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1. Introduction

A birational map ϕ : X+ ��� X− between smooth varieties, orbifolds, or Deligne–
Mumford stacks is called a K-equivalence if there exists a smooth variety, orbifold, or 
Deligne–Mumford stack X̃ and projective birational morphisms f± : X̃ → X± such that 
f− = ϕ ◦ f+ and f�

+KX+ = f�
−KX− :

X̃
f−f+

X+
ϕ

X−

(1.1)

In this case, the celebrated Crepant Transformation Conjecture of Y. Ruan predicts 
that the quantum (orbifold) cohomology algebras of X+ and X− should be related 
by analytic continuation in the quantum parameters. This conjecture has stimulated 
a great deal of interest in the connections between quantum cohomology (or Gromov–
Witten theory) and birational geometry: see, for example, [9,10,17,18,20,22,23,27,40,44,
52,55–58,61,67,70,74,75]. Ruan’s original conjecture was subsequently refined, revised, 
and extended to higher genus Gromov–Witten invariants, first by Bryan–Graber [19]
under some additional hypotheses, and then by Coates–Iritani–Tseng, Iritani, and Ruan 
in general [33,34,49]. Recall that a toric Deligne–Mumford stack X can be constructed 
as a GIT quotient 

[
Cm/ /ωK

]
of Cm by an action of a complex torus K, where ω is an 

appropriate stability condition, and that wall-crossing in the space of stability conditions 
induces birational transformations between GIT quotients [36,71]. Our main result im-
plies the CIT/Ruan version of the Crepant Transformation Conjecture in genus zero, in 
the case where X+ and X− are complete intersections in toric Deligne–Mumford stacks 
and ϕ : X+ ��� X− arises from a toric wall-crossing. We concentrate initially on the 
case where X+ and X− are toric, deferring the discussion of toric complete intersections 
to §1.3.

1.1. The toric case

We consider toric Deligne–Mumford stacks X± of the form 
[
Cm/ /ωK

]
, where K is 

a complex torus, and consider a K-equivalence ϕ : X+ ��� X− determined by a wall-
crossing in the space of stability conditions ω. The action of T = (C×)m on Cm descends 
to give (ineffective) actions of T on X±, and we consider the T -equivariant Chen–Ruan 
cohomology groups H•

CR,T (X±) [25]. There is a T -equivariant big quantum product �τ
on H•

CR,T (X±), parametrized by τ ∈ H•
CR,T (X±) and defined in terms of T -equivariant 

Gromov–Witten invariants of X±. The T -equivariant quantum connection is a pencil of 
flat connections:
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∇ = d + z−1
N∑
i=0

(φi�τ )dτ i (1.2)

on the trivial H•
CR,T (X±)-bundle over an open set in H•

CR,T (X±); here z ∈ C× is the 
pencil variable, τ ∈ H•

CR,T (X±) is the co-ordinate on the base of the bundle, φ0, . . . , φN

are a basis for H•
CR,T (X±), and τ0, . . . , τN are the corresponding co-ordinates of τ ∈

H•
CR,T (X±), so that τ =

∑N
i=0 τ

iφi.

Theorem 1.1. Let X+ and X− be toric Deligne–Mumford stacks, and let ϕ : X+ ��� X−
be a K-equivalence that arises from a wall-crossing of GIT stability conditions. Then:

(1) the equivariant quantum connections of X± become gauge-equivalent after analytic 
continuation in τ , via a gauge transformation Θ(τ, z) : H•

CR,T (X−) → H•
CR,T (X+)

which is homogeneous of degree zero, regular at z = 0, and preserves the equivariant 
orbifold Poincaré pairing;

(2) there exists a common toric blowup X̃ of X± as in (1.1) such that gauge transfor-
mation Θ coincides with the Fourier–Mukai transformation

FM : K0
T (X−) → K0

T (X+) E �→ (f+)�(f−)�(E)

via the equivariant Gamma-integral structure introduced in §3 below.

Here:

• The Gamma-integral structure on equivariant quantum cohomology is an assignment, 
to each class E ∈ K0

T (X±) of T -equivariant vector bundles on X±, of a flat section 
s(E) for the equivariant quantum connection on X±. This gives a lattice in the space 
of flat sections which is isomorphic to the integral equivariant K-group K0

T (X±). The 
flat section s(E) is, roughly speaking, given by the Chern character of E multiplied 
by a characteristic class of X±, called the Γ̂-class, that is defined in terms of the 
Γ-function. Part (2) of Theorem 1.1 asserts that the flat section s(E) analytically 
continues to s(FM(E)).

• The gauge transformation Θ(τ, z) will in general be non-constant: it depends on 
the parameter τ for the equivariant quantum product, and also on the parameter 
z appearing in the equivariant quantum connection. When written in terms of the 
integral structure, however, it becomes a constant, integral linear transformation.

Remark 1.2. Throughout this paper, when we consider K-equivalence (1.1) of Deligne–
Mumford stacks X±, KX± means the canonical class as a stack; in general this is different 
from the (Q-Cartier) canonical divisor K|X±| of the coarse moduli space |X±|. In par-
ticular, we do not require the coarse moduli spaces |X±| to be Gorenstein.
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Remark 1.3. Gonzalez and Woodward [44] have proved a very general wall-crossing 
formula for Gromov–Witten invariants under variation of GIT quotient, using gauged 
Gromov–Witten theory. Their result, which is a quantum version of Kalkman’s wall-
crossing formula, gives a complete description of how non-equivariant genus-zero 
Gromov–Witten invariants change under wall-crossing. Thus their theorem must im-
ply the non-equivariant version of the first part of Theorem 1.1, and the first part of 
Theorem 1.4. Our methods are significantly less general — they apply only to toric stacks 
and toric complete intersections — but give a much more explicit relationship between 
the genus-zero Gromov–Witten theories.

Theorem 1.1 is slightly imprecisely stated: we give precise statements, once the neces-
sary notation and definitions are in place, as Theorems 5.14, 6.1, and 6.3 below. We now 
explain how Theorem 1.1 implies the CIT/Ruan version of the Crepant Transformation 
Conjecture.

The CIT/Ruan version of the Crepant Transformation Conjecture is stated in terms 
of Givental’s symplectic formalism for Gromov–Witten theory [43]. In our context, this 
associates to X± the vector spaces H(X±) := H•

CR,T (X±)( (z−1) ) equipped with a cer-
tain symplectic form, and encodes T -equivariant genus-zero Gromov–Witten invariants 
via a Lagrangian cone L± ⊂ H(X±). The Givental cone L± for X± determines the big 
quantum product �τ on H•

CR,T (X±), and vice versa. The CIT/Ruan Crepant Trans-
formation Conjecture, made in the context of non-equivariant Gromov–Witten theory, 
asserts that there exists a C( (z−1) )-linear grading-preserving symplectic isomorphism 
U : H(X−) → H(X+), such that after analytic continuation of L± we have U(L−) = L+. 
See [33,34] for more details.

There are various subtle points in the notion of analytic continuation of the (infinite-
dimensional) cones L±, especially under the weak convergence hypotheses that we 
impose, and some necessary foundational material is missing. Thus we choose to state 
Theorem 1.1 in terms of the equivariant quantum connections for X± rather than in 
terms of the Givental cones L±. The two formulations are very closely related, however, 
as we now explain. Let L±(τ, z) denote a fundamental solution for the equivariant quan-
tum connection ∇, that is, a matrix with columns that give a basis of flat sections for ∇. 
The assignment

τ �→ L±(τ, z)−1H+ τ ∈ H•
CR,T (X±) where H+ := H•

CR,T (X±) ⊗ C[z]

gives the family of tangent spaces to the Givental cone L±. As emphasized in [33], this 
defines a variation of semi-infinite Hodge structure in the sense of Barannikov [5]. The 
Givental cone L± can be reconstructed from the semi-infinite variation as:

L± =
⋃
τ

zL±(τ, z)−1H+

Thus part (1) of Theorem 1.1 implies the CIT/Ruan-style Crepant Transformation Con-
jecture whenever it makes sense, with the symplectic transformation U defined in terms 
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of the gauge transformation Θ by U = L−1
+ ΘL−. The fact that U is independent of 

τ follows from the fact that Θ is a gauge equivalence. The fact that U is symplectic 
(or equivalently, the fact that Θ is pairing-preserving) follows from the identification, in 
part (2) of Theorem 1.1, of Θ with the Fourier–Mukai transformation FM. The Fourier–
Mukai transformation is a derived equivalence and thus preserves the Mukai pairings on 
K0

T (X±); this implies, via the equivariant Hirzebruch–Riemann–Roch theorem, that Θ
is pairing-preserving. The identification of Θ with FM also makes clear that the symplec-
tic transformation U has a well-defined non-equivariant limit, since the Fourier–Mukai 
transformation itself can be defined non-equivariantly.

In terms of the symplectic transformation U, part (2) of Theorem 1.1 can be rephrased 
as the commutativity of the diagram

K0
T (X−) FM

Ψ̃−

K0
T (X+)

Ψ̃+

H̃(X−) U H̃(X+)

where H̃(X±) is a variant of Givental’s symplectic space and Ψ̃± are certain ‘framing 
maps’ built from the Gamma-integral structure: see Theorem 6.1. This identification of 
U with a Fourier–Mukai transformation was proposed in [49]. Our results also imply 
Ruan’s original conjecture that the quantum cohomology rings of X± are (abstractly) 
isomorphic, and that the associated F -manifold structures are isomorphic. We refer the 
reader to [27,28,33,34,50] for discussions on the consequence of these conjectures and 
several concrete examples.

1.2. The Mellin–Barnes method and the work of Borisov–Horja

The main ingredients in the proof of Theorem 1.1 are the Mirror Theorem for toric 
stacks [26,29], which determines the equivariant quantum connection ∇ (or, equiva-
lently, the Givental cone L±) in terms of a certain cohomology-valued hypergeometric 
function called the I-function, and the Mellin–Barnes method [6,21], which allows us 
to analytically continue the I-functions for X±. From this point of view, the symplec-
tic transformation U arises as the matrix which intertwines the two I-functions (see 
Theorem 6.1):

UI− = I+.

On the other hand, components of the I-function give hypergeometric solutions to the 
Gelfand–Kapranov–Zelevinsky (GKZ) system of differential equations. The analytic con-
tinuation of solutions to the GKZ system has been studied by Borisov–Horja [12]. They 
showed that, under an appropriate identification of the spaces of GKZ solutions with the 
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K-groups of the corresponding toric Deligne–Mumford stacks, the analytic continuation 
of solutions to a GKZ system is induced by a Fourier–Mukai transformation between 
the K-groups. Our computation may be viewed as a straightforward generalization of 
theirs. The differences from their situation are:

(a) we work with a fully equivariant version, that is, the parameters βj in the GKZ 
system are arbitrary and we use the equivariant K-groups (here βj corresponds to 
the equivariant parameter);

(b) we compute analytic continuation of the I-function corresponding to the big quantum 
cohomology; in terms of the GKZ system, we do not assume that lattice vectors in 
the set1 A lie on a hyperplane of height one.

Since we work equivariantly, we can use the fixed point basis in localized equivariant 
cohomology to calculate the analytic continuation of the I-functions. It turns out that 
analytic continuation via the Mellin–Barnes method becomes much easier to handle in 
the fully equivariant setting, because we only need to evaluate residues at simple poles.2

It is also straightforward to compute the Fourier–Mukai transformation in terms of the 
fixed point basis in the localized equivariant K-group, and hence to see that analytic 
continuation coincides with Fourier–Mukai.

Regarding part (b) above, we choose A to be the set {b1, . . . , bm} ⊂ N of ray vectors 
of an extended stacky fan [11,53]. Since we do not restrict ourselves to the weak Fano 
case, and since we work with Jiang’s extended stacky fans, the generic rank of the GKZ 
system can be bigger than the rank of H•

CR,T (X±). To remedy this, we treat one special 
variable analytically and work formally in the other variables. In fact, the big I-functions 
are not necessarily convergent in all of the variables, and we analytically continue the 
I-function with respect to one specific variable yr. This amounts to considering an adic 
completion of the Borisov–Horja better-behaved GKZ system [14] with respect to the 
other variables. The analytic continuation in Theorem 1.1 occurs across a “global Kähler 
moduli space” M̃◦ which is treated as an analytic space in one direction and as a formal 
scheme in the other directions.

1.3. The toric complete intersection case

Let ϕ : X+ ��� X− be a K-equivalence between toric Deligne–Mumford stacks that 
arises from a toric wall-crossing, as in §1.1. Let X̃ be the common toric blow-up of X±
and let X0 denote the common blow-down; X0 here is a (singular) toric variety, not a 
stack.

1 Recall that Gelfand–Kapranov–Zelevinsky defined the GKZ system in terms of a finite set A ⊂ Zd. They 
called it the A-hypergeometric system.
2 For an example of the complexities caused by non-simple poles, see the orbifold flop calculation in 

[27, §7].
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X̃
f−f+

X+
ϕ

g+

X−

g−

X0

(1.3)

Consider a direct sum of semiample line bundles E0 → X0, and pull this back to give 
vector bundles E+ → X+, Ẽ → X̃, and E− → X−. Let s+, s̃, and s− be sections of, 
respectively, E+, Ẽ, and E− that are compatible via f+ and f− (so f�

+s+ = s̃ = f�
−s−) 

such that the zero loci of s± intersect the flopping locus of ϕ transversely. Let Y+, Ỹ , 
and Y− denote the substacks defined by the zero loci of, respectively, s+, s̃, and s−. In 
this situation there is a commutative diagram:

Ỹ
F− F+

ι̃

Y−

ι−

X̃

f− f+

Y+

ι+

X− X+

(1.4)

where the vertical maps are inclusions, the bottom triangle is (1.1), and the squares are 
Cartesian. The K-equivalence ϕ : X+ ��� X− induces a K-equivalence ϕ : Y+ ��� Y−. 
We now consider the Crepant Transformation Conjecture for ϕ : Y+ ��� Y−.

