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We consider the family MPd of affine conjugacy classes of 
polynomial maps of one complex variable with degree d ≥ 2, 
and study the map Φd : MPd → Λ̃d ⊂ Cd/Sd which maps 
each f ∈ MPd to the set of fixed-point multipliers of f . We 
show that the local fiber structure of the map Φd around 
λ̄ ∈ Λ̃d is completely determined by certain two sets I(λ)
and K(λ) which are subsets of the power set of {1, 2, . . . , d}. 
Moreover for any λ̄ ∈ Λ̃d, we give an algorithm for counting 
the number of elements of each fiber Φ−1

d

(
λ̄
)

only by using 
I(λ) and K(λ). It can be carried out in finitely many steps, 
and often by hand.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let MPd be the family of affine conjugacy classes of polynomial maps of one complex 
variable with degree d ≥ 2, and Cd/Sd the set of unordered collections of d complex 
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numbers. Then the aim of this paper is to give a complete description of the fiber structure 
of the map

Φd : MPd → Λ̃d ⊂ Cd/Sd

which maps each f ∈ MPd to the set of fixed-point multipliers of f , except where 
f ∈ MPd has multiple fixed points.

Since multipliers of fixed points have played a central role in the study of the complex 
dynamics, it is natural to ask to what extent fixed-point multipliers of f determine the 
original map f . For polynomial maps, since the set of fixed-point multipliers is invariant 
under the action of affine transformations, the question is to count the number of affine 
conjugacy classes of polynomial maps when the set of its fixed-point multipliers are given. 
It is formulated in the following form: how many elements there are on each fiber of the 
above map Φd : MPd → Cd/Sd. Here, since the set of fixed-point multipliers always 
satisfies a certain relation by the fixed point theorem (see Proposition 1.1), the image 
of Φd is contained in a certain hyperplane Λ̃d in Cd/Sd. Hence the main object of our 
study is the map Φd : MPd → Λ̃d.

For d = 2, it is easily verified that Φ2 is bijective. In the case d = 3, Milnor [11]
showed that Φ3 is also bijective, which was the starting point of his study of the complex 
dynamics of cubic polynomials. For d ≥ 4, Fujimura and Nishizawa have long studied 
the map Φd in their series of papers such as [16], [3] and [4]. Especially their achievement 
is summarized in Fujimura’s paper [4], which includes the following:

• Φd is not surjective for d ≥ 4. Moreover for d = 4 or 5, she found all λ̄ ∈ Λ̃d whose 
inverse image of Φd is empty.

• Generic fiber of Φd consists of (d − 2)! points. Moreover if Φ−1
d (λ̄) is finite, then 

# 
(
Φ−1

d (λ̄)
)
≤ (d − 2)! always holds.

• For d = 4, she found # 
(
Φ−1

4 (λ̄)
)

for all λ̄ ∈ Λ̃4.

Here, we denote the cardinality of a set X by # (X). Similar results for rational maps 
are given by Milnor in [13, p. 152, Problem 12-d] and [12].

Based on the results above, this paper provides an algorithm for counting the number 
of elements of each fiber Φ−1

d (λ̄) for all λ̄ = {λ1, . . . , λd} ∈ Λ̃d and for all d ≥ 4
except when λi = 1 for some i. In practice, for each λ = (λ1, . . . , λd) ∈ Λd ⊂ Cd with 
λi �= 1, certain two subsets I(λ), K(λ) of the power set of {1, 2, . . . , d} are defined, and 
the number of elements of a fiber Φ−1

d (λ̄) is completely determined by I(λ) and K(λ). 
Moreover we give an algorithm for counting the number # 

(
Φ−1

d

(
λ̄
))

only by using I(λ)
and K(λ) (see Main Theorems I, III, Definition 1.7 and Section 2). The algorithm can be 
carried out in finitely many steps, and only by hand. Moreover in Main Theorem II we 
show that the local fiber structure of Φd around λ̄ is also determined by I(λ) and K(λ).

We shall provide some more concerning results.
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Several kinds of compactifications of MPd have been constructed independently by 
Silverman [17], by DeMarco and McMullen [2] and by Fujimura and Taniguchi [5]. Sil-
verman’s is based on the GIT compactification of the moduli space of rational maps, 
while the compactifications of DeMarco and MuMullen and of Fujimura and Taniguchi 
are both based on the consideration of the multipliers of polynomial maps. Especially, 
Fujimura and Taniguchi’s compactification is strongly related to the definition of the set 
I(λ) in this paper (see Remarks 1.3 and 1.6).

Regarding the moduli space of rational maps, let us recall an important result of 
McMullen [10]. He investigated the map Ψd which maps each Möbius conjugacy class 
of rational maps of Ĉ of degree d to the set of the multipliers of its periodic points 
of all periods, and showed that the map Ψd is finite-to-one with few exceptions. To 
state the result explicitly, we denote by MRd the family of Möbius conjugacy classes of 
rational maps of degree d on the Riemann sphere Ĉ, and define the map Ψ(n)

d : MRd →
Cdn+1/Sdn+1 which maps each f ∈ MRd to the set of multipliers of n-periodic points 
of f . Under the above notation, he considered the map

ΨN

d :=
N∏

n=1
Ψ(n)

d : MRd →
N∏

n=1

(
Cdn+1/Sdn+1

)
.

It is not hard to see that Ψ1
2 is an embedding, and in fact maps MR2 isomorphically 

onto a hyperplane in C3/S3 (see [12]). However by looking at (flexible or rigid) Lattès 
examples, we can no longer expect ΨN

d to be an embedding for many d even when N is 
sufficiently large (see [14] for Lattès examples). He showed that for sufficiently large N , 
the map ΨN

d is finite-to-one except when d is a square, in which case it is also finite-to-one 
away from the Lattès locus. Here, the Lattès locus consists of one or two points whose 
inverse images are one parameter families. Furthermore, rigid Lattès examples imply 
that for any positive integer h there exist infinitely many degrees d such that for any N , 
the map ΨN

d is at least h-to-one (see [10] for more detail). However, it does not appear 
to be known if ΨN

3 is injective. Hutz and Tepper [9] showed that Ψ2
3 is 12-to-one map.

There are several other papers such as [6] and [7], that discuss the use of multipliers 
of periodic points to parameterize the moduli space of polynomial or rational maps.

In another direction, Bousch [1], Morton [15] and Silverman [17] have studied the 
algebraic properties of the hypersurfaces consisting of periodic points of polynomial or 
rational maps in the product space of Ĉ and some parameter space.

We have three main theorems in this paper. The rest of Introduction is devoted to 
state Main Theorems I, II and III. To state them explicitly, we fix our notation first.

For d ≥ 2, we put

Polyd :=
{
f ∈ C[z]

∣∣ deg f = d
}

and Aut(C) :=
{
γ(z) = az + b

∣∣ a, b ∈ C, a �= 0
}
.

(1.1)
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Since γ ∈ Aut(C) naturally acts on f ∈ Polyd by γ · f := γ ◦ f ◦ γ−1, we can define its 
quotient MPd := Polyd/Aut(C), which we usually call the moduli space of polynomial 
maps of degree d. We put Fix(f) := {z ∈ C 

∣∣ f(z) = z} for f ∈ Polyd, where Fix(f) is 
considered counted with multiplicity. Hence we always have # (Fix(f)) = d. Since the 
set of fixed-point multipliers (f ′(ζ))ζ∈Fix(f) is invariant under the action of Aut(C), we 
can naturally define the map Φd : MPd → Cd/Sd by Φd(f) := (f ′(ζ))ζ∈Fix(f). Here, Sd

denotes the d-th symmetric group which acts on Cd by the permutation of coordinates.
Note that a fixed point ζ ∈ Fix(f) is multiple if and only if f ′(ζ) = 1.

Proposition 1.1 (Fixed point theorem). Let d be a natural number with d ≥ 2 and 
suppose that a polynomial map f ∈ Polyd has no multiple fixed point. Then we have ∑

ζ∈Fix(f)
1

1−f ′(ζ) = 0.

Proposition 1.1 is shown by the integration 1
2π

√
−1

∮
|z|=R

dz
z−f(z) for sufficiently large R. 

We put Λd :=
{

(λ1, . . . , λd) ∈ Cd
∣∣∣ ∑d

i=1
∏

j �=i (1 − λj) = 0
}

, Λ̃d := Λd/Sd and pr :

Λd → Λ̃d. Then the image of the map Φd is contained in Λ̃d by Proposition 1.1 and by 
the fact that (λ1, . . . , λd) ∈ Cd always belongs to Λd if at least two of λi are equal to 1. 
In the following, we consider the map

Φd : MPd → Λ̃d

defined by f 	→ (f ′(ζ))ζ∈Fix(f). In the main theorems of this paper, we restrict our 
attention to the map Φd on the domain where polynomial maps have no multiple fixed 
points, i.e., on the domains Vd :=

{
(λ1, . . . , λd) ∈ Λd

∣∣ λi �= 1 for any 1 ≤ i ≤ d
}

and 

Ṽd := Vd/Sd, which are Zariski open subsets of Λd and Λ̃d respectively. Throughout this 
paper, we always denote by λ̄ the equivalence class of λ ∈ Λd in Λ̃d, i.e., λ̄ = pr(λ), and 
never denote the complex conjugate of λ.

It is not hard to see that in the case d = 2 or 3, the map Φd is bijective. However we 
can no longer expect Φd to be bijective if d ≥ 4; yet we can expect Φd to be generically 
finite by the remark below:

Remark 1.2. We have MPd
∼= Cd−1/ (Z/(d− 1)Z) and Λ̃d

∼= Cd−1. Especially we have 
dimC MPd = dimC Λ̃d = d − 1.

We now state the first main theorem in this paper.

Main Theorem I. Let d be a natural number with d ≥ 4 and suppose λ = (λ1, . . . , λd) ∈
Vd. Then the following statements hold:

(1) We always have 0 ≤ # 
(
Φ−1

d

(
λ̄
))

≤ (d − 2)!.
(2) The cardinality # 

(
Φ−1

d

(
λ̄
))

is a function of the two sets
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I(λ) :=
{
I � {1, 2, . . . , d}

∣∣∣∣∣ I �= ∅,
∑
i∈I

1
1 − λi

= 0
}

and

K(λ) :=
{
K ⊆ {1, 2, . . . , d}

∣∣ K �= ∅. If i, j ∈ K, then λi = λj

}
.

Moreover # 
(
Φ−1

d

(
λ̄
))

is computed in finitely many steps only by using I(λ) and 
K(λ).

(3) If I(λ) ⊆ I(λ′) and K(λ) ⊆ K(λ′) hold for λ, λ′ ∈ Vd, then # 
(
Φ−1

d

(
λ̄
))

≥
# 
(
Φ−1

d

(
λ̄′
))

holds.
(4) The equality # 

(
Φ−1

d

(
λ̄
))

= (d − 2)! holds if and only if the set I(λ) is empty and 
the complex numbers λ1, . . . , λd are mutually distinct.

(5) If there exist non-zero integers c1, . . . , cd which satisfy the conditions c1(1 − λ1) =
· · · = cd(1 − λd) and 

∑d
i=1 |ci| ≤ 2(d − 2), then the set Φ−1

d

(
λ̄
)

is empty.
(6) In the case d ≤ 7, the converse of the assertion (5) holds.
(7) In every degree d, the Chebyshev polynomial provides an example of an element 

of Φ−1
d

(
λ̄
)

if λ ∈ Vd satisfies the condition c1(1 − λ1) = · · · = cd(1 − λd) for some 
non-zero integers ci with 

∑d
i=1 ci = 0, 

∑d
i=1 |ci| = 2(d −1) and |ci| ≤ 2 for 1 ≤ i ≤ d.

The algorithm of the computation in Main Theorem I(2) is given later in Definition 1.7
and Main Theorem III.

Remark 1.3. There is some overlap between Main Theorem I above and the results by 
Fujimura.

• She showed in [4] that if Φ−1
d

(
λ̄
)

is finite for λ̄ ∈ Λ̃d, then 0 ≤ # 
(
Φ−1

d

(
λ̄
))

≤ (d −2)!
holds. We removed the assumption that Φ−1

d

(
λ̄
)

is finite in the case λ̄ ∈ Ṽd.
• She showed in [4, Theorem 6] that if I(λ) is empty, then # 

(
Φ−1

d

(
λ̄
))

= (d − 2)!
holds counted with multiplicity. Main Theorem I(4) is a strengthening of this result.

• She also gave a sufficient condition for Φ−1
d (λ̄) to be empty in [4, Theorem 12]. For 

d ≤ 5, her condition is equivalent to that in Main Theorem I(5). However for d ≥ 6, 
her condition is stricter than ours. In the case d = 6, Example 1 in Section 2 in 
this paper is the unique example which satisfies our condition (5) but not Fujimura’s 
condition in her Theorem 12.

• In the case d ≤ 5, she also showed Main Theorem I(6) in [4, Theorem 5].
• Fujimura and Taniguchi’s compactification [5] gives us a geometric insight of the 

fiber structure of Φd. Especially it provides an intuitional explanation of the reasons 
why I(λ) naturally arises in the computation of # 

(
Φ−1

d

(
λ̄
))

. See also Remark 1.6.

Remark 1.4. The importance of this paper is that we can completely count the number 
of elements of each fiber Φ−1

d (λ̄) for all λ ∈ Vd without exception as we will see in 
Main Theorem III and Section 2. The main technical tools that we use for the proof 
of main theorems are a certain extension of Bezout’s theorem on projective space Pn

(see Proposition 5.3) and the relation between intersection multiplicity and the degree of 
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finite branched covering (see Propositions 7.3, 7.5, 8.4, 8.7 and 8.10), which are common 
in the area of complex algebraic geometry.

Remark 1.5. The assertion (7) shows that the estimate 
∑d

i=1 |ci| ≤ 2(d − 2) in the 
assertion (5) is sharp, because 

∑d
i=1 |ci| must be even. However this does not assure the 

converse of (5).

Conjecture 1.

(1) The converse of the assertion (5) also holds in the case d ≥ 8.
(2) If I(λ) � I(λ′) and K(λ) ⊆ K(λ′) hold for λ, λ′ ∈ Vd, then # 

(
Φ−1

d

(
λ̄
))

>

# 
(
Φ−1

d

(
λ̄′
))

holds.

The above conjecture is completely reduced to the problems on combinatorics by Main 
Theorem III.

The local fiber structure of the map Φd is also determined by I(λ) and K(λ) as in the 
following:

Main Theorem II.

(1) For any λ, λ′ ∈ Vd with I(λ) = I(λ′) and K(λ) = K(λ′), there exist open neighbor-
hoods Ũ  λ̄, Ũ ′  λ̄′ in Ṽd and biholomorphic maps L : Φ−1

d

(
Ũ
)
→ Φ−1

d

(
Ũ ′), 

L̃ : Ũ → Ũ ′ and L : U → U ′ with L(λ) = λ′ such that the following con-
ditions (1a) and (1b) are satisfied, where U, U ′ are the connected components of 
pr−1(Ũ), pr−1(Ũ ′) in Vd containing λ, λ′ respectively.
(a) The equalities Φd ◦ L = L̃ ◦ Φd|Φ−1

d (Ũ) and pr ◦ L = L̃ ◦ pr |U hold.
(b) For any λ′′ ∈ U , the equalities I(λ′′) = I(L(λ′′)) and K(λ′′) = K(L(λ′′)) hold.

(2) For any (I, K) ∈
{
(I(λ),K(λ))

∣∣ λ ∈ Vd

}
, the following properties (2a), (2b) 

and (2c) hold for the sets

Ṽ (I,K) :=
{
λ̄ ∈ Ṽd

∣∣ λ ∈ Vd, I(λ) = I and K(λ) = K
}
,

Ṽ (I, ∗) :=
{
λ̄ ∈ Ṽd

∣∣ λ ∈ Vd, I(λ) = I
}
,

Ṽ (∗,K) :=
{
λ̄ ∈ Ṽd

∣∣ λ ∈ Vd, K(λ) = K
}

:

(a) the map Φd|Φ−1
d (Ṽ (I,∗)) : Φ−1

d

(
Ṽ (I, ∗)

)
→ Ṽ (I, ∗) is proper.

(b) The map Φd|Φ−1
d (Ṽ (∗,K)) : Φ−1

d

(
Ṽ (∗,K)

)
→ Ṽ (∗,K) is locally homeomorphic.

(c) For each connected component X of Φ−1
d

(
Ṽ (I,K)

)
, the map Φd|X : X →

Ṽ (I,K) is an unbranched covering.
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Remark 1.6. The above assertion (2a) implies that I(λ) dominates the information on 
the number of ‘holes’ on each fiber of the map Φd. Fujimura and Taniguchi [5] showed 
that the map Φd : MPd → Λ̃d is extended to the map Ψ̂d : M̂d → Pd−1, where M̂d is 
their compactification of MPd. In our context, the condition I(λ) �= ∅ holds for λ ∈ Vd

if and only if Ψ̂−1
d (λ̄) ∩

(
M̂d \ MPd

)
�= ∅.

On the other hand, the above assertion (2b) implies that the condition K(λ) �
{{1}, . . . , {d}} holds for λ ∈ Vd if λ̄ lies on the branch locus of the map Φd.

To state Main Theorem III explicitly, we need some more notations, which are defined 
in Definition 1.7 and are often used later in the proof of the main theorems. After reading 
Sections 4, 5, 6 and 9, the readers will find that the process in Main Theorem III is 
natural.

Definition 1.7. Let λ = (λ1, . . . , λd) be an element of Vd. Then

• we put

I(λ) :=
{
{I1, . . . , Il}

∣∣∣∣ I1 � · · · � Il = {1, . . . , d}, l ≥ 2,
Iu ∈ I(λ) for each 1 ≤ u ≤ l

}
,

where I1 � · · · � Il denotes the disjoint union of I1, . . . , Il. The partial order ≺ in 
I(λ) is defined by the refinement of partitions, namely, for I, I′ ∈ I(λ), the relation 
I ≺ I′ holds if and only if I′ is a refinement of I as partitions of {1, . . . , d}. Note that 
I(λ) gives the equivalent information as I(λ). (For more detail, see Remark 6.4 and 
Section 2.)

• We denote by K1, . . . , Kq the collection of maximal elements of K(λ) with respect 
to the inclusion relations, i.e.,

{K1, . . . ,Kq} =
{
K ∈ K(λ)

∣∣ i ∈ K, j ∈ {1, . . . , d} \K =⇒ λi �= λj

}
.

Note that the equality K1 � · · · � Kq = {1, . . . , d} always holds by definition. We 
put κw := #(Kw) for 1 ≤ w ≤ q and denote by gw the greatest common divisor of 
κ1, . . . , κ(w−1), (κw) − 1, κ(w+1), . . . , κq for each 1 ≤ w ≤ q.

• We define the function m by m(z) := 1
1−z for z ∈ C \ {1}.

• We may assume λ ∈ Vd to be in the form

λ = (λ1, . . . , λ1︸ ︷︷ ︸
κ1

, . . . , λq, . . . , λq︸ ︷︷ ︸
κq

),

where λ1, . . . , λq are mutually distinct. For each 1 ≤ w ≤ q and for each divisor t of 
gw with t ≥ 2, we put d[t] := d−1

t + 1 and denote by λ[t] the element of Vd[t] such 
that
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λ[t] := (m−1(tm(λ1)), . . . ,m−1(tm(λ1))︸ ︷︷ ︸
κ1
t

, . . . ,

m−1(tm(λw)), . . . ,m−1(tm(λw))︸ ︷︷ ︸
(κw)−1

t

, . . . ,m−1(tm(λq)), . . . ,m−1(tm(λq))︸ ︷︷ ︸
κq
t

, λw).

Note that w is determined by t and that I(λ[t]) is determined by I(λ), K(λ) and t.

Main Theorem III. For λ = (λ1, . . . , λd) ∈ Vd, the cardinality # 
(
Φ−1

d (λ̄)
)

is computed 
in the following steps.

