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We introduce the semiclassical Wehrl entropy for the nucleon as a measure of complexity of the
multiparton configuration in phase space. This gives a new perspective on the nucleon tomography. We
evaluate the entropy in the small-x region and compare with the quantum von Neumann entropy. We also
argue that the growth of entropy at small x is eventually slowed down due to the Pomeron loop effect.
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I. INTRODUCTION

In the study of the partonic structure of hadrons, the
methods of thermodynamics and statistical physics have
often turned out to be useful. For example, there exist
parametrizations of the parton distribution functions
(PDFs) inspired by the Bose-Einstein and Fermi-Dirac
distributions [1–3]. Another example is that the energy
evolution of the density of soft gluons has been treated as a
reaction-diffusion process in statistical physics [4,5].
Intuitively, if there is a multitude of partons involved in
a given process, it is reasonable to expect that certain
features of observables admit a simple statistical descrip-
tion. The picture becomes increasingly more attractive at
very high energy or in the small-x region where the number
of gluons grows rapidly.
In recent years, several authors have introduced the

notion of entropy of small-x gluons in the hadron wave
function and discussed its connection to the multiplicity in
the final state [6–11] (see also [12–14]). A hadron in its
ground state is a pure quantum state for which the standard
quantum (von Neumann) entropy vanishes. Yet, one can
think of various types of partons with different values of x
as different subsystems which are entangled to each other.
As experiment can only probe a small part of the hadron
wave function above a certain value of x while the rest is
being integrated, an entanglement entropy may be defined
and calculated. However, previous discussions along this
line relied on particular formalisms at small x (the color

glass condensate formalism [9] and the dipole formalism
[10]) which cannot be straightforwardly generalized to the
quark sector or to the large-x region. It would be interesting
to have a more accessible, model-independent definition of
entropy in terms of the quark and gluon field operators so
that it can be analyzed by various perturbative and non-
perturbative means.
In this paper, we study the entropy of quarks and gluons

defined through the QCD Wigner [15] and Husimi [16]
distributions. These are multidimensional phase space
distributions of quarks and gluons inside a hadron, and
have been actively pursued in the context of nucleon
tomography [17–31]. In fact, it is quite natural to define
an entropy via phase space distributions. In quantum
mechanics, the corresponding construction is known as
the Wehrl entropy [32] which is a semiclassical counterpart
of the fully quantum von Neumann entropy. The Wehrl
entropy has been previously discussed in QCD in [33–35]
for a different purpose (the problem of thermalization in
heavy-ion collisions) with a totally different definition. The
present definition, appropriate for the study of the nucleon
structure, was briefly given in [36], but was not explored.
Here, we give a general discussion of the Wehrl entropy
associated with the QCD Husimi distribution [23] and
evaluate it in the small-x region in a model that features the
gluon saturation effects. We also extend the result of [10]
by including the so-called Pomeron loop effect and
demonstrate that this leads to the saturation of entropy at
small x.

II. ENTROPY IN CLASSICAL
AND QUANTUM SYSTEMS

In this section, we briefly review the definitions of
entropy in classical and quantummechanics. For simplicity,
we consider a one-dimensional system, but generalization
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to arbitrary dimensions is straightforward. In statistical
physics and kinetic theory, entropy is defined via the phase
space distribution function fðq; pÞ (q, p are the coordinate
and momentum of particles) as

Scl ¼ −
Z

dqdp
2πℏ

fðq; pÞ ln fðq; pÞ: ð1Þ

If the system is out of equilibrium, f depends on time t
according to the Boltzmann equation d

dt f ¼ C½f�. As is
well known, SclðtÞ increases monotonically and eventually
saturates as the system reaches equilibrium.
For a quantum system, the usual definition of entropy is

the von Neumann entropy,

SvN ¼ −Trρ ln ρ; ð2Þ

where ρ is the density matrix. For a pure state ρ ¼ jψihψ j,
SvN vanishes. A nonzero SvN then measures the degree of
deviation from a pure state. For a density matrix of the form
ρ ¼ P

npnjψnihψnj, it is given by

SvN ¼ −
X
n

pn lnpn: ð3Þ

The two entropies Scl and SvN are not simply related to
each other. In particular, the latter does not reduce to the
former in the limit ℏ → 0. To make a connection between
the two, Wehrl introduced an intermediate definition of
entropy [32]. Let jλi with λ ¼ 1ffiffiffiffi