Since the complete intersections Y± will not in general be T -invariant we consider 
non-equivariant Gromov–Witten invariants and the non-equivariant quantum product. 
(Our assumptions on X± ensure that the non-equivariant theory makes sense.) Denote 
by H•

amb(Y±) the image im ι�± ⊂ H•
CR(Y±), where ι± : Y± → X± is the inclusion map. If 

τ ∈ H•
amb(Y±) then the big quantum product �τ preserves the ambient part H•

amb(Y±) ⊂
H•

CR(Y±). We can therefore define a quantum connection on the ambient part:

∇ = d + z−1
N∑
i=0

(φi�τ )dτ i

This is a pencil of flat connections on the trivial H•
amb(Y±)-bundle over an open set in 

H•
amb(Y±) where, as in (1.2), z ∈ C× is the pencil variable, τ ∈ H•

amb(Y±) is the co-
ordinate on the base of the bundle, φ0, . . . , φN are a basis for H•

amb(Y±), and τ0, . . . , τN

are the corresponding co-ordinates of τ .
In §7.1 below we construct an ambient version of the Gamma-integral structure, which 

is an assignment to each class E in the ambient part of K-theory
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K0
amb(Y±) = im ι�± ⊂ K0(Y±)

of a flat section s(E) for the quantum connection on the ambient part H•
amb(Y±). This 

gives a lattice in the space of flat sections which is isomorphic to the ambient part of 
(integral) K-theory K0

amb(Y±).

Theorem 1.4. Let ϕ : Y+ ��� Y− be a K-equivalence between toric complete intersections 
as above. Then:

(1) the quantum connections on the ambient parts H•
amb(Y±) ⊂ H•

CR(Y±) become gauge-
equivalent after analytic continuation in τ , via a gauge transformation

ΘY (τ, z) : H•
amb(Y−) → H•

amb(Y+)

which is homogeneous of degree zero and regular at z = 0. If Y is compact then ΘY

preserves the orbifold Poincaré pairing;
(2) when expressed in terms of the ambient integral structure, the gauge transformation 

ΘY coincides with the Fourier–Mukai transformation

FM : K0
amb(Y−) → K0

amb(Y+) E �→ (F+)�(F−)�(E)

given by the top triangle in (1.4).

As before, Theorem 1.4 is slightly imprecisely stated: precise statements can be found 
as Theorems 7.2, 7.9, and 7.11 below. Arguing as in §1.1 shows that Theorem 1.4 implies 
the CIT/Ruan version of the Crepant Transformation Conjecture for ϕ : Y+ ��� Y−
whenever it makes sense, with the corresponding map

UY : Hamb(Y−) → Hamb(Y+)

between the ambient parts of the Givental spaces for Y± being given by:

UY = (Lamb
+ )−1ΘY L

amb
−

where Lamb
± are the fundamental solutions for the quantum connections on the ambient 

parts H•
amb(Y±).

The proof of Theorem 1.4 relies on the Mirror Theorem for toric complete inter-
sections [30], and on non-linear Serre duality [31,41,42,73], which relates the quantum 
cohomology of Y± to the quantum cohomology of the total space of the dual bundles 
E∨

±. Since E∨
± is toric, it can be analyzed using Theorem 1.1.

Remark 1.5. The idea of using non-linear Serre duality to analyze wall-crossing has 
been developed independently by Lee–Priddis–Shoemaker [59], in the context of the 
Landau–Ginzburg/Calabi–Yau correspondence.
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Example 1.6. A mirror Y to the quintic 3-fold arises [7,21,46] as a crepant resolution of 
an anticanonical hypersurface in X =

[
P4/(Z/5Z)3

]
. A mirror theorem for Y has been 

proved by Lee–Shoemaker [60]. The variety Y is a Calabi–Yau 3-fold with h1,1(Y ) = 101. 
There are many birational models of Y as toric hypersurfaces, corresponding to the many 
different lattice triangulations of the boundary of the fan polytope for X. Theorem 1.4
implies that the quantum connections (and quantum cohomology algebras) of all of 
these birational models become isomorphic after analytic continuation over the Kähler 
moduli space (which is 101-dimensional), and that the isomorphisms involved arise from 
Fourier–Mukai transformations.

1.4. A note on hypotheses

Since we work with T -equivariant Gromov–Witten invariants of the toric Deligne–
Mumford stacks X±, we do not need to assume that the coarse moduli spaces |X±| of 
X± are projective. We insist instead that |X±| is semi-projective, i.e. that |X±| is pro-
jective over the affinization Spec(H0(|X±|, O)), and also that X± contains at least one 
torus fixed point. These conditions are equivalent to demanding that X± is obtained as 
the GIT quotient 

[
Cm/ /ωK

]
of a vector space by the linear action of a complex torus K; 

they ensure that the equivariant quantum cohomology of X± admits a non-equivariant 
limit. In particular, therefore, the non-equivariant version of the Crepant Transformation 
Conjecture follows automatically from Theorem 1.1.

We do not assume, either, that the stacks X± or Y± satisfy any sort of positivity 
or weak Fano condition; put differently, we do not impose any additional convergence 
hypotheses on the I-functions for X± and Y±. This extra generality is possible because 
of our hybrid formal/analytic approach, where we single out one variable yr and ana-
lytically continue in that variable alone. The same technique allows us to describe the 
analytic continuation of big quantum cohomology (or its ambient part), as opposed to 
small quantum cohomology. In general, obtaining convergence results for big quantum 
cohomology is hard.

1.5. The hemisphere partition function

Recently there was some progress in physics in the exact computation of hemisphere 
partition functions for gauged linear sigma models. Hori–Romo [48] explained why the 
Mellin–Barnes analytic continuation of hemisphere partition functions should be com-
patible with brane transportation [47] in the B-brane category. In the language of this 
paper, the hemisphere partition function corresponds to a component of the K-theoretic 
flat section s(E), and brane transportation corresponds to the Fourier–Mukai transfor-
mation. Theorem 1.1 thus confirms the result of Hori–Romo. Note that the relevant 
equivalence between B-brane categories should depend on a choice of a path of analytic 
continuation, and that the Fourier–Mukai transformation in Theorem 1.1 corresponds 
to a specific choice of path (see Fig. 1).
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1.6. Plan of the paper

We fix notation for equivariant Gromov–Witten invariants and equivariant quantum 
cohomology in §2, and introduce the equivariant Gamma-integral structure in §3. We 
establish notation for toric Deligne–Mumford stacks in §4. In §5 we study K-equivalences 
ϕ : X+ ��� X− of toric Deligne–Mumford stacks arising from wall-crossing, constructing 
global versions of the equivariant quantum connections for X±. We prove the Crepant 
Transformation Conjecture for toric Deligne–Mumford stacks (Theorem 1.1) in §6, and 
the Crepant Transformation Conjecture for toric complete intersections (Theorem 1.4) 
in §7.

1.7. Notation

We use the following notation throughout the paper.

• X denotes a general smooth Deligne–Mumford stack in §2 and §3; it denotes a 
smooth toric Deligne–Mumford stack in §4 and later.

• T = (C×)m.
• RT = H•

T (pt, C).
• λj ∈ H2

T (pt, C) = Lie(T )� is the character of T = (C×)m given by projection to the 
jth factor, so that RT = C[λ1, . . . , λm].

• ST is the localization of RT with respect to the set of non-zero homogeneous elements.
• Z[T ] = K•

T (pt), so that Z[T ] = Z[e±λ1 , . . . , e±λm ].
• μl = {z ∈ C× : zl = 1} is a cyclic group of order l.

2. Equivariant quantum cohomology

In this section we establish notation for various objects in equivariant Gromov–Witten 
theory. We introduce equivariant Chen–Ruan cohomology in §2.2, equivariant Gromov–
Witten invariants in §2.3, equivariant quantum cohomology in §2.4, Givental’s symplectic 
formalism in §2.5, and the equivariant quantum connection in §2.6.

2.1. Smooth Deligne–Mumford stacks with torus action

Let X be a smooth Deligne–Mumford stack of finite type over C equipped with an 
action of an algebraic torus T ∼= (C×)m. Let |X| denote the coarse moduli space of X
and let IX denote the inertia stack X ×|X| X of X: a point on IX is given by a pair 
(x, g) with x ∈ X and g ∈ Aut(x). We write

IX =
Xv

v∈B
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for the decomposition of IX into connected components. We assume the following con-
ditions:

(1) the coarse moduli space |X| is semi-projective, i.e. is projective over the affinization 
SpecH0(|X|, O) = SpecH0(X, O);

(2) all the T -weights appearing in the T -representation H0(X, O) are contained in a 
strictly convex cone in Lie(T )∗, and the T -invariant subspace H0(X, O)T is C;

(3) the inertia stack IX is equivariantly formal, that is, the T -equivariant cohomology 
H•

T (IX; C) is a free module over RT := H•
T (pt; C) and one has a (non-canonical) 

isomorphism of RT -modules H•
T (IX; C) ∼= H•(IX; C) ⊗C RT .

These conditions allow us to define Gromov–Witten invariants of X and also the equivari-
ant (Dolbeault) index of coherent sheaves on X. The first and second conditions together 
imply that the fixed set XT is compact. The third condition seems to be closely related 
to the first two, but it implies for example the localization of equivariant cohomology: 
the restriction H•

T (IX; C) → H•
T (IXT ; C) to the T -fixed locus is injective and becomes 

an isomorphism after localization (see [45]). Later we shall restrict to the case where X
is a toric Deligne–Mumford stack, where conditions (1)–(3) automatically hold, but the 
definitions in this section make sense for general X satisfying these conditions.

2.2. Equivariant Chen–Ruan cohomology

Let H•
CR,T (X) denote the even part of the T -equivariant orbifold cohomology group 

of Chen and Ruan. It is defined as the even degree part of the T -equivariant cohomology

Hk
CR,T (X) =

⊕
v∈B:k−2ιv∈2Z

Hk−2ιv
T (Xv;C)

of the inertia stack IX. The grading of H•
CR,T (X) is shifted from that of H•

T (IX) by the 
so-called age or degree shifting number ιv ∈ Q [24]; note that we consider only the even 
degree classes in H•

T (IX). (For toric stacks, all cohomology classes on IX are of even 
degree.) Equivariant formality of IX gives that H•

CR,T (X) is a free module over RT . We 
write

(α, β) =
∫
IX

α ∪ inv∗ β, α, β ∈ H•
CR,T (X)

for the equivariant orbifold Poincaré pairing: here inv: IX → IX denotes the involution 
on the inertia stack IX that sends a point (x, g) with x ∈ X, g ∈ Aut(x) to (x, g−1). 
Since X is not necessarily proper, the equivariant integral on the right-hand side here is 
defined via the Atiyah–Bott localization formula [3] and takes values in the localization 
ST of RT with respect to the multiplicative set of non-zero homogeneous elements3 in RT .

3 Note that RT � ST � Frac(RT ); we use ST instead of Frac(RT ) since we need a grading on ST later.
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2.3. Equivariant Gromov–Witten invariants

Let Xg,n,d denote the moduli space of degree-d stable maps to X from genus g orb-
ifold curves with n marked points [1,2]; here d ∈ H2(|X|; Z). The moduli space carries 
a T -action and a virtual fundamental cycle [Xg,n,d]vir ∈ A•,T (Xg,n,d; Q). There are 
T -equivariant evaluation maps evi : Xg,n,d → IX, 1 ≤ i ≤ n, to the rigidified iner-
tia stack IX (see [2]). Let ψi ∈ H2

T (Xg,n,d) denote the psi-class at the ith marked 
point, i.e. the equivariant first Chern class of the ith universal cotangent line bundle 
Li → Xg,n,d. For α1, . . . , αn ∈ H•

CR,T (X) and non-negative integers k1, . . . , kn, the 
T -equivariant Gromov–Witten invariant is defined to be:

〈
α1ψ

k1 , . . . , αnψ
kn
〉X
g,n,d

=
∫

[Xg,n,d]vir

n∏
i=1

(ev∗
i αi)ψki

i (2.1)

where we regard αi as a class in H•
T (IX) via the canonical isomorphism H•

T (IX) ∼=
H•

T (IX). The moduli space here is not necessarily proper: the right-hand side is again 
defined via the Atiyah–Bott localization formula and so belongs to ST . Conditions (1)
and (2) in §2.1 ensure that the T -fixed locus XT

g,n,d in the moduli space is compact, and 
thus that the right-hand side of (2.1) is well-defined.

2.4. Equivariant quantum cohomology

Consider the cone NE(X) ⊂ H2(|X|, R) generated by classes of effective curves and 
set NE(X)Z := {d ∈ H2(|X|, Z) : d ∈ NE(X)}. For a ring R, define R�Q� to be the ring 
of formal power series with coefficients in R:

R�Q� =

⎧⎨⎩ ∑
d∈NE(X)Z

adQ
d : ad ∈ R

⎫⎬⎭
so that Q is a so-called Novikov variable [62, III 5.2.1]. Let φ0, φ1, . . . , φN be a homo-
geneous basis for H•

CR,T (X) over RT and let τ0, τ1, . . . , τN be the corresponding linear 
co-ordinates. We assume that φ0 = 1 and φ1, . . . , φr ∈ H2

T (X) are degree-two untwisted 
classes that induce a C-basis of H2(X; C) ∼= H2

T (X)/H2
T (pt). We write τ =

∑N
i=0 τ

iφi for 
a general element of H•

CR,T (X). The equivariant quantum product �τ at τ ∈ H•
CR,T (X)

is defined by the formula

(φi �τ φj , φk) =
∑

d∈NE(X)Z

∞∑
n=0

Qd

n! 〈φi, φj , φk, τ, . . . , τ〉X0,n+3,d

or, equivalently, by
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φi �τ φj =
∑

d∈NE(X)Z

∞∑
n=0

Qd

n!
inv∗ ev3,∗

(
ev∗

1(φi) ev∗
2(φj)

n+3∏
l=4

ev∗
l (τ) ∩ [X0,n+3,d]vir

)
.

(2.2)

Conditions (1) and (2) in §2.1 ensure that ev3 : X0,n+3,d → IX is proper, and thus that 
the push-forward along ev3 is well-defined without inverting equivariant parameters. It 
follows that:

φi �τ φj ∈ H•
CR,T (X) ⊗RT

RT �τ,Q�

where RT �τ, Q� = RT �τ0, . . . , τN � �Q�. The product �τ defines an associative and com-
mutative ring structure on H•

CR,T (X) ⊗RT
RT �τ, Q�. The non-equivariant limit of �τ

exists, and this limit defines the non-equivariant quantum cohomology 
(
H•

CR(X) ⊗C

C�τ, Q�, �τ
)
.

