmann
weight becomes zero at the singular point and thus the sign
of the Boltzmann weight can be easily flipped near the
singular point. In the present case, there is exact parity
symmetry between Rez and −Rez and thus the cancellation
is very serious. This cancellation reflects the hidden
Lefschetz thimble structure behind the path optimization
method.
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The optimized average phase factor is shown in Fig. 3.
From the difference between the full calculation and the
calculation in the Rez ∈ ½0;∞Þ range, we can clarify the
seriousness of the global sign problem. In the case with
α≳ 14, we can see that the sign problem can be solved
because the path is represented by one thimble. In the case
with α≲ 14, contributions from the two thimbles cancel
with each other. In the path optimization method, we can
resolve the residual sign problem, but not the global sign
problem. This problem also exists in the ordinary and
generalized Lefschetz thimble methods [12].
Figure 4 shows the expectation value of x2 in the hybrid

Monte-Carlo method on the modified integration path.
We calculate the expectation value in Eq. (4) by using
the reflection symmetry of the Boltzmann weight, WðtÞ ¼
Wð−tÞ, in this setting. This treatment replicates the parallel
tempering algorithm which has been applied to the gen-
eralized Lefschetz-thimble path-integral method [13,14].
The results well agree with the analytic results (8). Readers
can find the calculation of this model by using the complex
Langevin method in Ref. [8].
Because the path optimization method is a variational

method, we can restrict the variational space to represent
integration path. This will be useful for multiple integral
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FIG. 2. Boltzmann weight on the modified integration path
with p ¼ 50, α ¼ 15, 10. Solid (dashed) line represents real
(imaginary) part of Je−S. The dot-dashed line indicates jJe−Sj.
Where, the amplitudes is normalized by factor 1055 with α ¼ 15,
and 1042 with α ¼ 10.
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FIG. 3. The average phase factor with p ¼ 50. Closed circle
shows the expectation in Rez ∈ ð−∞;∞Þ, and square point in
Rez ∈ ½0;∞Þ. The expectation value is calculated by numerical
integration.
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FIG. 1. Modified integration path by optimizing Eq. (1) and the
Lefschetz thimbles for p ¼ 50; α ¼ 15, 10. Closed circle (square)
point shows the fixed (singular) point. Dot-dashed lines are
steepest ascent paths.
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FIG. 4. The expectation value of x2 with p ¼ 50. Errors are
estimated by Jackknife method.
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problems such as quantum field theory. In addition, the
path optimization method has large extensibility because
we can freely replace or extend the cost function as long as
it reflects the seriousness of the sign problem. These points
are important advantages of the path optimization method.
We leave the actual extension of the trial function and the
cost function to a future work since this study is the first
attempt to demonstrate our method.

IV. SUMMARY

In this article, we have proposed a new approach to
circumvent the sign problem which is motivated by the
Lefschetz-thimble path-integral method. We call it the path
optimization method. In the method, the new integration
path is constructed in the plane of complexified variables
of integration by minimizing the cost function. The cost
function is set to reflect the seriousness of the sign problem.
The actual optimization of the integration path is carried
out by using the trial function.
We have demonstrated the path optimization method by

using the simple model with the serious sign problem
proposed in Ref. [8]. In the path optimization method, we
can resolve the residual sign problem which appears in the
ordinary and generalized Lefschetz-thimble path-integral
methods. But, at least on our present choice of the cost

function and in the present setting, the global sign problem
cannot be resolved. However, we can well reproduce the
exact results by using the path optimization method in the
wide range of the model parameter space.
Finally, we summarize advantages of the path optimi-

zation method:
(1) No residual sign problem.
(2) Applicability of various efficient methods to the

optimization process.
(3) Controllability of the singularity problem.
(4) Large extensibility of the cost function.

Possible disadvantage may be the numerical cost. In the
complex system, the sign-problem weakened integration
path is expected to have a very complicated shape.
Therefore, we should check which optimization method
is suitable or not step by step in the future.
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