2ℏ
p ðqþ ipÞ be the coherent

state which is the eigenstate of the annihilation operator
ajλi ¼ λjλi. Taking the trace in (2) in the coherent state
basis, one gets

SvN ¼ −
Z

dqdp
2πℏ

hλjρ ln ρjλi: ð4Þ

The Wehrl entropy is obtained by replacing hλjρ ln ρjλi
with hλjρjλi lnhλjρjλi. Introducing the Husimi distribution
[16],

Hðq; pÞ ¼ hλjρjλi; ð5Þ

one can write the Wehrl entropy as

SW ¼ −
Z

dqdp
2πℏ

Hðq; pÞ lnHðq; pÞ: ð6Þ

Since the function FðxÞ ¼ −x ln x is concave, it follows
that

SW > SvN ≥ 0: ð7Þ

The equality SW ¼ SvN is impossible [32], and this means
that SW is always nonzero even for a pure state.

The Husimi distribution Hðq; pÞ is the closest analog in
quantum mechanics of the classical phase space distribu-
tion fðq; pÞ. One may be tempted to use instead the more
well-known Wigner distribution [15],

Wðq; pÞ ¼
Z

∞

−∞
dye−ipy=ℏhqþ y=2jρjq − y=2i; ð8Þ

and define

S̃W ≡ −
Z

dqdp
2πℏ

Wðq; pÞ lnWðq; pÞ: ð9Þ

However, Wðq; pÞ is not positive definite, and therefore its
logarithm is not well defined everywhere. These two
distributions are related by Gaussian smearing,

Hðq;pÞ¼ 1

πℏ

Z
dq0dp0e−ðq−q0Þ2=ℏ−ðp−p0Þ2=ℏWðq0;p0Þ: ð10Þ

As is clear from this expression, the Husimi distribution
smooths out localized fluctuations in a phase space volume
ΔqΔp < ℏ=2. Such fluctuations are unphysical in that they
do not bring about measurable consequences due to the
uncertainty principle. Due in part to this loss of informa-
tion, SW is always nonvanishing.
As an example, consider a one-dimensional harmonic

oscillator with the Hamiltonian H ¼ p2þq2

2
. For the nth

excited state, the Husimi distribution can be analytically
computed as

Hðq; pÞ ¼ 1

n!
e−H=ℏ

�
H
ℏ

�
n
: ð11Þ

Substituting this into (6), we find

SW ¼ nþ 1þ ln n! − nψðnþ 1Þ; ð12Þ

where ψ is the digamma function. Asymptotically,
SW ≈ 1

2
ln n. On the other hand, the Wigner distribution

oscillates and becomes negative (except for the ground state
n ¼ 0). Thus, the alternative definition (9) does not make
sense. Note that the von Neumann entropy vanishes for all
levels n because they are pure states.

III. WEHRL ENTROPY IN QCD

Let us now consider the entropy of partons in 1þ 3-
dimensional QCD. Since quantum field theory is not
commonly formulated in terms of state vectors jψi and a
density matrix, it appears difficult to define and evaluate the
von Neumann (entanglement) entropy SvN in a model-
independent way. (Such a construction is nevertheless
possible within certain frameworks [9,10,14], and we
shall discuss one such model in a later section.) We thus
turn to the Wehrl entropy. The QCD Wigner distribution
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Wðx; b⊥; k⊥Þ is the generalization of the collinear PDF to include dependences on transverse momentum k⊥ and impact
parameter b⊥. They are defined by (ℏ ¼ 1 in the following)