Remark 2.1. The divisor equation [2, Theorem 8.3.1] implies that exponentiated H2-
variables and the Novikov variable Q play the same role: one has

(φi �τ φj , φk) =
∑

d∈NE(X)Z

∞∑
n=0

Qde〈σ,d〉

n! 〈φi, φj , φk, τ
′, . . . , τ ′〉X0,n+3,d

where τ = σ + τ ′ with σ =
∑r

i=1 τ
iφi and τ ′ = τ0φ0 +

∑N
i=r+1 τ

iφi. The String Equa-
tion [2, Theorem 8.3.1] implies that the right-hand side here is in fact independent of τ0.

2.5. Givental’s Lagrangian cone

Let ST ( (z−1) ) denote the ring of formal Laurent series in z−1 with coefficients in ST . 
Givental’s symplectic vector space is the space

H = H•
CR,T (X) ⊗RT

ST ((z−1))�Q�

equipped with the non-degenerate ST �Q�-bilinear alternating form:

Ω(f, g) = −Resz=∞(f(−z), g(z))dz

with f, g ∈ H. The space is equipped with a standard polarization

H = H+ ⊕H−

where

H+ := H•
CR,T (X) ⊗RT

ST [z]�Q� and H− := z−1H•
CR,T (X) ⊗RT

ST �z−1� �Q�
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are isotropic subspaces for Ω. The standard polarization identifies H with the cotangent 
bundle of H+. The genus-zero descendant Gromov–Witten potential is a formal function 
F0

X : (H+, −z1) → ST �Q� defined on the formal neighbourhood of −z · 1 in H+ and 
taking values in ST �Q�:

F0
X(−z1 + t(z)) =

∑
d∈NE(X)Z

∞∑
n=0

Qd

n! 〈t(ψ), . . . , t(ψ)〉X0,n,d

Here t(z) =
∑∞

n=0 tnz
n with tn ∈ H•

CR,T (X) ⊗RT
ST �Q�. Let {φi} ⊂ H•

CR,T (X) ⊗RT
ST

denote the basis Poincaré dual to {φi}, so that (φi, φj) = δji .

Definition 2.2 ([29,43]). Givental’s Lagrangian cone LX ⊂ (H, −z1) is the graph of the 
differential dF0

X : H+ → T ∗H+ ∼= H. It consists of points of H of the form:

−z1 + t(z) +
∑

d∈NE(X)Z

∞∑
n=0

N∑
i=0

Qd

n!

〈
φi

−z − ψ
, t(ψ), . . . , t(ψ)

〉
0,n+1,d

φi (2.3)

where 1/(−z − ψ) in the correlator should be expanded as the power series∑∞
k=0 ψ

k(−z)−k−1 in z−1. In a more formal language, we define the notion of a ‘point 
on LX ’ as follows. Let x = (x1, . . . , xn) be formal parameters. An ST �Q, x�-valued point
on LX is an element of H�x� of the form (2.3) with t(z) ∈ H+�x� satisfying

t(z)|Q=x=0 = 0.

It should be thought of as a formal family of elements on LX parametrized by x.

The submanifold LX encodes all genus-zero Gromov–Witten invariants (2.1). It has 
the following special geometric properties [43]: it is a cone, and a tangent space T of LX

is tangent to LX exactly along zT . Knowing Givental’s Lagrangian cone LX is equivalent 
to knowing the data of the quantum product �τ , i.e. LX can be reconstructed from �τ
and vice versa. See Remark 2.5.

2.6. The equivariant quantum connection and its fundamental solution

Let v ∈ H•
CR,T (X). The equivariant quantum connection

∇v : H•
CR,T (X) ⊗RT

RT [z]�τ,Q� → z−1H•
CR,T (X) ⊗RT

RT [z]�τ,Q�

is defined by

∇vf(τ) = ∂vf(τ) + z−1v �τ f(τ)
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where ∂vf(τ) = d
dsf(τ + sv)|s=0 is the directional derivative. We write ∇i for ∇φi

and 
∇f for 

∑N
i=0(∇if)dτ i. The associativity of �τ implies that the connection ∇ is flat, 

that is, [∇i, ∇j ] = 0 for all i, j. Let ρ denote the equivariant first Chern class (in the 
untwisted sector):

ρ := cT1 (TX) ∈ H2
T (X) ⊂ H2

CR,T (X)

For homogeneous φ ∈ H•
CR,T (X), we write degφ for the age-shifted (real) degree of φ, 

so that φ ∈ Hdeg φ
CR,T (X). The equivariant Euler vector field E and the grading operator 

μ ∈ EndC(H•
CR,T (X)) are defined by

E :=
m∑
i=1

λi
∂

∂λi
+

N∑
i=0

(
1 − degφi

2

)
τ i

∂

∂τ i
+ ∂ρ

μ(φ) :=
(

degφ
2 − dimC X

2

)
φ

(2.4)

where λ1, . . . , λm ∈ H2
T (pt) are generators of RT (see §1.7). The grading operator on 

H•
CR,T (X) ⊗RT

RT [z]�τ, Q� is defined by

Gr(f(τ, z)φ) =
((

z ∂
∂z + E

)
f(τ, z)

)
φ + f(λ, τ, z)μ(φ)

where φ ∈ H•
CR,T (X) and f(λ, τ, z) ∈ RT [z]�τ, Q�. The quantum connection is compat-

ible with the grading operator in the sense that [Gr, ∇i] = ∇[E,∂τi ] = (1
2 degφi − 1)∇i, 

i = 0, . . . , N . This follows from the virtual dimension formula for the moduli space of 
stable maps.

Notation 2.3. Let v ∈ H2
T (X) be a degree-two class in the untwisted sector. The action 

of v on H•
CR,T (X) is defined by v · α = q∗(v) ∪ α, where q : IX → X is the natural 

projection. (This coincides with the action of v via the Chen–Ruan cup product.)

Consider the flat section equations for ∇, and a fundamental solution

L(τ, z) ∈ EndRT
(H•

CR,T (X)) ⊗RT
RT ((z−1))�τ,Q�

determined by the following conditions:

∇iL(τ, z)φ = 0 for i = 0, . . . , N (flatness) (2.5)(
vQ

∂

∂Q
− ∂v

)
L(τ, z)φ = L(τ, z)v

z
φ for v ∈ H2

T (X) (divisor equation)

(2.6)



T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087 1017
L(τ, z)|τ=Q=0 = id (initial condition)

(2.7)

Here φ ∈ H•
CR,T (X) and vQ ∂

∂Q with v ∈ H2
T (X) acts on Novikov variables as Qd �→

〈v, d〉Qd (it acts by zero when v ∈ H2
T (pt) ⊂ H2

T (X)). The flatness equation fixes L(τ, z)
up to right multiplication by an endomorphism-valued function g(z; Q) in z and Q; the 
divisor equation implies that the ambiguity g(z; Q) is independent of Q and commutes 
with v∪, v ∈ H2

T (X); finally the initial condition fixes L(τ, z) uniquely. The fundamental 
solution satisfying these conditions can be written explicitly in terms of (descendant) 
Gromov–Witten invariants:

L(τ, z)φi = φi +
N∑
j=0

∑
d∈NE(X)Z

∞∑
n=0

(n≥1 if d=0)

Qd

n!

〈
φi

−z − ψ
, τ, . . . , τ, φj

〉X

0,n+2,d
φj (2.8)

This is defined over RT (without inverting equivariant parameters) because it can be 
rewritten in terms of the push-forward along the last evaluation map evn+2 as in (2.2). 
A straightforward equivariant generalization of [41, Corollary 6.3], [66, Proposition 2], 
[49, Proposition 2.4] gives:

Proposition 2.4. The fundamental solution L(τ, z) in (2.8) satisfies the conditions 
(2.5)–(2.7). Furthermore it satisfies:

L(τ, z) = id +O(z−1) (regularity at z = ∞)

GrL(τ, z)φ = L(τ, z)
(
μ− ρ

z

)
φ (homogeneity)

(α, β) = (L(τ,−z)α,L(τ, z)β) (unitarity)

where φ, α, β ∈ H•
CR,T (X).

Remark 2.5 ([43]). The fundamental solution L(τ, z) is determined by the quantum 
product �τ via differential equations (2.5)–(2.7). Then τ �→ Tτ = L(τ, −z)−1H+ gives a 
versal family of tangent spaces to Givental’s cone LX . The cone LX is reconstructed as 
LX =

⋃
τ zTτ .

We now study ∇-flat sections s(τ, z) that are homogeneous of degree zero:
Gr(s(τ, z)) = 0. By Proposition 2.4, if a flat section L(τ, z)f(z) is homogeneous of 
degree zero, then: (

z
∂

∂z
+ μ− ρ

z

)
f(z) = 0

This differential equation has the fundamental solution:
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z−μzρ = zρ/zz−μ = exp(ρ log(z)/z)z−μ

that belongs to EndRT
(H•

CR,T (X)) ⊗RT
RT [log z]( (z−1/k) ) for some k ∈ N; here k is 

chosen so that all the eigenvalues of kμ are integers. Note that homogeneous flat sections 
can be multi-valued in z (as they contain log z). We have:

Corollary 2.6. The sections si(τ, z) = L(τ, z)z−μzρφi, i = 0, . . . , N satisfy ∇si(τ, z) =
Gr si(τ, z) = 0 and give a basis of homogeneous flat sections. They belong to 
H•

CR,T (X) ⊗RT
RT [log z]( (z−1/k) )�τ, Q� for a sufficiently large k ∈ N.

3. Equivariant Gamma-integral structure

In this section we introduce one of the main ingredients of our result: an integral struc-
ture for equivariant quantum cohomology. This is a K0

T (pt)-lattice in the space of flat 
sections for the equivariant quantum connection on X which is isomorphic to the inte-
gral equivariant K-group K0

T (X): it generalizes the integral structure for non-equivariant 
quantum cohomology constructed by Iritani [49] and Katzarkov–Kontsevich–Pantev [54]. 
Similar structures have been studied by Okounkov–Pandharipande [65] in the case where 
X is a Hilbert scheme of points in C2, and by Brini–Cavalieri–Ross [16] in the case where 
X is a 3-dimensional toric Calabi–Yau stack. We define the integral structure in §3.1. 
In §3.2 we observe that the quantum product, flat sections for the quantum connection, 
and integral structure continue to make sense when the Novikov variable Q (see §2.4) is 
specialized to Q = 1.

The integral structure is defined in terms of a T -equivariant characteristic class of X
called the Γ̂-class. One of the key points in this section is that the Γ̂-class behaves like a 
square root of the Todd class: see equation (3.4). When combined with the Hirzebruch–
Riemann–Roch formula, this leads to one of the fundamental properties of the integral 
structure: that the so-called framing map is pairing-preserving (Proposition 3.2 below).

3.1. The equivariant Gamma class and the equivariant Gamma-integral structure

Let K0
T (X) denote the Grothendieck group of T -equivariant vector bundles on X. 

We write H••
T (IX) :=

∏
p H

2p
T (IX). We introduce an orbifold Chern character map 

c̃h : K0
T (X) → H••

T (IX) as follows. Let IX = 
v∈B Xv be the decomposition of the 
inertia stack IX into connected components, let qv : Xv → X be the natural map, and 
let E be a T -equivariant vector bundle on X. The stabilizer gv along Xv acts on the 
vector bundle q∗vE → Xv, giving an eigenbundle decomposition

q∗vE =
⊕

0≤f<1

Ev,f (3.1)

where gv acts on Ev,f by exp(2πif). The equivariant Chern character is defined to be
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c̃h(E) =
⊕
v∈B

∑
0≤f<1

e2πif chT (Ev,f )

where chT (Ev,f ) ∈ H••
T (Xv) is the T -equivariant Chern character. Let δv,f,i, 1 ≤ i ≤

rank(Ev,f ) be the T -equivariant Chern roots of Ev,f , so that cT (Ev,f ) =
∏

i(1 + δv,f,i). 
These Chern roots are not actual cohomology classes, but symmetric polynomials in the 
Chern roots make sense as equivariant cohomology classes on Xv. The T -equivariant 
orbifold Todd class T̃d(E) ∈ H••

T (IX) is defined to be:

T̃d(E) =
⊕
v∈B

⎛⎝ ∏
0<f<1

rank(Ev,f )∏
i=1

1
1 − e−2πife−δv,f,i

⎞⎠ rank Ev,0∏
i=1

δv,0,i
1 − e−δv,0,i

.

We write T̃dX = T̃d(TX) for the orbifold Todd class of the tangent bundle.
Recall that, because we are assuming condition (2) from §2.1, all of the T -weights of 

H0(X, O) lie in a strictly convex cone in Lie(T )∗. After changing the identification of 
T with (C×)m if necessary, we may assume that this cone is contained within the cone 
spanned by the standard characters λ1, . . . , λm of H2

T (pt) = Lie(T )∗ defined in §1.7. As 
is explained in [32], under conditions (1)–(2) in §2.1 there is a well-defined equivariant 
Euler characteristic

χ(E) :=
dim X∑
i=0

(−1)i chT
(
Hi(X,E)

)
(3.2)

taking values in

Z�eλ�[e−λ]rat :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩f ∈ Z�eλ1 , . . . , eλm �[e−λ1 , . . . , e−λm ] :

f is the Laurent expansion
of a rational function in
eλ1 , . . . , eλm at
eλ1 = · · · = eλm = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and we expect that the following equivariant Hirzebruch–Riemann–Roch (HRR) formula 
should hold:

χ(E) =
∫
IX

c̃h(E) ∪ T̃dX (3.3)

(This holds for toric Deligne–Mumford stacks [32].) Formula (3.3) should be interpreted 
with care. The right-hand side is defined via the localization formula, and lies in a 
completion ŜT of ST :

ŜT :=
{∑

n∈Z

an : an ∈ ST , deg an = n, there exists n0 ∈ Z

such that an = 0 for all n < n0

}
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There is an inclusion of rings Z�eλ�[e−λ]rat ↪→ ŜT given by Laurent expansion at λ1 =
· · · = λm = 0 (see [32]), and (3.3) asserts that χ(E) coincides with the right-hand side 
after this inclusion.

