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The quantum Hall effect (QHE) in two-dimensional (2D) electron gases, which

is one of the most striking phenomena in condensed matter physics, involves the

topologically protected dissipationless charge current flow along the edges of

the sample. Integer or fractional electrical conductance is measured in units of

e2/2πℏ, which is associated with edge currents of electrons or quasiparticles with

fractional charges, respectively. Here we discover a novel type of quantization

of the Hall effect in an insulating 2D quantum magnet [1]. In α-RuCl3 with

dominant Kitaev interaction on 2D honeycomb lattice [2–7], the application of

a parallel magnetic field destroys the long-range magnetic order, leading to a

field-induced quantum spin liquid (QSL) ground state with massive entangle-

ment of local spins [8–12]. In the low-temperature regime of the QSL state, we

report that the 2D thermal Hall conductance κ2D
xy reaches a quantum plateau

as a function of applied magnetic field. That is, κ2D
xy /T attains a quantization

value of (π/12)(k2
B/ℏ), which is exactly half of κ2D

xy /T in the integer QHE. This

half-integer thermal Hall conductance observed in a bulk material is a direct

signature of topologically protected chiral edge currents of charge neutral Ma-

jorana fermions, particles that are their own antiparticles, which possess half

degrees of freedom of conventional fermions [13–16]. These signatures demon-

strate the fractionalization of spins into itinerant Majorana fermions and Z2

fluxes predicted in a Kitaev QSL [1, 3]. Above a critical magnetic field, the

quantization disappears and κ2D
xy /T goes to zero rapidly, indicating a topological

quantum phase transition between the states with and without chiral Majorana

edge modes. Emergent Majorana fermions in a quantum magnet are expected

to have a major impact on strongly correlated topological quantum matter.

The topological states of matter are described in terms of topological invariant quantities

whose values are quantized. The most popular quantity to prove these states is the electrical

Hall conductivity. In the quantum Hall state, the Hall conductance σ2D
xy is quantized in units

of e2/2πℏ as σ2D
xy = q(e2/2πℏ), where q is integer in integer QHE and is fraction which, with

very few exceptions, has an odd denominator in fractional QHE. These quantizations attest

to topologically ordered states. Another topological invariant in the topological phase is the

2D thermal Hall conductance; thermal Hall conductivity per 2D sheet κ2D
xy is quantized in

2



units of (π/6)(k2
B/ℏ)T as

κ2D
xy /T = q(π/6)(k2

B/ℏ). (1)

Although thermal Hall conductivity is much harder to measure than electrical Hall conduc-

tivity, it has a clear advantage in revealing the topological phases possessing charge neutral

excitations that cannot be detected by the electrical Hall conductivity. In particular, q = 1/2

state with positive thermal Hall sign is a decisive manifestation of the charge neutral edge

currents of Majorana particles (Figs. 1a and 1b), distinguishing unambiguously between the

different candidate topological orders. We note that a Majorana quantized phase character-

ized by q = 1/2 has been predicted in chiral topological superconductors [13–15]. However,

as the topological superconductivity in bulk materials has not been fully established, pre-

vious experiments searching for Majorana fermions have focused on the proximity effect

between conventional superconductors and nanowires or topological materials [18–21]. Here

we present a fundamentally different approach to this issue and perform direct measurements

of the thermal Hall conductance in a bulk insulating magnet.

The systems composed of interacting 1/2 spins on a honeycomb lattice with bond-

directional exchange interactions JK are of vital interest, as they host QSL ground states

where topological excitations emerge [1]. This Kitaev QSL exhibits two types of fractional-

ized quasiparticle excitations, i.e. itinerant (mobile) Majorana fermions and Z2 fluxes with

a gap. The Majorana fermion has a massless (gapless) Dirac-type dispersion in zero field.

In magnetic fields, a novel Majorana fermion system, which is characterized by the bulk gap

and gapless edge modes, is realized [1, 3], and the Z2 flux obeys anyonic statistics.