xW�
q ðx; b⊥; k⊥Þ ¼

Z
dz−d2z⊥
ð2πÞ32Pþ

Z
d2Δ⊥
ð2πÞ2 e

−ixPþz−−ik⊥·z⊥hPþ Δ⊥=2jq̄ðb⊥ þ z=2ÞU�qðb⊥ − z=2ÞjP − Δ⊥=2i; ð13Þ

for quarks and

xW��
g ðx; b⊥; k⊥Þ ¼

Z
dz−d2z⊥
ð2πÞ3Pþ

Z
d2Δ⊥
ð2πÞ2 e

−ixPþz−−ik⊥·z⊥hPþ Δ⊥=2jTr½Fþαðb⊥ þ z=2ÞU�Fþ
α ðb⊥ − z=2ÞU��jP − Δ⊥=2i

ð14Þ

for gluons. jPi is the single hadron state (usually the
proton) with momentum Pμ. U� is the staple-shaped
fundamental Wilson line along the light-cone extending
to z− ¼ �∞. In the quark case, Wþ

q and W−
q are simply

related by PT transformation. In the gluon case, there are
two distinct Wigner distributions, the Weiszäcker-Williams
(WW) distribution WWW ¼ Wþþ

g and the dipole Wigner

distributionWdip ¼ Wþ−
g . The difference in the Wilson line

configuration means that they contribute to different
observables. For instance, Wdip contributes to diffractive
dijet production in ep and pA collisions [24,29].
The QCD Husimi distributions for quarks and gluons are

defined by smearing the corresponding Wigner distribu-
tions in phase space ðb⊥; k⊥Þ [23]

xHqðx; b⊥; k⊥Þ ¼
1

π2

Z
d2b0⊥d2k0⊥e−ðb⊥−b

0⊥Þ2=l2−l2ðk⊥−k0⊥Þ2xWqðx; b0⊥; k0⊥Þ; ð15Þ

xHWW=dipðx; b⊥; k⊥Þ ¼
1

π2

Z
d2b0⊥d2k0⊥e−ðb⊥−b

0⊥Þ2=l2−l2ðk⊥−k0⊥Þ2xWWW=dipðx; b0⊥; k0⊥Þ; ð16Þ

where l is an arbitrary parameter with the dimension of
length. Notice that the widths of the two Gaussians are
inversely related such that the smearing is done in the
minimum uncertainty region Δb⊥Δk⊥ ¼ 1

2
.

Unlike in quantum mechanics, a general proof of
positivity of the QCD Husimi distributions Hq=WW=dip is
unfortunately not available. However, Refs. [25,36] pro-
vided nontrivial examples in which the Husimi distribution
is smooth and positive everywhere although the corre-
sponding Wigner distribution oscillates between positive
and negative values. (We shall see another example of this
below.) We thus assume the positivity of the Husimi
distribution as a working hypothesis and define the
Wehrl entropy as a function of x,

SWðxÞ≡ −
Z

d2b⊥d2k⊥xHðx; b⊥; k⊥Þ ln xHðx; b⊥; k⊥Þ;

ð17Þ
whereH ¼ Hq=WW=dip. We opt to use xH instead ofH since
we are considering entropy per unit rapidity Y ¼ ln 1=x. If
the Wigner distribution turns out to be positive definite in
some approximations or model calculations, we may as
well define an entropy by

S̃WðxÞ≡ −
Z

d2b⊥d2k⊥xWðx; b⊥; k⊥Þ ln xWðx; b⊥; k⊥Þ:

ð18Þ

However, such a definition has limited applicability.
Firstly, the Wigner distribution typically has a perturbative
tail W ∼ 1=k2⊥ which makes the k⊥ integral logarithmically
divergent. While one may argue that this should be cut
off by the resolution scale Q2, a more serious problem
is that most likely positivity is not preserved by the QCD
evolution [22,23].
In the following, we arbitrarily neglect the overall

prefactor of xH and xW inside the logarithm. This factor
modifies the entropy only by an amount proportional
to the collinear parton distribution function (PDF)R
d2b⊥d2k⊥xHq;gðx;b⊥;k⊥Þ¼