• For each I = {I1, . . . , Il} ∈ I(λ), we define the number eI(λ) inductively by the 
equality

eI(λ) :=
(

l∏
u=1

(
# (Iu) − 1

)
!
)

−
∑

I
′∈I(λ)

I
′�I, I′ �=I

⎛⎝eI′(λ) ·
l∏

u=1

⎛⎝ #(Iu)−1∏
k=#(Iu)−χu(I′)+1

k

⎞⎠⎞⎠ ,

(1.2)

where we put χu(I′) := # 
({

I ′ ∈ I′
∣∣ I ′ ⊆ Iu

})
for I′ � I. Note that in the case 

χu(I′) = 1, we assume that 
∏#(Iu)−1

k=#(Iu)−χu(I′)+1 k =
∏#(Iu)−1

k=#(Iu) k = 1.
• We put

sd(λ) := (d− 2)! −
∑

I∈I(λ)

⎛⎝eI(λ) ·
d−2∏

k=d−#(I)+1

k

⎞⎠ . (1.3)

Note that in the case #(I) = 2, we assume that 
∏d−2

k=d−#(I)+1 k =
∏d−2

k=d−1 k = 1.
• Moreover we define the numbers ct(λ) for t ∈

⋃
1≤w≤q

{
t
∣∣ t|gw} by the equalities

∑
t|b, b|gw

t

b
cb(λ) =

sd[t](λ[t])(
κ1
t

)
! · · ·

(κ(w−1)
t

)
!
(

(κw)−1
t

)
!
(κ(w+1)

t

)
! · · ·

(κq

t

)
!

(1.4)

for (w, t) ∈
{
(w, t)

∣∣ 1 ≤ w ≤ q, t|gw, t ≥ 2
}
, and

c1(λ) +
q∑

w=1

⎛⎝ ∑
t|gw, t≥2

1
t
ct(λ)

⎞⎠ = sd(λ)
κ1! · · ·κq!

, (1.5)

where t|b denotes that t divides b for positive integers t and b.
• Then the numbers eI(λ), sd(λ) and ct(λ) are non-negative integers. Moreover we 

have
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#
(
Φ−1

d

(
λ̄
))

=
∑
t

ct(λ) = c1(λ) +
q∑

w=1

⎛⎝ ∑
t|gw, t≥2

ct(λ)

⎞⎠ . (1.6)

Remark 1.8. Note that all the numbers defined in Main Theorem III are determined by 
I(λ) and K(λ). Especially the number sd(λ) is determined only by I(λ). If we count 
the number # 

(
Φ−1

d

(
λ̄
))

with multiplicity, then we always have # 
(
Φ−1

d

(
λ̄
))

= sd(λ). 
However in our context, we do not consider # 

(
Φ−1

d

(
λ̄
))

counted with multiplicity, and 
therefore need some more computation. The number sd(λ) is the cardinality of the set 
Sd(λ) which will be defined in Definition 4.2.

Remark 1.9. Under the isomorphism MPd
∼= Cd−1/ (Z/(d− 1)Z) in Remark 1.2, the 

action of Z/(d − 1)Z on Cd−1 is not free, and MPd has the set of singular points 
Sing(MPd) for d ≥ 4. If λ̄ ∈ Ṽd lies away from the locus Φd(Sing(MPd)), then the 
set 
{
(w, t)

∣∣ 1 ≤ w ≤ q, t|gw, t ≥ 2
}

in the third step in Main Theorem III is empty, 
and therefore we have # 

(
Φ−1

d

(
λ̄
))

= c1(λ) = sd(λ)/(κ1! · · ·κq!).

Problem. Give a combinatorial proof of the fact that for any λ ∈ Vd and for any t, the 
number ct(λ) defined above is a non-negative integer. Note that the proof given in this 
paper is not combinatorial.

For parameters λ ∈ Λd \ Vd, we have the following:

Remark 1.10. For λ = (λ1, . . . , λd) ∈ Λd \ Vd with # 
{
i
∣∣ λi = 1

}
≥ 4, some connected 

components of the inverse image Φ−1
d

(
λ̄
)

may have dimension greater than or equal to 1. 
However, if we put

MP′′
d :=

{
f ∈ MPd

∣∣ f has at most one multiple fixed point
}
,

then the map Φd|MP′′
d

: MP′′
d → Λ̃d is finite. Moreover similar results to the main theorems 

hold for Φd|MP′′
d

and for any λ ∈ Λd \ Vd, whose proofs are also similar to those of the 
main theorems.

We shall also comment about f ∈ MPd having more than two multiple fixed points. 
For any ζ ∈ Fix(f), the holomorphic index of f at ζ is defined to be the complex number 
ι(f, ζ) := 1

2π
√
−1

∮
|z−ζ|=ε

dz
z−f(z) , where ε is a sufficiently small positive real number. The 

index ι(f, ζ) is invariant under biholomorphic transformations, and is equal to 1
1−f ′(ζ) if 

ζ is not multiple. We denote by m(f, ζ) the fixed-point multiplicity of f at ζ ∈ Fix(f). 
Then we always have 

∑
ζ∈Fix(f) m(f, ζ) = deg f and 

∑
ζ∈Fix(f) ι(f, ζ) = 0. Moreover we 

have ι(f, ζ) �= 0 whenever m(f, ζ) = 1. Note that Fix(f) is not considered counted with 
multiplicity only here and in the following conjecture.

Conjecture 2. We consider the map Φ̃d, instead of Φd, which assigns Φ̃d(f) =
(
[ι(f, ζ),

m(f, ζ)]
)

to each f ∈ MPd, so that the target space of Φ̃d is defined to be the 

ζ∈Fix(f)
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family of unordered collections of pairs [mi, di] with mi ∈ C, di ∈ Z, di ≥ 1, 
∑

i di = d

and 
∑

i mi = 0. Then it is conjectured that the map Φ̃d is finite and that similar results 
to the main theorems hold for Φ̃d and for any parameter value without exception.

We have ten sections in this paper. In Section 2, we give some examples which illustrate 
the calculation of # 

(
Φ−1

d

(
λ̄
))

in Main Theorem III. In Section 3, we give the detailed 
program of the remaining sections. Sections from 4 to 10 are devoted to the proofs of 
Main Theorems I, II and III.
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2. Some examples

In this section, we give three examples which illustrate the calculation of # 
(
Φ−1

d

(
λ̄
))

in Main Theorem III.

Example 1. We consider an element λ = (λ1, . . . , λ6) ∈ V6 satisfying the equality

1
1 − λ1

: · · · : 1
1 − λ6

= 1 : 1 : 2 : −1 : −1 : −2.

In this case we have # 
(
Φ−1

6
(
λ̄
))

= 0 by the assertion (5) in Main Theorem I; however 
in this example we shall find it again by following the steps in Main Theorem III.

By definition, we have I(λ) =
{
Iω
∣∣ 1 ≤ ω ≤ 8

}
, where

I1 =
{
{1, 4}, {2, 5}, {3, 6}

}
, I2 =

{
{1, 5}, {2, 4}, {3, 6}

}
,

I3 =
{
{1, 2, 4, 5}, {3, 6}

}
, I4 =

{
{1, 4}, {2, 3, 5, 6}

}
, I5 =

{
{2, 5}, {1, 3, 4, 6}

}
,

I6 =
{
{1, 5}, {2, 3, 4, 6}

}
, I7 =

{
{2, 4}, {1, 3, 5, 6}

}
and I8 =

{
{1, 2, 6}, {3, 4, 5}

}
.

We have I3 ≺ I1, I4 ≺ I1, I5 ≺ I1, I3 ≺ I2, I6 ≺ I2 and I7 ≺ I2; hence the maximal 
elements of I(λ) are I1, I2 and I8.

By the equality (1.2), we have eI1(λ) = eI2(λ) = (2 − 1)! · (2 − 1)! · (2 − 1)! = 1
and eI8(λ) = (3 − 1)! · (3 − 1)! = 4. Moreover we have eI3(λ) = (4 − 1)! · (2 − 1)! −
(eI1(λ) · 3 + eI2(λ) · 3) = 6 − (3 +3) = 0, eI4(λ) = eI5(λ) = (2 − 1)! · (4 − 1)! − eI1(λ) · 3 =
6 − 3 = 3 and eI6(λ) = eI7(λ) = (2 − 1)! · (4 − 1)! − eI2(λ) · 3 = 6 − 3 = 3. Hence 

by the equality (1.3), we have s6(λ) = (6 − 2)! −
(∑2

ω=1 eIω (λ) · 4 +
∑8

ω=3 eIω (λ)
)

=
24 − (4 + 4 + 0 + 3 + 3 + 3 + 3 + 4) = 0, which implies # 

(
Φ−1

6
(
λ̄
))

= c1(λ) = 0.
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Example 2. In this example we consider λ = (λ1, . . . , λ31) ∈ V31 with

1
1 − λ1

: · · · : 1
1 − λ31

= 6 : · · · : 6︸ ︷︷ ︸
25

: −25 : · · · : −25︸ ︷︷ ︸
6

.

In this case we have I(λ) = ∅ and s31(λ) = 29! by the equality (1.3).
On the other hand, by Definition 1.7, we have q = 2, K1 = {1, . . . , 25}, K2 =

{26, . . . , 31}, κ1 = 25, κ2 = 6, g1 = gcd(κ1 − 1, κ2) = 6, g2 = 5, 
⋃

1≤w≤2
{
t
∣∣ t|gw} =

{1, 2, 3, 6, 5}, d[2] = 31−1
2 + 1 = 16, d[3] = 11, d[6] = 6 and d[5] = 7. Moreover we have 

λ[2] = (λ[2]1, . . . , λ[2]16) ∈ V16 with

1
1 − λ[2]1

: · · · : 1
1 − λ[2]16

= 12 : · · · : 12︸ ︷︷ ︸
κ1−1

2 =12

: −50 : −50 : −50︸ ︷︷ ︸
κ2
2 =3

: 6.

Similarly we have

λ[3] = (λ[3]1, . . . , λ[3]11) ∈ V11 with 1
1−λ[3]1 : · · · : 1

1−λ[3]11 = 18 : · · · : 18︸ ︷︷ ︸
8

: −75 : −75 : 6,

λ[6] = (λ[6]1, . . . , λ[6]6) ∈ V6 with 1
1−λ[6]1 : · · · : 1

1−λ[6]6 = 36 : · · · : 36︸ ︷︷ ︸
4

: −150 : 6 and

λ[5] = (λ[5]1, . . . , λ[5]7) ∈ V7 with 1
1−λ[5]1 : · · · : 1

1−λ[5]7 = 30 : · · · : 30︸ ︷︷ ︸
κ1
5 =5

: −125︸ ︷︷ ︸
κ2−1

5 =1

: −25.

Since I(λ) = ∅, we have I(λ[t]) = ∅ for t = 2, 3, 6, 5, which implies s16(λ[2]) = 14!, 
s11(λ[3]) = 9!, s6(λ[6]) = 4! and s7(λ[5]) = 5! by the equality (1.3). By the equality (1.4)
for (w, t) = (1, 6), (1, 3), (1, 2) and (2, 5), we have

6
6c6(λ) = s6(λ[6])(

κ1−1
6
)
! ·
(
κ2
6
)
!

= 4!
4! · 1! = 1,

3
3c3(λ) + 3

6c6(λ) = s11(λ[3])(
κ1−1

3
)
! ·
(
κ2
3
)
!

= 9!
8! · 2! = 9

2 ,

2
2c2(λ) + 2

6c6(λ) = s16(λ[2])(
κ1−1

2
)
! ·
(
κ2
2
)
!

= 14!
12! · 3! = 91

3 ,

5
5c5(λ) = s7(λ[5])(

κ1
5
)
! ·
(
κ2−1

5
)
!

= 5!
5! · 1! = 1

respectively, which implies c6(λ) = 1, c3(λ) = 4, c2(λ) = 30 and c5(λ) = 1. Moreover by 
the equality (1.5), we have

c1(λ) + 1
c2(λ) + 1

c3(λ) + 1
c6(λ) + 1

c5(λ) = s31(λ) = 29! = 7917
,
2 3 6 5 κ1! · κ2! 25! · 6! 10
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which implies c1(λ) = 775. Hence by (1.6), we have

#
(
Φ−1

31
(
λ̄
))

= c1(λ) + c2(λ) + c3(λ) + c6(λ) + c5(λ) = 775 + 30 + 4 + 1 + 1 = 811.

Example 3. Here we consider a little complicated example, which is λ = (λ1, . . . , λ9) ∈ V9
with 1

1−λ1
: · · · : 1

1−λ9
= 2 : 2 : 2 : 2 : −1 : −1 : −2 : −2 : −2. In this case, by 

Definition 1.7, we have q = 3, κ1 = 4, κ2 = 2, κ3 = 3, g1 = g2 = 1 and g3 = 2. Hence we 
must find s9(λ) and s5(λ[2]), and after that by the equalities (1.4) and (1.5) we have

2
2c2(λ) = s5(λ[2])

(4/2)! · (2/2)! · ((3 − 1)/2)! = s5(λ[2])
2 and c1(λ) + 1

2c2(λ) = s9(λ)
4! · 2! · 3! .

(2.1)

We shall find s5(λ[2]) first. Since λ[2] = (λ[2]1, . . . , λ[2]5) ∈ V5 with 1
1−λ[2]1 : · · · :

1
1−λ[2]5 = 4 : 4 : −2 : −4 : −2, we have I(λ[2]) = {I′1, I′2}, where I′1 =

{
{1, 4}, {2, 3, 5}

}
and I′2 =

{
{2, 4}, {1, 3, 5}

}
. Hence we have eI′1(λ[2]) = eI′2(λ[2]) = (2 −1)! ·(3 −1)! = 2 and 

s5(λ[2]) = (5 −2)! −
(
eI′1(λ[2]) + eI′2(λ[2])

)
= 6 −(2 +2) = 2, which implies c2(λ) = 2

2 = 1
by the equality (2.1).

On the other hand, the computation of s9(λ) is much more complicated than that of 
s5(λ[2]). First of all, I(λ) consists of 130 elements, and we shall express them by

I(λ) =
{
I(1,ω)

∣∣ 1 ≤ ω ≤ 24
}
∪
{
I(2,ω)

∣∣ 1 ≤ ω ≤ 36
}
∪
{
I(3,ω)

∣∣ 1 ≤ ω ≤ 36
}

∪
{
I(4,ω)

∣∣ 1 ≤ ω ≤ 12
}
∪
{
I(5,ω)

∣∣ 1 ≤ ω ≤ 18
}
∪
{
I(6,ω)

∣∣ 1 ≤ ω ≤ 4
}
.

Here I(1,ω) for 1 ≤ ω ≤ 24 are of the form 
{
{σ(1), 5, 6}, {σ(2), 7}, {σ(3), 8}, {σ(4), 9}

}
for σ ∈ S4 = Aut({1, 2, 3, 4}). Similarly I(2,ω), I(3,ω), I(4,ω), I(5,ω) and I(6,ω) are of the 
form {

{σ(1), σ(2), 5, 6, τ(7)}, {σ(3), τ(8)}, {σ(4), τ(9)}
}
,{

{σ(1), 5, 6}, {σ(2), τ(7)}, {σ(3), σ(4), τ(8), τ(9)}
}
,{

{σ(1), σ(2), σ(3), 5, 6, τ(7), τ(8)}, {σ(4), τ(9)}
}
,{

{σ(1), σ(2), 5, 6, τ(7)}, {σ(3), σ(4), τ(8), τ(9)}
}

and
{
{σ(1), 5, 6}, {σ(2), σ(3), σ(4), 7, 8, 9}

}
respectively for σ ∈ S4 = Aut({1, 2, 3, 4}) and τ ∈ S3 = Aut({7, 8, 9}). By (1.2) we have 
eI(1,ω)(λ) = 2! · 1! · 1! · 1! = 2. For each 1 ≤ ω ≤ 36, we have # 

({
ω′ | I(2,ω) ≺ I(1,ω′)

})
=

2; hence by (1.2) we have eI(2,ω)(λ) = 4! · 1! · 1! − 2 · 4 × 2 = 8. Similarly for each 
1 ≤ ω ≤ 36, we have # 

({
ω′ | I(3,ω) ≺ I(1,ω′)

})
= 2, which implies eI(3,ω)(λ) = 2! · 1! ·

3! − 2 · 3 × 2 = 0. Since # 
({

ω′ | I(4,ω) ≺ I(1,ω′)
})

= 6, # 
({

ω′ | I(4,ω) ≺ I(2,ω′)
})

= 6 and 
# 
({

ω′ | I(4,ω) ≺ I(3,ω′)
})

= 3, we have eI(4,ω)(λ) = 6! ·1! −(2 ·(5 ·6) ×6 +8 ·6 ×6 +0 ·6 ×3) =
72. Similarly we have eI(5,ω)(λ) = 4! · 3! − (2 · 4 · 3 × 4 + 8 · 3 × 2 + 0 · 4 × 2) = 0
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and eI(6,ω)(λ) = 2! · 5! − (2 · (4 · 5) × 6 + 0 · 5 × 9) = 0. Therefore by (1.3) we have 
s9(λ) = 7! − (2 · (6 · 7) × 24 + 8 · 7 × 36 + 72 × 12) = 144.

To summarize, we have c2(λ) = 1 and c1(λ) + 1
2c2(λ) = 144

4!·2!·3! by (2.1), which implies 
c1(λ) = 0 and # 

(
Φ−1

9
(
λ̄
))

= c1(λ) + c2(λ) = 0 + 1 = 1. Here, the unique element of 
Φ−1

9
(
λ̄
)

is represented by f9(x) which is the one defined in the proof of Proposition 4.10.

3. Detailed program of the proof

In this section, we describe the detailed program of the proof of the main theorems.
Sections from 4 to 10 are devoted to the proofs of Main Theorems I, II and III. The 

proofs are self-contained except for the basic knowledge of the intersection theory on 
the projective space Pn (see Section 4 of Chapter 0 and Section 3 of Chapter 1 in [8]) 
and the theory on finite branched coverings. The most important tool for the proof, 
which is stated in Proposition 5.3, is an extension of Bezout’s theorem on Pn especially 
in the case that some components of the common zeros of n homogeneous polynomials 
are not points or are components which are proper subsets of other components. The 
most difficult and most crucial part in the proof of the main theorems is the proof of 
Theorem B. Theorem B is stated in Section 6, and its proof is described in Section 8. Main 
Theorem II is naturally proved in the process of proving Main Theorems I and III. The 
assertions (5) and (7) in Main Theorem I are proved in Section 4, and the assertions (1) 
and (4) in Main Theorem I are proved in Section 6. On the other hand, the proofs of the 
rest are completed in Section 10.

In Section 4 we rewrite the set Φ−1
d

(
λ̄
)

as follows: for each λ ∈ Vd, we define the 
subsets Td(λ), Sd(λ) and Bd(λ) of Pd−2, where Td(λ) is the set of the common zeros of 
some (d −2) homogeneous polynomials ϕ1, . . . , ϕd−2 on Pd−2, and Td(λ) = Sd(λ) �Bd(λ). 
We define the subgroup S (K(λ)) of Sd acting on Sd(λ), and show the existence of the 
bijection π(λ) : Sd(λ)/S (K(λ)) ∼= Φ−1

d

(
λ̄
)

in Proposition 4.3. By Proposition 4.3, we can 
divide the proof of Main Theorems I and III into two steps: the first one is to determine 
the cardinality # (Sd(λ)); the second one is to analyze the action of S (K(λ)) on Sd(λ).