We now introduce a lattice in the space of homogeneous flat sections for the quantum 
connection which is identified with the equivariant K-group of X. The key ingredient in 
the definition is the characteristic class, called the Gamma class, defined as follows. Let 
E be a vector bundle on X and consider the bundles Ev,f → Xv and their equivariant 
Chern roots δv,f,i, i = 1, . . . , rank(Ev,f ) as above (see (3.1)). The equivariant Gamma 
class Γ̂(E) ∈ H••

T (IX) is defined to be:

Γ̂(E) =
⊕
v∈B

∏
0≤f<1

rank(Ev,f )∏
i=1

Γ(1 − f + δv,f,i)

Here the Γ-function on the right-hand side should be expanded as a Taylor series at 1 −f , 
and then evaluated at δv,f,i. The identity Γ(1 − z)Γ(1 + z) = 2πize−πiz/(1 − e−2πiz)
implies that[

Γ̂(E∗) ∪ Γ̂(E)
]
v

=
∏
i,f

Γ(1 − f − δv,f,i)Γ(1 − f + δv,f,i)

= (2πi)rank((q∗vE)mov)
[
e−πi(age(q∗E)+c1(q∗E))(2πi)

deg0
2 T̃d(E)

]
inv(v)

(3.4)

where ∪ is the cup product on IX, [· · · ]v denotes the component in H•
T (Xv), 0 ≤

f < 1 is the fractional part of −f , (q∗vE)mov =
⊕

f 
=0 Ev,f is the moving part of q∗vE, 
q : IX → X is the natural projection, age(q∗E) : IX → Q is the locally constant function 
given by age(q∗E)|Xv

=
∑

f f rank(Ev,f ), deg0 : H••
T (IX) → H••

T (IX) is the degree 

operator defined by deg0(φ) = 2pφ for φ ∈ H2p
T (IX), and inv(v) ∈ B corresponds to 

the component Xinv(v) of IX defined by inv(Xv) = Xinv(v). Note that deg0 means the 
degree as a class on IX, not the age-shifted degree as an element of H••

CR,T (X).

Definition 3.1. Define the K-group framing

s : K0
T (X) → H•

CR,T (X) ⊗RT
RT [log z]((z−1/k))�Q, τ�

by the formula:

s(E)(τ, z) = 1
(2π)dim X/2L(τ, z)z−μzρ

(
Γ̂X ∪ (2πi)

deg0
2 inv∗ c̃h(E)

)
where k ∈ N is as in Corollary 2.6 and Γ̂X∪ is the cup product in H••

T (IX). Corollary 2.6
shows that the image of s is contained in the space of Gr-degree zero flat sections. Note 
that z−μ maps H••

CR,T (X) into H•
CR,T (X) ⊗RT

RT ( (z−1/k) ).



T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087 1021
For T -equivariant vector bundles E, F on X, let χ(E, F ) ∈ Z�eλ�[e−λ]rat denote the 
equivariant Euler pairing defined by:

χ(E,F ) :=
dim X∑
i=0

(−1)i chT
(
Exti(E,F )

)
(3.5)

We use a z-modified version χz(E, F ) that is given by replacing equivariant parameters 
λj in χ(E, F ) with 2πiλj/z:

χz(E,F ) := (2πiz−1)
∑m

i=1 λi∂λiχ(E,F ) ∈ Z�e2πiλ/z�[e−2πiλ/z]rat (3.6)

Proposition 3.2 (cf. [49, Proposition 2.10]). Suppose that the equivariant HRR formula 
(3.3) holds. For E, F ∈ K0

T (X), we have(
s(E)(τ, e−πiz), s(F )(τ, z)

)
= χz(E,F ).

Proof. Set Ψ(E) = Γ̂X ∪ (2πi)
deg0

2 inv∗ c̃h(E). Using the unitarity in Proposition 2.4, we 
have(

s(E)(τ, e−πiz), s(F )(τ, z)
)

= 1
(2π)dim X

(
z−μeπiμzρe−πiρΨ(E), z−μzρΨ(F )

)
. (3.7)

Write λ∂λ =
∑m

i=1 λi∂λi
. Using (z−μα, z−μβ) = z−λ∂λ(α, β), eπiμρ = −ρeπiμ, (z−ρα,

zρβ) = (α, β), we have

(3.7) = z−λ∂λ

(2π)dim X

(
eπiρeπiμΨ(E),Ψ(F )

)
= z−λ∂λ

(2π)dim X

∫
IX

(
eπiq

∗ρeπiμΓ̂X(2πi)
deg0

2 inv∗ c̃h(E)
)

∪ inv∗
(
Γ̂X(2πi)

deg0
2 inv∗ c̃h(F )

)
= z−λ∂λ

(2π)dim X

∑
v∈B

∫
Xv

eπiq
∗
vρeπi(ιv−

dim X
2 )
[
Γ̂∗
X Γ̂X

]
inv(v)

(2πi)
deg0

2

[
c̃h(E∗) c̃h(F )

]
v

= z−λ∂λ

∑
v∈B

1
(2πi)dim Xv

∫
Xv

(2πi)
deg0

2

[
c̃h(E∗ ⊗ F ) ∪ T̃dX

]
v

where we set Γ̂∗
X = Γ̂(T ∗X) and used equation (3.4) in the last line. The last expression 

equals χz(E, F ) by the HRR formula (3.3). �
Remark 3.3. Okounkov–Pandharipande [65] and Braverman–Maulik–Okounkov [15] in-
troduced shift operators Si on quantum cohomology, which induce the shift λi → λi+z of 
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equivariant parameters (see [63, Chapter 8] for a detailed description). Our K-theoretic 
flat sections s(E) are invariant under the shift operators, and our main result suggests 
that shift operators for toric stacks should be defined globally on the secondary toric 
variety.

3.2. Specialization of Novikov variables

In this section we show that the quantum product, the flat sections for the quantum 
connection, and the K-group framing remain well-defined after the specialization Q = 1
of the Novikov variable Q. Recall that τ0, . . . , τN are co-ordinates on H•

CR,T (X) dual to 
a homogeneous RT -basis {φ0, . . . , φN} of H•

CR,T (X), and that:

• φ0 = 1;
• φ1, . . . , φr ∈ H2

T (X);
• φ1, . . . , φr descend to a basis of H2(X) = H2

T (X)/H2
T (pt).

Without loss of generality we may assume that the images of φ1, . . . , φr in H2(X) are 
nef and integral.

It is clear from Remark 2.1 that the specialization Q = 1 of the quantum product is 
well-defined, and we have:

φi �τ φj

∣∣∣
Q=1

∈ H•
CR,T (X) ⊗RT

RT �eτ
1
, . . . , eτ

r

, τ r+1, . . . , τN �

As discussed in Remark 2.1, the product φi �τ φj is independent of τ0. It is explained in 
[51, §2.5] that the specialization Q = 1 makes sense for L(τ, z), and:

L(τ, z)
∣∣∣
Q=1

∈ End
(
H•

CR,T (X)
)
⊗RT

RT [τ0, τ1, . . . , τ r]�z−1� �eτ
1
, . . . , eτ

r

, τ r+1, . . . , τN �

The specialization Q = 1 for homogeneous flat sections s(E) in Definition 3.1 (as well as 
the homogeneous flat sections si in Corollary 2.6) also makes sense and we have

s(E)(τ, z)
∣∣∣
Q=1

∈ H•
CR,T (X) ⊗RT

RT [τ0, τ1, . . . , τ r, log z]((z−1/k))�eτ
1
, . . . , eτ

r

, τ r+1, . . . , τN �

where k ∈ N is such that all the eigenvalues of kμ are integral.

4. Toric Deligne–Mumford stacks as GIT quotients

In the rest of this paper we consider toric Deligne–Mumford stacks X with semi-
projective coarse moduli space such that the torus-fixed set XT is non-empty. This is 
the class of stacks that arise as GIT quotients of a complex vector space by the action 
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of a complex torus. In this section we establish notation and describe basic properties of 
these quotients. Good introductions to this material include [4, §VII], [35] and [11].

4.1. GIT data

Consider the following data:

• K ∼= (C×)r, a connected torus of rank r;
• L = Hom(C×, K), the cocharacter lattice of K;
• D1, . . . , Dm ∈ L∨ = Hom(K, C×), characters of K.

The characters D1, . . . , Dm define a map from K to the torus T = (C×)m, and hence 
define an action of K on Cm.

Notation 4.1. For a subset I of {1, 2, . . . , m}, write I for the complement of I, and set

∠I =
{∑

i∈I aiDi : ai ∈ R, ai > 0
}
⊂ L∨ ⊗ R,

(C×)I × CI =
{
(z1, . . . , zm) : zi �= 0 for i ∈ I

}
⊂ Cm.

We set ∠∅ := {0}.

Definition 4.2. Consider now a stability condition ω ∈ L∨ ⊗ R, and set:

Aω =
{
I ⊂ {1, 2, . . . ,m} : ω ∈ ∠I

}
Uω =

⋃
I∈Aω

(C×)I × CI

Xω =
[
Uω

/
K
]

The square brackets here indicate that Xω is the stack quotient of Uω (which 
is K-invariant) by K. We call Xω the toric stack associated to the GIT data
(K; L; D1, . . . , Dm; ω). We refer to elements of Aω as anticones, for reasons which will 
become clear in §4.2 below.

Assumption 4.3. We assume henceforth that:

(1) {1, 2, . . . , m} ∈ Aω;
(2) for each I ∈ Aω, the set {Di : i ∈ I} spans L∨ ⊗ R over R.

These are assumptions on the stability condition ω. The first ensures that Xω is non-
empty; the second ensures that Xω is a Deligne–Mumford stack. Under these assump-
tions, Aω is closed under enlargement of sets, i.e. if I ∈ Aω and I ⊂ J then J ∈ Aω.
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Let S ⊂ {1, 2, . . . , m} denote the set of indices i such that {1, . . . , m} \ {i} /∈ Aω. It 
is easy to see that the characters {Di : i ∈ S} are linearly independent and that every 
element of Aω contains S as a subset. Therefore we can write

Aω = {I 
 S : I ∈ A′
ω}

Uω
∼= U ′

ω × (C×)|S| (4.1)

for some A′
ω ⊂ 2{1,...,m}\S and an open subset U ′

ω of Cm−|S|. The toric stack Xω can be 
also written as the quotient [U ′

ω/G] of U ′
ω for G = Ker(K → (C×)|S|): this corresponds to 

the original construction of toric Deligne–Mumford stacks by Borisov–Chen–Smith [11].
The space of stability conditions ω ∈ L∨ ⊗ R satisfying Assumption 4.3 has a wall 

and chamber structure. The chamber Cω to which ω belongs is given by

Cω =
⋂

I∈Aω

∠I , (4.2)

and Xω
∼= Xω′ as long as ω′ ∈ Cω. The GIT quotient Xω′ changes when ω′ crosses a 

codimension-one boundary of Cω. We call Cω the extended ample cone; as we will see in 
§4.5 below, it is the product of the ample cone for Xω with a simplicial cone.

4.2. GIT data and stacky fans

In the foundational work of Borisov–Chen–Smith [11], toric DM stacks are defined in 
terms of stacky fans. Jiang [53] introduced the notion of an extended stacky fan, which 
is a stacky fan with extra data. Our GIT data above are in one-to-one correspondence 
with extended stacky fans satisfying certain conditions, as we now explain.

An S-extended stacky fan is a quadruple Σ = (N, Σ, β, S), where:

• N is a finitely generated abelian group4;
• Σ is a rational simplicial fan in N ⊗ R;
• β : Zm → N is a homomorphism; we write bi = β(ei) ∈ N for the image of the ith 

standard basis vector ei ∈ Zm, and write bi for the image of bi in N ⊗ R;
• S ⊂ {1, . . . , m} is a subset,

such that:

• each one-dimensional cone of Σ is spanned by bi for a unique i ∈ {1, . . . , m} \S, and 
each bi with i ∈ {1, . . . , m} \ S spans a one-dimensional cone of Σ;

• for i ∈ S, bi lies in the support |Σ| of the fan.

4 Note that N may have torsion.
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The vectors bi for i ∈ S are called extended vectors. Stacky fans as considered by 
Borisov–Chen–Smith correspond to the cases where S = ∅. For an extended stacky 
fan (N, Σ, β, S), the underlying stacky fan is the triple (N, Σ, β′) where β′ : Zm−|S| → N
is obtained from β by deleting the columns corresponding to S ⊂ {1, . . . , m}. The toric 
Deligne–Mumford stack associated to an extended stacky fan (N, Σ, β, S) depends only 
on the underlying stacky fan.

To obtain an extended stacky fan from our GIT data, consider the exact sequence:

0 L Zm
β

N 0 (4.3)

where the map from L to Zm is given by (D1, . . . , Dm) and β : Zm → N is the cokernel 
of the map L → Zm. Let bi = β(ei) ∈ N and bi ∈ N ⊗R be as above and, given a subset 
I of {1, . . . , m}, let σI denote the cone in N ⊗R generated by {bi : i ∈ I}. The extended 
stacky fan Σω = (N, Σω, β, S) corresponding to our data consists of the group N and 
the map β defined above, together with a fan Σω in N ⊗ R and S given by5:

Σω = {σI : I ∈ Aω},
S = {i ∈ {1, . . . ,m} : {i} /∈ Aω}.

The quotient construction in [53, §2] coincides with that in Definition 4.2, and therefore 
Xω is the toric Deligne–Mumford stack corresponding to Σω. Extended stacky fans 
(N, Σω, β, S) corresponding to GIT data satisfy the following conditions:

(1) the support |Σω| of the fan is convex and full-dimensional;
(2) there is a strictly convex piecewise-linear function f : |Σω| → R that is linear on each 

cone of Σω;
(3) the map β : Zm → N is surjective.

The first two conditions are geometric constraints on Xω: they are equivalent to saying 
that the corresponding toric stack Xω is semi-projective and has a torus fixed point. The 
third condition can be always achieved by adding enough extended vectors.

Conversely, given an extended stacky fan Σ = (N, Σ, β, S) satisfying the conditions 
(1)–(3) just stated, we can obtain GIT data as follows. Define a free Z-module L by the 
exact sequence (4.3) and define K := L ⊗ C×. The dual of (4.3) is an exact sequence:

0 N∨ (Zm)∨ L∨ (4.4)

and we define the character Di ∈ L∨ of K to be the image of the ith standard basis 
vector in (Zm)∨ under the third arrow (Zm)∨ → L∨. Set:

5 This is why we refer to the elements of Aω as anticones.



1026 T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087
Aω = {I ⊂ {1, 2, · · · ,m} : S ⊂ I, σI is a cone of Σ}

and take the stability condition ω ∈ L∨⊗R to lie in 
⋂

I∈Aω
∠I ; the condition (2) ensures 

that this intersection is non-empty. This specifies the data in Definition 4.2.