R
d2b⊥d2k⊥xWq;gðx;b⊥;k⊥Þ¼

xqðxÞ;xgðxÞ. It thus does not carry nontrivial information
about the phase space structure of partons.
As a trivial example, consider a free electron or a quark

moving in the positive z direction. The Wigner and Husimi
distributions are (setting x ¼ 1)

Wðb⊥; k⊥Þ ¼ δð2Þðb⊥Þδð2Þðk⊥Þ;

Hðb⊥; k⊥Þ ¼
e−b

2⊥=l2−l2k2⊥

π2
: ð19Þ

While the Wigner distribution is positive, its logarithm does
not make sense. The Wehrl entropy can be evaluated from
the Husimi distribution as
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SW ¼ 1

π2

Z
d2b⊥d2k⊥e−b

2⊥=l2−l2k2⊥

�
b2⊥
l2

þ l2k2⊥
�

¼ 2:

ð20Þ

The nonvanishing value reflects our inability to precisely
determine position and momentum simultaneously due to
the uncertainty principle.

IV. WEHRL ENTROPY OF SMALL-x GLUONS

In this section, we shall focus on the Wehrl entropy
generated bygluons in the small-x region or, equivalently, the
large rapidity region Y ¼ ln 1

x ≫ 1. As already mentioned in
the Introduction, the number of gluons grows rapidly as x is
decreased, and these gluons show collective behaviorswhich
may be treated semiclassically. It is thus very interesting to
consider the Wehrl entropy of such states.
As recently shown in [24], at small x the dipole Wigner

distribution takes the following simple form,

xWdipðx; b⊥; k⊥Þ ¼
2Nc

αsð2πÞ2
Z

d2r⊥
ð2πÞ2 e

ik⊥·r⊥
�
1

4
∇2

b⊥ þ k2⊥
�

× Sðx; b⊥; r⊥Þ; ð21Þ

where S is the forward S matrix of a dipole of size r⊥ at
impact parameter b⊥ scattering off the hadron of interest. In
general, Wdip is not positive definite due to the b⊥-
derivative term. An equally simple, general expression of
the WW Wigner distribution is not available, but in a
quasiclassical approximation, one can deduce the following
form [37,38],

xWWWðx; b⊥; k⊥Þ ¼
N2

c − 1

4π4αsNc

Z
d2r⊥eik⊥·r⊥

1

r2⊥
ð1 − S̃Þ;

ð22Þ

where again S̃ ¼ S̃ðx; b⊥; k⊥Þ is the dipole S matrix in the
adjoint representation. After integrating over b⊥, one can
reproduce the WW unintegrated gluon distribution [37,38].
Let us evaluate these expressions in a GBW-like

model [39]

S ¼ e−
1
4
r2⊥Q2

sðx;b⊥Þ; S̃ ¼ e−
1
4
r2⊥Q2

sgðx;b⊥Þ; ð23Þ

where QsðgÞ is the quark (gluon) saturation momentum
which we assume to be of the form Q2

sðgÞðx; b⊥Þ ¼
Λ2ð1xÞαhðgÞðb2⊥Λ2Þ. (Λ is the confinement scale.) Inserting
(23) into (22), we find

xWWWðx; b⊥; k⊥Þ ¼
N2

c − 1

4π4αsNc

×
Z

d2r⊥
r2⊥

eik⊥·r⊥
�
1 − e−

1
4
Q2

sgðx;b⊥Þr2⊥
�

¼ N2
c − 1

4π3αsNc
Γ
�
0;

k2⊥
Q2

sgðx; b⊥Þ
�
; ð24Þ

where Γ½0; z� is the incomplete gamma function. Note that
(24) is positive definite. While this may seem natural in view
of the fact that the WW unintegrated gluon distribution
admits a probabilistic interpretation, we emphasize that the
positivity ofWWW is not guaranteed in general and likely to
be violated by the quantum evolution. Anyway, since (24) is
positive, we can adopt the simpler definition (18) and obtain