Recently, a strongly spin-orbit coupled Mott insulator α-RuCl3 has emerged as a prime

candidate for hosting an approximate Kitaev QSL. In this compound, local jeff = 1/2 pseu-

dospins are almost coplanar within the 2D honeycomb layer and the Kitaev interaction

JK/kB ∼ 80K plays an important role [5–7]. The system is in a spin-liquid (Kitaev param-

agnetic) state below ∼ JK/kB, and shows antiferromagnetic (AFM) order with zigzag spin

structure (Fig. 1c) at TN ≈ 7K [22] due to non-Kitaev interactions, such as Heisenberg ex-

change and off-diagonal interactions. The thermal Hall conductance of α-RuCl3 has been

measured in magnetic field perpendicular to the 2D planes [23]. For this geometry, finite

positive κxy/T emerges in the spin-liquid regime at TN < T ≲ 80K. On entering the AFM

state, κxy/T changes the sign and its magnitude is strongly suppressed. The quantization

and plateau behaviour of κ2D
xy /T have not been observed in the spin liquid regime. There-
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fore, expanding the measurements to lower temperature region in the liquid state is crucially

important.

The response of α-RuCl3 to magnetic fields is highly anisotropic with largely different

in-plane and out-of plane properties [8, 11, 12, 24, 25]. It has been reported that while

TN is little influenced by external magnetic field perpendicular to the 2D plane, TN is

dramatically suppressed by the parallel field. This highly anisotropic response is confirmed

by the measurements of longitudinal thermal conductivity κxx with the heat current along

the a axis in magnetic field H applied along various directions in the ac plane as shown in

the inset of Fig. 2a, where H∥ = H sin θ and H⊥ = H cos θ are the field component parallel

and perpendicular to the a axis, respectively, and θ is the angle between H and the c axis.

In zero field, κxx exhibits a distinct kink at TN , as shown in Fig. 2a. While this kink is

observed in perpendicular field (θ = 0◦) of 12T at the same temperature, no kink anomaly

is observed in parallel field (θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx in applied

magnetic field of 8T tilted away from the c axis (θ = 60◦, H∥ ∼ 7T). Similar to the case of

parallel field, no kink anomaly is observed. Figure 1c displays the phase diagram in tilted

field of θ = 60◦, where TN is plotted as a function of H∥. The inset of Fig. 2b shows TN

plotted as a function of H∥ for θ = 45◦, 60◦ and 90◦. While TN for θ = 60◦ well coincides

with that for 90◦ and vanishes at the same critical field of H∗
∥ ≈ 7T, TN for 45◦ vanishes at

around H∥ ≈ 6T. Although TN does not scale perfectly with H∥, these results demonstrate

the quasi-2D nature of the magnetic properties. In stark contrast to the strong out-of-plane

(a-c) anisotropy, the in-plane (a-b) anisotropy is very small (Extended Data Figs. 3 a, b and

c).

AboveH∗
∥ where the AFM order melts, the presence of a peculiar spin liquid state has been

suggested by the nuclear magnetic resonance (NMR) and neutron scattering measurements.

The former reports the presence of spin gap [26] and the latter reveals unusual continuous

spin excitations [27]. These magnetic properties are consistent with those expected in a

Kitaev-type spin liquid state.

To study the thermal Hall effect in the spin liquid state above H∗
∥ , κxy is measured by

sweeping field in tilted directions and obtained by anti-symmetrizing thermal response with

respect to the field direction. In this configuration, Hall response is determined by H⊥.

Since the magnitude of κxy is extremely small compared to κxx in α-RuCl3, special care

was taken to detect the intrinsic thermal Hall signal (see Methods). Figures 3a-d and 3e-h
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depict κxy/T at θ = 60◦ and 45◦, respectively, plotted as a function of H⊥ above H∗
∥ at

low temperatures. Experimental error to detect the temperature difference between Hall

contacts becomes more significant below 3.5K, leading to unreliable determination of κxy in

our setup.

In the AFM state, κxy/T is extremely small (see Extended Data Fig. 4). Upon entering

the field-induced spin liquid state, κxy/T , which is positive in sign, increases rapidly. The

most striking feature is that κxy/T attains a plateau in the field range of 4.5T< µ0H⊥ <4.8-

5.0T for θ = 60◦ and 6.8T< µ0H⊥ <7.2-7.4T for θ = 45◦, as displayed in Figs. 3a-c and 3e-g,

respectively. The right axes represent κ2D
xy in units of quantum thermal Hall conductance

(π/6)(k2
B/ℏ)T , where κ2D

xy = κxyd with the layer distance d = 5.72 Å [22]. Remarkably,

the plateau is very close to the half of quantum thermal Hall conductance reported in the

integer quantum Hall system [17] within the error of 3%, demonstrating the emergence of

half-integer thermal Hall conductance plateau. Above µ0H⊥ ≈ 5.0T (7.4T) for θ = 60◦(45◦),

κ2D
xy /T decreases rapidly and vanishes. We note that the half integer quantized plateau is

reproduced in crystal from different growth (Extended Data Fig. 5). Although the plateau

behaviour seems to be preserved at 5.6K, κ2D
xy /T slightly deviates from the quantized value.

