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Abstract
On the basis of the pΞ− interaction extracted from (2+1)-flavor lattice QCD simulations at the physical point, the
momentum correlation of p and Ξ− produced in relativistic heavy ion collisions is evaluated. CSL(Q) defined by a ratio
of the momentum correlations between the systems with different source sizes is shown to be largely enhanced at low
momentum due to the strong attraction between p and Ξ− in the I = J = 0 channel. Thus, measuring this ratio at RHIC
and LHC and its comparison to the theoretical analysis will give a useful constraint on the pΞ− interaction.
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1. Introduction

The coupled-channel Nambu-Bethe-Salpeter (NBS) wave function measured in lattice QCD [1, 2] can
now provide “theoretical” information of hyperon-nucleon and hyperon-hyperon interactions through the
HAL QCD method [3, 4, 5, 6]. The energy-independent non-local potentials U(r, r′) obtained by the method
allow us to calculate the scattering phase shifts and binding energies of two baryons.

These potentials are also useful for analyzing the two-particle momentum correlations in relativistic
heavy ion collisions [7]. It was recently studied in [8] that the possible spin-2 pΩ− dibaryon state suggested
by lattice QCD [9] can be probed by the pΩ− momentum correlation at RHIC and LHC. In particular, the
ratio of correlation functions between small and large collision systems, CSL(Q), is shown to be a good
measure to extract the strong interaction effect without much contamination from the Coulomb effect [8].
In the present paper, we extend the analysis to the pΞ− system in I = J = 0 channel which was recently
predicted to have large attraction by the lattice QCD simulations at physical quark masses [4].

2. Lattice QCD formulation

We start with the normalized four-point function R in channel α defined by

Rα(�r, t) ≡ 〈0 | Bα1 (�x + �r, t)Bα2 (�x, t) J(0) | 0〉√
Zα1 Zα2 exp[−(mα1 + mα2 )t]

, (1)
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where Bα1 (�x, t) and Bα2 (�x, t) are the sink operators for octet baryons.
√

Zα1

√
Zα2 are the corresponding

wave-function renormalization factors, and J(0) is a source operator at zero initial-time to create two
baryons. The coupled channel potential is obtained through the linear partial differential equation [2];

(
Dαt − Hα0

)
Rα(�r, t) =

∫
d3r′ Uαβ(�r,�r′)ΔαβRβ(�r′, t), (2)

with H0
α = − ∇2

2μα and Δαβ = exp[−(mβ1 +mβ2 )t]/ exp[−(mα1 +mα2 )t]. Dαt is a time-derivative operator whose
leading-order term reads −∂/∂t. We introduce a derivative expansion to treat the non-local potential as

Uαβ(�r,�r′) = (VαβLO(�r) + VαβNLO(�r) + · · ·)δ(�r − �r′). (3)

In the following, we truncate the expansion at the leading order.
We employ (2 + 1)-flavor QCD configurations on the L4 = 964 lattice with the lattice spacing a �

0.085fm. This corresponds to the physical size, La = 8.1fm, which guarantees that the finite volume effect
on Uαβ(�r,�r′) is negligible. The quark masses are chosen for the system to be almost at the physical point;
mπ � 146 MeV and mK � 525 MeV [4]. The total number of configurations is 414 × 4 space-time rotations
× 48 wall sources. The baryon masses measured in this setup are listed below.

baryon N Λ Σ Ξ

mass [MeV] 953 ± 7 1123 ± 3 1204 ± 2 1332 ± 1

3. pΞ− potential in I = 0 channel

The S = −2 baryon-baryon interactions including the I=0 ΛΛ − NΞ − ΣΣ coupled-channel system have
been recently reported in [4]. In particular, one of the diagonal components VNΞ,NΞ(r) in the (I, J) = (0, 0)
channel (1S 0) was shown to have large attractive well at intermediate distance and relatively weak repulsive
core at short distance, while VNΞ,NΞ(r) in the (I, J) = (0, 1) channel (3S 1) has weaker attractive well and
stronger repulsive core. Also, VNΞ,NΞ(r) in the I = 1 channels do not have appreciable attraction. Motivated
by these observations, we parametrize the lattice results of VNΞ,NΞ(r) in the I = 0 channels by a combination
of the Gauss and Yukawa functions as shown in Fig.1. Curves with different t correspond to the potentials
obtained from R(�x, t) for different t, so that the t dependence of V(r) reflects typical magnitude of the
systematic error of the lattice data. We found that the strong QCD attraction in Fig.1(Left) together with the
Coulomb attraction leads to the 1S 0 system close to the unitary region where the inverse of the scattering
length is close to zero. On the other hand, the 3S 1 system described by Fig.1(Right) has strong repulsion
even with the Coulomb attraction.