4.3. Torus-equivariant cohomology

The action of T = (C×)m on Uω descends to a Q := T/K-action on Xω. We 
also consider an ineffective T -action on Xω induced by the projection T → Q. The 
Q-equivariant and T -equivariant cohomology of Xω are modules over RQ := H•

Q(pt; C)
and RT := H•

T (pt; C) respectively. By the exact sequence (4.3), the Lie algebra of Q is 
identified with N ⊗ C and RQ ∼= Sym•(N∨ ⊗ C). Let λi ∈ RT be the equivariant first 
Chern class of the irreducible T -representation given by the projection T ∼= (C×)m → C×

to the ith factor. Then RT = C[λ1, . . . , λm]. It is well-known that:

H•
Q(Xω;C) = RQ[u1, . . . , um]

/
(I + J) (4.5)

where ui is the Q-equivariant class Poincaré-dual to the toric divisor:{
(z1, . . . , zm) ∈ Uω : zi = 0

}/
K (4.6)

and I and J are the ideals of additive and multiplicative relations:

I =
〈
χ−
∑m

i=1 〈χ, bi〉ui : χ ∈ N∨ ⊗ C
〉
,

J =
〈∏

i/∈I ui : I /∈ Aω

〉
.

Note that ui = 0 for i ∈ S because the corresponding divisor (4.6) is empty (see equa-
tion (4.1)). Indeed, this relation is contained in the ideal J. The T -equivariant cohomology 
is given by the extension of scalars:

H•
T (Xω) ∼= H•

Q(Xω) ⊗RQ RT

where the algebra homomorphism RQ → RT is given by χ �→
∑m

i=1 〈χ, bi〉λi for χ ∈
N∨ ⊗ C.

Remark 4.4. We note that the assumptions at the beginning of §2 are satisfied for toric 
Deligne–Mumford stacks obtained from GIT data. First, all the Q-weights appearing 
in the Q-representation H0(Xω, O) are contained in the strictly convex cone |Σω|∨ =
{χ ∈ N∨ ⊗ R : 〈χ, v〉 ≥ 0 for all v ∈ |Σω|}. Second, Xω is equivariantly formal since the 
cohomology group of Xω is generated by Q-invariant cycles [45]. Because each component 
of IXω is again a toric stack given by certain GIT data (see §4.8), we have that IXω is 
also equivariantly formal. The same conclusions hold for the T -action.
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4.4. Second cohomology and homology

There is a commutative diagram:

0 0 0

0 H2
Q(pt;R) H2

T (pt;R) H2
K(pt;R) 0

0 H2
Q(Xω;R) H2

T (Xω;R) H2
K(pt;R) 0

0 H2(Xω;R) H2(Xω;R) 0

0 0

(4.7)

with exact rows and columns. Note that we have H2
Q(pt; R) ∼= N∨⊗R, H2

T (pt; R) ∼= Rm, 
H2

K(pt; R) ∼= L∨⊗R. The top row of (4.7) is identified with the exact sequence (4.4) ten-
sored with R. By (4.5), H2

Q(Xω; R) is freely generated by the classes ui, i ∈ {1, . . . , m} \S
of toric divisors, and hence H2

Q(Xω; R) ∼= Rm−|S|. The leftmost column is identified with 
the exact sequence

0 N∨ ⊗ R Rm−|S| L∨ ⊗ R
/∑

i∈S RDi 0

induced by (4.4). In particular we have

H2(Xω;R) ∼= L∨ ⊗ R
/∑

i∈S RDi

where the non-equivariant limit of ui is identified with the class of Di. The homology 
group H2(Xω; R) is identified with 

⋂
i∈S Ker(Di) in L ⊗R. The square at the upper left 

of (4.7) is a pushout and we have:

H2
T (Xω;R) ∼=

⊕
i∈{1,...,m}\S

Rui ⊕
m⊕
i=1

Rλi

/〈∑m
i=1 〈χ, bi〉 (ui − λi) : χ ∈ N∨ ⊗ R

〉
.

It follows that the middle row of (4.7) splits canonically: we have a well-defined homo-
morphism6

6 More precisely (−θ) gives a splitting of the middle row of (4.7).
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θ : L∨ ⊗ R ∼= H2
K(pt;R) −→ H2

T (Xω;R) (4.8)

such that θ(Di) = ui − λi and that

H2
T (Xω;R) ∼= H2

Q(Xω;R) ⊕ θ(L∨ ⊗ R).

The class θ(p) can be written as the T -equivariant first Chern class of a certain line 
bundle L(p) associated to p (see §6.3.2). One advantage of working with T -equivariant 
cohomology instead of Q-equivariant cohomology is the existence of this canonical split-
ting.

We also introduce a canonical splitting of the projection L∨ ⊗ R → L∨ ⊗ R/∑
i∈S RDi

∼= H2(Xω, R). This is equivalent to choosing a complementary subspace of 
H2(Xω; R) in L ⊗ R. Take j ∈ S. The corresponding extended vector bj ∈ N ⊗ R lies in 
the support of the fan. Let σIj ∈ Σ, Ij ⊂ {1, . . . , m} \S be the minimal cone7 containing 
bj and write bj =

∑
i∈Ij

cijbi for some cij ∈ R>0. By the exact sequence (4.3), there 
exists an element ξj ∈ L ⊗Q such that

Di · ξj =

⎧⎪⎪⎨⎪⎪⎩
1 if i = j;
−cij if i ∈ Ij ;
0 if i /∈ Ij ∪ {j}.

(4.9)

Note that one has Di · ξj = δij for i, j ∈ S. Hence {ξi}i∈S spans a complementary 
subspace of H2(Xω; R) =

⋂
j∈S Ker(Dj) ⊂ L ⊗ R and defines a splitting:

L⊗ R ∼= H2(Xω;R) ⊕
⊕
j∈S

Rξj , (4.10)

or, for the dual space,

L∨ ⊗ R ∼=
⋂
j∈S

Ker(ξj) ⊕
⊕
j∈S

RDj (4.11)

with 
⋂

j∈S Ker(ξj) ∼= H2(Xω; R).
The equivariant first Chern class of TXω is given by:

ρ = cQ1 (TXω) = cT1 (TXω) =
∑

i∈{1,...,m}\S
ui.

7 Minimality is not essential here. Let σI ∈ Σ, I ⊂ {1, . . . , m}, be any cone containing bj and write 
bj =

∑
i∈I cijbi for some cij ∈ R≥0. In our setting, the vectors {bi : i ∈ I} are linearly independent for any 

choice of cone σI , and so the coefficients cij here are unique. In particular, therefore, we have that cij = 0
for i ∈ I \ Ij .
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4.5. Ample cone and Mori cone

Let D′
i denote the image of Di in L∨ ⊗ R/ 

∑
i∈S RDi

∼= H2(Xω; R). This is the 
non-equivariant Poincaré dual of the toric divisor (4.6), that is, the non-equivariant 
limit of ui. The cone of ample divisors of Xω is given by

C ′
ω =

⋂
I∈A′

ω

∠′
I

where A′
ω was introduced in equation (4.1) and ∠′

I :=
∑

i∈I R>0D
′
i is an open cone in 

L∨⊗R/ 
∑

i∈S RDi (cf. Notation 4.1). Under the splitting (4.11) of L∨⊗R, the extended 
ample cone Cω defined in equation (4.2) also splits [49, Lemma 3.2]:

Cω
∼= C ′

ω ×
(∑

i∈S

R>0Di

)
⊂ H2(Xω;R) ×

⊕
i∈S

RDi. (4.12)

The Mori cone is the dual cone of C ′
ω:

NE(Xω) = C ′ ∨
ω = {d ∈ H2(Xω;R) : η · d ≥ 0 for all η ∈ C ′

ω}

4.6. Fixed points and isotropy groups

Fixed points of the T -action on Xω are in one-to-one correspondence with minimal 
anticones, that is, with δ ∈ Aω such that |δ| = r. A minimal anticone δ corresponds to 
the T -fixed point:

{
(z1, . . . , zn) ∈ Uω : zi = 0 if i /∈ δ

}/
K

We now describe the isotropy of the Deligne–Mumford stack Xω, i.e. those elements 
g ∈ K such that the action of g on Uω has fixed points. Recall that there are canon-
ical isomorphisms K ∼= L ⊗ C× and Lie(K) ∼= L ⊗ C, via which the exponential map 
Lie(K) → K becomes id⊗ exp(2πi−) : L ⊗ C → L ⊗ C×. The kernel of the exponential 
map is L ⊂ L ⊗ C. Define K ⊂ L ⊗Q to be the set of f ∈ L ⊗Q such that:

If :=
{
i ∈ {1, 2, . . . ,m} : Di · f ∈ Z

}
∈ Aω (4.13)

The lattice L acts on K by translation, and elements g ∈ K such that the action of g on 
Uω has fixed points correspond, via the exponential map, to elements of K/L.

4.7. Floors, ceilings, and fractional parts

For a rational number q, we write:
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�q� for the largest integer n such that n ≤ q;

�q� for the smallest integer n such that q ≤ n; and

〈q〉 for the fractional part q − �q� of q.

4.8. The inertia stack and Chen–Ruan cohomology

Recall the definition of the inertia stack IXω from §2.1. Components of IXω are 
indexed by elements of K/L: the component Xf

ω of IXω corresponding to f ∈ K/L

consists of the points (x, g) in IXω such that g = exp(2πif). Recall the set If defined in 
(4.13). The component Xf

ω in the inertia stack IXω is the toric Deligne–Mumford stack 
with GIT data given by K, L, and ω exactly as for Xω, and characters Di ∈ L∨ for 
i ∈ If . We have:

Xf
ω = [CIf ∩ Uω/K].

The inclusion CIf ⊂ Cm exhibits Xf
ω as a closed substack of the toric stack Xω. According 

to Borisov–Chen–Smith [11], components of the inertia stack of Xω are indexed by 
elements of the set Box(Xω):

Box(Xω) =
{
v ∈ N : v =

∑
i/∈I

cibi in N ⊗ R for some I ∈ A and 0 ≤ ci < 1
}

In fact, we have an isomorphism [49, §3.1.3]:

K/L ∼= Box(Xω) [f ] �→ vf =
m∑
i=1

�−(Di · f)�bi ∈ N. (4.14)

When j ∈ S and bj ∈ Box(Xω), the element −ξj ∈ L ⊗Q defined in (4.9) belongs to K
and corresponds to bj .

The age ιf of the component Xf
ω ⊂ IXω is 

∑
i/∈If

〈Di · f〉. The T -equivariant Chen–
Ruan cohomology of Xω is, as we saw in §2.2, the T -equivariant cohomology of the 
inertia stack IXω with age-shifted grading:

H•
CR,T (Xω;Q) =

⊕
f∈K/L

H
•−2ιf
T

(
Xf

ω ;Q
)

This contains the T -equivariant cohomology of Xω as a summand, corresponding to the 
element 0 ∈ K/L; furthermore the fact that each Xf

ω is a closed substack of Xω implies 
that H•

CR,T (Xω; Q) is naturally a module over H•
T (Xω; Q). We write 1f for the unit class 

in H0
T

(
Xf

ω ; Q
)
, regarded as an element of H2ιf

CR,T (Xω; Q).
Recall that the component Xf

ω of the inertia stack is the toric Deligne–Mumford stack 
with GIT data (K; L; ω; Di : i ∈ If ). In particular, therefore, the anticones for Xf

ω are 
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given by {I ∈ Aω : I ⊂ If}. T -fixed points on the inertia stack IXω are indexed by 
pairs (δ, f) where δ is a minimal anticone in Aω, f ∈ K/L, and Di · f ∈ Z for all i ∈ δ. 
The pair (δ, f) determines a T -fixed point on the component Xf

ω of the inertia stack: the 
T -fixed point that corresponds to the minimal anticone δ ⊂ If .

5. Wall-crossing in toric Gromov–Witten theory

In this section we consider crepant birational transformations X+ ��� X− between 
toric Deligne–Mumford stacks which arise from variation of GIT. We use the Mirror 
Theorem for toric Deligne–Mumford stacks [26,29] to construct a global equivariant 
quantum connection over (a certain part of) the secondary toric variety for X±; this 
gives an analytic continuation of the equivariant quantum connections for X+ and X−.

5.1. Birational transformations from wall-crossing

Recall that our GIT data in §4.1 consist of a torus K ∼= (C×)r, the lattice L =
Hom(C×, K) of C×-subgroups of K, and characters D1, . . . , Dm ∈ L∨. Recall further 
that a choice of stability condition ω ∈ L∨ ⊗ R satisfying Assumption 4.3 determines a 
toric Deligne–Mumford stack Xω =

[
Uω/K

]
. The space L∨⊗R of stability conditions is 

divided into chambers by the closures of the sets ∠I , |I| = r−1, and the Deligne–Mumford 
stack Xω depends on ω only via the chamber containing ω. For any stability condition 
ω satisfying Assumption 4.3, the set Uω contains the big torus T = (C×)m, and thus for 
any two such stability conditions ω1, ω2 there is a canonical birational map Xω1 ��� Xω2 , 
induced by the identity transformation between T/K ⊂ Xω1 and T/K ⊂ Xω2 . Our setup 
is as follows. Let C+, C− be chambers in L∨ ⊗ R that are separated by a hyperplane 
wall W , so that W ∩C+ is a facet of C+, W ∩C− is a facet of C−, and W ∩C+ = W ∩C−. 
Choose stability conditions ω+ ∈ C+, ω− ∈ C− satisfying Assumption 4.3 and set 
X+ := Xω+ , X− := Xω− , and

A± := Aω± =
{
I ⊂ {1, 2, . . . ,m} : ω± ∈ ∠I

}
Then C± =

⋂
I∈A±

∠I . Let ϕ : X+ ��� X− be the birational transformation induced by 
the toric wall-crossing and suppose that

m∑
i=1

Di ∈ W

As we will see below this amounts to requiring that ϕ is crepant. Let e ∈ L denote the 
primitive lattice vector in W⊥ such that e is positive on C+ and negative on C−.