At higher temperatures, the plateau behaviour disappears (Figs. 3d and 3h).

The temperature dependence of κxy/T at the magnetic fields where the plateau is ob-

served is shown in Fig. 4. The half-integer thermal Hall conductance is observable up to

∼5.5K, above which κxy/T increases rapidly with T . As shown in the inset of Fig. 4, κxy/T

decreases after reaching a maximum at around 15K and nearly vanishes above ∼ 60K (see

Extended Data Fig. 6). As the vanishing temperature of κxy/T is close to Kitaev interaction,

it is natural to consider that the finite thermal Hall signal reflects unusual quasiparticle ex-

citations inherent to the spin liquid state governed by the Kitaev interaction (see Methods

for more discussion).

In Eq.(1), the coefficient q gives the chiral central charge of the gapless boundary modes,

which propagate along one direction. Central charge represents a number of freedom of 1D

gapless modes; it is unity for conventional fermions, while it is 1/2 for Majorana fermions

whose degrees of freedom is half of conventional fermions. Integer quantum Hall system

with the bulk Chern number ν has ν boundary modes with q = ν, while a Kitaev QSL with

the Chern number ν has ν Majorana boundary modes with q = ν/2. Thus the observed

half-integer thermal Hall conductance provides direct evidence of the chiral Majorana edge
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currents. We also note that the positive Hall sign is also consistent with that predicted in

the Kitaev QSL [1]. In pure Kitaev model, the excitation energy of Z2 flux is estimated

to be ∆F/kB ∼ 0.06JK/kB ∼ 5.5K [7]. The recent numerical results of the thermal Hall

conductance for the 2D pure Kitaev model calculated by the quantum Monte Carlo method

show the quantization occurs slightly below ∆F/kB [16]. Experimentally, ∆F/kB is estimated

to be 10 K [26], which is consistent with the persistence of the thermal Hall quantization up

to ∼ 5K.

In the plateau regime of κxy, no anomaly is observed in κxx. This is likely because phonon

contributions largely dominate over the fermionic excitations arising from spins in κxx in

the whole T -range [29, 30]. Moreover, due to the strong spin-phonon coupling in α-RuCl3

[11], the phonon conductivity is expected to show complicated H- and T -dependences. The

observed plateau behaviours as functions of H and T therefore demonstrate that κxy/T is

not affected by the spin-phonon scattering in the plateau regime, providing a strong support

for the topological protection. The fact that κxy vanishes at the highest fields as shown in

Figs. 3a-c and 3e-g provides direct evidence that the thermal Hall effect is not influenced by

phonons, demonstrating that κxy is a unique and powerful probe in the search for Majorana

quantization.

We stress that the half-integer thermal Hall conductance in a bulk material is a direct

consequence of the chiral Majorana edge current. Recent experiments based on the proxim-

ity effect between a quantum anomalous Hall insulator and a conventional superconductor

have reported a signature of chiral Majorana edge modes [21]. However, this is based on

the observation of half-integer quantization of the longitudinal electrical conductance via

the scattering matrix effect between the edge states of the insulator and superconductor.

Moreover, Majorana fermions in the Kitaev magnets and topological superconductors have

essentially different aspects. In the former, strong correlations give rise to the emergent

Majorana fermions, while in the latter they do not play a role. In addition, Majorana

fermions exist inside the bulk of a sample in the Kitaev QSL state, in sharp contrast to

topological superconductors where they appear only at the edges. The distinct nature is

presumably supported by the fact that the quantum plateau disappears below ∼ 400mK in

the topological superconductor device [21], whereas it is preserved up to ∼ 5K in α-RuCl3.