4. pΞ− momentum correlation

The correlation function of non-identical pair such as pΞ− is given in terms of the two-particle distribu-
tion NpΞ(kp, kΞ) normalized by a product of the single particle distributions, NΞ(kΞ)Np(kp),

C(Q,K) ≡ NpΞ(kp, kΞ)
Np(kp)NΞ(kΞ)

�
∫

d4xp
∫

d4xΞ S p(xp, kp)S Ξ(xΞ, kΞ)
∣∣∣ΨpΞ(r′)

∣∣∣2∫
d4xp S p(xp, kp)

∫
d4xΞ S Ξ(xΞ, kΞ)

,

where relative and total momenta are defined as Q = (mpkΞ −mΞkp)/M and K = kp +kΞ, respectively, with

M ≡ mp + mΞ. The source functions S i(xi, ki) ≡ Ei
dNi

d3kid4 xi
(with i = p,Ξ and Ei =

√
k2

i + m2
i ) correspond

to the phase space distributions of p and Ξ at freeze-out. The final state interaction after the freeze-out is
described by the two-particle wave functionΨpΞ with a shifted relative coordinate r′ = xΞ−xp−K(tp−tΞ)/M.
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Fig. 1. The NΞ potentials in the I = 0 channel fitted to the (2+1)-flavor lattice QCD data at the physical point. Euclidean time used for
extracting the lattice QCD potential is denoted by t. (Left) The potential in the (I, J) = (0, 0) channel (1S 0). (Right) The potential in
the (I, J) = (0, 1) channel (3S 1).

Here we consider the static source function with spherical symmetry to extract the essential part of
physics;

S i(xi, ki) ∝ Ei e
− x2

i
2R2

i δ(t − ti), (i = p,Ξ−), (4)

where Ri is a source size parameter. Assuming the equal-time emission tp = tΞ, we obtain

C(Q) =

∫
[dr]
∫

dΩ
4π
|ψC(r)|2 + 1

8

∫
[dr]
(
|χJ=0

sc (r)|2 − |ψC
0 (r)|2

)
+

3
8

∫
[dr]
(
|χJ=1

sc (r)|2 − |ψC
0 (r)|2

)
, (5)

where [dr] = 1
2
√
πR3dr r2e−

r2

4R2 with R =
√

(R2
p + R2

Ξ
)/2 being the effective size parameter.

∫
dΩ is the inte-

gration over the solid angle between Q and r. Note that ψC(r) is the Coulomb wave function characterized
by the reduced mass and the Bohr radius of the pΞ− system. Its S-wave component is denoted by ψC

0 (r).
The scattering wave functions obtained by solving the Schrödinger equation with both strong interaction and
Coulomb interaction are denoted by χJ=0

sc (r) and χJ=1
sc (r) for the 1S 0 channel and 3S 1 channel, respectively.

We assume that the I = 1 sector does not contribute substantially to C(Q), which is supported by the fact that
the I = 1 pΞ− potential has only short-range repulsion [4]. The factors 1/8 = 1/2×1/4 and 3/8 = 1/2×3/4
originate from the isospin and spin multiplicities. Also, we assume that the absorptive contribution by the
coupling to the ΛΛ channel is negligible since it is reported to be weak due to its short range nature [4].

In [8], the “SL (small-to-large) ratio” was introduced: It is defined as a ratio of C(Q) between the systems
with different source sizes,

CSL(Q) ≡ CRp,Ξ=2.5fm(Q)/CRp,Ξ=5fm(Q), (6)

which has good sensitivity to the strong interaction without much contamination from the Coulomb interac-
tion [8]. Shown in Fig.2 is CSL(Q) of the pΞ− system with the Coulomb interaction under the assumption
of the static source given in Eq.(4).

The large enhancement of this ratio at small Q originates from the fact that the pΞ− system in the 1S 0
channel is close to the unitary region. The result has rather weak dependence on t, which indicates that the
systematic errors of the lattice data do no aftect the final results significantly. We have also checked that
taking the expanding source as discussed in [8] does not change the present result.
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Fig. 2. SL (small-to-large) ratio CSL(Q) for the momentum correlation of pΞ− system as a function of the relative momentum Q in the
case of the static source. Both the strong and Coulomb interactions are taken into account for the pΞ− interaction. Different curves
correspond to different potentials shown in Fig.1.

5. Summary

The momentum correlation of the pΞ− system was presented by employing the pΞ− potential extracted
from the coupled channel analysis of the (2+1)-flavor lattice QCD data at the physical point. So-called the
SL-ratio of the momentum correlation (CSL(Q)) was calculated and was shown to have large enhancement at
small Q due to the strong attraction between p and Ξ− in the 1S 0 channel. Measuring this ratio at RHIC and
LHC and its comparison to the present theoretical analysis will give useful constraint on the pΞ− interaction.
Such information is particularly important not only for the nature of the possible H-dibaryon coupled to pΞ−
[4] but also for the properties of Ξ-hypernuclei [10] and for Ξ− in the central core of the neutron star [11].
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