In Section 5 we review the intersection theory on Pn and give an extension of Be-
zout’s theorem on Pn in Proposition 5.3, which will be utilized crucially for determining 
the cardinality # (Sd(λ)) afterward. In Definitions 5.1 and 5.2, we define the family 
C(ϕ1, . . . , ϕm) of irreducible varieties for homogeneous polynomials ϕ1, . . . , ϕm on Pn

and the number multC(ϕ1, . . . , ϕm) for each C ∈ C(ϕ1, . . . , ϕm) with codimC = m. 
Here, C(ϕ1, . . . , ϕm) stands for the family of the “components” of the common zeros of 
ϕ1, . . . , ϕm in Pn. In practice, it contains all the irreducible components of the common 
zeros of ϕ1, . . . , ϕm, and may also contain some irreducible varieties which are proper 
subsets of some irreducible components of the common zeros of ϕ1, . . . , ϕm. On the 
other hand, the number multC(ϕ1, . . . , ϕm) stands for the “intersection multiplicity” of 
ϕ1, . . . , ϕm along C; if C is an irreducible component, then it is the usual intersection 
multiplicity of ϕ1, . . . , ϕm along C. Proposition 5.3 gives the relation among these num-
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bers, which is also reduced to the usual Bezout’s theorem if C(ϕ1, . . . , ϕn) consists only 
of points.

In Sections 6, 7 and 8 we determine the cardinality # (Sd(λ)), based on Section 5. More 
precisely, in Section 6, we give the explicit expression of the set Bd(λ) in Lemma 6.5, and 
determine the number multC(ϕ1, . . . , ϕm) for each C ∈ C(ϕ1, . . . , ϕd−2) with codimC =
m and C ⊆ Bd(λ) in Theorems A and B. Some of the elements of C(ϕ1, . . . , ϕd−2) may 
be proper subsets of other elements, which makes their computation much complicated. 
Proposition 5.3, Theorems A and B give the exact expression of the cardinality # (Sd(λ)). 
Sections 7 and 8 are devoted to the proofs of Theorems A and B respectively.

In most cases, the action of S (K(λ)) on Sd(λ) is free. However in some cases, it is 
rather complicated. In Section 9 we analyze the action of S (K(λ)) on Sd(λ) in detail, 
and give the exact relation between the cardinalities of Sd(λ) and Φ−1

d

(
λ̄
)

in Theorem E. 
To summarize, in Section 10 we complete the proof of the main theorems.

4. Another expression of the set Φ−1
d

(
λ̄
)

In this section we start proving the main theorems. In the rest of this paper, we always 
assume that d is a natural number with d ≥ 4.

An arbitrary polynomial map f(z) ∈ C[z] of degree d can be expressed in the form 
f(z) = z+ρ(z−ζ1)(z−ζ2) · · · (z−ζd), where ζ1, ζ2, . . . , ζd and ρ are complex numbers with 
ρ �= 0. In this expression we have Fix(f) = {ζ1, ζ2, . . . , ζd} and f ′(ζi) = 1 +ρ 

∏
j �=i(ζi−ζj)

for 1 ≤ i ≤ d. Hence to show Main Theorems I and III, we only need to count the number 
of the solutions of the equations 1 + ρ 

∏
j �=i(ζi − ζj) = λi for 1 ≤ i ≤ d modulo affine 

conjugacy. However we do not take this method. The following is the key for the proof 
of the main theorems.

Key Lemma. Let f be a polynomial map of degree d expressed in the form

f(z) = z + ρ(z − ζ1)(z − ζ2) · · · (z − ζd),

where ζ1, . . . , ζd and ρ are complex numbers with ρ �= 0. Then for λ = (λ1, . . . , λd) ∈ Vd, 
the equalities f ′(ζi) = λi hold for 1 ≤ i ≤ d if and only if the equalities

d∑
i=1

1
1 − λi

ζki =
{

0 (1 ≤ k ≤ d− 2)
− 1

ρ (k = d− 1)
(4.1)

hold and ζ1, . . . , ζd are mutually distinct.

Remark 4.1. Similar result to Key Lemma is already given by Fujimura in [4, Lemma 9], 
while her proof is different from the following.

Proof. The integration 1
2π

√
−1

∮
|z|=R

zk

z−f(z) dz for large real number R implies the equal-
ities
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d∑
i=1

1
1 − f ′(ζi)

ζki =
{

0 (0 ≤ k ≤ d− 2)
− 1

ρ (k = d− 1)
(4.2)

if ζ1, . . . , ζd are mutually distinct. Since λi �= 1 for 1 ≤ i ≤ d, the equalities f ′(ζi) = λi

for 1 ≤ i ≤ d imply the mutual distinctness of ζ1, . . . , ζd and the equalities (4.2), which 
verifies the necessary condition of the lemma.

Suppose oppositely the equalities (4.1) and the mutual distinctness of ζ1, . . . , ζd. Note 
that the equalities (4.1) are equivalent to

⎛⎜⎜⎜⎜⎝
1 1 · · · 1
ζ1 ζ2 · · · ζd
ζ2
1 ζ2

2 · · · ζ2
d

...
...

. . .
...

ζd−1
1 ζd−1

2 · · · ζd−1
d

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
1−λ11
1−λ2

...
1

1−λd

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
...
0
− 1

ρ

⎞⎟⎟⎟⎠ . (4.3)

The mutual distinctness of ζ1, . . . , ζd implies (4.2), which are equivalent to the equality 
obtained from (4.3) by replacing λi by f ′(ζi) for 1 ≤ i ≤ d. Therefore the invertibility of 
the square matrix in the left hand side of the equality (4.3) implies 1

1−f ′(ζi) = 1
1−λi

for 
1 ≤ i ≤ d, which completes the proof of Key Lemma. �

By Key Lemma, we associate the set Φ−1
d

(
λ̄
)

with some other one whose cardinality 
is expected to be easier to count. Recall that Pd−2 denotes the complex projective space 
of dimension d − 2.

Definition 4.2. For any λ = (λ1, . . . , λd) ∈ Vd, we put

Td(λ) :=
{

(ζ1 : · · · : ζd−1) ∈ Pd−2

∣∣∣∣∣
d−1∑
i=1

1
1 − λi

ζki = 0 for 1 ≤ k ≤ d− 2
}
,

Sd(λ) :=
{
(ζ1 : · · · : ζd−1) ∈ Td(λ)

∣∣ ζ1, . . . , ζd−1 and 0 are mutually distinct
}
,

Bd(λ) := Td(λ) \ Sd(λ) and

S (K(λ)) :=
{
σ ∈ Sd

∣∣ λσ(i) = λi holds for any i
}
.

Note that S (K(λ)) is a subgroup of Sd determined by K(λ) and is isomorphic to the 
group Sκ1×· · ·×Sκq

, where κ1, . . . , κq and K1, . . . , Kq are those defined in Definition 1.7.

Proposition 4.3. For λ = (λ1, . . . , λd) ∈ Vd, we can define the surjection π(λ) : Sd(λ) →
Φ−1

d

(
λ̄
)

by

(ζ1 : · · · : ζd−1) 	→ f(z) = z + ρz(z − ζ1) · · · (z − ζd−1),

where − 1
ρ =

∑d−1
i=1

1
1−λi

ζd−1
i . The group S (K(λ)) acts on Sd(λ) by the permutation of 

the coordinates ζ1, . . . , ζd−1 and 0, namely, it is defined by
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σ · (ζ1 : · · · : ζd−1) := (ζσ−1(1) − ζσ−1(d) : · · · : ζσ−1(d−1) − ζσ−1(d)),

where we are assuming ζd = 0. Finally the map π(λ) : Sd(λ) → Φ−1
d

(
λ̄
)

induces the 
bijection

π(λ) : Sd(λ)/S (K(λ))
∼=→ Φ−1

d

(
λ̄
)
.

To prove Proposition 4.3, we consider the auxiliary definitions, lemma and proposition.

Definition 4.4. We put

Qd(λ) :=
{

(ζ1, . . . , ζd) ∈ Cd

∣∣∣∣ ∑d
i=1

1
1−λi

ζki = 0 for 1 ≤ k ≤ d− 2
ζ1, . . . , ζd are mutually distinct

}
,

and denote by G the projection map G : Polyd → MPd = Polyd/Aut(C), where Aut(C)
and its action on Polyd are those defined in (1.1).

The groups Aut(C), Sd and its subgroup S (K(λ)) naturally act on Cd, and the actions 
of Aut(C) and Sd on Cd commute.

Lemma 4.5. Let λ = (λ1, . . . , λd) be an element of Vd. Then

(1) we can define the map �(λ) : Qd(λ) → G−1 ◦ Φ−1
d

(
λ̄
)

by

(ζ1, . . . , ζd) 	→ f(z) := z + ρ(z − ζ1) · · · (z − ζd),

where − 1
ρ =

∑d
i=1

1
1−λi

ζd−1
i .

(2) The map �(λ) is surjective.
(3) The set Qd(λ) is invariant under the action of Aut(C) on Cd.
(4) The actions of Aut(C) on Qd(λ) and on G−1 ◦ Φ−1

d

(
λ̄
)

commute with the map 
�(λ), i.e., the equality �(λ)(γ · ζ) = γ ◦�(λ)(ζ) ◦ γ−1 holds for any ζ ∈ Qd(λ) and 
γ ∈ Aut(C).

(5) The set Qd(λ) is invariant under the action of S (K(λ)) on Cd.
(6) For ζ, ζ ′ ∈ Qd(λ), the equality �(λ)(ζ) = �(λ)(ζ ′) holds if and only if the equality 

ζ ′ = σ · ζ holds for some σ ∈ S (K(λ)).

Proof. Most of the assertions are obvious by Key Lemma. We only check the existence of 
the complex number ρ in the assertion (1) and the necessary condition of the assertion (6).

If we cannot determine ρ ∈ C∗, then we have 
∑d

i=1
1

1−λi
ζd−1
i = 0, which implies 

1
1−λi

= 0 for 1 ≤ i ≤ d by the equality (4.3). Hence the contradiction assures the 
existence of ρ.

Let ζ = (ζ1, . . . , ζd), ζ ′ = (ζ ′1, . . . , ζ ′d) be elements of Qd(λ) with �(λ)(ζ) =
�(λ)(ζ ′) =: f . Then by the definition of �(λ), there exists a permutation σ ∈ Sd
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with ζ ′ = σ · ζ. On the other hand, by Key Lemma, we have f ′(ζi) = f ′(ζ ′i) = λi for 
1 ≤ i ≤ d. Since ζ ′i = ζσ−1(i) for 1 ≤ i ≤ d, we have λi = λσ(i) for 1 ≤ i ≤ d, which 
implies σ ∈ S (K(λ)). Thus the necessary condition of (6) is verified. �
Definition 4.6. We put Q̃d(λ) := Qd(λ)/Aut(C).

Proposition 4.7. For λ = (λ1, . . . , λd) ∈ Vd, the map �(λ) in Lemma 4.5 induces the 
surjection �̃(λ) : Q̃d(λ) → Φ−1

d

(
λ̄
)
. The group S (K(λ)) acts on Q̃d(λ), which induces 

the bijection

�(λ) : Q̃d(λ)/S (K(λ)) → Φ−1
d

(
λ̄
)
.

Moreover Q̃d(λ) is canonically identified with Sd(λ) by the bijection ι(λ) : Sd(λ) → Q̃d(λ)
which maps (ζ1 : · · · : ζd−1) ∈ Sd(λ) to the equivalence class of (ζ1, . . . , ζd−1, 0) in Q̃d(λ). 
Under this identification, �̃(λ) ◦ ι(λ) = π(λ) holds, and the actions of S (K(λ)) on Sd(λ)
and on Q̃d(λ) commute with the map ι(λ).

Proof of Propositions 4.7 and 4.3. Proposition 4.7 is a direct consequence of Lemma 4.5, 
whereas Proposition 4.3 is just a corollary of Proposition 4.7. �

We make use of the bijection ι(λ) : Sd(λ) ∼= Q̃d(λ) in the proof; in the process of 
determining the cardinality # (Sd(λ)) we consider only Sd(λ), while we utilize Q̃d(λ) in 
the process of analyzing the action of S (K(λ)) on Sd(λ).

Proposition 4.8. The assertion (5) in Main Theorem I holds.

Remark 4.9. As already mentioned in Remark 1.3, Fujimura [4, Theorem 12] proved a 
weaker statement of Proposition 4.8, while her proof is very similar to the following.

Proof. Since the map G ◦ �(λ) : Qd(λ) → Φ−1
d

(
λ̄
)

is surjective, it suffices to show 
that the set Qd(λ) is empty. Note first that the conditions 

∑d
i=1(1 − λi)−1 = 0 and 

c1(1 − λ1) = · · · = cd(1 − λd) imply 
∑d

i=1 ci = 0. We may assume that the integers 
c1, . . . , cj are positive and that the rests are negative. Then the condition 

∑d
i=1 |ci| ≤

2(d − 2) is equivalent to 
∑j

i=1 ci =
∑d

i=j+1 −ci ≤ d − 2, and the defining equations ∑d
i=1

1
1−λi

ζki = 0 for 1 ≤ k ≤ d − 2 are equivalent to the equations

ζk1 + · · · + ζk1︸ ︷︷ ︸
c1

+ · · · + ζkj + · · · + ζkj︸ ︷︷ ︸
cj

= ζkj+1 + · · · + ζkj+1︸ ︷︷ ︸
−cj+1

+ · · · + ζkd + · · · + ζkd︸ ︷︷ ︸
−cd

for 1 ≤ k ≤ d − 2. Hence the k-th fundamental symmetric expressions of

ζ1, . . . , ζ1︸ ︷︷ ︸
c

, . . . , ζj , . . . , ζj︸ ︷︷ ︸ and ζj+1, . . . , ζj+1︸ ︷︷ ︸, . . . , ζd, . . . , ζd︸ ︷︷ ︸
−c

(4.4)

1 cj −cj+1 d
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coincide for 1 ≤ k ≤ d − 2. Therefore the condition 
∑j

i=1 ci =
∑d

i=j+1 −ci ≤ d − 2
assures that the left half of (4.4) is some permutation of the right half of (4.4), which 
contradicts the mutual distinctness of ζ1, . . . , ζd. Thus the set Qd(λ) is empty. �
Proposition 4.10. The assertion (7) in Main Theorem I holds.

Proof. To prove the proposition, we may assume that c1, . . . , cd is a permutation of 
1, −1, 2, . . . , 2︸ ︷︷ ︸

d
2−1

, −2, . . . ,−2︸ ︷︷ ︸
d
2−1

or 1, 1, 2, . . . , 2︸ ︷︷ ︸
d−3
2

, −2, . . . ,−2︸ ︷︷ ︸
d−1
2

according as d is even or odd.

Let Ud−2(z) be Chebyshev polynomial of the second kind of degree d −2. By definition, 
Ud−2(z) is a polynomial of degree d − 2 satisfying the equality Ud−2(cos θ) = sin(d −
1)θ/ sin θ. Put fd(z) = z + ρ(z2 − 1)Ud−2(z) for ρ ∈ C \ {0}. Then we have Fix(fd) =
{cos(kπ/(d− 1)) | k = 0, 1, . . . , d− 1}. Moreover by a direct calculation we have f ′

d(1) =
1 + ρ · 2(d − 1), f ′

d(−1) = 1 + ρ · 2(−1)d−1(d − 1) and f ′
d

(
cos kπ

d−1

)
= 1 + ρ · (−1)k(d − 1)

for 1 ≤ k ≤ d − 2. Hence for any λ ∈ Vd with c1(1 − λ1) = · · · = cd(1 − λd), we have 
Φd(fd) = λ̄ for suitable ρ. �
Remark 4.11. In practice, for any d, a similar computation to Example 3 in Section 2
assures the equality # 

(
Φ−1

d (λ̄)
)

= 1 for λ ∈ Vd given in the proof of Proposition 4.10. 
Hence the unique element of Φ−1

d (λ̄) is represented by the above fd(z) for any d.

5. Review of the intersection theory on PPPn

This section summarizes the facts about the intersection theory on Pn, and states 
extended Bezout’s theorem in Proposition 5.3. For detailed explanation of the basic 
knowledge of this section, see Section 4 of Chapter 0 and Section 3 of Chapter 1 in [8].

Let C be an algebraic variety of dimension k in Pn. Then generic (n − k)-plane 
Pn−k ⊂ Pn intersects C transversely; we may thus define the degree of C to be the 
number of intersection points of C with a generic linear subspace Pn−k, which does not 
depend on the choice of Pn−k. For example, for any homogeneous polynomial ϕ(ζ) of 
degree d on Pn, the degree of the zeros of ϕ is always d.

Secondly we remember the definition of the intersection multiplicity multCμ
(C, C ′) of 

varieties C and C ′ in Pn along an irreducible component Cμ of C ∩ C ′ with dimCμ =
dimC+dimC ′−n. If Cμ is a point, then the intersection multiplicity is defined as follows: 
in a local coordinate having the origin as Cμ, C meets C ′ + ε transversely around the 
origin for generic small ε ∈ Cn, where C ′ + ε denotes the translation of C ′ by ε with 
respect to the given local coordinate; we may thus define the intersection multiplicity 
multCμ

(C, C ′) to be the number of intersection points of C and C ′ + ε around the origin 
for sufficiently small generic ε, which does not depend on the choice of ε nor a local 
coordinate. In the general case with dimCμ = dimC + dimC ′ − n, the intersection 
multiplicity multCμ

(C, C ′) is defined to be the number multp(C ∩ H, C ′ ∩ H) on H, 
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where p is a generic smooth point of Cμ and H is a submanifold in a neighborhood of p
intersecting Cμ transversely at p and with complementary dimension of Cμ.

Next we state the relation among the intersection multiplicities defined above. Let 
C, C ′ be algebraic varieties in Pn with dimC = k and dimC ′ = k′, and C1, . . . , Cr the 
irreducible components of C∩C ′. Suppose that the equality dimCμ = dimC+dimC ′−n

holds for any μ. Then the topological intersection of C and C ′ is given by (C · C ′) =∑r
μ=1 multCμ

(C, C ′) · Cμ, which implies the equality

degC · degC ′ =
r∑

μ=1
multCμ

(C,C ′) · degCμ. (5.1)

On the basis of those mentioned above, we state Definitions 5.1, 5.2 and Proposi-
tion 5.3.

Definition 5.1. We define the family C(ϕ1, . . . , ϕm) for homogeneous polynomials 
ϕ1, . . . , ϕm on Pn inductively as follows: if m = 1, then C(ϕ1) is the family of the 
irreducible components of the zeros of ϕ1 in Pn; in the case m ≥ 2, putting

C′ :=
{
C ′ ∈ C(ϕ1, . . . , ϕm−1)

∣∣ C ′ ⊆ {ϕm = 0}
}

and C′′ := C(ϕ1, . . . , ϕm−1) \ C′,

we define the family C(ϕ1, . . . , ϕm) by

C(ϕ1, . . . , ϕm) := C′ ∪
⋃

C′′∈C′′

{
C
∣∣ C is an irreducible component of C ′′ ∩ {ϕm = 0}

}
.

By definition, a variety C in Pn is an irreducible component of the common zeros of 
ϕ1, . . . , ϕm if and only if C is a maximal element of C(ϕ1, . . . , ϕm) with respect to the 
inclusion relations. Making use of the family C(ϕ1, . . . , ϕm), we are able to consider “com-
ponents” of the common zeros which are proper subsets of some irreducible components 
of the common zeros.

Definition 5.2. We shall define the number multC(ϕ1, . . . , ϕm) for homogeneous poly-
nomials ϕ1, . . . , ϕm on Pn and an irreducible variety C in Pn with codimC = m. If 
C /∈ C(ϕ1, . . . , ϕm), then we put multC(ϕ1, . . . , ϕm) = 0; if C ∈ C(ϕ1, . . . , ϕm), we define 
multC(ϕ1, . . . , ϕm) by induction of m in the following manner: if m = 1, then the num-
ber multC(ϕ1) is the usual order of zeros of ϕ1 along C; in the case m ≥ 2, the number 
multC(ϕ1, . . . , ϕm) is defined by the equality

multC(ϕ1, . . . , ϕm) =
∑

C′∈CC

multC′(ϕ1, . . . , ϕm−1) · multC(C ′, ϕm), (5.2)

where CC =
{
C ′ ∈ C(ϕ1, . . . , ϕm−1)

∣∣ codimC ′ = m− 1, C ⊆ C ′, C ′ � {ϕm = 0}
}
. 