At θ = 60◦, κ2D
xy (H)/T increases slightly from the quantized value before going to zero

at high field at 4.3 and 4.9K, which is reproduced in a different crystal (Extended Data
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Fig. 5a). However, such a behaviour is not observed for θ = 45◦. On the other hand,

the overshoot behaviour is also observed in the temperature dependence irrespective of the

angle (Fig. 4) and crystal (Extended Data Fig. 5b), and thus, there seem to be certain high-

energy corrections that are responsible for the excess conductivity at high fields and high

temperatures. These overshoot behaviours are in contrast to the numerical results of the

thermal Hall effect for the 2D pure Kitaev model with a weak magnetic field [16]. Meanwhile,

it has been pointed out that non-Kitaev interactions, such as Heisenberg and off-diagonal

ones, are important for α-RuCl3 [31, 37]. Hence, the discrepancy may be attributed to

high-field effects and/or non-Kitaev interactions, which deserves further study.

The nearly vanishing of κ2D
xy /T after the rapid suppression in the high-field regime

(Figs. 3a-c and 3e-g) demonstrates the disappearance of chiral Majorana edge currents.

As shown by the open blue square in Fig. 1b, the temperature at which κ2D
xy /T vanishes

decreases rapidly with decreasing µ0H∥. This suggests a topological quantum phase tran-

sition from the non-trivial QSL to trivial high-field state, where the thermal Hall effect is

absent, at µ0H∥ ∼ 9T as shown by the red circle in Fig. 1c [32]. Specific heat at 0.47K

for θ = 60◦ exhibits a dip-like anomaly in the vicinity of 9T, which can be associated with

an abrupt change of the spin gap at the topological transition, providing strong support

on the presence of characteristic field revealed by κxy/T (Extended Data Figs. 7a, b and

c). The vanishing of κxy/T at the highest fields is unlikely due to the crossover to a simple

forced ferromagnetic state because the magnetization at 9T is less than 1/3 of the fully

polarized value, indicating there still remain paramagnetic spins.The observation of half-

integer thermal Hall conductance reveals that topologically protected chiral Majorana edge

currents persist in α-RuCl3, even in the presence of non-Kitaev interactions and parallel

field. The observation opens a possibility to link to non-Abelian anyons important for the

topological quantum computing, revealing novel aspects of strongly correlated topological

quantum matters.
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MAIN FIGURE LEGENDS

Figure 1 | Chiral Majorana edge currents and temperature-magnetic field phase

diagram of α-RuCl3. a,b, Schematic illustrations of heat conductions in the integer

quantum Hall state of 2D electron gas (a) and Kitaev QSL state (b) in magnetic field

applied perpendicular to the planes (gray arrows). In the red (blue) regime, the temperature

is higher (lower). The red and blue arrows represent thermal flow. In the quantum Hall state,

the skipping orbits of electrons (green spheres) at the edge, which form 1D edge channels,

conduct heat and κxy is negative in sign. In the Kitaev QSL state, spins are fractionalized

into Majorana fermions (yellow spheres) and Z2 fluxes (black hexagons). The heat is carried

by chiral edge currents of charge neutral Majorana fermions and κxy is positive in sign. c,

Phase diagram of α-RuCl3 in tilted field of θ = 60◦. Open and closed diamonds represent the

onset temperature of AFM order with zigzag type TN determined by T - and H-dependences

of κxx, respectively (see Fig. 2b and Extended Data Figs. 1 and 2). Below T ∼ JK/kB,

the spin liquid (Kitaev paramagnetic) state appears. At µ0H
∗
∥ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall conductance is observed in

the red regime. Open blue squares represent the fields at which the thermal Hall response

disappears. Red circle is the suggested topological phase transition point that separates

the non-trivial QSL state with topologically protected chiral Majorana edge currents and

a trivial state, such as non-topological spin liquid. The striped region denotes the region

that was not accessible in the thermal Hall effect measurements. Error bars represent one

standard deviation.

Figure 2 | Longitudinal thermal conductivity in α-RuCl3. a, Temperature depen-

dence of κxx in magnetic field H applied along various directions in the ac plane. Inset

illustrates a schematic of the measurement setup for κxx and κxy. b, κxx at θ=60◦ plotted as

a function of parallel field component H∥. Inset shows TN vs. H∥ at different field directions.

TN is determined by the T -dependence of κxx shown in Fig. 2a (open symbols) and by the

minimum in the H-dependence of κxx (filled symbols) shown by arrows in the main panel.