S̃W ≡ −
Z

d2b⊥d2k⊥xWðx; b⊥; k⊥Þ ln xWðx; b⊥; k⊥Þ

≃ −
N2

c − 1

4π3αsNc

Z
d2k⊥d2b⊥Γ

�
0;

k2⊥
Q2

sgðx; b⊥Þ
�

× lnΓ
�
0;

k2⊥
Q2

sgðx; b⊥Þ
�

¼ 0.248
N2

c − 1

4παsNc

Z
∞

0

db2⊥Q2
sgðY; b2⊥Þ: ð25Þ

We see that the entropy grows exponentially in rapidity S̃W ∼
Q2

sðYÞ ∼ eαY in this model. This is essentially due to the
transverse dynamics of QCD and is also a consequence of
geometric scaling which holds perfectly for the model at
hand [that is, xWðx; q⊥Þ depends only on the ratio
q2⊥=Q2

sðYÞ]. The parametric dependence S̃W ∝ CFQ2
s=αs

agrees with the previous results in [6,8,9] using other
definitions of entropy. For a large nucleus with atomic
numberA, S̃W ∼

R
d2b⊥Q2

s ∝ A2=3A1=3 ¼ A. This is because
the number of gluons in a large nucleus is additive in the
quasiclassical approximation [40] and is consistent with the
fact that the entropy is an extensive variable.
Next, we turn to the dipole Wigner distribution. Using

the same Gaussian ansatz (23), it is evaluated as

xWdipðx; b⊥; k⊥Þ ¼
2Nc

αsð2πÞ2
� ∂
∂b2⊥ b2⊥

∂
∂b2⊥ þ k2⊥

�
e
−
k2⊥
Q2
s

πQ2
s
:

ð26Þ

For realistic profile functions Q2
sðb⊥Þ, we find that (26) is

not positive definite. This is related to the fact that the
dipole distribution does not have a probabilistic interpre-
tation due to the nontrivial gauge link dependence. We thus
compute instead the Husimi distribution (16):
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xHðx; b⊥; k⊥Þ ¼
2Nc

l4αsπ
2ð2πÞ2

Z
d2b0⊥e

−ðb⊥−b0⊥Þ2=l2− l2

1þl2Q2
s
k2⊥

×

�ðb⊥ − b0⊥Þ2
l2

þ ðl2Q2
sÞ2

ð1þ l2Q2
sÞ2

l2k2⊥

−
1

1þ l2Q2
s

�
l2

1þ l2Q2
s
: ð27Þ

For an arbitrary function Q2
sðb⊥Þ which is monotonically

decreasing with increasing b⊥, (27) is positive definite.
To see this, note that 1

1þl2Q2
0

≤ 1
1þl2Q2

s
< 1 where

Q2
0 ≡Q2

sðb⊥ ¼ 0Þ. We then find

xHðx;b⊥; k⊥Þ >
2Nce−l

2k2⊥

l2αsπ
2ð2πÞ2ð1þ l2Q2

0Þ

×
Z

d2b0⊥e
−
ðb⊥−b0⊥Þ2

l2

�ðb⊥ − b0⊥Þ2
l2

− 1

�
¼ 0:

ð28Þ

We can thus safely compute the Wehrl entropy (17). For
large values of Q2

s , xHðx; b⊥; k⊥Þ depends on k⊥ only
through the ratio k2⊥=Q2

s . It is then clear that the entropy
behaves as SW ∝ NcQ2

s=αs ∼ eαY .
Before leaving this section, we note that one can also

consider the entropy of small-x quarks. The sea quark
distribution has been computed in the small-x formalism
[41–43]. In a quasiclassical approximation, one can intro-
duce the b⊥ dependence in these results as

xWqðx; b⊥; k⊥Þ ¼
Nc

4π4

Z
d2kg⊥Fðx; kg⊥; Q2

sðb⊥ÞÞ

×

�
1 −

k⊥ · ðk⊥ − kg⊥Þ
k2⊥ − ðk⊥ − kg⊥Þ2

× ln
k2⊥

ðk⊥ − kg⊥Þ2
�
; ð29Þ

where Fðkg⊥Þ is the Fourier transform of Sðr⊥Þ. As already
mentioned, this has a perturbatve tail Wq ∼ 1=k2⊥. One can
eliminate this tail by switching to the Husimi distribution
and find SW ∝ NcQ2

s . Thus, the entropy of quarks is smaller
than that of gluons by a factor of αs, as expected.