Here, for a homogeneous polynomial ϕ, an irreducible variety C ′ with C ′ � {ϕ = 0} and 
an irreducible component C of C ′ ∩ {ϕ = 0}, the number multC(C ′, ϕ) is defined by
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multC(C ′, ϕ) :=
∑

C′′∈C(ϕ), C⊆C′′

multC(C ′, C ′′) · multC′′(ϕ).

Note that the notation multC(C ′, ϕ) is also used in the following sections.

At any rate, Definition 5.2 assigns a positive integer multC(ϕ1, . . . , ϕm) to each C ∈
C(ϕ1, . . . , ϕm) with codimC = m. By definition, if C is an irreducible component of the 
common zeros of ϕ1, . . . , ϕm with codimC = m, then the number multC(ϕ1, . . . , ϕm)
defined above is the usual intersection multiplicity of ϕ1, . . . , ϕm along C. We state the 
relation among the numbers defined above in Proposition 5.3.

Proposition 5.3. Let ϕ1, . . . , ϕn be homogeneous polynomials on Pn, put codimC =: lC
for each C ∈ C(ϕ1, . . . , ϕn), and suppose that the inclusion relation{

C ∈ C(ϕ1, . . . , ϕk)
∣∣ codimC < k

}
⊆ C(ϕ1, . . . , ϕn) (5.3)

holds for every 1 ≤ k ≤ n. Then we have 
{
C ∈ C(ϕ1, . . . , ϕn)

∣∣ lC = k
}
⊆ C(ϕ1, . . . , ϕk)

for every 1 ≤ k ≤ n. Moreover we have the equality

n∏
k=1

degϕk =
∑

C∈C(ϕ1,...,ϕn)

(
degC · multC(ϕ1, . . . , ϕlC ) ·

n∏
k=lC+1

degϕk

)
. (5.4)

Here, in the case lC = n, we assume that 
∏n

k=lC+1 degϕk =
∏n

k=n+1 degϕk = 1.

Proof. We put Ck :=
{
C ∈ C(ϕ1, . . . , ϕk)

∣∣ codimC = k, C ⊆ {ϕk+1 = 0}
}

for each 
1 ≤ k ≤ n − 1. Then by Definition 5.1 and the assumption (5.3), we have C1 �
· · · � Ck ⊆ C(ϕ1, . . . , ϕk) and 

{
C ∈ C(ϕ1, . . . , ϕk)

∣∣ codimC = k
}

= C(ϕ1, . . . , ϕk) \
(C1 � · · · � Ck−1) for every 1 ≤ k ≤ n − 1, which implies the former assertion of the 
proposition.

To prove the latter, it suffices to show the equality

k∏
l=1

degϕl =
∑

C∈C(ϕ1,...,ϕk)

(
degC · multC(ϕ1, . . . , ϕlC ) ·

k∏
l=lC+1

degϕl

)
(5.5)k

by induction of k, because (5.5)n is the same as (5.4). The equality (5.5)1 is in the form 
degϕ1 =

∑
C∈C(ϕ1) degC · multC(ϕ1), which obviously holds. Multiplying both sides of 

the equality (5.5)k by degϕk+1, we have

k+1∏
l=1

degϕl = degϕk+1 ·
∑

C∈C(ϕ1,...,ϕk)

(
degC · multC(ϕ1, . . . , ϕlC ) ·

k∏
l=lC+1

degϕl

)

=
∑ (

degC · multC(ϕ1, . . . , ϕlC ) ·
k+1∏

degϕl

)

C∈C1�···�Ck l=lC+1
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+
∑

C∈C(ϕ1,...,ϕk)\(C1�···�Ck)

(
degϕk+1 · degC · multC(ϕ1, . . . , ϕk)

)
.

We put C′
k := C(ϕ1, . . . , ϕk) \ (C1 � · · · � Ck) for the brevity of notation. Then for every 

C ∈ C′
k, we have degϕk+1 · degC =

∑r
μ=1 multCμ

(C, ϕk+1) · degCμ by (5.1) and by 
the definition of multCμ

(C, ϕk+1), where C1, . . . , Cr are the irreducible components of 
C∩{ϕk+1 = 0}. Therefore, putting multC′(C, ϕk+1) = 0 for C ′ different from C1, . . . , Cr, 
we have∑
C∈C′

k

(
degϕk+1 · degC · multC(ϕ1, . . . , ϕk)

)

=
∑
C∈C′

k

⎛⎝⎛⎝ ∑
C′∈C(ϕ1,...,ϕk+1)\(C1�···�Ck)

multC′(C,ϕk+1) · degC ′

⎞⎠ · multC(ϕ1, . . . , ϕk)

⎞⎠
=

∑
C′∈C(ϕ1,...,ϕk+1)\(C1�···�Ck)

⎛⎝degC ′ ·

⎛⎝∑
C∈C′

k

multC(ϕ1, . . . , ϕk) · multC′(C,ϕk+1)

⎞⎠⎞⎠
=

∑
C′∈C(ϕ1,...,ϕk+1)\(C1�···�Ck)

(
degC ′ · multC′(ϕ1, . . . , ϕk+1)

)
(5.6)

by Definition 5.2. To summarize, we have (5.5)k+1. �
Proposition 5.3 is reduced to the usual Bezout’s theorem if C(ϕ1, . . . , ϕn) consists only 

of points. Proposition 5.3 is utilized crucially for determining the cardinality # (Sd(λ))
in Section 6.

Remark 5.4. The family C(ϕ1, . . . , ϕm) and the number multC(ϕ1, . . . , ϕm) may vary 
when the order of ϕ1, . . . , ϕm changes. Hence Definitions 5.1 and 5.2 may appear to be 
a little strange in some sense; however this works very well for the computation of the 
cardinality # (Sd(λ)). In the following, we give an example in which the family C(ϕ1, ϕ2)
and the number multP2(ϕ1, ϕ2) differ from C(ϕ2, ϕ1) and multP2(ϕ2, ϕ1) respectively. 
Consider ϕ1 = y(y − x) and ϕ2 = y

(
yz2 + x3 − 2x2z

)
on P2 = {(x : y : z)}. We put 

P1 = {(1 : 1 : 1)}, P2 = {(0 : 0 : 1)}, P3 = {(2 : 0 : 1)}, C0 = {y = 0}, C1 = {x = y} and 
C2 = {yz2 + x3 − 2x2z = 0}. Then we have C(ϕ1, ϕ2) = {C0, P1, P2} and C(ϕ2, ϕ1) =
{C0, P1, P2, P3}. Moreover we have multP2(ϕ1, ϕ2) = multC1(ϕ1) · multP2(C1, ϕ2) =
1 · 2 = 2 and multP2(ϕ2, ϕ1) = multC2(ϕ2) · multP2(C2, ϕ1) = 1 · 3 = 3. However 
Proposition 5.3 holds as we will see

degC0 · multC0(ϕ1) · degϕ2 + deg P1 · multP1(ϕ1, ϕ2) + deg P2 · multP2(ϕ1, ϕ2)

= 1 · 1 · 4 + 1 · 2 + 1 · 2 = 8 = degϕ1 · degϕ2,

degC0 · multC0(ϕ2) · degϕ1 + deg P1 · multP1(ϕ2, ϕ1) + deg P2 · multP2(ϕ2, ϕ1)

+ deg P3 · multP3(ϕ2, ϕ1) = 1 · 1 · 2 + 1 · 2 + 1 · 3 + 1 · 1 = 8 = degϕ2 · degϕ1.
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6. Outline of determining the cardinality # (Sd(λ))

In this section we give an outline of determining the cardinality of the set Sd(λ)
defined in Definition 4.2 for each λ ∈ Vd. The assertions (1) and (4) in Main Theorem I
are also proved in this section.

For the brevity of notation we put

mi := 1
1 − λi

and ϕk(ζ) :=
d−1∑
i=1

miζ
k
i

for each i and k, and we always assume that ζd = 0. Therefore Td(λ) is the set of the 
common zeros of ϕ1, . . . , ϕd−2 in Pd−2, and Sd(λ) consists of an element ζ = (ζ1 : · · · :
ζd−1) ∈ Td(λ) with mutually distinct ζ1, . . . , ζd−1 and ζd. Moreover we may also consider 
that ϕk(ζ) =

∑d
i=1 miζ

k
i .

Lemma 6.1. Let λ be an element of Vd. Then Sd(λ) is discrete in Pd−2. Moreover we 
always have multζ0 (ϕ1, . . . , ϕd−2) = 1 for any ζ0 ∈ Sd(λ).

Proof. We consider the row vectors

∂ϕk

∂ζ
=
(
∂ϕk

∂ζ1
, . . . ,

∂ϕk

∂ζd−1

)
=
(
km1ζ

k−1
1 , . . . , kmd−1ζ

k−1
d−1
)

at ζ = ζ0 ∈ Sd(λ) for 1 ≤ k ≤ d − 1. Since ζ1, . . . , ζd−1 are mutually distinct at ζ = ζ0
and since mi �= 0 for any i, we have

det
t( t(

∂ϕ1

∂ζ

)
, . . . ,

t(
∂ϕd−1

∂ζ

))
= (d− 1)! ·

d−1∏
i=1

mi · det

⎛⎜⎜⎝
1 · · · 1
ζ1 · · · ζd−1
...

. . .
...

ζd−2
1 · · · ζd−2

d−1

⎞⎟⎟⎠ �= 0.

Therefore the row vectors ∂ϕ1
∂ζ , . . . , ∂ϕd−2

∂ζ are linearly independent at ζ = ζ0, which 
proves the lemma. �
Proposition 6.2. The assertion (1) in Main Theorem I holds

Proof. Since the map π(λ) : Sd(λ) → Φ−1
d

(
λ̄
)

is surjective, it suffices to show the 
inequality # (Sd(λ)) ≤ (d −2)! for λ ∈ Vd. The following argument is similar to the proof 
of Proposition 5.3.

Note first that if C, C ′ are irreducible varieties in Pd−2 with codimC ′ = 1 and C � C ′, 
then all the irreducible components of C ∩ C ′ have codimension codimC + 1. Hence a 
component C ∈ C(ϕ1, . . . , ϕk) with codimC < k does not “generate” any elements of 
Sd(λ) since all the components of Sd(λ) have “codim = d − 2” by the discreteness of 
Sd(λ). Therefore putting C1 = C(ϕ1) and
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C′
k := {C ∈ Ck | C � {ϕk+1 = 0}},

Ck+1 :=
⋃

C′∈C′
k

{C | C is an irreducible component of C ′ ∩ {ϕk+1 = 0}}

inductively, we have codimC = k for every C ∈ Ck and also have {{ζ} | ζ ∈ Sd(λ)} ⊆
Cd−2. Here, note that Ck and C′

k above are different from those defined in the proof of 
Proposition 5.3. Applying the equalities (5.1) and (5.2) repeatedly, we have

degϕ1 =
∑

C1∈C1

multC1(ϕ1) · degC1

degϕ2 ·
∑

C1∈C′
1

multC1(ϕ1) · degC1 =
∑

C2∈C2

multC2(ϕ1, ϕ2) · degC2

degϕ3 ·
∑

C2∈C′
2

multC2(ϕ1, ϕ2) · degC2 =
∑

C3∈C3

multC3(ϕ1, ϕ2, ϕ3) · degC3

...

degϕd−2 ·
∑

Cd−3∈C′
d−3

multCd−3(ϕ1, . . . ,ϕd−3) · degCd−3

=
∑

Cd−2∈Cd−2

multCd−2(ϕ1, . . . , ϕd−2) · degCd−2

by a similar calculation to (5.6). Hence we have

d−2∏
k=1

degϕk ≥
∑

Cd−2∈Cd−2

multCd−2(ϕ1, . . . , ϕd−2) · degCd−2 ≥ # (Cd−2) ≥ # (Sd(λ)) .

Since degϕk = k, we have # (Sd(λ)) ≤
∏d−2

k=1 degϕk =
∏d−2

k=1 k = (d − 2)!, which 
completes the proof of the proposition �

Proposition 5.3 and Lemma 6.1 imply that in order to determine the cardinality 
# (Sd(λ)), we only need to find the degree degC and the number multC(ϕ1, . . . , ϕd−l)
for each 2 ≤ l ≤ d − 1 and C ∈ C(ϕ1, . . . , ϕd−2) with dimC = l − 2 included in Bd(λ). 
To state the explicit expression of the set Bd(λ), we shall make a definition of Ed(I) for 
each I ∈ I(λ). Recall the definition of I(λ) for λ ∈ Vd defined in Definition 1.7.

Definition 6.3. Let λ be an element of Vd. For each I = {I1, . . . , Il} ∈ I(λ), we define the 
subset Ed(I) of Pd−2 by

Ed(I) :=
{

(ζ1 : · · · : ζd−1) ∈ Pd−2
∣∣∣∣ If i, j ∈ {1, . . . , d} belong to the same Iu

for some u, then ζi = ζj holds.

}
.
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In the definition of Ed(I), we are assuming ζd = 0. By definition, the relation I ≺ I′

holds for I, I′ ∈ I(λ) if and only if Ed(I) ⊆ Ed(I′) holds. Moreover if # (I) = l, then Ed (I)
is an (l − 2)-dimensional complex plane in Pd−2; hence the degree of Ed (I) is always 1. 
To help the reader to understand the definition of Ed(I), we give an example.

Example 4. Let us consider again λ ∈ V6 with m1 : · · · : m6 = 1 : 1 : 2 : −1 : −1 : −2
introduced in Example 1. The notation follows that in Example 1. In this case, we have

E6(I1) =
{
(ζ1 : ζ2 : 0 : ζ1 : ζ2) ∈ P4 ∣∣ (ζ1 : ζ2) ∈ P1} ,

E6(I2) =
{
(ζ1 : ζ2 : 0 : ζ2 : ζ1) ∈ P4 ∣∣ (ζ1 : ζ2) ∈ P1} ,

E6(I3) = {(1 : 1 : 0 : 1 : 1)}, E6(I4) = {(1 : 0 : 0 : 1 : 0)}, E6(I5) = {(0 : 1 : 0 : 0 : 1)},

E6(I6) = {(1 : 0 : 0 : 0 : 1)},

E6(I7) = {(0 : 1 : 0 : 1 : 0)} and E6(I8) = {(0 : 0 : 1 : 1 : 1)}.

E6(I1) and E6(I2) are complex lines in P4, whereas E6(Iω) are points for 3 ≤ ω ≤ 8. We 
have E6(Iω) ⊂ E6(I1) for ω = 3, 4 and 5, and E6(Iω) ⊂ E6(I2) for ω = 3, 6 and 7.

Remark 6.4. Since we always have the equality 
∑d

i=1 mi = 0, we have

I(λ) =
{
I ⊆ I(λ)

∣∣ ∐
I∈I

I = {1, . . . , d}
}

and I(λ) =
⋃

I∈I(λ) I.

Hence I(λ) gives the equivalent information as I(λ).

Now we are in a position to give the explicit expression of the set Bd(λ).

Lemma 6.5. Let λ be an element of Vd. Then we have the equality

Bd(λ) =
⋃

I∈I(λ)

Ed(I). (6.1)

More strictly, Bd(λ) is a union of Ed(I) only for maximal elements I of I(λ) as set. 
However as we will see later in Example 5, it is better to consider components Ed(I)
for I which are not necessarily maximal in I(λ). Note that the equality (6.1) is only an 
equality as set.
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Proof. For any point ζ0 = (ζ1 : · · · : ζd−1) ∈ Bd(λ), we put

I(ζ0) :=
{
I � {1, 2, . . . , d}

∣∣∣∣ I �= ∅. If i, j ∈ I, then ζi = ζj .
If i ∈ I and j ∈ {1, 2, . . . , d} \ I, then ζi �= ζj .

}
,

# (I(ζ0)) =: l, I(ζ0) =: {I1, . . . , Il} and αu := ζi for i ∈ Iu for each 1 ≤ u ≤ l. Then 
by definition, {1, 2, . . . , d} is a disjoint union of I1, . . . , Il, and α1, . . . , αl are mutually 
distinct, one of which is zero since ζd = 0 and d ∈ Iu for some 1 ≤ u ≤ l. Moreover since 
ζ0 ∈ Bd(λ), we have 2 ≤ l ≤ d − 1.

Under the notation above, the defining equations ϕk(ζ0) =
∑l

u=1
(∑

i∈Iu
mi

)
αk
u = 0

for 1 ≤ k ≤ d − 2 are equivalent to the equality

⎛⎜⎜⎝
1 · · · 1
α1 · · · αl

...
. . .

...
αd−2

1 · · · αd−2
l

⎞⎟⎟⎠
⎛⎜⎝
∑

i∈I1
mi

...∑
i∈Il

mi

⎞⎟⎠ =

⎛⎝0
...
0

⎞⎠ ,

which implies 
∑

i∈Iu
mi = 0 for 1 ≤ u ≤ l since l ≤ d −1. Therefore we have I(ζ0) ∈ I(λ)

and ζ0 ∈ Ed (I(ζ0)) for any ζ0 ∈ Bd(λ), which assures Bd(λ) ⊆
⋃

I∈I(λ) Ed(I). The 
opposite inclusion relation is clear, which completes the proof of the lemma. �
Proposition 6.6. The assertion (4) in Main Theorem I holds.

Proof. By Proposition 4.3, the equality # 
(
Φ−1

d

(
λ̄
))

= (d − 2)! holds if and only if 
# (Sd(λ)) = (d − 2)! holds and that the action of S (K(λ)) on Sd(λ) is trivial. Here, if 
λi = λj holds for some i �= j, then the action of the permutation (i, j) ∈ S (K(λ)) on 
Sd(λ) is not trivial since d ≥ 4. Hence the action of S (K(λ)) on Sd(λ) is trivial if and 
only if λ1, . . . , λd are mutually distinct. Moreover by Lemma 6.5, I(λ) is empty if and 
only if Bd(λ) is empty. Hence to complete the proof of the proposition, we only need to 
show that the condition # (Sd(λ)) = (d − 2)! is equivalent to the condition that Bd(λ)
is empty.

In the following, we use notations defined in the proof of Proposition 6.2. Looking at 
the proof of Proposition 6.2 carefully, we can find that the condition # (Sd(λ)) = (d −2)!
is equivalent to the conditions

C′
k = Ck for 1 ≤ k ≤ d− 3 and Cd−2 = Sd(λ), (6.2)

since degP = 1 for a point P and multζ(ϕ1, . . . , ϕd−2) = 1 for ζ ∈ Sd(λ). Here, we 
identify ζ ∈ Sd(λ) with {ζ} by abuse of notation.

If the conditions C′
k = Ck hold for every 1 ≤ k ≤ d −3, then the set of common zeros of 

ϕ1, . . . , ϕd−2, which we denote by Td(λ) in this paper, consists of discrete points; hence 
we have Td(λ) = Bd(λ) � Sd(λ) = Cd−2. Therefore in this case, Cd−2 = Sd(λ) holds if 
and only if Bd(λ) is empty.
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On the other hand, if C′
k � Ck for some 1 ≤ k ≤ d − 3, then for Ck ∈ Ck \ C′

k, all the 
irreducible components of Ck ∩{ϕk+2 = · · · = ϕd−2 = 0} have codimension greater than 
or equal to 1. Hence in this case Td(λ) = Bd(λ) � Sd(λ) contains components greater 
than or equal to 1. Since Sd(λ) consists of discrete points, Bd(λ) is not empty.

To summarize, we have shown that the condition (6.2) is equivalent to the condition 
that Bd(λ) is empty, which completes the proof of the proposition. �

In the rest of this section we give an example and some theorems that exactly give 
the number multC(ϕ1, . . . , ϕd−l) for each C ∈ C(ϕ1, . . . , ϕd−2) with dimC = l − 2. 
However their proofs, which are the most crucial and difficult part in the proof of the 
main theorems, will be given later in Sections 7 and 8.