Remark 5.1. The situation considered here is quite general. We do not require X+, X−
to have projective coarse moduli space (they are required to be semi-projective). We do 
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not require that X+, X− are weak Fano, or that they satisfy the extended weak Fano 
condition in [49, §3.1.4]. In other words, we do not require 

∑m
i=1 Di ∈ W to lie in the 

boundary W ∩ C+ = W ∩ C− of the extended ample cones.

Choose ω0 from the relative interior of W ∩ C+ = W ∩ C−. The stability condition 
ω0 does not satisfy our Assumption 4.3, but we can still consider:

A0 := Aω0 = {I ⊂ {1, . . . ,m} : ω0 ∈ ∠I}

and the corresponding toric (Artin) stack X0 := Xω0 = [Uω0/K] as given in Defini-
tion 4.2. Here X0 is not Deligne–Mumford, as the C×-subgroup of K corresponding to 
e ∈ L (the defining equation of the wall W ) has a fixed point in Uω0. The stack X0 con-
tains both X+ and X− as open substacks and the canonical line bundles of X+ and X−
are the restrictions of the same line bundle L0 → X0 given by the character − 

∑m
i=1 Di

of K. The condition 
∑m

i=1 Di ∈ W ensures that L0 comes from a Q-Cartier divisor on 
the underlying singular toric variety X0 = Cm/ /ω0K associated to the fan Σω0 . On the 
other hand, in §6.3, we shall construct a toric Deligne–Mumford stack X̃ equipped with 
proper birational morphisms f± : X̃ → X± such that the diagram (1.3) commutes. Then 
f�
+(KX+) and f�

−(KX−) coincide since they are the pull-backs of a Q-Cartier divisor on 
X0. This is what is meant by the birational map ϕ being crepant.8

Set:

M± = {i ∈ {1, . . . ,m} : ±Di · e > 0},
M0 = {i ∈ {1, . . . ,m} : Di · e = 0}.

Our assumptions imply that both M+ and M− are non-empty. The following lemma is 
easy to check:

Lemma 5.2. Set:

Athin
0 := {I ∈ A0 : I ⊂ M0}

Athick
0 := {I ∈ A0 : I ∩M+ �= ∅, I ∩M− �= ∅}.

Then one has M0 ∈ Athin
0 and

A0 = Athin
0 
 Athick

0 ,

A± = Athick
0 


{
I 
 J : ∅ �= J ⊂ M±, I ∈ Athin

0
}
.

Remark 5.3. Let Σ± be the fans of X±. In terms of fans, a toric wall-crossing can 
be described as a modification along a circuit [12,38], where ‘circuit’ means a minimal 

8 This notion is also called K-equivalence: see the Introduction.
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linearly dependent set of vectors. In our wall-crossing, the relevant circuit is {bi : i ∈
M+ ∪ M−}: we have 

∑
i∈M+∪M−

(Di · e)bi = 0, and every proper subset of {bi : i ∈
M+ ∪M−} is linearly independent. The partition of the circuit M+ ∪M− into M+ and 
M− is determined by the sign of the coefficients in a relation among {bi : i ∈ M+∪M−}. 
The modification along the circuit M+∪M− turns the fan Σ+ into Σ−: it removes every 
cone σI of Σ+ such that I contains M− but not M+ and introduces cones of the form σK

where K = (I ∪M+) \ J for any non-empty subset J ⊂ M−. This description matches 
with Lemma 5.2, §4.2, and §4.1.

There are three types of possible crepant toric wall-crossings: (I) X+ and X− are 
isomorphic in codimension one (“flop”), (II) ϕ induces a morphism X+ → |X−| or 
X− → |X+| contracting a divisor to a toric subvariety (“crepant resolution”) and (III) 
the rigidifications9 Xrig

+ , Xrig
− are isomorphic (only the gerbe structures change; we call 

it a “gerbe flop”). Define:

S± = {i ∈ {1, . . . ,m} : {i} /∈ A±}.

Proposition 5.4. The intersection S0 := S+ ∩S− is contained in M0. Moreover, one and 
only one of the following holds:

(I) S+ = S−, �(M+) ≥ 2 and �(M−) ≥ 2;
(II-i) there exists i ∈ {1, . . . , m} such that S− = S+ 
 {i}, M− = {i} and �(M+) ≥ 2;
(II-ii) there exists i ∈ {1, . . . , m} such that S+ = S− 
 {i}, M+ = {i} and �(M−) ≥ 2;
(III) there exist i+, i− ∈ {1, . . . , m} such that S+ = S0 
 {i+}, S− = S0 
 {i−}, 

M+ = {i+} and M− = {i−}.

Proof. First we show that S0 ⊂ M0. Take i ∈ S0. Suppose that i ∈ M+. Since M0 ∈
Athin

0 , we have M0 ∪ M− ∈ A− by Lemma 5.2. Thus {i} = M0 ∪ M− ∪ (M+ \ {i})
also belongs to A−. This contradicts the fact that i ∈ S−. Thus we have i /∈ M+, and 
similarly that i /∈ M−. Hence i ∈ M0. We have shown that S0 ⊂ M0.

Next we claim that:

(a) if S− \ S+ is non-empty, then we have �(S− \ S+) = 1 and M− = S− \ S+;
(b) if S− ⊂ S+, then �(M−) ≥ 2.

Take i ∈ S− \ S+. We have {i} ∈ A+ \ A−. Lemma 5.2 implies that an element of 
A+ \ A− is of the form I 
 J with ∅ �= J ⊂ M+ and I ⊂ M0, and in particular does not 
intersect with M−. This implies that {i} = M−. Therefore S− \ S+ = M− consists of 
only one element. This proves (a). Conversely, if M− = {i}, it follows from Lemma 5.2

9 See e.g. [37].



1034 T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087
that {i} ∈ A+ \ A− and thus i ∈ S− \ S+. This proves (b). The same claim holds if we 
exchange + and −. It follows that one and only one of (I), (II-i), (II-ii), (III) happens. �
Proposition 5.5. The loci of indeterminacy of ϕ and ϕ−1 are the toric substacks

⋂
j∈M−

{zj = 0} ⊂ X+ and
⋂

j∈M+

{zj = 0} ⊂ X−

respectively. With cases as in Proposition 5.4, we have:

(I) X+ and X− are isomorphic in codimension one;
(II-i) ϕ induces a morphism ϕ : X+ → |X−| that contracts the divisor {zi = 0} to the 

subvariety 
⋂

j∈M+
{zj = 0};

(II-ii) a statement similar to (II-i) with + and − interchanged;
(III) ϕ induces an isomorphism Xrig

+
∼= Xrig

− between the rigidifications.

Proof. One can check that Uω+ ∩ Uω− = Uω+ \
⋂

i∈M−
{zi = 0} = Uω− \

⋂
i∈M+

{zi = 0}
using Lemma 5.2. The geometric picture in each case can be seen from the stacky fans: (I) 
the sets of one-dimensional cones are the same; (II-i) the fan Σ− is obtained by deleting 
the ray R≥0bi from Σ+; σM+ ∈ Σ− is a minimal cone containing bi; ϕ contracts the toric 
divisor {zi = 0} to the closed subvariety associated with σM+ ; (II-ii) similar; (III) the 
stacky fan Σ− is obtained from Σ+ by replacing bi− with bi+ ; one has (Di+ · e)bi+ =
−(Di− · e)bi− by (4.3) and Di+ · e +Di− · e = 0; thus bi+ and bi− differ only by a torsion 
element in N. �
Example 5.6.

(I) Let a1, . . . , ak, b1, . . . , bl be positive integers such that a1 + · · · + ak = b1 +
· · · + bl. Consider the GIT data given by L∨ = Z, D1 = a1, . . . , Dk = ak, 
Dk+1 = −b1, . . . , Dk+l = −bl. If k, l ≥ 2, we have a flop between

X+ =
k⊕

i=1
OP(a1,...,ak)(−bi) and X− =

l⊕
j=1

OP(b1,...,bl)(−aj).

(II) Consider the case as in (I) but with l = 1. Setting d = a1 + · · · + ak = b1, we 
have that X+ = OP(a1,...,ak)(−d) is a crepant (partial) resolution of |X−| = Ck/μd

where μd acts on Ck with weights (a1, . . . , ak).
(III) Consider the GIT data given by L∨ = Z2, D1 = (1, 0), D2 = (1, 2), D3 = (0, 2). 

Take ω+ from the chamber {(x, y) : 0 < y < 2x} and ω− from the chamber 
{(x, y) : 0 < 2x < y}. Then we have a “gerbe flop” between X+ = P(2, 2) and 
X− = P1 ×Bμ2.
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5.2. Decompositions of extended ample cones

Recall the decomposition (4.11) of the vector space L∨ ⊗ R and the decomposition 
(4.12) of the extended ample cone. In the case at hand, we have two (possibly different) 
decompositions of L∨ ⊗ R associated to the GIT quotients X+ and X−:

L∨ ⊗ R =
⋂

j∈S±

Ker(ξ±j ) ⊕
⊕
j∈S±

RDj (5.1)

where elements ξ±j ∈ L ⊗ R, j ∈ S± are as in (4.9) and 
⋂

j∈S±
Ker(ξ+

i ) ∼= H2(X±, R). 
Under these decompositions, one has

C± = C ′
± ×

∑
j∈S±

R>0Dj

where C ′
± ⊂

⋂
i∈S±

Ker(ξ±i ) ∼= H2(X±; R) is the ample cone of X±. Let CW := W∩C+ =
W ∩C− be a common facet of C+ and C−, and write CW for the relative interior of CW . 
We now show that these decompositions of the cones C+, C− are compatible along the 
wall.

Proposition 5.7. We have ξ+
i |W = ξ−i |W for i ∈ S0 = S+ ∩ S− and ξ±i |W = 0 for 

i ∈ S± \ S∓. Set ξWi = ξ+
i |W = ξ−i |W ∈ Hom(W, R). Then we have

W ′ := W ∩
⋂

i∈S+

Ker(ξ+
i ) = W ∩

⋂
i∈S−

Ker(ξ−i ) =
⋂
i∈S0

Ker(ξWi )

and so the decompositions (5.1) restrict to the same decomposition of W :

W = W ′ ⊕
⊕
i∈S0

RDi. (5.2)

Under this decomposition of W , the cone CW decomposes as

CW = C ′
W ×

∑
i∈S0

R>0Di

for some cone C ′
W in W ′. With cases as in Proposition 5.4, we have:

(I) C ′
W is a common facet of C ′

+ and C ′
−;

(II-i) C ′
W = C ′

−, C ′
W is a facet of C ′

+ and C− = CW + R>0Di;
(II-ii) C ′

W = C ′
+, C ′

W is a facet of C ′
− and C+ = CW + R>0Di;

(III) C ′
W = C ′

+ = C ′
−, C+ = CW + R>0Di+ and C− = CW + R>0Di− .

Proof. It suffices to show that ξ+
i |W = ξ−i |W for i ∈ S0 and that ξ±i |W = 0 for i ∈

S± \ S∓. The rest of the statements follow easily. Suppose that i ∈ S0. Recall the 
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definition of ξ±i in (4.9). Let σI ∈ Σ+ be the minimal cone containing bi. Then I ∈ A+. 
If I ∈ A−, we have ξ+

i = ξ−i by the definition of ξ±i . Suppose that I /∈ A−. By Lemma 5.2, 
I contains M− but not M+. We have a relation of the form:

bi =
∑
j∈I

cjbj (5.3)

with cj > 0. By adding to the right-hand side of (5.3) a suitable positive multiple of the 
relation ∑

j∈M+

(Dj · e)bj −
∑

j∈M−

(−Dj · e)bj = 0

given by e ∈ L via (4.3), we obtain a relation of the form

bi =
∑
j∈I′

c′jbj

such that c′j > 0 and I ′ = (I ∪M+) \ J with ∅ �= J ⊂ M−. Then I ′ ∈ A− by Lemma 5.2
(see also Remark 5.3). Note that cj = c′j if j ∈ I ∩ M0 = I ′ ∩ M0. This implies that 
Dj · ξ+

i = Dj · ξ−i for all j ∈ M0. Since {Dj : j ∈ M0} spans W , we have ξ+
i |W = ξ−i |W .

Now suppose that i ∈ S+ \ S−. Then M+ = {i} by Proposition 5.4 and we have a 
relation (Di · e)bi =

∑
j∈M−

(−Dj · e)bj given by e ∈ L. This implies that bi is contained 
in the cone σM− of Σ+, and the definition of ξ+

i implies that Dj · ξ+
i = 0 for all j ∈ M0. 

Thus ξ+
i |W = 0. The case where i ∈ S− \ S+ is similar. �

5.3. Global extended Kähler moduli

Our next goal is to describe a global ‘moduli space’ M̃ and a flat connection over M̃, 
together with two neighbourhoods in M̃ such that the restriction of the flat connection 
to one of the neighbourhoods (respectively to the other neighbourhood) is isomorphic 
to the equivariant quantum connection for X+ (respectively for X−). Thus the equivari-
ant quantum connections for X+ and X− can be analytically continued to each other. 
Roughly speaking, the space M̃ will be a covering of a neighbourhood of a certain curve 
in the secondary toric variety for X±; in this section we introduce notation for and local 
co-ordinates on this secondary toric variety.

The wall and chamber structure of L∨ ⊗R described in §5.1 defines a fan in L∨ ⊗R, 
called the secondary fan or Gelfand–Kapranov–Zelevinsky (GKZ) fan. The toric variety 
associated to the GKZ fan is called the secondary toric variety. We consider the subfan of 
the GKZ fan consisting of the cones C+, C− and their faces, and consider the toric variety 
M associated to this fan. (Thus M is an open subset of the secondary toric variety.) 
In the context of mirror symmetry, M arises as the moduli space of Landau–Ginzburg 
models mirror to X±. It contains the torus fixed points P+ and P− associated to the cones 
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C+ and C−, which are called the large radius limit points for X+ and X−. More precisely, 
because we want to impose only very weak convergence hypotheses on the equivariant 
quantum products for X±, we restrict our attention to the formal neighbourhood of the 
torus-invariant curve C ⊂ M connecting P+ and P−: C is the closed toric subvariety 
associated to the cone CW = W ∩ C+ = W ∩ C−.