V. TOWARDS THE SATURATION OF ENTROPY

The results in the previous section suggest that entropy
grows indefinitely as the rapidity Y ¼ ln 1=x is increased.
However, we do not believe that this rapid growth con-
tinues forever. In this respect, it may be useful to draw an
analogy to the classical entropy Eq. (1) of a time-dependent
system. SclðtÞ grows monotonically and eventually reaches
a plateau as the system equilibrates. When this occurs, the
collision term of the Boltzmann equation vanishes because

the “gain” terms are exactly canceled by the “loss” terms. In
QCD, the rapidity Y ¼ ln 1=x plays the role of time, and the
rapid growth of entropy with Y is essentially because one
has included only the gain terms, namely, gluon splittings.
By including the loss terms, or gluon recombinations, the
number of gluons eventually saturates, and so does the
entropy.
Unfortunately, a complete treatment of both the splitting

and recombination effects, or the Pomeron loop effect, is an
unsolved open question. Here we adopt a simple 1þ 0-
dimensional model which was originally introduced in the
context of Mueller’s dipole model [44]. Since there is no
transverse phase space in 1þ 0 dimensions, the Wehrl
entropy cannot be defined. Still, in this model, one can
naturally introduce the density matrix and calculate the von
Neumann entropy as was done recently in [10]. We thus
study the effect of Pomeron loops on the von Neumann
entropy with the hope of gaining some insights into the fate
of entropy in actual QCD.
Let PnðYÞ be the probability to find n dipoles (gluons) at

time Y starting from a single dipole at Y ¼ 0. Pn satisfies
the equation

d
dY

Pn ¼ −αnPn þ αðn − 1ÞPn−1: ð30Þ

This equation only describes gluon splittings, and α > 0 is
the corresponding probability. Defining the generating
function,

ZðY; uÞ ¼
X∞
n¼1

PnðYÞun; ð31Þ

one can show that (30) is equivalent to the following
equation,

d
dY

Z ¼ αðZ2 − ZÞ; ZðY ¼ 0Þ ¼ u; ð32Þ

which can be easily solved as

Z ¼ u
uþ ð1 − uÞeαY : ð33Þ

It immediately follows that

Pn ¼
1

n!
dnZ
dun

				
u¼0

¼ e−αYð1 − e−αYÞn−1: ð34Þ

The von Neumann entropy for this system is defined
[see (3)] and calculated as

SvN ¼ −
X
n

Pn lnPn ≈ αY ¼ lnhni; ð35Þ

at large-Y. Thus, the entropy grows linearly with Y or,
equivalently, logarithmically with the average multiplicity
in this model [10].
Generalization to 1þ 3-dimensional QCD is signifi-

cantly more complicated. The n-dipole probability Pn
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now depends on n two-dimensional vectors fz⊥g specify-
ing the size and impact parameter of dipoles. One then
defines

SvN ¼ −
X∞
n

Z Yn
i

d2z⊥iPnðY; fz⊥gÞ lnPnðY; fz⊥gÞ:

ð36Þ

It seems very hard to evaluate this in full generality. In [10],
the authors used several approximations and obtained
SvN ∼ ðlnQ2

sðYÞÞY ∝ Y2, which however does not agree
with the behavior SW ∼Q2

s ∼ eY found in the previous
section and also in [6,8,9]. This is simply due to different
definitions of entropy. Nevertheless, it is interesting to point
out a structural similarity between the two definitions: In
the dipole approach, and in a frame in which the target
dipole is slowly moving, the S matrix and Pn are linearly
related as (see, e.g., [45])

SðY; b⊥; r⊥Þ ¼
X
n

Z Yn
i

d2z⊥iPnðY; fz⊥gÞs0s1…sn;