Theorem A. Let λ be an element of Vd, and I = {I1, . . . , Il} a maximal element of I(λ). 
Then Ed(I) is an irreducible component of the common zeros of ϕ1, . . . , ϕd−l with its 
intersection multiplicity

multEd(I)(ϕ1, . . . , ϕd−l) =
l∏

u=1
(#(Iu) − 1)!.

Example 5. We consider again λ ∈ V6 introduced in Examples 1 and 4. The notation 
follows that in Examples 1 and 4 again. In this case, we have Φ−1

6
(
λ̄
)

= ∅ by the 
assertion (5) in Main Theorem I, which implies S6(λ) = ∅. Hence in this example, we 
verify S6(λ) = ∅ by the calculation of intersection multiplicities.

By Example 4 and Lemma 6.5, we have B6(λ) = E6(I1) ∪ E6(I2) ∪ E6(I8) as set. 
Moreover by Theorem A, we have multE6(Iω)(ϕ1, ϕ2, ϕ3) = ((2 − 1)!)3 = 1 for ω = 1, 2, 
and multE6(I8)(ϕ1, ϕ2, ϕ3, ϕ4) = ((3 − 1)!)2 = 4. Hence the common zeros of ϕ1, ϕ2 and 
ϕ3 are composed of E6(I1), E6(I2) and some curve C whose degree is degC = 3! −(1 +1) =
4. Moreover since degC · degϕ4 = 4 · 4 = 16, we have

# (S6(λ)) = 16 −
∑

ζ∈C∩{ϕ4(ζ)=0}∩B6(λ)

mult{ζ}(C,ϕ4)

by (5.1). Here, we have E6(I8) ⊆ C ∩ {ϕ4(ζ) = 0} ∩B6(λ) with multE6(I8)(C, ϕ4) = 4.
What occurs in the difference “16 −4 = 12”? It appears to be correct that # (S6(λ)) =

12; however this is not the case. In practice, the curve C intersects the lines E6(I1) and 
E6(I2). Precisely, the intersection points of the two curves C and E6(I1) are E6(I4) and 
E6(I5), while those of C and E6(I2) are E6(I6) and E6(I7); these four points do belong 
to the intersection C ∩ {ϕ4(ζ) = 0} ∩ B6(λ). Moreover as we will see in Theorem B, 
we have multE6(Iω)(C, ϕ4) = multE6(Iω)(ϕ1, . . . , ϕ4) = 3 for 4 ≤ ω ≤ 7. We thus have 
the equality 16 − (4 + 3 + 3 + 3 + 3) = 0, which assures that S6(λ) is empty and that 
the intersection points of C and {ϕ4(ζ) = 0} are E6(Iω) for 4 ≤ ω ≤ 8, which does not 
cause any contradiction. To summarize, the family C(ϕ1, ϕ2, ϕ3, ϕ4) consists of E6(Iω)
for ω = 1, 2, 4, 5, 6, 7 and 8, and the equality
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4! − (1 · 4 + 1 · 4 + 3 + 3 + 3 + 3 + 4) = 0

implies that S6(λ) is an empty set.
As a conclusion of Example 5, we comment about the component E6(I3). The point 

E6(I3) may also appear as an element of C(ϕ1, ϕ2, ϕ3, ϕ4). However by Theorem B below, 
we have multE6(I3)(ϕ1, ϕ2, ϕ3, ϕ4) = 0, which means that in practice E6(I3) is not an 
element of C(ϕ1, ϕ2, ϕ3, ϕ4).

By Example 5, we found that in order to count the number of the set Sd(λ), we must 
also consider the “intersection multiplicities” of “components” which are proper subsets 
of Ed(I) for some maximal I ∈ I(λ).

To state Theorem B, we need the following symbol:

Definition 6.7. For λ = (λ1, . . . , λd) ∈ Vd and I ∈ I(λ), we put λI := (λi)i∈I .

Note that λI always belongs to V#(I) by definition.

Theorem B. Let λ be an element of Vd. Then

(1) we have 
{
C ∈ C(ϕ1, . . . , ϕd−2)

∣∣ C ⊆ Bd(λ)
}
⊆
{
Ed(I)

∣∣ I ∈ I(λ)
}
.

(2) For any 2 ≤ l ≤ d − 1 we have

{
C ∈ C(ϕ1, . . . , ϕd−l)

∣∣ dimC > l − 2
}
⊆
{
Ed(I)

∣∣ I ∈ I(λ)
}
.

(3) For any I = {I1, . . . , Il} ∈ I(λ), we have

multEd(I)(ϕ1, . . . , ϕd−l) =
l∏

u=1

((
# (Iu) − 1

)
· #
(
S#(Iu) (λIu)

))
, (6.3)

where the cardinality #
(
S#(Iu) (λIu)

)
is defined to be 1 if #(Iu) is equal to or smaller 

than 3.

By Proposition 5.3 and Theorem B, the variety Ed(I) for I ∈ I(λ) is really an element 
of C(ϕ1, . . . , ϕd−2), if and only if the right hand side of the equality (6.3) is strictly 
positive.

Remark 6.8. If an element I = {I1, . . . , Il} ∈ I(λ) is maximal, then I(λIu) is empty for 
every u, which implies #

(
S#(Iu) (λIu)

)
=
(
#(Iu) − 2

)
! by Definition 4.2, Lemmas 6.1

and 6.5. Thus Theorem A is a special case of Theorem B.

By Proposition 5.3 and Theorem B, we have the following:
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Proposition C. Let λ be an element of Vd. Then we have the equality

# (Sd(λ)) = (d− 2)! −
∑

I∈I(λ)

⎛⎝multEd(I)(ϕ1, . . . , ϕd−#(I)) ·
d−2∏

k=d−#(I)+1

k

⎞⎠ . (6.4)

Here, for I ∈ I(λ) with #(I) = 2, we assume that 
∏d−2

k=d−#(I)+1 k =
∏d−2

k=d−1 k = 1.

As we have seen in Theorem B and Proposition C, the cardinality # (Sd(λ)) is com-
pletely determined by the data I(λ). Moreover it is practically computed only by hand, 
though the process of its computation may be rather long or complicated. To relieve the 
long computation, we give one more proposition.

Proposition D. For λ ∈ Vd and I = {I1, . . . , Il} ∈ I(λ), the number multEd(I)(ϕ1, . . . ,
ϕd−l) given in the equality (6.3) is also equal to

(
l∏

u=1

(
# (Iu) − 1

)
!
)

−
∑

I
′ ∈ I(λ)

I
′ � I, I

′ �= I

⎛⎝multEd(I′)(ϕ1, . . . , ϕd−#(I′)) ·
l∏

u=1

⎛⎝ #(Iu)−1∏
k=#(Iu)−χu(I′)+1

k

⎞⎠⎞⎠ , (6.5)

where χu (I′) is the one defined in Main Theorem III. Here, if χu(I′) = 1, then we assume 
that 

∏#(Iu)−1
k=#(Iu)−χu(I′)+1 k =

∏#(Iu)−1
k=#(Iu) k = 1.

Theorem A is just a corollary of Theorem B by Remark 6.8. However the proof of 
Theorem B is much harder than that of Theorem A. Therefore we prove Theorem A first 
in Section 7, and based on its proof we prove Theorem B in Section 8. Proposition D is 
also proved in Section 8.

7. Proof of Theorem A

In this section we prove Theorem A introduced in Section 6, together with preparing 
for the proof of Theorem B.

We fix our notation first, which is valid throughout Sections 7 and 8. For a given 
λ ∈ Vd and I = {I1, . . . , Il} ∈ I(λ), we put

#(Iu) =: ru + 1, (ζi)i∈Iu =: (ζu,0, ζu,1, . . . , ζu,ru),

(λi)i∈Iu =: (λu,0, λu,1, . . . , λu,ru)

and mu,i := 1
1−λu,i

. Moreover we assume ζl,0 = ζd = 0. Then we have 
∑l

u=1(ru +1) = d, ∑ru
i=0 mu,i = 0, ϕk(ζ) =

∑l
u=1
∑ru

i=0 mu,iζ
k
u,i and
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Ed(I) =
{
ζ ∈ Pd−2 ∣∣ ζu,0 = ζu,1 = · · · = ζu,ru for 1 ≤ u ≤ l

} ∼= Pl−2.

Furthermore let α1, α2, . . . , αl be any mutually distinct complex numbers with αl = 0, 
and we denote by α the point ζ ∈ Ed(I) which satisfies ζu,i = αu for any u and i. In the 
following, we find multEd(I)(ϕ1, . . . , ϕd−l) by cutting Ed(I) at α by the plane H(α) :={
ζ ∈ Pd−2

∣∣ ζu,0 = αu for 1 ≤ u ≤ l
}
. We put ξu,i := ζu,i − αu, ξu := (ξu,1, . . . , ξu,ru) ∈

Cru , ξ := (ξ1, . . . , ξl) ∈ Cd−l and

ψk(ξ) := ϕk(α + ξ) =
l∑

u=1

(
mu,0α

k
u +

ru∑
i=1

mu,i (αu + ξu,i)k
)
. (7.1)

Then ξ is a local coordinate system of H(α) centered at α.

Proposition 7.1. For any I = {I1, . . . , Il} ∈ I(λ) and for generic α ∈ Ed(I), we have

multEd(I)(ϕ1, . . . , ϕd−l) = mult0(ψ1, . . . , ψd−l). (7.2)

Proof. Obvious by definition. �
In practice, the equality (7.2) always holds for any α if α1, . . . , αl are mutually distinct, 

which will be verified in Proposition 8.10.
We shall rewrite the equations ψk(ξ) = 0. Putting

pu,k(ξu) =
ru∑
i=1

mu,iξ
k
u,i

for each u and k, we have

ψk(ξ) =
l∑

u=1

((
ru∑
i=0

mu,i

)
αk
u +

ru∑
i=1

k∑
h=1

mu,i

(
k

h

)
αk−h
u ξhu,i

)

=
l∑

u=1

k∑
h=1

(
k

h

)
αk−h
u pu,h(ξu),

(7.3)

where 
(
k
h

)
= k(k−1)···(k−h+1)

h! denotes the binomial coefficient. Hence ψk(ξ) is a linear 
combination of pu,h(ξu) for 1 ≤ u ≤ l and 1 ≤ h ≤ k.

Proposition 7.2. The equations ψk(ξ) = 0 for 1 ≤ k ≤ d −l are equivalent to the equations

pu,k(ξu) =
l∑

v=1

d−l∑
h=rv+1

au,k,v,hpv,h(ξv) (7.4)

for 1 ≤ u ≤ l and 1 ≤ k ≤ ru, where the coefficients au,k,v,h are some constants which 
depend only on r1, . . . , rl and α1, . . . , αl.
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Proof. It suffices to show the invertibility of the square matrix composed of the co-
efficients of pu,h(ξu) for 1 ≤ u ≤ l and 1 ≤ h ≤ ru in the right hand side of the 
expressions (7.3). Proposition 7.2 is therefore reduced to the problem on linear algebra, 
whose proof is given in Lemma 7.8 at the end of this section. �

By the aid of Propositions 7.1 and 7.2, we have reduced Theorem A to the following:

Proposition 7.3. Suppose that an element I ∈ I(λ) is maximal. Then for any complex 
numbers au,k,v,h, the origin 0 is a discrete solution of the equations (7.4) for 1 ≤ u ≤ l

and 1 ≤ k ≤ ru with its intersection multiplicity r1! · · · rl!.

In the following, we prove Proposition 7.3.

Lemma 7.4. Let m1, . . . , mr be complex numbers such that 
∑

i∈I mi �= 0 holds for any 
non-empty I ⊆ {1, . . . , r}. We put pk(ξ) :=

∑r
i=1 miξ

k
i for ξ = (ξ1, . . . , ξr) ∈ Cr. Then 

0 is the only solution of the equations pk(ξ) = 0 for 1 ≤ k ≤ r with its intersection 
multiplicity mult0(p1, . . . , pr) = r!.

Proof. By the same argument as in the proof of Lemma 6.5, the existence of a solution 
other than 0 implies the equality 

∑
i∈I mi = 0 for some non-empty I ⊆ {1, . . . , r}; thus 

the contradiction assures the uniqueness of the solution.
By Lemmas 6.1 and 6.5, the set of the common zeros of p1, . . . , pr−1 in Pr−1 is discrete 

and has (r − 1)! points, whose intersection multiplicities are all 1. Hence the set of 
the common zeros of p1, . . . , pr−1 in Cr consists of (r − 1)! lines �1, . . . , �(r−1)!, all of 
which pass the origin. Moreover their intersection multiplicities multi(p1, . . . , pr−1) are 
all 1. Since each line �i intersects the hypersurface {pr(ξ) = 0} only at the origin, 
the intersection multiplicity mult0(�i, pr) is r for each i. We thus have the equality 
mult0(p1, . . . , pr) = r · (r − 1)! = r!. �

The most important part in the proof of Proposition 7.3 is to reduce Proposition 7.3
to Lemma 7.4 by replacing all the coefficients au,k,v,h by 0.

We denote by A = (au,k,v,h) an element of C(l−1)(d−l)2 , where the indices u, k, v, h
range in 1 ≤ u ≤ l, 1 ≤ k ≤ ru, 1 ≤ v ≤ l and rv + 1 ≤ h ≤ d − l. We put

DR :=
{
A = (au,k,v,h) ∈ C(l−1)(d−l)2

∣∣∣ |au,k,v,h| < R for any u, k, v, h
}

and define the map F : Cd−l ×DR → Cd−l ×DR by

(ξ, A) 	→

⎛⎝⎛⎝pu,k(ξu) −
∑
v,h

au,k,v,hpv,h(ξv)

⎞⎠
u,k

, A

⎞⎠ ,

where the indices u, k range in 1 ≤ u ≤ l and 1 ≤ k ≤ ru.
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Proposition 7.5. Suppose that an element I ∈ I(λ) is maximal. Then for any positive real 
number R and any open neighborhood U0 of 0 in Cd−l, there exist open neighborhoods 
U, W of 0 in Cd−l with U ⊆ U0 such that the map

(U ×DR) ∩ F−1 (W ×DR) F→ W ×DR (7.5)

is proper, and therefore a finite branched covering.

In the following, we prove Proposition 7.3 first under the assumption of Proposi-
tion 7.5, and secondly we prove Proposition 7.5.

Proof of Proposition 7.3. First for any given coefficients au,k,v,h, we take a positive real 
number R sufficiently large such that the ball DR contains A = (au,k,v,h). Then the dis-
creteness of the solution 0 is verified by the finiteness of the map (7.5). Secondly we take 
an open neighborhood U0 of 0 in Cd−l sufficiently small such that the only solution of the 
equations (7.4) in U0 is 0. Then the intersection multiplicity of the equations (7.4) at 0 is 
equal to the degree of the branched covering map (7.5), which is also equal to the inter-
section multiplicity of the equations (7.4) at 0 with all the coefficients au,k,v,h equal to 0. 
Therefore it is r1! · · · rl! by Lemma 7.4, which completes the proof of Proposition 7.3. �
Proof of Proposition 7.5. We put |ξu| := max1≤i≤ru |ξu,i|, Zu :=

{
ξu ∈ Cru

∣∣ |ξu| = 1
}

and δu := infξu∈Zu
max1≤k≤ru |pu,k(ξu)| for each u. Then by the maximality of 

I ∈ I(λ) and Lemma 7.4, we have δu > 0 for each u, which implies the inequal-
ity max1≤k≤ru |pu,k(ξu)| ≥ δu|ξu|ru for any ξu ∈ Cru with |ξu| ≤ 1. Hence putting 
δ := min1≤u≤l δu and ||ξ|| := max1≤u≤l |ξu|ru , we have the inequality

max
u,k

|pu,k(ξu)| ≥ δ · ||ξ|| (7.6)

for ||ξ|| ≤ 1.
On the other hand, for any A = (au,k,v,h) ∈ DR and ξ ∈ Cd−l with ||ξ|| ≤ 1, we have

max
u,k

∣∣∣∣∣∣
∑
v,h

au,k,v,hpv,h(ξv)

∣∣∣∣∣∣ ≤
∑
v,h

R

(
rv∑
i=1

|mv,i|
)
|ξv|h

≤ L · ||ξ||1+μ,

(7.7)

where we put L := R
∑l

v=1(d − l − rv) (
∑rv

i=1 |mv,i|) and μ := 1
maxu ru

.
Therefore if we take ξ ∈ Cd−l with ||ξ|| ≤

(
δ

2L
)1/μ, then by the inequalities (7.6)

and (7.7), we have

max
u,k

∣∣∣∣∣∣pu,k(ξu) −
∑

au,k,v,hpv,h(ξv)

∣∣∣∣∣∣
v,h
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≥ max
u,k

|pu,k(ξu)| − max
u,k

∣∣∣∣∣∣
∑
v,h

au,k,v,hpv,h(ξv)

∣∣∣∣∣∣
≥ δ · ||ξ|| − L · ||ξ||1+μ ≥ δ · ||ξ|| − L · δ

2L · ||ξ|| = δ

2 · ||ξ||.

We define a positive number ε sufficiently small such that the inequality 0 < ε <
(

δ
2L
)1/μ

holds and that the set U :=
{
ξ ∈ Cd−l

∣∣ ||ξ|| < ε
}

is included in U0. Moreover we put

W :=
{
η = (ηu,k) ∈ Cd−l

∣∣∣∣ |η| = max
u,k

|ηu,k| < 1
2δε

}
.

Then we can easily verify that the map (7.5) is proper. Therefore by Lemma 7.6 below, 
the map (7.5) is a finite branched covering. �
Lemma 7.6. Let U, V be connected open subsets of Cn, and f : U → V a proper holomor-
phic map. Then f : U → V is a finite branched covering.

Proof of Lemma 7.6. Note that there does not exist a compact analytic subset of Cn

whose dimension is greater than or equal to 1. Since K := {z ∈ U | det(Df)(z) = 0} is 
an analytic subset of U with K �= U , f(K) is also an analytic subset of V by proper 
mapping theorem. Hence the map U \ f−1 ◦ f(K) → V \ f(K) is proper and locally 
homeomorphic, and therefore is a covering space of finite degree, which implies that f is 
a finite branched covering. �

The rest of this section is devoted to Lemma 7.8 and its proof.

Definition 7.7. For non-negative integers n, b, k, h with n > k and b > h, we denote by 
Ab,h

n,k(α) the (n − k, b − h) matrix whose (i, j)-th entry is 
(
i+k−1
j+h−1

)
α(i+k)−(j+h) for each i

and j. Moreover we put Ab
n,k(α) := Ab,0

n,k(α) and Ab
n(α) := Ab,0

n,0(α).

By definition, the matrix Ab,h
n,k(α) is obtained from the (n, b) matrix

Ab
n(α) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0
α 1 0 0 · · · 0
α2 2α 1 0 · · · 0
α3 3α2 3α 1 · · · 0
...

...
...

...
. . .

...

αn−1 (n− 1)αn−2 (
n−1

2
)
αn−3 (

n−1
3
)
αn−4 · · · . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
by cutting off the upper k rows and the left h columns.

Lemma 7.8. We put r := r1 + · · · + rl = d − l, and denote by M the (r, r) square matrix 
defined by
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M =
(
Ar1+1,1

r+1,1 (α1), . . . , Arl+1,1
r+1,1 (αl)

)
.

Then we have

detM = r!
r1! · · · rl!

·
∏

1≤v<u≤l

(αu − αv)rvru .

The matrix M defined above is the same as the square matrix composed of the co-
efficients of pu,h(ξu) for 1 ≤ u ≤ l and 1 ≤ h ≤ ru in the right hand side of the 
expressions (7.3); hence Proposition 7.2 is reduced to Lemma 7.8.

To prove Lemma 7.8, we give a definition and a lemma.