The crosses are TN for θ = 90◦ determined from magnetic susceptibility measurements [27].

Figure 3 | Half-integer thermal Hall conductance plateau. a-h, Thermal Hall con-
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ductivity κxy/T in tilted field of (a-d) θ = 60◦ and (e-h) 45◦ (see inset of Fig. 2a) plotted

as a function of H⊥. The top axes show the parallel field component H∥. The right scales

represent the 2D thermal Hall conductance κ2D
xy /T in units of (π/6)(k2

B/ℏ). Violet dashed

lines represent the half-integer thermal Hall conductance, κ2D
xy /[T (π/6)(k

2
B/ℏ)] = 1/2. Error

bars represent one standard deviation.

Figure 4 | Temperature dependence of the thermal Hall conductance. The main

panel shows κxy/T in tilted fields of θ = 45◦ and 60◦ (see inset of Fig. 2a) at µ0H⊥ =7T

and 4.6T, respectively, at which quantized thermal Hall conductance plateau is observed

at low temperatures. The right scale is the 2D thermal Hall conductance κ2D
xy /T in units

of (π/6)(k2
B/ℏ). Violet dashed line represents the half-integer thermal Hall conductance,

κ2D
xy /[T (π/6)(k

2
B/ℏ)] = 1/2. Inset shows the same data in a wider temperature regime.

Error bars represent one standard deviation.

METHODS

Single crystal growth. High-quality single crystals of α-RuCl3 were grown by a ver-

tical Bridgman method as described in Ref. [33]. For thermal transport measurements,

we carefully picked up thin crystals with plate-like shape. Typical sample size is ∼

2mm×0.5mm×0.02mm. We selected the best crystal in which no anomaly associated

with the magnetic transition at 14K due to the stacking faults is detected by magnetic

susceptibility, specific heat, and thermal transport measurements.

Thermal transport measurements. Thermal and thermal Hall conductivities were mea-

sured simultaneously on the same crystal by the standard steady state method, using the

experimental setup illustrated in the inset of Fig. 2a. Heat current q were applied along the

a axis (q ∥ x). Using special jigs, magnetic field H is applied along various directions in the

ac plane within an accuracy less than one degree (inset of Fig. 2a). The temperature gradi-

ent −∇xT ∥ x and −∇yT ∥ y was measured by carefully calibrated Cernox thermometers.

Sample temperature was measured with accuracy within 0.1mK using alternating current re-

sistance bridges. 1 kΩ chip resistor was used to generate the heat current. The magnitude of

thermal gradient is less than 5% of the base temperature. To reduce the noise level, all mea-

surements are performed in the radio-frequency shielded room. For the measurements of the

thermal Hall effect, we removed the longitudinal response due to misalignment of the contacts

12



by anti-symmetrizing the measured ∇yT as ∇yT
asym(H) = [∇yT (H)−∇yT (−H)]/2 at each

temperature. We note that the offset transverse thermal gradient due to the misalignment of

Hall contact was reduced to be less than 0.5% of longitudinal thermal gradient in zero field.

κxx and κxy were obtained from longitudinal thermal resistivity wxx = ∇xT/q and thermal

Hall resistivity wxy = ∇yT
asym/q as κxx = wxx/(w

2
xx + w2

xy) and κxy = wxy/(w
2
xx + w2

xy).

To avoid background Hall signal, a LiF heat bath and non-metallic grease were used. We

confirmed that the thermal Hall signal in LiF is negligibly small within our experimen-

tal resolution [35]. The experimental error in determining κxy caused by the uncertainty in

measuring the distance between the contacts and the thickness of the crystal is within ±2%.

Specific heat measurements. Specific heat was measured by a long relaxation method

[34] in a 3He cryostat. A Cernox chip resistor was used as both thermometer and heater.

The sample was attached to the calorimeter with grease. The thermometer was calibrated

in magnetic field up to 12T.

Origin of thermal Hall response. We here discuss κxy/T in the high temperature spin

liquid regime where no plateau behaviour is observed. Finite κxy/T in the spin liquid states

has been reported only in kagomé insulator volborthite Cu3V2O7(OH)2 · 2H2O so far [35].