ð37Þ

where si¼siðz⊥i;z⊥iþ1Þ, with z⊥0¼b⊥þr⊥
2
, z⊥n¼b⊥−r⊥

2
,

is the S matrix of an elementary dipole off the target.
Therefore, roughly we have SW ∼ S lnS ∼ Pn lnPn. The
difference, then, appears to be attributed to an additional
integration over the impact parameter b⊥ in (17) which, by
dimensional reasons, brings in a factor Q2

s.
1

Returning to the 1þ 0-dimensional problem, we now
discuss the saturation of entropy by including the

recombination effect.2 Following [46,47], we generalize
(30) as

d
dY

Pn ¼ −αnPn þ αðn − 1ÞPn−1 þ βnðnþ 1ÞPnþ1

− βnðn − 1ÞPn; ð38Þ

with β ¼ α2sα > 0 and α2s ≪ 1. The last two terms represent
the 2 → 1 recombination process with probability β. As
shown in [47], Eq. (38) admits a stationary solution (Pn
independent of Y) which is Poissonian,

Pn ¼
Nn

n!
e−N; ð39Þ

where N ≡ 1=α2s ¼ hni. This already indicates that the
entropy will saturate eventually. In order to study the
preasymptotic behavior, it is convenient to consider
the moments

nðkÞ≡X
n

nðn−1Þ � � � ðn−kþ1ÞPn¼
dk

duk
ZðuÞ

				
u¼1

; ð40Þ

where Z is as defined in (31). The equation for nðkÞ reads

d
dY

nðkÞ ¼ kαnðkÞ þ kðk − 1Þαnðk−1Þ

− kβnðkþ1Þ − βkðk − 1ÞnðkÞ: ð41Þ

FIG. 1. von Neumann entropy SvN and hni as a function of rapidity Y. We have set α ¼ 1 and used (45) in (35). The region αY ≲ 1 is
excluded because our approximatios which led to (45) are not valid there.

1In Ref. [10], it was assumed that Pnðfz⊥gÞ was a function
only of the absolute value of dipole sizes jz⊥i − z⊥iþ1j and not of
their impact parameter.

2To avoid confusion, we note that the saturation and unitarity
of scattering amplitudes is achieved already in the model (30)
(and its 1þ 3-dimensional generalization) [44], as suggested by
the nonlinear term in (32). This is a consequence of the “duality”
of high energy evolution: a splitting in the projectile can be
viewed as a recombination in the target. The genuine recombi-
nation effect in the projectile is missing.
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An approximate perturbative solution for nðk¼1Þ, neglecting
terms of order Oðα2sαYÞ and Oðe−αYÞ, has been obtained in
[46] (see Eq. (13) there). It is straightforward to generalize
this result to arbitrary k. We find

nðkÞ ≈
ekαY

ΓðkÞ
X∞
i¼0

ð−XÞi Γðkþ iþ 1ÞΓðiþ kÞ
Γðiþ 1Þ ; ð42Þ

where X ≡ α2seαY . Physically, the index i represents the
number of Pomeron loop insertions. The series (42) has zero
convergence radius, but is Borel summable. Using the
identity ΓðkÞ ¼ R∞

0 dzzk−1e−z, we can cast the above equa-
tion into

nðkÞ ≈ ekαY
Z

∞

0

dz
zk

ð1þ zXÞk e
−z: ð43Þ

This allows us to reconstruct the generating function,

ZðuÞ ¼
X∞
k¼0

1

k!
nðkÞðu − 1Þk ¼

Z
∞

0

dze−zþ
NzX
1þzXðu−1Þ; ð44Þ

where N ≡ 1
α2s
. We thus arrive at

Pn ¼
1

n!
dnZ
dun

				
u¼0

¼ Nn

n!