Definition 7.9. For a positive integer b, we denote by Xb the (b, b) diagonal matrix whose 
(i, i)-th entry is i for 1 ≤ i ≤ b, and by Nb the (b, b) nilpotent matrix whose (i, i + 1)-th 
entry is 1 for 1 ≤ i ≤ b − 1 and whose other entries are 0, i.e.,

Xb =

⎛⎜⎜⎝
1 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · b

⎞⎟⎟⎠ and Nb =

⎛⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎠ .

Lemma 7.10. For positive integers n and b, we have the equalities

Ab+1,1
n+1,1(α) = Xn ·Ab

n(α) ·Xb
−1 and An

n(β) ·Ab
n(α) = Ab

n(β + α).

Moreover for positive integers n, b, k with n > k and a non-zero complex number α, we 
have the equality

Ab
n,k(α) ·

b−1∑
h=0

(
−k

h

)(
α−1Nb

)h = αkAb
n−k(α),

where 
(
α−1Nb

)0 denotes the identity matrix of size (b, b).

Proof. The first equality is verified by 
(
i
j

)
=
(
i−1
j−1
)
· ij , the second one by 

(
i
h

)(
h
j

)
=
(
i
j

)(
i−j
h−j

)
and 

∑k
h=0
(
k
h

)
αhβk−h = (α + β)k, and the last one by the equality 

∑j
h=0
(
x
h

)(
y

j−h

)
=(

x+y
j

)
. �

Proof of Lemma 7.8. By Lemma 7.10, we have Aru+1,1
r+1,1 (αu) = Xr ·Aru

r (αu) · (Xru)−1 for 
each 1 ≤ u ≤ l. Hence putting M ′ =

(
Ar1

r (α1), . . . , Arl
r (αl)

)
, we have the equalities

detM = detXr · detM ′ ·
l∏

det (Xru)−1 = r!
r1! · · · rl!

· detM ′.

u=1
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Therefore to prove Lemma 7.8, we only need to show the equality

detM ′ =
∏

1≤v<u≤l

(αu − αv)rvru . (7.8)

If there exist distinct indices u, v with αu = αv, then both hand sides of the equal-
ity (7.8) are clearly zero; hence we only need to consider the equality (7.8) in the case 
that α1, . . . , αl are mutually distinct. Moreover if l = 1, the equality (7.8) trivially holds 
since detM ′ = 1. In the following, we show the equality (7.8) by induction of l.

We put r′ = r2 + · · · + rl and α′
u = αu − α1 for 2 ≤ u ≤ l. Then by Lemma 7.10, we 

have

Ar
r(−α1) ·M ′ =

(
Ar1

r (0), Ar2
r (α′

2), . . . , Arl
r (α′

l)
)

=
(
Ir1 ∗
O M̃

)
,

where we put M̃ =
(
Ar2

r,r1(α
′
2), . . . , Arl

r,r1(α
′
l)
)
, and Ir1 denotes the identity matrix of 

size (r1, r1). Moreover by Lemma 7.10, we have

Aru
r,r1(α

′
u) ·

ru−1∑
h=0

(
−r1
h

)(
(α′

u)−1Nru

)h = (α′
u)r1 ·Aru

r′ (α′
u)

for each 2 ≤ u ≤ l. Hence putting M ′′ =
(
Ar2

r′ (α′
2), . . . , A

rl
r′(α′

l)
)
, we have the equalities

detM ′ = det M̃ = detM ′′ ·
l∏

u=2
(α′

u)r1ru ,

which completes the proof by induction of l. �
8. Proof of Theorem B

In this section we give the proofs of Theorem B and Proposition D introduced in 
Section 6, which are also the most crucial part in the proof of the main theorems. We 
first give a key estimate in Proposition 8.1, which is a substitute for the inequalities (7.6)
and (7.7) in the case that I ∈ I(λ) is not necessarily maximal.

Proposition 8.1. Let r be a positive integer, and m1, . . . , mr non-zero complex numbers 
with 

∑r
i=1 mi �= 0. We put m = (m1, . . . , mr),

pk(ξ) :=
r∑

i=1
miξ

k
i , B(m) :=

{
ξ ∈ Cr

∣∣ pk(ξ) = 0 for 1 ≤ k ≤ r
}
,

and |ξ| := max1≤i≤r |ξi| for ξ = (ξ1, . . . , ξr) ∈ Cr. Then
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(1) for each positive integer h, there exists a positive real number Lh such that the 
inequality

|ph(ξ)| ≤ Lh · max
1≤k≤r

|pk(ξ)| (8.1)

holds for any ξ ∈ Cr with |ξ| = 1.
(2) There exist an open neighborhood O of B(m) ∩ {ξ ∈ Cr

∣∣ |ξ| = 1} in Cr and a 
positive real number L′ such that the inequality

|pr(ξ)| ≤ L′ · max
1≤k≤r−1

|pk(ξ)| (8.2)

holds for any ξ ∈ O.

Proof. We put m0 := − 
∑r

i=1 mi,

I(m) :=
{
{I1, . . . , Il}

∣∣∣∣ I1 � · · · � Il = {0, . . . , r}, l ≥ 1
Iu �= ∅ and

∑
i∈Iu

mi = 0 for 1 ≤ u ≤ l

}
,

E(I) :=
{
(ξ1, . . . , ξr) ∈ Cr

∣∣ If i, j ∈ I ∈ I, then ξi = ξj
}

for each I ∈ I(m), and

I(ξ) :=
{
I ⊆ {0, 1, . . . , r}

∣∣∣∣ I �= ∅. If i, j ∈ I, then ξi = ξj .
If i ∈ I and j ∈ {0, 1, . . . , r} \ I, then ξi �= ξj .

}
for each ξ ∈ B(m), where we are assuming ξ0 = 0. Then we have the equality

B(m) =
⋃

I∈I(m)

E(I), (8.3)

and we also have I(ξ) ∈ I(m) and ξ ∈ E(I(ξ)) for each ξ ∈ B(m) by the same argument 
as the proof of Lemma 6.5. Note that in this setting, the set I(m) always contains the 
element I0 := {{0, . . . , r}}, and that the equalities E(I0) = {0} and I(0) = I0 hold.

We make use of the following auxiliary lemmas:

Lemma 8.2. There exists an open neighborhood O of B(m) ∩ {ξ ∈ Cr
∣∣ |ξ| = 1} in Cr

such that for each positive integer h, there exists a positive real number L′
h such that the 

inequality

|ph(ξ)| ≤ L′
h · max

1≤k≤r−1
|pk(ξ)| (8.4)

holds for any ξ ∈ O.
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Lemma 8.3. Let α be a point in B(m) \ {0}. Then there exists an open neighborhood Oα

of α in Cr such that for each positive integer h, there exists a positive real number Lα,h

such that the inequality

|ph(ξ)| ≤ Lα,h · max
1≤k≤r+1−#(I(α))

|pk(ξ)| (8.5)

holds for any ξ ∈ Oα.

Note that the implications

“Proposition 8.1 =⇒ Lemma 8.2 =⇒ The assertion (2) in Proposition 8.1”

are clear. In the following, we prove Lemmas 8.2, 8.3 and the assertion (1) in Proposi-
tion 8.1 simultaneously by induction. To make the induction work well, we define the 
“depth” of a point α ∈ B(m) by

τm(α) := max
{
ν

∣∣∣∣ I(α) =: I1 � I2 � · · · � Iν
Iω ∈ I(m) for 1 ≤ ω ≤ ν

}
,

where the symbol I � I′ for I, I′ ∈ I(m) denotes that I′ is a refinement of I with I �= I′. 
Note that the inequality τm(0) > τm(α) holds for any α ∈ B(m) \ {0} and that the 
equality τm(0) = 1 holds if and only if B(m) = {0}.

We consider the following assertions for each non-negative integer ν:

(1)ν if τm(0) ≤ ν + 1, then the assertion (1) in Proposition 8.1 holds.
(2)ν If τm(0) ≤ ν + 1, then Lemma 8.2 holds.
(3)ν If τm(α) ≤ ν, then Lemma 8.3 holds.

Note that the assertion (2)0 trivially holds since τm(0) ≤ 1 implies B(m) = {0}. In the 
following, we show the implications

(1)ν−1 ⇒ (3)ν ⇒ (2)ν ⇒ (1)ν

for each ν, which will complete the proofs of Lemmas 8.2, 8.3 and Proposition 8.1. We 
put

Z := {ξ ∈ Cr
∣∣ |ξ| = 1}.

Proof of the implication (3)ν ⇒ (2)ν . We suppose (3)ν and prove (2)ν . When τm(0) ≤
ν + 1, the inequality τm(α) ≤ ν holds for any α ∈ Z ∩ B(m). Hence by the assumption 
(3)ν , we can choose, for each α ∈ Z∩B(m), an open neighborhood Oα of α and a positive 
real number Lα,h for each h ∈ N such that the inequality (8.5) holds for any ξ ∈ Oα. 
Since Z∩B(m) is compact, there exist finite number of open neighborhoods Oα1 , . . . , Oαμ
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which cover Z ∩ B(m). On the other hand, since # (I(α)) ≥ 2 for any α ∈ Z ∩ B(m), 
we always have r + 1 − # (I(α)) ≤ r − 1. Therefore, putting O :=

⋃
1≤ω≤μ Oαω

and 
L′
h := max1≤ω≤μ Lαω,h for each h, we have, by the inequality (8.5), the inequality (8.4)

for any ξ ∈ O. �
Proof of the implication (2)ν ⇒ (1)ν . We suppose (2)ν and verify (1)ν . The set 
Z \ O is compact and does not have common zeros of p1, . . . , pr. Hence the infimum 
infξ∈Z\O max1≤k≤r |pk(ξ)| is positive, which assures the existence of a positive real num-
ber Lh for each h ∈ N satisfying the inequality (8.1) for any ξ ∈ Z \ O. Replacing the 
maximum of Lh and L′

h by Lh, we have the inequality (8.1) for any ξ ∈ Z. �
In the rest of the proof, we suppose (1)ν−1 and prove (3)ν . We fix α ∈ B(m) \ {0}

with τm(α) ≤ ν, put I(α) =: {I1, . . . , Il}, and denote by α0
u the i-th coordinate of α for 

i ∈ Iu. Note that α0
1, . . . , α

0
l are mutually distinct. We put #(Iu) = ru + 1, (ξi)i∈Iu =

(ξu,0, ξu,1, . . . , ξu,ru), (mi)i∈Iu = (mu,0, mu,1, . . . , mu,ru), m(Iu) = (mu,1, . . . , mu,ru), 
xu,i = ξu,i − ξu,0, αu = ξu,0, xu = (xu,1, . . . , xu,ru), x = (x1, . . . , xl), |xu| =
max1≤i≤ru |xu,i| and |x| = max1≤u≤l |xu|. We may assume αl = α0

l = ξl,0 = ξ0 = 0. 
We may also consider the coordinates (α1, . . . , αl−1, x) as a local coordinate system 
around α in Cr. Note that the point (α1, . . . , αl−1, x) coincides with α if and only if 
x = 0 and αu = α0

u for 1 ≤ u ≤ l − 1, and that the point (α1, . . . , αl−1, x) belongs to 
E (I(α)) if and only if x = 0. Furthermore we put

θu,k(xu) =
ru∑
i=1

mu,ix
k
u,i

for 1 ≤ u ≤ l and k ∈ N.
Then we have the equality

pk(ξ) =
l∑

u=1

k∑
h=1

(
k

h

)
αk−h
u θu,h(xu) (8.6)

by the same computation as in the equalities (7.3). Moreover by Lemma 7.8, the equali-
ties (8.6) for 1 ≤ k ≤ r+1 − l are equivalent in some neighborhood of α to the equalities

θu,k(xu) =
r+1−l∑
h=1

bu,k,hph(ξ) +
l∑

v=1

r+1−l∑
h=rv+1

au,k,v,hθv,h(xv) (8.7)

for 1 ≤ u ≤ l and 1 ≤ k ≤ ru, where the coefficients bu,k,h and au,k,v,h depend only on 
r1, . . . , rl and α1, . . . , αl−1. Moreover its dependence is continuous on the domain where 
α1, . . . , αl−1 and 0 are mutually distinct. Therefore taking a small open neighborhood 
Δ of (α0

1, . . . , α
0
l−1) in Cl−1 and a sufficiently large real number R, we may assume that 

the inequalities
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|αu| ≤ R, |bu,k,h| ≤ R and |au,k,v,h| ≤ R

hold for all u, k, v, h and for any (α1, . . . , αl−1) ∈ Δ.
On the other hand, since τm(α) ≤ ν, we always have τm(Iu)(0) ≤ ν for any u. Hence by 

the assumption (1)ν−1, there exists, for each u and for each positive integer h, a positive 
real number Lu,h such that the inequality

|θu,h(xu)| ≤ Lu,h · max
1≤k≤ru

|θu,k(xu)|

holds for any xu ∈ Cru with |xu| = 1. Hence by the homogeneity of θu,k(xu), the 
inequality

|θu,h(xu)| ≤ Lu,h · max
1≤k≤ru

|θu,k(xu)| · |xu|

holds for h ≥ ru +1 and for any xu ∈ Cru with |xu| ≤ 1. Therefore by the equality (8.7), 
we have the following for (α1, . . . , αl−1) ∈ Δ and |x| ≤ 1:

max
u,k

∣∣∣∣∣
r+1−l∑
h=1

bu,k,hph(ξ)

∣∣∣∣∣ ≥ max
u,k

|θu,k(xu)| − max
u,k

∣∣∣∣∣
l∑

v=1

r+1−l∑
h=rv+1

au,k,v,hθv,h(xv)

∣∣∣∣∣
≥
(

1 −R
l∑

v=1

r+1−l∑
h=rv+1

Lv,h · |x|
)

max
u,k

|θu,k(xu)| .

Hence putting

J := max
{

1, 2R
l∑

v=1

r+1−l∑
h=rv+1

Lv,h

}
, L := 2R(r + 1 − l)

and Oα :=
{
(α1, . . . , αl−1, x) ∈ Cr

∣∣ (α1, . . . , αl−1) ∈ Δ, |x| < 1/J
}
,

we have, for any ξ = (α1, . . . , αl−1, x) ∈ Oα, the inequality

max
u,k

|θu,k(xu)| ≤ 2 max
u,k

∣∣∣∣∣
r+1−l∑
h=1

bu,k,hph(ξ)

∣∣∣∣∣ ≤ L · max
1≤k≤r+1−l

|pk(ξ)|. (8.8)

On the other hand, by the equality (8.6), we have, for each positive integer h, the 
inequalities

|ph(ξ)| ≤
l∑

u=1

h∑
k=1

(
h

k

)
Rh−kLu,k · max

1≤k≤ru
|θu,k(xu)| ≤ Lh · max

u,k
|θu,k(xu)| (8.9)

for any (α1, . . . , αl−1, x) ∈ Oα, where we put Lh :=
∑l

u=1
∑h

k=1
(
h
k

)
Rh−kLu,k. Therefore 

by the inequalities (8.8) and (8.9), we have
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|ph(ξ)| ≤ LhL · max
1≤k≤r+1−l

|pk(ξ)|

for any ξ = (α1, . . . , αl−1, x) ∈ Oα and for each h. Thus the assertion (3)ν is proved, 
which completes the proof of Lemmas 8.2, 8.3 and Proposition 8.1. �

In the rest of this section, the notation follows that in Section 7. Therefore λ is an 
element of Vd, and I = {I1, . . . , Il} an element of I(λ), which are fixed throughout the 
rest of this section. Moreover the notation ru, ζu,i, λu,i, mu,i, αu, α, ξu,i, ξu, ξ, ψk(ξ), 
pu,k(ξu), A = (au,k,v,h), DR and the map F is the same as in Section 7. Note that 
Propositions 7.1 and 7.2 are valid for non-maximal I ∈ I(λ)

We give a proposition next which is the most important part in the proof of Theo-
rem B, whose proof is essentially based on Proposition 8.1.

Proposition 8.4. For any positive real numbers R and 1 > ε > 0, and for any open 
neighborhood U0 of 0 in Cd−l, there exist open neighborhoods U, W of 0 in Cd−l with 
U ⊆ U0 such that the map

(U ×DR) ∩ F−1 (Wε ×DR) F→ Wε ×DR (8.10)

is proper, and therefore a finite branched covering, where

Wε := W ∩ Ξε and Ξε :=
{
η = (ηu,k) ∈ Cd−l

∣∣∣∣ min
1≤u≤l

|ηu,ru | > ε · max
u,k

|ηu,k|
}
.

Proof. Remember that the map F : Cd−l ×DR → Cd−l ×DR is defined by F (ξ, A) =
(η, A), where ξ = (ξu,i), η = (ηu,k), A = (au,k,v,h) and

ηu,k = pu,k(ξu) −
l∑

v=1

d−l∑
h=rv+1

au,k,v,hpv,h(ξv)

for 1 ≤ u ≤ l and 1 ≤ k ≤ ru. We put

|ξu| := max
1≤i≤ru

|ξu,i|, |ξ| := max
1≤u≤l

|ξu|, |η| := max
u,k

|ηu,k|,

B̃u(λIu) :=
{
ξu ∈ Cru

∣∣ pu,k(ξu) = 0 for 1 ≤ k ≤ ru
}

and

Zu :=
{
ξu ∈ Cru

∣∣ |ξu| = 1
}
.

By the assertion (1) in Proposition 8.1, there exists a positive real number Lu,h for 
each u and h such that the inequality∣∣pu,h(ξu)

∣∣ ≤ Lu,h · max
1≤k≤ru

∣∣pu,k(ξu)
∣∣

holds for any ξu ∈ Zu. Hence by the homogeneity of pu,k(ξu), we have
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∣∣pu,h(ξu)
∣∣ ≤ Lu,h · max

1≤k≤ru

∣∣pu,k(ξu)
∣∣ · |ξu| (8.11)

for any ξu ∈ Cru with |ξu| ≤ 1 and for each h ≥ ru + 1.
On the other hand, by the assertion (2) in Proposition 8.1, there exist an open neigh-

borhood Ou of B̃u(λIu) ∩ Zu in Cru and a positive real number L′
u for each u such that 

the inequality ∣∣pu,ru(ξu)
∣∣ ≤ L′

u · max
1≤k≤ru−1

∣∣pu,k(ξu)
∣∣

holds for any ξu ∈ Ou. We put

Ωu :=
{
(tξu,1, . . . , tξu,ru) ∈ Cru

∣∣ t ∈ R, t > 0, (ξu,1, . . . , ξu,ru) ∈ Ou ∩ Zu

}
for each u and

Ω :=
{
ξ = (ξ1, . . . , ξl) ∈ Cd−l

∣∣ ξu ∈ Ωu holds for some 1 ≤ u ≤ l
}
.

Then Ωu is an open neighborhood of B̃u(λIu) \ {0} in Cru \ {0}, and Ω is an open set in 
Cd−l. Moreover for ξu ∈ Cru \{0}, the point ξu/|ξu| belongs to the set Ou∩Zu = Ωu∩Zu

if and only if ξu ∈ Ωu. Hence by the homogeneity of pu,k(ξu), we have the inequality∣∣pu,ru(ξu)
∣∣ ≤ L′

u · max
1≤k≤ru−1

∣∣pu,k(ξu)
∣∣ · |ξu| (8.12)

for any ξu ∈ Ωu with |ξu| ≤ 1.
For the simplicity of notation, we put

L := max
1≤u≤l

(
max

ru+1≤h≤d−l
Lu,h

)
and L′ := max

1≤u≤l
L′
u.