Our secondary toric variety M is covered by two open charts

SpecC[C∨
+ ∩ L] and SpecC[C∨

− ∩ L] (5.4)

that are glued along SpecC[C∨
W ∩ L]. Since the cones C± are not necessarily simplicial, 

M is in general singular. For our purpose, it is convenient to use a lattice structure 
different from L and to work with a smooth cover Mreg of M. We will define the cover 
Mreg by choosing suitable co-ordinates. As in §4.6, consider the subsets K± ⊂ L ⊗Q:

K± :=
{
f ∈ L⊗Q :

{
i ∈ {1, 2, . . . ,m} : Di · f ∈ Z

}
∈ A±

}
and define L̃+ (respectively L̃−) to be the Z-submodule of L ⊗ Q generated by K+
(respectively by K−). Note that L̃+ and L̃− are free (because they are submodules of 
L ⊗Q, which is torsion free) of rank equal to the rank of L; they are overlattices of L.

Lemma 5.8. Set L̃∨
± = Hom(L̃±, Z) ⊂ L∨. We have Dj ∈ L̃∨

± if j ∈ S±. The decomposi-
tion (5.1) of L∨ ⊗ R is compatible with the integral lattice L̃∨

±: one has

L̃∨
± =

(
H2(X±;R) ∩ L̃∨

±

)
⊕
⊕
j∈S±

ZDj (5.5)

where we regard H2(X±; R) as a subspace of L∨ ⊗R via the isomorphism H2(X±; R) ∼=⋂
j∈S±

Ker(ξ±j ). The lattices L̃∨
+ and L̃∨

− are compatible along the wall; one has (see 
equation (5.2)):

W ∩ L̃∨
+ = W ∩ L̃∨

− = (W ′ ∩ L̃∨
±) ⊕

⊕
j∈S0

ZDj . (5.6)

Proof. Equation (5.5) holds for both X+ and X− and we omit the subscript ± in what 
follows. Since every element in A contains S, we have Dj ·f ∈ Z for all j ∈ S and f ∈ K. 
This shows that Dj ∈ L̃∨ for j ∈ S. Thus L̃∨ ⊃ (H2(X; R) ∩L̃∨) ⊕

⊕
j∈S ZDj . Conversely, 

for v ∈ L̃∨, one has v · ξi ∈ Z for all i ∈ S because ξi ∈ K. Then w = v −
∑

i∈S(v · ξi)Di

lies in 
⋂

j∈S Ker(ξj) ∩ L̃∨ and v = w +
∑

i∈S(v · ξi)Di.
Next we prove (5.6). First we claim that for every element f ∈ K+ \ K−, there 

exists α ∈ Q such that f + αe ∈ K−. This follows easily from the definition of K± and 
Lemma 5.2. It follows from the claim that for any f ∈ L̃+, there exists α ∈ Q such that 
f + αe ∈ L̃−. Suppose that v ∈ W ∩ L̃∨

−. For any f ∈ L̃+, taking α ∈ Q as above, one 
has v · f = v · (f +αe) ∈ Z. Therefore v ∈ W ∩ L̃∨

+. This shows that W ∩ L̃∨
− ⊂ W ∩ L̃∨

+. 



1038 T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087
The reverse inclusion follows similarly. The second equality in (5.6) follows from (5.5)
and Proposition 5.7. �
Remark 5.9. We have H2(X±; R) ∩ L̃± = H2(|X±|; Z).

Set �± = dimH2(X±; R) = r − �(S±) and � = dimW ′ = r − 1 − �(S0). We have 
� ≤ min{�+, �−}. With cases as in Proposition 5.4, we have:

(I) �+ = �− = � + 1;
(II-i) �+ = � + 1, �− = �;
(II-ii) �− = � + 1, �+ = �;
(III) �+ = �− = �.

Using Lemma 5.8, we can choose10 integral bases

{p+
1 , . . . , p

+
�+
} ∪ {Dj : j ∈ S+} ⊂ L̃∨

+

{p−1 , . . . , p−�−} ∪ {Dj : j ∈ S−} ⊂ L̃∨
−

(5.7)

of L̃∨
± such that

• p+
1 , . . . , p

+
�+

lie in the nef cone C ′
+ ⊂ H2(X+; R);

• p−1 , . . . , p
−
�−

lie in the nef cone C ′
− ⊂ H2(X−; R);

• p+
i = p−i ∈ C ′

W for i = 1, . . . , �.

These bases give co-ordinates on the toric charts (5.4). For d ∈ L, we write yd for the 
corresponding element in the group ring C[L]. The homomorphisms

C[C∨
+ ∩ L] ↪→ C[y1, . . . , y�+ , {xj : j ∈ S+}], yd �→

∏�+
i=1 y

p+
i ·d

i ·
∏

j∈S+
x
Dj ·d
j

C[C∨
− ∩ L] ↪→ C[ỹ1, . . . , ỹ�− , {x̃j : j ∈ S−}], yd �→

∏�−
i=1 ỹ

p−
i ·d

i ·
∏

j∈S−
x̃
Dj ·d
j

define the two smooth co-ordinate charts

(yi, xj : 1 ≤ i ≤ �+, j ∈ S+) and (ỹi, x̃j : 1 ≤ i ≤ �−, j ∈ S−)

which are resolutions of (respectively) SpecC[C∨
+ ∩ L] and SpecC[C∨

− ∩ L]. We reorder 
the bases (5.7)

{p+
1 , . . . , p

+
�+
} ∪ {Dj : j ∈ S+} = {p+

1 , . . . , p+
r−1, p+

r }

10 This can be seen from the fact that given a lattice L and a full-dimensional cone C in L ⊗ R, we can 
choose a basis of L that consists of elements of C.
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{p−1 , . . . , p−�−} ∪ {Dj : j ∈ S−} = {p−1 , . . . , p−r−1, p−r }

in such a way that p+
i = p−i ∈ W for i = 1, . . . , r − 1 and p±r is the unique vector (in 

each basis) that does not lie on the wall W . Let

{yi, xj : 1 ≤ i ≤ �+, j ∈ S+} = {y1, . . . , yr}
{ỹi, x̃j : 1 ≤ i ≤ �−, j ∈ S−} = {ỹ1, . . . , ỹr}

be the corresponding reordering of the co-ordinates. Then the change of co-ordinates is 
of the form:

ỹi =
{

yiycir 1 ≤ i ≤ r − 1
y−c
r i = r

(5.8)

for some c ∈ Q>0 and ci ∈ Q. The numbers ci, c here arise from the transition matrix 
of the two bases (5.7). We find a common denominator for c, ci and write c = A/B and 
ci = Ai/B, 1 ≤ i ≤ r − 1 for some A, B ∈ Z>0 and Ai ∈ Z. Then y1/B

r = ỹ−1/A
r . The 

smooth manifold Mreg is defined by gluing the two charts

U+ = SpecC[y1, . . . , yr−1, y1/B
r ] and U− = SpecC[ỹ1, . . . , ỹr−1, ỹ1/A

r ]

via the change of variables (5.8). The large radius limit points P+ ∈ U+ and P− ∈ U−
are given respectively by y1 = · · · = yr = 0 and ỹ1 = · · · = ỹr = 0. Note that the last 
variables yr, ỹr correspond to the direction of e ∈ L: one has ye = yp+

r ·e
r = ỹp−

r ·e
r .

The torus-invariant rational curve Creg ⊂ Mreg associated to CW is given by y1 =
· · · = yr−1 = 0 on U+ and by ỹ1 = · · · = ỹr−1 = 0 on U−. Let M̂reg be the formal 
neighbourhood of Creg in Mreg. Since the global quantum connection is an analytic 
object, we need to work with a suitable analytification of M̂reg: we include analytic 
functions in the last variable yr in the structure sheaf and use the analytic topology on 
Creg ∼= P1. The underlying topological space of M̂reg is therefore P1,an; M̂reg is covered 
by two charts Û+ and Û− with structure sheaves:

OÛ+
= Oan

C+
�y1, . . . , yr−1� and OÛ−

= Oan
C− �ỹ1, . . . , ỹr−1� (5.9)

where C+ and C− denote the complex plane with co-ordinates y1/B
r and ỹ1/A

r respectively 
and the superscript “an” means analytic (space or structure sheaf). In other words, we 
regard Û+, Û−, and M̂reg as ringed spaces respectively on C+, C− and P1,an.

The same construction works over an arbitrary C-algebra R. We define M̂reg(R)
by replacing the structure sheaves in (5.9) with (Oan

C+
⊗ R)�y1, . . . , yr−1� and (Oan

C−
⊗

R)�ỹ1, . . . , ̃yr−1�. In the equivariant theory, we use R = RT [z] = H•
T (pt) ⊗ C[z] for 

the ground ring. The global equivariant quantum connection will be defined over RT [z]
and on (a formal thickening of) a simply-connected open subset of P1,an containing P+
and P−.
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Remark 5.10. Taking an overlattice L̃± of L corresponds to taking a finite cover of M. 
This is necessary because the power series defining the I-function (see §5.4) is indexed 
by elements in L̃±. If one takes into consideration Galois symmetry [49] of the quan-
tum connection, one can see that the quantum connection (near P±) descends to the 
secondary toric variety with respect to the original lattice L.

5.4. The I-function

Recall Givental’s Lagrangian cone introduced in Definition 2.2. We consider the 
Givental cone LXω

associated to the toric Deligne–Mumford stack Xω. Under the de-
composition (4.10) of L ⊗ R, we decompose d ∈ L ⊗ R as:

d = d +
∑
j∈S±

(Dj · d)ξj

where d is the H2(Xω; R)-component of d. Define the H•
CR,T (Xω)-valued hypergeometric 

series Itemp
ω (σ, x, z) ∈ H•

CR,T (Xω) ⊗RT
RT ( (z−1) )�Q, σ, x� by

Itemp
ω (σ, x, z) := zeσ/z

∑
d∈K

eσ·dQd
∏
j∈S

x
Dj ·d
j

⎛⎝ m∏
j=1

∏
a:〈a〉=〈Dj ·d〉,a≤0(uj + az)∏

a:〈a〉=〈Dj ·d〉,a≤Dj ·d(uj + az)

⎞⎠1[−d]

where K is introduced in §4.6, x = (xj : j ∈ S) and σ ∈ H2
T (Xω) are variables, and [−d]

is the equivalence class of −d in K/L (recall from §4.8 that K/L parametrizes inertia 
components). The subscript ‘temp’ reflects the fact that we are just about to change 
notation, by specializing certain parameters, and so this notation for the I-function is 
only temporary. One can see that the summand of Itemp

ω corresponding to d ∈ K vanishes 
unless d ∈ C∨

ω . Therefore the summation ranges over all d ∈ K such that d lies in the 
Mori cone NE(Xω) = C ′ ∨

ω and Dj · d ≥ 0 for all j ∈ S. The Mirror Theorem for toric 
Deligne–Mumford stacks can be stated as follows:

Theorem 5.11 ([26,29]). Itemp
ω (σ, x, −z) is an ST �Q, σ, x�-valued point on LXω

.

We adapt the above theorem to the situation of toric wall-crossing. Let Itemp
± de-

note the I-function of X±. We introduce a variant I± of the I-function which gives a 
cohomology-valued function on a neighbourhood of P± in M̂reg. The I-function I± is 
obtained from Itemp

± by the following specialization:

• Q = 1;
• for I+, σ = σ+ := θ+(

∑r
i=1 p+

i log yi) + c0(λ);
• for I−, σ = σ− := θ−(

∑r
i=1 p−i log ỹi) + c0(λ);

where θ± : L∨ ⊗ C → H2
T (X±; C) are the maps introduced in (4.8) and c0(λ) = λ1 +

· · · + λm. Note that we have
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σ+ =
�+∑
i=1

θ+(p+
i ) log yi −

∑
j∈S+

λj log xj + c0(λ) (5.10)

since θ+(Dj) = −λj for j ∈ S+. More explicitly, one can write I+ as:

I+(y, z) := zeσ+/z
∑
d∈K+

yd
⎛⎝ m∏

j=1

∏
a:〈a〉=〈Dj ·d〉,a≤0(uj + az)∏

a:〈a〉=〈Dj ·d〉,a≤Dj ·d(uj + az)

⎞⎠1[−d] (5.11)

where recall that (y1, . . . , yr) = (yi, xj : 1 ≤ i ≤ �+, j ∈ S+) are co-ordinates on Û+ ⊂
M̂reg and that

yd = yp+
1 ·d

1 · · · yp+
r ·d

r =
∏�+

i=1 y
p+
i ·d

i

∏
j∈S+

x
Dj ·d
j .

The I-function I+ belongs to the space:

I+ ∈ H•
CR,T (X+) ⊗RT

RT [log y1, . . . , log yr]((z−1))�y1, . . . , yr�.

The series e−σ+/zI+(y, z) is homogeneous of degree two with respect to the (age-shifted) 
grading on H•

CR,T (X+) and the degrees for variables given by:

deg z = 2 and
r∑

i=1
(deg yi)p+

i = 2
m∑
i=1

Di (5.12)

Note that deg yr = 0 because 
∑m

i=1 Di ∈ W .

Remark 5.12. The extra factor ec0(λ)/z in the I-function makes the mirror map compat-
ible with Euler vector fields.

We now show that I+(y, z) is analytic in the last variable yr, so that it defines an 
analytic function on M̂reg.

Lemma 5.13. Expand the I-function as

I+(y, z) = zeσ+/z
∞∑

k1=0

· · ·
∞∑

kr−1=0

N∑
i=0

yk1
1 · · · ykr−1

r−1 Ii+;k1,...,kr−1
(yr, z)φi

using an RT -basis {φi} of H•
CR(X+). Let c be the rational number11

c =
∏

j:Dj ·e 
=0

(Dj · e)Dj ·e (5.13)

11 This is the so-called conifold point.
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and let U+ be the universal covering of the space {yr ∈ C : yp+
r ·e

r �= c}. Each coefficient 
Ii+;k1,...,kr−1

(yr, z) ∈ RT �z−1� �yr� converges to give an analytic function on the region

{
(λ1, . . . , λm, z, yr) ∈ Cm × C× U+ : |λi| < ε|z|

}
(5.14)

for some ε > 0 that is independent of i, k1, . . . , kr−1.

Proof. In §6.2 below we will compute the analytic continuation of the I-function after 
restriction to a fixed point. There we introduce a function called the H-function, which is 
related to the I-function by a constant linear transformation, and give a Mellin–Barnes 
integral representation for the H-function. This integral representation makes clear that 
e−σ+/(2πi)H can be analytically continued to U+. The linear transformation between the 
I-function and the H-function involves the factor z−μΓ̂X (see equation (6.8)) and this 
factor has poles at non-zero (λ1/z, . . . , λm/z). Therefore we obtain the analyticity of the 
I-function on a region of the form (5.14). �

An entirely parallel statement holds for I−(y, z).