Z
∞

0

dze−z−
NzX
1þzX

�
zX

1þ zX

�
n
: ð45Þ

It is easy to check that
P∞

n¼0 Pn ¼ 1. In Fig. 1, we show the
von Neumann entropy numerically computed from (45).
Interestingly, the entropy is not monotonic although the
average multiplicity hni is. This indicates that SvN depends
not only on hni but also on higher moments. SvNðYÞ takes a
maximal value when X ¼ α2seαY ∼ 1 and then starts to
decrease and eventually saturates as Y → ∞ to the known
value of the Poisson distribution:

SvN ≈
1

2
lnð2πeNÞ − 1

12N
þOð1=N2Þ: ð46Þ

Note that the coefficient in front of the logarithm SvN ∼
c lnhni has changed from c ¼ 1 in (35) to c ¼ 1=2 [see also
(12)], and this largely accounts for the decrease of entropy
at X > 1.3

This nonmonotonic behavior of entropy seems counter-
intuitive at first sight, but after all there is no “H-theorem”
for this quantity.4 Given that the von Neumann entropy
measures the deviation from a pure state, we may say that
the saturated gluon states probed at asymptotic energy are
more ordered, in analogy to the terminology commonly
used in condensed matter physics. In other words, the
transition to the saturation resembles a phase transition,

although it may not be a genuine phase transition, since we
are considering the quantum fluctuations of partons inside
the wave function of a confined hadron. It is also interesting
to note that the Poisson distribution is known as the
maximum entropy distribution among the ∞-generalized
binomial distributions with fixed mean hni.
At last, we would like to comment on some observation

related to the above probability distribution in Eq. (45).
When X → ∞, Pn reduces to the Poisson distribution (39),
as expected, since it is the stationary fixed point of Eq. (38).
As long as NX ¼ eαY is sufficiently large, we can also take
the limit X ≪ 1 and see that Eq. (45) then reduces to

Pn ¼
�

NX
1þ NX

�
n 1

1þ NX
; ð47Þ

which is known as the geometric distribution with
hni ¼ NX ¼ eαY . In phenomenology, the so-called nega-
tive binomial distribution (NBD), which is defined with
two parameters hni and k as

PNB
n ¼ Γ½nþ k�

Γ½nþ 1�Γ½k�
� hni
kþ hni

�
n
�

k
kþ hni

�
k
; ð48Þ

is often used to describe the multiplicity distribution in high
energy collisions [48,49], and it can be derived from the
small-x framework [50,51]. The geometric distribution is
simply the special case of the NBD with k ¼ 1. It is also
interesting to notice that NBD with arbitrary k always has
larger value of entropy as compared to the Poisson
distribution with the same fixed value of hni. Their entropy
becomes the same when k → ∞, since NBD reduces to the
Poisson distribution in that limit.

VI. CONCLUSIONS

In this paper, we have introduced and studied the Wehrl
entropy of a hadron/nucleus defined through the QCD
Husimi distribution. It quantifies the complexity of the
multiparton distribution in phase space ðb⊥; k⊥Þ, and there-
fore it is a very interesting notion in the tomographic study of
the nucleon. At small x, our result parametrically agrees with
the different definitions of (entanglement) entropy discussed
in [6,8,9]. Unlike in these previous works, however, the
Wehrl entropy is given in terms of the gauge invariant matrix
element of the quark and gluon field operators, and as such, it
is not restricted to small-x gluons.
The phenomenological implications of our result remain

to be explored. It is often argued that the entropy is
proportional to the final state multiplicity dn=dY, and
the result SW ∝ Q2

sðYÞ ∼ eαY appears to be consistent with
the exponential growth of multiplicity with Y ∼ ln s. Now
that we have a model-independent definition of entropy,
such a correspondence can be pursued also at low-energy
(large-x) and/or in quark-dominated processes. Concerning
the high-energy limit, our result in Sec. V suggests that the

3Incidentally, the aforementioned peak can disappear when
N < 2πe, since 1

2
lnð2πeNÞ becomes larger than lnN. We only

focus on the case where N is sufficiently large.
4A similar nonmonotonic behavior of the Wehrl entropy has

been observed in a different context [34,35].

CLASSICAL AND QUANTUM ENTROPY OF PARTON … PHYS. REV. D 97, 094029 (2018)

094029-7



exponential growth will be tamed by the Pomeron loop
effect, possibly leading to a nearly constant (in Y) multi-
plicity. But presumably this occurs at very high energy
which has not been reached yet in modern accelerators.
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