For any positive real numbers R and 1 > ε > 0, and for any open neighborhood U0 of 0
in Cd−l, we take a positive real number δ such that the inequality

0 < δ < min
{

1, ε

3(l − 1)(d− l)RL
,

ε

3L′

}
holds and that the set

U :=
{
ξ ∈ Cd−l

∣∣∣ |ξ| < δ
}

is included in U0.
Then for any A = (au,k,v,h) ∈ DR and ξ ∈ U , we have

max
u,k

∣∣∣∣∣
l∑ d−l∑

au,k,v,hpv,h(ξv)

∣∣∣∣∣ ≤
l∑ d−l∑

R · Lv,h · |ξv| · max
1≤k≤rv

∣∣pv,k(ξv)∣∣

v=1 h=rv+1 v=1 h=rv+1
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≤ ε

3 · max
u,k

∣∣pu,k(ξu)
∣∣

by the inequality (8.11), which implies

|η| = max
u,k

|ηu,k| ≥ max
u,k

∣∣pu,k(ξu)
∣∣− max

u,k

∣∣∣∣∣
l∑

v=1

d−l∑
h=rv+1

au,k,v,hpv,h(ξv)

∣∣∣∣∣
≥ 2

3 max
u,k

∣∣pu,k(ξu)
∣∣.

(8.13)

On the other hand, for A = (au,k,v,h) ∈ DR and ξ ∈ U ∩Ω, we have ξu ∈ Ωu for some 
u, which implies

|ηu,ru | ≤
∣∣pu,ru(ξu)

∣∣+ ∣∣∣∣∣
l∑

v=1

d−l∑
h=rv+1

au,ru,v,hpv,h(ξv)

∣∣∣∣∣
≤ L′

u · max
1≤k≤ru−1

∣∣pu,k(ξu)
∣∣ · |ξu| + ε

3 · max
u,k

∣∣pu,k(ξu)
∣∣

≤ 2ε
3 · max

u,k

∣∣pu,k(ξu)
∣∣ ≤ ε · |η|

by the inequality (8.12). Therefore we have

Lemma 8.5. For (ξ, A) ∈ (U ∩ Ω) ×DR, we have F (ξ, A) /∈ Ξε ×DR.

We put

μu := min
ξu∈Zu\Ωu

max
1≤k≤ru

∣∣pu,k(ξu)
∣∣ and μ := min

1≤u≤l
μu.

Then μ is positive by the compactness of Zu\Ωu for each u. Moreover by the homogeneity 
of pu,k(ξu), we have the inequality

max
1≤k≤ru

∣∣pu,k(ξu)
∣∣ ≥ μu|ξu|ru (8.14)

for any ξu ∈ Cru \ Ωu with |ξu| ≤ 1. We put r := maxu ru.

Lemma 8.6. For (ξ, A) ∈ (U \ Ω) ×DR, we have |η| ≥ 2
3μ|ξ|r.

Proof. For ξ ∈ U \ Ω, we have ξu /∈ Ωu for any u. Hence for (ξ, A) ∈ (U \ Ω) ×DR, by 
the inequalities (8.13) and (8.14), we have

|η| ≥ 2
3 max

u,k

∣∣pu,k(ξu)
∣∣ ≥ 2

3 max
1≤u≤l

μu|ξu|ru ≥ 2
3μ|ξ|

r. �
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We put

W :=
{
η = (ηu,k) ∈ Cd−l

∣∣ |η| < 2
3μ · δr

}
.

Then Lemma 8.5 implies the inclusion relation

(U ×DR) ∩ F−1 (Wε ×DR) ⊆ (U \ Ω) ×DR.

Therefore for any (ξ, A) ∈ (U ×DR) ∩ F−1 (Wε ×DR), we have the inequality |η| ≥
2
3μ|ξ|r by Lemma 8.6, which assures that the map (8.10) is proper. Hence by Lemma 7.6
the map (8.10) is a finite branched covering. �
Proposition 8.7. The degree of the branched covering map (8.10) defined in Proposi-
tion 8.4 is equal to the right hand side of the equality (6.3) in Theorem B.

Proof. To consider the map F on

W̃ ′ :=
{
(η, 0) ∈ Wε ×DR

∣∣ ηu,k = 0 for 1 ≤ u ≤ l and 1 ≤ k ≤ ru − 1
}
,

we define the map Fu : Cru → Cru by Fu(ξu) = (pu,1(ξu), . . . , pu,ru(ξu)), and put

Xu :=
{
ξu ∈ Cru

∣∣∣∣∣ pu,k(ξu) = 0 for 1 ≤ k ≤ ru − 1

pu,ru(ξu) �= 0

}

for each u. We consider the following two lemmas:

Lemma 8.8. The Jacobian of the map Fu is not zero at any point of Xu.

Lemma 8.9. The degree of the map pu,ru |Xu
: Xu → C∗ is ru · # (Sru+1(λIu)), where we 

define # (Sru+1(λIu)) = 1 if ru ≤ 2.

Lemma 8.8 assures that the branched covering map (8.10) is unbranched on some 
neighborhood of W̃ ′ in Wε × DR, that Xu is a smooth Riemann surface, and that the 
map pu,ru |Xu

: Xu → C∗ is unbranched. Therefore the degree of the map (8.10) is equal to 

that of the map (U ×DR)∩F−1(W̃ ′) F→ W̃ ′, which is also equal to 
∏

1≤u≤l deg (pu,ru |Xu
); 

hence Lemmas 8.8 and 8.9 imply the proposition.
We show Lemma 8.8 first. Since pu,k(ξu) =

∑ru
i=1 mu,iξ

k
u,i, we have

det(dFu)(ξu) = ru! ·
ru∏
i=1

mu,i ·
∏

1≤i<j≤ru

(ξu,j − ξu,i)

by a similar computation to the proof of Lemma 6.1. Hence the Jacobian is not equal to 
zero if and only if ξu,1, . . . , ξu,ru are mutually distinct. On the other hand, by a similar 
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argument to the proof of Lemma 6.5, we find that for a common zero ξu = (ξu,1, . . . , ξu,ru)
of pu,1, . . . , pu,ru−1, the inequality pu,ru(ξu) �= 0 holds if and only if 0, ξu,1, . . . , ξu,ru are 
mutually distinct. Hence for any ξu ∈ Xu, the Jacobian det(dFu)(ξu) is not zero, which 
completes the proof of Lemma 8.8.

We show Lemma 8.9 next. Since pu,k(ξu) is homogeneous for any u and k, the Riemann 
surface Xu is invariant under the action of C∗; hence the set{

(ξu,1 : · · · : ξu,ru) ∈ Pru−1 ∣∣ (ξu,1, . . . , ξu,ru) ∈ Xu

}
is well-defined and is equal to Sru+1 (λIu) by definition. Therefore Xu consists of 
# (Sru+1 (λIu)) components, each of which is biholomorphic to C∗. Moreover on each 
component of Xu, the degree of the map pu,ru is deg pu,ru = ru, which completes the 
proofs of Lemma 8.9 and the proposition. �

On the basis of Propositions 8.4 and 8.7, we prove the following:

Proposition 8.10. Let ψk(ξ) be the expression defined in the equality (7.1). Then the 
number

mult0(ψ1, . . . , ψd−l)

is equal to the right hand side of the equality (6.3) in Theorem B.

Proof. We define the map Ψ : Cd−l → Cd−l by Ψ(ξ) := (ψk(ξ))1≤k≤d−l, and put

Y :=
{
ξ ∈ Cd−l

∣∣ ψ1(ξ) = · · · = ψd−l−1(ξ) = 0, ψd−l(ξ) �= 0
}
.

We denote by M(r1,...,rl) the square matrix M defined in Lemma 7.8.

Lemma 8.11. For any open neighborhood Ũ ′ of 0 in Cd−l, there exist open neighborhoods 
U ′, W ′ of 0 with U ′ ⊂ Ũ ′ and W ′ ⊂ C such that Y ∩ U ′ is a smooth Riemann surface, 
that the map

Y ∩ U ′ ∩ ψ−1
d−l(W

′ \ {0}) ψd−l→ W ′ \ {0} (8.15)

is an unbranched covering, and that the number mult0(ψ1, . . . , ψd−l) is equal to the degree 
of the map (8.15).

Proof. First we shall check that det(dΨ)(ξ) �= 0 holds for any ξ ∈ Y ∩ U ′, if we take 
U ′ sufficiently small. By a similar argument to the proof of Lemma 6.1, the equality 
det(dΨ)(ξ) = 0 holds for ξ ∈ U ′ if and only if αu+ξu,i = αv+ξv,j holds for some u, i, v and 
j with (u, i) �= (v, j), which is equivalent to the condition that ξu,i = ξu,j holds for some 
u, i and j with i �= j if we take U ′ sufficiently small. Suppose for instance that ξ1,1 = ξ1,2
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holds for some ξ ∈ Y ∩ U ′. Then putting Ψ′(ξ) := (ψk(ξ))1≤k≤d−l−1, considering the 
map M−1

(r1−1,r2,...,rl) ◦Ψ′, and keeping in mind the inequalities (8.13), we have pu,k(ξ) = 0
for any u and k, which contradicts ψd−l(ξ) �= 0. Therefore we have det(dΨ)(ξ) �= 0 for 
any ξ ∈ Y ∩ U ′, which assures that Y ∩ U ′ is a smooth Riemann surface, and that the 
map (8.15) is an unbranched covering if we take W ′ sufficiently small. Moreover since 
det(dΨ)(ξ) �= 0 for any ξ ∈ Y ∩U ′, we have multY ′(ψ1, . . . , ψd−l−1) = 1 for any connected 
component Y ′ of Y ∩ U ′; hence we have mult0(ψ1, . . . , ψd−l) = mult0(Y ∩ U ′, ψd−l) by 
definition, where Y ∩ U ′ is the closure of Y ∩ U ′ in U ′. Since mult0(Y ∩ U ′, ψd−l) is 
clearly equal to the degree of the covering map (8.15), all the assertions in Lemma 8.11
are verified. �

We proceed the proof of the proposition. It is clear that there exists A = (au,k,v,h) ∈
C(l−1)(d−l)2 such that the equality F (ξ, A) = (M−1

(r1,...,rl)◦Ψ(ξ), A) holds for any ξ ∈ Cd−l. 
Let e be the (d −l, 1) column vector whose (d −l)-th entry is 1 and whose other entries are 
0. Moreover we put M−1

(r1,...,rl)e =: η = (ηu,k)1≤u≤l,1≤k≤ru . Then the equality Y ×{A} =
F−1(Cη \ {0}, A) holds, and the map F |Y×{A} is equal to the map M−1

(r1,...,rl) ◦ Ψ|Y . 
Hence, if we can show ηu,ru �= 0 for 1 ≤ u ≤ l, then we have (Cη \ {0}) ∩W ⊆ Wε for 
some ε, which assures that the degree of the covering map (8.15) is equal to that of the 
branched covering map (8.10); thus the proposition will be verified by Proposition 8.7
and Lemma 8.11.

We show ηu,ru �= 0 for 1 ≤ u ≤ l. Suppose ηl,rl = 0 for instance, and put η′ =
t(η1,1, . . . , ηl,rl−1) ∈ Cd−l−1 so that the equality η = t(tη′, 0) holds. Then by the equality 
e = M(r1,...,rl)η, we have 0 = M(r1,...,rl−1,rl−1)η

′. Since M(r1,...,rl−1,rl−1) is invertible, we 
have η′ = 0, which implies η = 0 and the contradiction e = M(r1,...,rl)0 = 0. Therefore 
ηu,ru �= 0 holds for any 1 ≤ u ≤ l, which completes the proof of the proposition. �

We complete the proof of Theorem B.

Proof of Theorem B. Remember the definition of I(α) ∈ I(λ) for α ∈ Bd(λ) in the proof 
of Lemma 6.5. By Lemma 8.3, we can easily verify that for any α ∈ Bd(λ) there exists 
an open neighborhood Oα of α in Pd−2 such that the equality{

ζ ∈ Oα

∣∣ ϕk(ζ) = 0 for 1 ≤ k ≤ d− # (I(α))
}

= Bd(λ) ∩Oα

holds, which implies the first two assertions in Theorem B. On the other hand, the last 
assertion in Theorem B is the direct consequence of Propositions 7.1 and 8.10. �

At the end of this section, we prove Proposition D.

Proof of Proposition D. For the brevity of notation, we put

I′(λ) := I(λ) ∪
{{

{1, . . . , d}
}}

for λ ∈ Vd,
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eI(λ) := multEd(I)(ϕ1, . . . , ϕd−#(I)) for each I ∈ I(λ), and

e{{1,...,d}}(λ) := (d− 1) · # (Sd(λ)) .

Note that {{1, . . . , d}} is the only minimum element of I′(λ) with respect to the partial 
order ≺.

Under the notation above, the equality (6.4) in Proposition C is equivalent to the 
equality

(d− 1)! =
∑

I∈I′(λ)

⎛⎝eI(λ) ·
d−1∏

k=d−#(I)+1

k

⎞⎠ , (8.16)

whereas the equality (6.3) in Theorem B is rewritten in the form

eI(λ) =
l∏

u=1
e{Iu} (λIu) =

∏
I∈I

e{I} (λI) , (8.17)

where I = {I1, . . . , Il} ∈ I(λ), and {I} denotes the minimum element of the set I′ (λI)
for each I ∈ I(λ). On the other hand, Proposition D is rewritten in the form

l∏
u=1

(
# (Iu) − 1

)
! =

∑
I′∈I(λ), I′�I

⎛⎝eI′(λ) ·
l∏

u=1

⎛⎝ #(Iu)−1∏
k=#(Iu)−χu(I′)+1

k

⎞⎠⎞⎠ (8.18)

for I = {I1, . . . , Il} ∈ I(λ), where χu(I′) is the one defined in Main Theorem III. Note 
that I � I holds for any I ∈ I′(λ). To complete the proof of Proposition D, we only need 
to derive the equality (8.18) from the equalities (8.16) and (8.17).

Note that for I = {I1, . . . , Il} ∈ I′(λ), we have{
I′ ∈ I′(λ)

∣∣ I′ � I
}

=
{
I1 ∪ · · · ∪ Il

∣∣ Iu ∈ I′ (λIu) for 1 ≤ u ≤ l
}

by definition. Hence we have the following equalities for I = {I1, . . . , Il} ∈ I(λ) from the 
equalities (8.16) and (8.17):

l∏
u=1

(
# (Iu) − 1

)
! =

l∏
u=1

⎛⎝ ∑
Iu∈I′(λIu )

⎛⎝eIu (λIu) ·
#(Iu)−1∏

k=#(Iu)−#(Iu)+1

k

⎞⎠⎞⎠
=

∑
I1∈I′

(
λI1

) · · ·
∑

Il∈I′
(
λIl

)
l∏

u=1

⎛⎝ ∏
I′
u∈Iu

e{I′
u}
(
λI′

u

)
·

#(Iu)−1∏
k=#(Iu)−#(Iu)+1

k

⎞⎠
=

∑
I ∈I′

(
λ

) · · ·
∑

I ∈I′
(
λ
)
⎛⎝eI1∪···∪Il

(λ) ·
l∏

u=1

⎛⎝ #(Iu)−1∏
k=#(I )−#(I )+1

k

⎞⎠⎞⎠

1 I1 l Il u u
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=
∑

I′∈I(λ), I′�I

⎛⎝eI′(λ) ·
l∏

u=1

⎛⎝ #(Iu)−1∏
k=#(Iu)−χu(I′)+1

k

⎞⎠⎞⎠ .

The equality (8.18) is thus obtained, which completes the proof of Proposition D. �
9. Relation between the sets Sd(λ) and Φ−1

d

(
λ̄
)

In this section we state the explicit relation between the cardinalities # (Sd(λ)) and 
# 
(
Φ−1

d

(
λ̄
))

. Let λ be an element of Vd, which is fixed throughout this section. Remember 
the definitions of K1, . . . , Kq, κ1, . . . , κq, g1, . . . , gq defined in Definition 1.7, and S (K(λ))
defined in Definition 4.2. We put

Σd(λ) :=

⎧⎨⎩(ζ1 : · · · : ζd) ∈ Pd−1

∣∣∣∣∣∣
∑d

i=1 ζi = 0∑d
i=1 miζ

k
i = 0 for 1 ≤ k ≤ d− 2

ζ1, . . . , ζd are mutually distinct

⎫⎬⎭ .

Proposition 9.1. The bijection ι̃ : Σd(λ) → Sd(λ) is defined by

(ζ1 : · · · : ζd) 	→ (ζ1 − ζd : · · · : ζd−1 − ζd).

The group S(K(λ)) acts on Σd(λ) by the permutation of the homogeneous coordinates. 
Moreover the actions of S(K(λ)) on Sd(λ) and Σd(λ) commute with the map ι̃; hence 

we have the bijection Σd(λ)/S(K(λ)) 
∼=→ Φ−1

d

(
λ̄
)
.

Proof. The bijectivity of the map ι(λ) in Proposition 4.7 implies the proposition. �
Lemma 9.2. Let ζ = (ζ1 : · · · : ζd) be an element of Σd(λ) and suppose that there exists a 
non-identity permutation σ ∈ S(K(λ)) with σ · ζ = ζ. Then there exists a unique suffix i
with ζi = 0. Moreover if i ∈ Kw, then the fixing subgroup 

{
σ ∈ S (K(λ))

∣∣ σ · ζ = ζ
}

of 
ζ is a cyclic group whose order divides gw.

Proof. For any σ ∈ S (K(λ)) with σ · ζ = ζ, there exists a non-zero complex number a
satisfying ζσ−1(i) = aζi for 1 ≤ i ≤ d, which induces the injective group homomorphism

S(ζ) :=
{
σ ∈ S (K(λ))

∣∣ σ · ζ = ζ
}
 σ

a	→ a ∈
{
a ∈ C∗ ∣∣ |a| = 1

}
.

In the following, we fix non-identity σ ∈ S(ζ), and denote by t the order of σ. Then 
a = a(σ) is a primitive t-th radical root of 1. Moreover the cardinality # 

({
σs(i)

∣∣ s ∈ Z
})

is equal to 1 or t according as ζi is equal to 0 or not.
Suppose that ζi �= 0 holds for any i. Then t is a common divisor of κ1, . . . , κq. We 

may assume

m = (m1, . . . ,m1︸ ︷︷ ︸, . . . ,md/t, . . . ,md/t︸ ︷︷ ︸)

t t
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and

ζ = (ζ1 : aζ1 : · · · : at−1ζ1 : · · · : ζd/t : aζd/t : · · · : at−1ζd/t).

Under the above notation, the equations ϕk(ζ) = 0 for 1 ≤ k ≤ d − 2 are equivalent 
to the equations 

∑d/t
i=1 miζ

tk
i = 0 for 1 ≤ k ≤ d

t − 1, which implies mi = 0 for any i
by the mutual distinctness of 0, ζt1, . . . , ζtd/t. We thus obtain contradiction, which assures 
the existence of i with ζi = 0.

Next we suppose ζi = 0 and i ∈ Kw. Then for any σ ∈ S(ζ), the order t of σ is a 
common divisor of κ1, . . . , κw−1, κw − 1, κw+1, . . . , κq, i.e., a divisor of gw. Therefore 
S(ζ) is isomorphic to a subgroup of 

{
a ∈ C∗ ∣∣ agw = 1

}
by the map a, which completes 

the proof. �
Remember the definitions of d[t] and λ[t] in Definition 1.7. In the following, the symbol 

a|b denotes that a divides b for positive integers a and b.

Theorem E. If we put sd(λ) := # (Sd(λ)) = # (Σd(λ)) for λ ∈ Vd, then the third and 
fourth steps in Main Theorem III hold.

Proof. For each t ∈
⋃

1≤w≤q

{
t
∣∣ t|gw}, we put

Θt(λ) :=
{
C ∈ Σd(λ)/S (K(λ))

∣∣∣∣ #(C) = # (S (K(λ)))
t

}
and ct(λ) := # (Θt(λ)). Then by Proposition 9.1 and Lemma 9.2, we have

Φ−1
d

(
λ̄
) ∼=← Σd(λ)/S (K(λ)) =

⎛⎝ q∐
w=1

⎛⎝ ∐
t|gw, t≥2

Θt(λ)

⎞⎠⎞⎠∐Θ1(λ),

which implies the equalities (1.5) and (1.6). Hence to complete the proof, we only need to 
show the equalities (1.4) for each t with t ≥ 2. In the rest of the proof, we fix 1 ≤ w ≤ q.