We point out that the behaviour of κxy/T in the high temperature regime of α-RuCl3 is

essentially different from that in the liquid state of volborthite; κxy of volborthite is opposite

in sign to α-RuCl3 and its magnitude is more than one order magnitude smaller. All theories

until now, except for Kitaev model, predict that the finite κxy in spin liquid states can appear

when the Dzyaloshinsky-Moriya (DM) interaction is present [36]. In fact, volborthite has

a large DM interaction. However, the DM interaction in α-RuCl3 is approximately 5K,

which is much smaller than JK [37], and hence it does not play an important role at high

temperatures. Moreover, the phonon thermal Hall conductivity is three orders of magnitude

smaller than the observed κxy/T in the spin-liquid state and shows essentially different

T -dependence [38].
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EXTENDED DATA FIGURE LEGENDS

Extended Data Figure 1 | Temperature dependence of the longitudinal thermal

conductivity. a,b, κxx in tilted field of (a) θ = 60◦ and (b) 45◦ (see inset of Fig. 2a) plotted

as a function of temperature. Arrows indicate the onset temperature of the AFM order TN .

Extended Data Figure 2 | Field dependence of the longitudinal thermal conduc-

tivity. a,b, κxx in tilted field of (a) θ = 60◦ and (b) 45◦ (see inset of Fig. 2a) plotted as

a function of parallel field component H∥. Arrows indicate the minimum of κxx, which is

attributed to the onset field of the AFM order.

Extended Data Figure 3 | Phase diagram of α-RuCl3 for H ∥ a and H ∥ b. a,b,

Temperature dependence of the specific heat divided by T , C/T for (a) H ∥ a and (b)

H ∥ b. Arrows indicate the Neel temperature TN . c, Field dependence of TN for H ∥ a

and H ∥ b determined by the specific heat measurements. TN determined by the thermal

conductivity and magnetic susceptibility [27] is also shown. The critical field for H ∥ a is

slightly lower than that for H ∥ b, but both phase diagrams are very similar.

Extended Data Figure 4 | Field dependence of thermal Hall conductivity. a,b,

Thermal Hall conductivity κxy/T in tilted field of (a) θ = 60◦ and (b) 45◦ (see inset of

14



Fig. 2a) plotted as a function of H⊥. The top axes show the parallel field componentH∥. The

right scales represent the 2D thermal Hall conductance κ2D
xy /T in units of (π/6)(k2

B/ℏ). Violet

dashed lines represent the half-integer thermal Hall conductance, κ2D
xy /[T (π/6)(k

2
B/ℏ)] = 1/2.

Error bars represent one standard deviation.

Extended Data Figure 5 | Sample dependence of κxy. a, κxy/T measured in a different

crystal (sample #2) for θ = 60◦ (see inset of Fig. 2a) at 4.3K plotted as a function of H⊥.

The right scales represent the 2D thermal Hall conductance κ2D
xy /T in units of (π/6)(k2

B/ℏ).

The half-integer thermal Hall conductance plateau is observed at 4.5T< µ0H⊥ <5.0T. The

field where the overshoot behavior from the quantization value is observed is slightly higher

than that of sample #1, but the field at which κxy/T vanishes (µ0H∥ ∼ 9.3T) is close to

that of sample #1. b, κxy/T of sample #2 in tilted field of θ = 60◦ plotted as a function of

H⊥ at 11K. Error bars represent one standard deviation.

Extended Data Figure 6 | Field dependence of thermal Hall conductivity in tilted

fields at high temperatures. a-d, Thermal Hall conductivity κxy/T in tilted field of (a,b)

θ = 60◦ and (c,d) 45◦ (see inset of Fig. 2a) plotted as a function of H⊥. The right scales

represent the 2D thermal Hall conductance κ2D
xy /T in units of (π/6)(k2

B/ℏ). Violet dashed

lines represent the half-integer thermal Hall conductance, κ2D
xy /[T (π/6)(k

2
B/ℏ)] = 1/2. Error

bars represent one standard deviation.

Extended Data Figure 7 | Specific heat above H∗
∥ . a,b, Temperature dependence of

C/T for (a) θ = 60◦ (H is tilted within the ac plane) and (b) 90◦. c, C/T at 0.47K plotted

as a function of H∥ for θ = 60◦ and 90◦. C(H)/T exhibits a dip-like anomaly for θ = 60◦

and a kink anomaly for θ = 90◦ at µ0H∥ ∼ 9.2T (dashed line). This field almost coincides

with the characteristic field at which κxy/T vanishes.
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