For each t with t|gw and t ≥ 2, we define the group S (K′ (λ[t])) to be isomorphic to 
Sκ1

t
× · · · ×Sκw−1

t
× · · · ×Sκq

t
. Then S (K′ (λ[t])) naturally acts on Sd[t](λ[t]), and we 

have S (K′ (λ[t])) ⊆ S (K (λ[t])). Note that in some cases the equality S (K′ (λ[t])) =
S (K (λ[t])) does not hold, e.g., λ[2] in Example 3 in Section 2. For each divisor b of gwt , 
we put

Θ′
b(λ[t]) :=

{
C ′ ∈ Sd[t](λ[t])/S (K′ (λ[t]))

∣∣∣∣ #(C ′) = # (S (K′ (λ[t])))
b

}
.

Then we have
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Sd[t](λ[t])/S (K′ (λ[t])) =
∐

b|(gw/t)

Θ′
b(λ[t]) (9.1)

by a similar argument to the proof of Lemma 9.2.
Let t, b be positive integers with t|b, b|gw and t ≥ 2, and a a primitive b-th radical 

root of 1. Then a point(
ζ1 : aζ1 : · · · : ab−1ζ1 : · · · : ζd[b]−1 : aζd[b]−1 : · · · : ab−1ζd[b]−1 : 0

)
∈ Pd−1

represents an element of Θb(λ) if and only if(
ζt1 : atζt1 : · · · : at((b/t)−1)ζt1 : · · · : ζtd[b]−1 : atζtd[b]−1 : · · · : at((b/t)−1)ζtd[b]−1

)
∈ Pd[t]−2

represents an element of Θ′
b/t(λ[t]), which gives the bijection between Θb(λ) and 

Θ′
b/t(λ[t]). The bijection and the equality (9.1) imply the equalities (1.4), which com-

pletes the proof of the theorem. �
10. Completion of the proof

In Propositions 4.8, 4.10, 6.2 and 6.6, we had already proved the assertions (5), (7), (1) 
and (4) in Main Theorem I. In this section we complete the rest of the proofs of the main 
theorems.

Proposition 10.1. Main Theorem III and the assertion (2) in Main Theorem I hold.

Proof. These two are the direct consequences of Theorem B, Propositions C, D and 
Theorem E. �
Proposition 10.2. Main Theorem II and the assertion (3) in Main Theorem I hold.

Proof. In the following, we always identify Vd with{
(m1, . . . ,md) ∈ (C∗)d

∣∣∣∣∣
d∑

i=1
mi = 0

}

by the correspondence mi = 1
1−λi

, and define the following spaces:

MP′
d := Φ−1

d (Ṽd),

Xd :=
{
(ζ1, . . . , ζd, ρ) ∈ Cd × C∗ ∣∣ ζ1, . . . , ζd are mutually distinct

}
,

X̃d := Xd/Aut(C),

(PX )d :=
{
(ζ1, . . . , ζd) ∈ Cd

∣∣ ζ1, . . . , ζd are mutually distinct
}
,
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(P̃X )d := (PX )d/Aut(C),

(PV)d :=
{

(m1 : · · · : md) ∈ Pd−1

∣∣∣∣∣
d∑

i=1
mi = 0, mi �= 0 for 1 ≤ i ≤ d

}
,

Yd :=
{

((ζ, ρ),m) ∈ X̃d × Vd

∣∣∣∣∣
d∑

i=1
miζ

k
i =

{
0 (1 ≤ k ≤ d− 2)
− 1

ρ (k = d− 1)

}
,

(PY)d :=
{

(ζ,m) ∈ (P̃X )d × (PV)d

∣∣∣∣∣
d∑

i=1
miζ

k
i = 0 for 1 ≤ k ≤ d− 2

}
,

where the actions of Aut(C) on Xd and (PX )d are defined by

γ · (ζ1, . . . , ζd, ρ) =
(
γ(ζ1), . . . , γ(ζd), a−d+1ρ

)
and γ · (ζ1, . . . , ζd) = (γ(ζ1), . . . , γ(ζd))

for γ(z) = az + b ∈ Aut(C), (ζ1, . . . , ζd, ρ) ∈ Xd and (ζ1, . . . , ζd) ∈ (PX )d. Then we have 
the commutative diagram

(P̃X )d X̃d

(PY)d Yd MP′
d

(PV)d Vd Ṽd,�P

/C∗

�
/C∗

�
/C∗

�pr

/Sd

�
/Sd

�̃
Φ′

d

�∼=

�
Φ′

d

�∼=

�
Φd

�
���

/Sd

where each map is defined to be the natural projection except for the maps Φd and

X̃d  (ζ1, . . . , ζd, ρ) 	→ z + ρ(z − ζ1) · · · (z − ζd) ∈ MP′
d.

Here, the first projection maps Yd → X̃d and (PY)d → (P̃X )d are isomorphisms. The 
d-th symmetric group Sd acts on X̃d, Yd and Vd by the permutation of coordinates. These 
actions of Sd commute with the projection maps Yd

∼=→ X̃d and Φ′
d : Yd → Vd. Moreover 

we have the natural isomorphisms Yd/Sd
∼= X̃d/Sd

∼= MP′
d and Vd/Sd

∼= Ṽd. On the 
other hand, the multiplicative group C∗ acts on X̃d, Yd and Vd by a · (ζ, ρ) = (ζ, a−1ρ)
and a · (m1, . . . , md) = (am1, . . . , amd) for a ∈ C∗, (ζ, ρ) ∈ X̃d and (m1, . . . , md) ∈ Vd. 
These actions of C∗ are free, commute with the actions of Sd, and also commute with 
the projection maps Yd

∼=→ X̃d and Φ′
d : Yd → Vd. We have the natural isomorphisms 

X̃d/C∗ ∼= (P̃X )d ∼= (PY)d ∼= Yd/C∗ and Vd/C∗ ∼= (PV)d.
Therefore to analyze the fiber structure of the map Φd|MP′

d
, we only need to consider 

the second projection map Φ̃′
d : (PY)d → (PV)d and the actions of Sd on Yd and Vd, 

most of which had however already been examined since we can make the following 
identifications as usual:
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(P̃X )d =
{

(ζ1 : · · · : ζd−1) ∈ Pd−2 ∣∣ ζ1, . . . , ζd−1, 0 are mutually distinct
}
,

(PV)d =
{

(m1 : · · · : md−1) ∈ Pd−2

∣∣∣∣∣
d−1∑
i=1

mi �= 0, mi �= 0 for 1 ≤ i ≤ d− 1
}
,

(PY)d =
{

(ζ,m) ∈ (P̃X )d × (PV)d

∣∣∣∣∣
d−1∑
i=1

miζ
k
i = 0 for 1 ≤ k ≤ d− 2

}
.

Especially, we have (Φ̃′
d)−1(P (λ)) = Sd(λ) for any λ ∈ Vd.

For each (I, K) ∈
{
(I(λ),K(λ))

∣∣ λ ∈ Vd

}
, we put

V (I,K) :=
{
λ ∈ Vd

∣∣ I(λ) ⊇ I, K(λ) ⊇ K
}
,

V (I,K) :=
{
λ ∈ Vd

∣∣ I(λ) = I, K(λ) = K
}
,

V (I, ∗) :=
{
λ ∈ Vd

∣∣ I(λ) = I
}
,

V (∗,K) :=
{
λ ∈ Vd

∣∣ K(λ) = K
}

and PV (I, ∗) := P (V (I, ∗)). Remember that Ṽ (I,K) = pr (V (I,K)), Ṽ (I, ∗) =
pr (V (I, ∗)) and Ṽ (∗,K) = pr (V (∗,K)) hold by the definition in Main Theorem II. 
Note that V (I,K) is a Zariski open subset of V (I,K).

First, we show the assertion (3) in Main Theorem I. Let λ0, λ′ be elements of Vd with 
I(λ0) ⊆ I(λ′) and K(λ0) ⊆ K(λ′). Then we have λ′ ∈ V (I(λ0),K(λ0)) and S (K(λ0)) ⊆
S (K(λ′)). By Lemma 6.1 and Implicit function theorem, the second projection map Φ̃′

d

is locally homeomorphic, which implies that the map Φ′
d is also a local homeomorphism. 

We put (Φ′
d)−1(λ′) = {ζ(1), . . . , ζ(sd(λ′))}. Then there exist an open neighborhood U

of λ′ in V (I(λ0),K(λ0)) and holomorphic sections τj : U → Yd for 1 ≤ j ≤ sd(λ′) such 
that Φ′

d ◦ τj = idU and τj(λ′) = ζ(j). Moreover the action of S (K(λ0)) on (Φ′
d)−1(λ′)

is naturally extended to the action of S (K(λ0)) on 
{
τj(λ)

∣∣ 1 ≤ j ≤ sd(λ′)
}

for any 
λ ∈ U . Hence we have # 

(
Φ−1

d (λ̄0)
)
≥ # 

(
Φ−1

d (λ̄′)
)
, which completes the proof of the 

assertion (3) in Main Theorem I.
Let us prove next the assertion (2) in Main Theorem II. Since the map Φ′

d is locally 
homeomorphic and since the map pr |V (∗,K) : V (∗,K) → Ṽ (∗,K) is an unbranched cov-
ering for each K ∈

{
K(λ)

∣∣ λ ∈ Vd

}
, the map Φd|Φ−1

d (Ṽ (∗,K)) : Φ−1
d

(
Ṽ (∗,K)

)
→ Ṽ (∗,K)

is a local homeomorphism, which verifies the assertion (2b) in Main Theorem II. For 
each I ∈

{
I(λ)

∣∣ λ ∈ Vd

}
, the cardinality of (Φ̃′

d)−1(m) does not depend on the choice 

of m ∈ PV (I, ∗), which assures that the map (Φ̃′
d)−1 (PV (I, ∗)) Φ̃′

d→ PV (I, ∗) is 

an unbranched covering. Hence the map (Φ′
d)−1(V (I, ∗)) Φ′

d→ V (I, ∗) is also an un-
branched covering. Therefore since the map V (I, ∗) pr→ Ṽ (I, ∗) is proper, the map 

Φ−1
d

(
Ṽ (I, ∗)

) Φd→ Ṽ (I, ∗) is also proper, which verifies the assertion (2a) in Main Theo-
rem II. The assertions (2a) and (2b) imply the assertion (2c); thus we have completed 
the proof of the assertion (2) in Main Theorem II.
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Finally, we prove the assertion (1) in Main Theorem II. In the following, we consider Vd

as an open dense subset of the vector space Cd−1 =
{

(m1, . . . ,md) ∈ Cd
∣∣∣ ∑d

i=1 mi = 0
}

with the standard inner product. We take λ ∈ Vd, and put I(λ) =: I and K(λ) =: K, 
which are fixed in the rest of the proof. We denote by H(λ) the orthogonal complement of 
the linear subspace spanned by V (I, K) in Cd−1. Then the space H(λ) is invariant under 
the action of S(K(λ)). Hence we can take an arbitrarily small open neighborhood Hε(λ)
of 0 in H(λ) which is invariant under the action of S(K(λ)). Moreover we denote by U(λ)
a sufficiently small open neighborhood of λ in V (I, K). Then the map Hε(λ) × U(λ) 
(h, m) 	→ h + m ∈ Vd defines a local coordinate system around λ in Vd. Hereafter, we 
identify (h, m) ∈ Hε(λ) × U(λ) with h + m ∈ Vd.

Since Hε(λ) and U(λ) are sufficiently small, we have I(h, m) ⊆ I(λ) and K(h, m) ⊆
K(λ) for any (h, m) ∈ Hε(λ) × U(λ). Moreover I(h, m) and K(h, m) do not depend on 
the choice of m ∈ U(λ). Hence, for each h ∈ Hε(λ) and for each connected component Y
of (Φ′

d)−1 ({h} × U(λ)), the map Φ′
d|Y : Y → {h} ×U(λ) is a homeomorphism. Therefore 

we have the natural isomorphism (Φ′
d)−1 (Hε(λ) × U(λ)) → (Φ′

d)−1 (Hε(λ) × {λ})×U(λ)
which commutes with the projection maps onto Hε(λ) × U(λ).

For each m ∈ U(λ), the space Hε(λ) × {m} is invariant under the action of S(K(λ))
with a fixed point (0, m). Moreover we have the natural isomorphism (Hε(λ)/S(K(λ)))×
U(λ) ∼= (Hε(λ) × U(λ)) /S(K(λ)) ∼= pr (Hε(λ) × U(λ)). Hence (Φ′

d)−1 (Hε(λ) × U(λ)) is 
also invariant under the action of S(K(λ)), and its action commutes with the isomor-
phism (Φ′

d)−1 (Hε(λ) × U(λ)) → (Φ′
d)−1 (Hε(λ) × {λ}) × U(λ). Therefore we have the 

isomorphism

Φ−1
d (pr (Hε(λ) × U(λ))) ∼= Φ−1

d (pr (Hε(λ) × {λ})) × U(λ)

which commutes with the projection maps onto pr (Hε(λ) × U(λ)). Hence for each λ ∈
V (I,K),

{
λ′ ∈ V (I,K)

∣∣∣∣ the pair λ, λ′ satisfies the condition
in the assertion (1) in Main Theorem II

}

is an open subset of V (I,K) containing λ. Since V (I,K) is connected, the assertion (1) 
in Main Theorem II holds. �
Proposition 10.3. The assertion (6) in Main Theorem I holds.

Proof. The set Φ−1
d (λ̄) is empty if and only if the set Sd(λ) is empty by Proposition 4.3. 

On the other hand, the cardinality # (Sd(λ)) is completely determined and is computed 
by I(λ). Hence to show the assertion (6) in Main Theorem I, we only need to check all 
the possible cases of I(λ). However this may be hard for d = 6 or 7, and we shall relieve 
it a little.
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By a similar argument to the proof of the assertion (3) in Main Theorem I, we can 
verify that for λ, λ′ ∈ Vd, the inequality # (Sd(λ)) ≥ # (Sd(λ′)) holds if I(λ) ⊆ I(λ′). 
Hence putting

Ĩd :=
{
I(λ)

∣∣∣∣ λ ∈ Vd does not satisfy the assumption
in the assertion (5) in Main Theorem I

}
,

we only need to show the inequality # (Sd(λ)) > 0 for any maximal I(λ) in Ĩd. On the 
other hand, Sd naturally acts on Ĩd by σ ·I(λ) := I(σ ·λ), and the cardinality # (Sd(λ))
is determined only by the equivalence class of I(λ). Moreover the inclusion relation in Ĩd
naturally induces the partial order in Ĩd/Sd. Hence it suffices to show # (Sd(λ)) > 0 for 
any maximal I(λ) in Ĩd/Sd. In the following, we shall consider the cases of d = 4, 5, 6
and 7 individually.

In the case d = 4, the family Ĩ4/S4 consists of the equivalence class of the empty set 
and that of 

{
{{1, 2}, {3, 4}}

}
. Hence the unique maximal element of Ĩ4/S4 is represented 

by 
{
{{1, 2}, {3, 4}}

}
, which is obtained from λ = (λ1, . . . λ4) ∈ V4 with (1 − λ1)−1 : · · · :

(1 − λ4)−1 = 1 : −1 : a : −a, where a �= 0, ±1. For such λ ∈ V4, we have # (S4(λ)) = 1.
Let us consider the case d = 5 next. If I(λ) ∈ Ĩ5 have only one element, then I(λ)

lies in the equivalence class of 
{
{{1, 2}, {3, 4, 5}}

}
. If I(λ) ∈ Ĩ5 have exactly two ele-

ments, then it must be in the equivalence class of 
{
{{1, 2}, {3, 4, 5}}, {{1, 3}, {2, 4, 5}}

}
since any (1 − λi)−1 is not equal to 0. By a similar argument, if I(λ) have at least 
three elements, then it must be in the equivalence class of 

{
{{1, 2}, {3, 4, 5}}, {{1, 3},

{2, 4, 5}}, {{1, 4}, {2, 3, 5}}
}
. However this is obtained only from λ = (λ1, . . . λ5) ∈ V5

with (1 − λ1)−1 : · · · : (1 − λ5)−1 = −1 : 1 : 1 : 1 : −2; hence it is not in Ĩ5 by def-
inition. Therefore the maximal element of Ĩ5/S5 is also unique and is represented by {
{{1, 2}, {3, 4, 5}}, {{1, 3}, {2, 4, 5}}

}
, which is obtained from λ = (λ1, . . . λ5) ∈ V5 with

(1 − λ1)−1 : · · · : (1 − λ5)−1 = −1 : 1 : 1 : a : (−a− 1),

where a �= 0, ±1, −2. For such λ ∈ V5, we have # (S5(λ)) = 2.
In the case d = 6 or 7, we only give the list of λ = (λ1, . . . , λd) ∈ Vd which generate 

all the maximal I(λ) in Ĩd/Sd.
In the case d = 6, there are six maximal elements in Ĩ6/S6, and they are obtained 

from λ = (λ1, . . . λ6) ∈ V6 such that (1 − λ1)−1 : · · · : (1 − λ6)−1 is equal to either of the 
followings:

1 : 1 : −1 : −1 : a : −a, where a �= 0,±1,±2,

1 : −1 : a : −a : (a + 1) : −(a + 1), where a �= 0,−1/2,±1,−2,

1 : 1 : 1 : −1 : a : −(a + 2), where a �= 0,±1,−2,−3,

1 : 1 : a : a : −(a + 1) : −(a + 1), where a �= 0,−1/2,±1,−2,

1 : 1 : 1 : 2 : −2 : −3 or 1 : 1 : 3 : −1 : −2 : −2.
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In the case d = 7, there are 27 maximal elements in Ĩ7/S7, and they are obtained 
from λ = (λ1, . . . λ7) ∈ V7 such that (1 − λ1)−1 : · · · : (1 − λ7)−1 is equal to either of the 
followings:

1 : 1 : 1 : −1 : −1 : a : −(a + 1), where a �= 0,±1,±2,−3,

1 : 1 : 1 : 1 : −1 : a : −(a + 3), where a �= 0,±1,−2,−3,−4,

1 : 1 : 2 : 2 : −1 : −1 : −4, 1 : 1 : 1 : 3 : −1 : −2 : −3, 1 : 1 : 2 : 2 : −1 : −2 : −3,

1 : 1 : 2 : 3 : −1 : −2 : −4, 1 : 1 : 2 : 3 : −2 : −2 : −3, 1 : 2 : 2 : 3 : −1 : −3 : −4,

1 : 1 : 1 : 4 : −1 : −3 : −3, 1 : 2 : 2 : 2 : −1 : −1 : −5, 1 : 1 : 3 : 3 : −1 : −2 : −5,

1 : 1 : 1 : 2 : 2 : −2 : −5, 1 : 1 : 2 : 5 : −2 : −3 : −4, 1 : 1 : 1 : 2 : 3 : −3 : −5,

1 : 1 : 2 : 4 : −2 : −3 : −3, 1 : 2 : 2 : 4 : −1 : −3 : −5, 1 : 1 : 1 : 1 : 3 : −3 : −4,

1 : 1 : 1 : 1 : 2 : −2 : −4, 1 : 2 : 2 : 2 : −1 : −3 : −3, 1 : 1 : 1 : 1 : 2 : −3 : −3,

1 : 1 : 1 : 2 : 2 : −3 : −4, 1 : 1 : 1 : 3 : −2 : −2 : −2, 1 : 1 : 1 : 4 : −2 : −2 : −3,

1 : 1 : 1 : 5 : −2 : −3 : −3, 1 : 1 : 3 : 3 : −2 : −2 : −4, 1 : 1 : 3 : 4 : −2 : −2 : −5 or

1 : 1 : 2 : 2 : 3 : −4 : −5.

We can verify the inequality # (Sd(λ)) > 0 for every λ ∈ Vd listed above, which 
completes the proof of the proposition. �

To summarize the above mentioned, we have completed the proof of the main theo-
rems.
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