5.5. Global equivariant quantum connection

In this section we use the I-function I+ to construct a global quantum connection on 
the universal cover

M̃+ :=
((

Û+ \ {ye = c}
)/

μB

)∼
where Û+ is the open chart (5.9) of M̂reg and ye = yp+

r ·e
r is a function on Û+. The 

action of μB on Û+ is by deck transformations of y1/B
r �→ yr. As in Lemma 5.13, we 

denote by U+ the universal cover of {yr ∈ C : yp+
r ·e

r �= c}. The space U+ is the underlying 
topological space of M̃+, and M̃+ is a formal thickening of U+; more precisely, M̃+ is the 
ringed space (U+, O) with structure sheaf O = Oan

U+
�y1, . . . , yr−1�. In a neighbourhood 

of P+, the global quantum connection that we will construct can be identified with the 
equivariant quantum connection of X+. The main result in this section is:

Theorem 5.14. There exist the following data:

• an open subset U◦
+ ⊂ U+ such that P+ ∈ U◦

+ and that the complement U+ \ U◦
+ is a 

discrete set; we write M̃◦
+ = M̃+|U◦

+ ;
• a trivial H•

CR,T (X+)-bundle F+ over M̃◦
+(RT [z]):

F+ = H•
CR,T (X+) ⊗RT

(OU◦
+ ⊗RT [z])�y1, . . . , yr−1�;
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• a flat connection ∇+ = d + z−1A+(y) on F+ of the form:

A+(y) =
�+∑
i=1

Bi(y)
dyi
yi

+
∑
j∈S+

Cj(y)dxj −
∑
j∈S+

λj
dxj

xj

with Bi(y), Cj(y) ∈ End(H•
CR,T (X+)) ⊗RT

(OU◦
+ ⊗RT )�y1, . . . , yr−1�;

• a vector field E+ on M̃+(RT ), called the Euler vector field, defined by:

E+ =
m∑
i=1

λi
∂

∂λi
+

r∑
i=1

1
2(deg yi)yi

∂

∂yi
;

• a mirror map τ+ : M̃+(RT ) → H•
CR,T (X+) of the form:

τ+ = σ+ + τ̃+ τ̃+ ∈ H•
CR,T (X+) ⊗RT

(OU◦
+ ⊗RT )�y1, . . . , yr−1�

τ̃+|y1=···=yr=0 = 0

such that ∇+ equals the pull-back τ∗+∇+ of the equivariant quantum connection ∇+ of 
X+ by τ+, that is:

Bi(y) =
N∑

k=0

∂τk+(y)
∂ log yi

(φk�τ+(y)) 1 ≤ i ≤ �+

Cj(y) =
N∑

k=0

∂τ̃k+(y)
∂xj

(φk�τ+(y)) j ∈ S+

and that the push-forward of E+ by τ+ is the Euler vector field E+ for X+ defined in 
equation (2.4). Moreover, there exists a global section Υ+

0 (y, z) of F+ such that

I+(y, z) = zL+(τ+(y), z)−1Υ+
0 (y, z)

where L+(τ, z) is the fundamental solution for the quantum connection of X+ in Propo-
sition 2.4.

Remark 5.15. Here the Novikov variables Q in the quantum product and the fundamental 
solution have been specialized to 1: see §3.2.

Remark 5.16. An entirely analogous result holds for X−.

Remark 5.17. The data in Theorem 5.14 satisfy some compatibility equations. The 
connection matrices Bi, Ci are self-adjoint with respect to the equivariant orbifold 
Poincaré pairing (·, ·). Furthermore the grading operator Gr+ = z ∂

∂z + E+ + μ+ on F+

(where μ+ is the grading operator on H•
CR,T (X+) defined in equation (2.4)) satisfies 



1044 T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087
[Gr+, ∇+
v ] = ∇+

[E+,v] for any vector field v. These properties are inherited from the 
quantum connection.

Remark 5.18 ([49, Remark 3.5]). By construction, the mirror map τ+ here depends 
on the extended vectors bj, j ∈ S+, in the extended stacky fan. If we add sufficiently 
many extended vectors, we can make τ+ submersive near P+ and Theorem 5.14 gives an 
analytic continuation of the big quantum cohomology. In fact we have

τ(y) = c0(λ) +
∑

j∈S+\S0

λj log xj +
�+∑
i=1

θ(p+
i ) log yi +

∑
j∈S+

αjxj + higher order terms.

Here αj =
∏

i∈Ij
u
nij

i 1[−ξj ], where ξj ∈ K+ is given in (4.9), Ij ⊂ {1, . . . , m} \S+ is such 

that σIj contains bj , and bj =
∑

i∈Ij
(nij + εij)bi with εij ∈ [0, 1) and nij ∈ Z≥0. Note 

that 1[−ξj ] corresponds to the Box element bj −
∑

i∈Ij
nijbi ∈ Box(X+).

Remark 5.19. The logarithmic singularity of ∇+ along 
∏

j∈S+
xj = 0 is not very im-

portant: this can be eliminated by shifting the mirror map τ by 
∑

j∈S+
λj log xj ; see 

(5.10).

The rest of this section is devoted to the proof of Theorem 5.14. First we recall how 
to compute the quantum connection of X+ using the I-function (cf. [30]). By the Mirror 
Theorem 5.11, Itemp

+ (σ, x, −z) is a point on the Givental cone L+ := LX+ for X+. Recall 
from Remark 2.5 that the cone L+ is ruled by its tangent spaces (multiplied by z):

L+ =
⋃

τ∈H•
CR,T (X+)

zL+(τ,−z)−1H+.

This implies that one has:

Itemp
+ (σ, x, z) = zL+(τ, z)−1Υ+

0

for some τ = τ(σ, x) ∈ H•
CR,T (X+) ⊗RT

RT �Q, σ, x� and Υ+
0 ∈ H+�σ, x� =

H•
CR,T (X+) ⊗RT

RT [z]�Q, σ, x�. The map (σ, x) �→ τ(σ, x) is called the mirror map: 
this will be determined below. In Lemma 5.22 we will construct differential operators 
Pi = Pi(z∂), i = 0, . . . , N which depend polynomially on z and on the vector fields z∂v, 
v ∈ H2

T (X+), and z∂xj
, j ∈ S+, and which satisfy:

• φi = z−1PiI
temp
+ |Q=σ=x=0, 0 ≤ i ≤ N , are independent of z;

• {φi : 0 ≤ i ≤ N} form a basis of H∗
CR,T (X+) over RT ;

• P0 = 1.



T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087 1045
Then: ⎡⎣ | |
z−1P0I

temp
+ · · · z−1PNItemp

+
| |

⎤⎦ = L+(τ, z)−1

⎡⎣ | |
Υ+

0 · · · Υ+
N

| |

⎤⎦ (5.15)

for Υ+
i := Pi(zτ∗∇)Υ+

0 . Here τ∗∇ is the pull-back of the quantum connection of X+ via 
the mirror map τ , and we used the fact that one has ∂v◦L+(τ, z)−1 = L+(τ, z)−1◦(τ∗∇)v
for any vector field v on (σ, x)-space. Note that:

• Υ+
i ∈ H+�σ, x� does not contain negative powers of z;

• L+(τ, z) does not contain positive powers of z; and
• L+(τ, z) = id +O(z−1).

Thus the right-hand side of (5.15) can be regarded as the Birkhoff factorization of the 
left-hand side (see [68]), when we view both sides as elements in the loop group LGLN+1

with z the loop parameter. The properties of Pi listed above ensure that the left-hand 
side of (5.15) is invertible at Q = σ = x = 0, and that its Birkhoff factorization can be 
determined recursively in powers of Q, σ and x (see Lemma 5.23). Thus the I-function 
determines L+(τ, z)−1 as a function of (σ, x), via Birkhoff factorization. The mirror map 
τ = τ(σ, x) is determined by the asymptotics

L+(τ, z)−11 = 1 + τz−1 + O(z−2)

and L+(τ, z)−1 determines the pulled-back quantum connection τ∗∇.
We perform the above procedure globally on M̂reg, using the I-function I+ obtained 

from Itemp
+ by the specialization Q = 1, σ = σ+. It will be convenient to assume the 

following condition.

Assumption 5.20. The set N ∩ |Σ+| = {v ∈ N : v ∈ |Σ+|} of lattice points in the support 
|Σ+| of the fan is generated by bj , j = 1, . . . , m as an additive monoid.

Remark 5.21. Assumption 5.20 is harmless: it can be always achieved by adding enough 
extended vectors to the extended stacky fan and in fact Theorem 5.14 holds without this 
assumption (see Remark 5.26).

Recall from §4.8 that H•
CR,T (X+) is the direct sum of sectors H•

T (Xf
+), f ∈ K+/L

and recall from §4.3 that each sector H•
T (Xf

+) is generated by divisor classes. Thus we 
can take an RT -basis of H•

CR,T (X+) of the form:

φf,i = Ff,i

(
θ(p+

1 ), . . . , θ(p+
�+

)
)
1f f ∈ K/L, 1 ≤ i ≤ dimH•(Xf

+)
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where Ff,i(a1, . . . , a�+) ∈ C[a1, . . . , a�+ ] is a homogeneous polynomial. Recall from §4.8
that elements in K+/L are in one-to-one correspondence with elements in Box(X+). Let 
vf ∈ Box(X+) be the element corresponding to f ∈ K+/L. By Assumption 5.20, there 
exist non-negative integers nf,j , j = 1, . . . , m, such that

vf =
m∑
j=1

nf,jbj . (5.16)

On the other hand, taking a minimal cone σf in Σ+ containing vf , we can write

vf =
∑

j /∈S+,bj∈σf

cf,jbj

for some cf,j ∈ [0, 1). We set cf,j = 0 if j ∈ S+ or bj /∈ σf . Then 
∑m

j=1(nf,j − cf,j)bj = 0
and by (4.3), there exists an element df ∈ L ⊗ Q such that Dj · df = nf,j − cf,j . By 
definition of K+, df ∈ K+ and [−df ] = f in K+/L by (4.14) and (5.16). Set Dj =∑r

a=1 μjap+
a for some μja ∈ Z. Define differential operators Dj , Δf as

Dj :=
r∑

a=1
μjazya

∂

∂ya

Δf := y−df

m∏
j=1

nf,j−1∏
ν=0

(Dj + λj − νz) .

The following Lemma was proved in [49, Lemma 4.7], in the non-equivariant and compact 
case. The proof works verbatim here.

Lemma 5.22. Let Ff,i, φf,i, Δf be as above. Define the differential operator P+
f,i by

P+
f,i := Ff,i

(
zy1

∂

∂y1
, . . . , zy�+

∂

∂y�+

)
Δf .

Then we have:

P+
f,iI+(y, z) = zeσ+/z(φf,i + O(y)).

Applying the differential operators P+
f,i, f ∈ K+/L, 1 ≤ i ≤ dimH•(Xf

+), to I+, we 
obtain a matrix of the form:⎡⎣ |

· · · z−1P+
f,iI+ · · ·
|

⎤⎦ = eσ+/zI+(y, z) (5.17)
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where I+ is regarded as a column vector written in the basis {φf,i} of H•
CR,T (X+)

and I+(y, z) = id +O(y) is a square matrix. We may also view I+(y, z) as an 
End(H•

CR(X+))-valued function via the basis {φf,i}. By the homogeneity of e−σ+/zI+
and P+

f,i, we find that the endomorphism I+(y, z) is homogeneous of degree zero with 
respect to the degree (5.12) of variables and the grading on H•

CR(X+), i.e. that:(
z
∂

∂z
+ E+ + ad(μ+)

)
I+(y, z) = 0 (5.18)

As in (5.15), we consider the Birkhoff factorization of (5.17). Since eσ+/z = id +O(z−1), 
it suffices to consider the Birkhoff factorization of I+(y, z). Set:

γ(yr, z) := I+(y, z)
∣∣∣
y1=···=yr−1=0,λ1=···=λm=0

.

By Lemma 5.13, z �→ γ(yr, z) is a loop in End(H•
CR(X+)) that depends analytically on 

yr ∈ U+. We first consider the Birkhoff factorization of γ(yr, z). Since γ(yr, z) is homo-
geneous, it is a Laurent polynomial in z and both factors of the Birkhoff factorization 
γ(yr, z) = γ−(z)γ+(z) are also homogeneous if the factorization exists. Therefore the 
Birkhoff factorization is equivalent to the block LU decomposition of γ(yr, 1):

γ−(1) =

⎡⎢⎢⎢⎢⎣
Ir1
∗ Ir2 0
...

...
. . .

∗ ∗ · · · Irk

⎤⎥⎥⎥⎥⎦ γ+(1) =

⎡⎢⎢⎢⎢⎣
∗ ∗ · · · ∗

∗ · · · ∗
. . .

...0 ∗

⎤⎥⎥⎥⎥⎦
where each block corresponds to a homogeneous component of H•

CR(X+) and Ir denotes 
the identity matrix of size r. The block LU decomposition of γ(yr, 1) exists if and only if

H = (γ(yr, 1)H≤p) ⊕H>p

holds for all p ∈ Q, where H = H•
CR(X+) and H≤p (resp. H>p) denotes the subspace of 

degree less than or equal to p (resp. greater than p). This is a Zariski open condition for 
γ(yr, 1). Since γ(yr = 0, 1) = id, it follows that γ(yr, z) admits a Birkhoff factorization 
on the complement U◦

+ of a discrete set in U+. Clearly one has P+ ∈ U◦
+.

Lemma 5.23. Let γ(z) ∈ LGLN+1(C) be a Laurent polynomial loop admitting a Birkhoff 
factorization γ = γ−γ+. Let Γ(s, z) ∈ End(CN+1) ⊗C[z, z−1]�s1, . . . , sl� be a formal loop 
such that Γ|s=0 = γ. Then Γ(s, z) admits a unique Birkhoff factorization of the form

Γ(s, z) = Γ−(s, z)Γ+(s, z)

such that Γ−(s, z) ∈ End(CN+1) ⊗ C[z−1]�s1, . . . , sl�, Γ−(s, ∞) = id and Γ+(s, z) ∈
End(CN+1) ⊗ C[z]�s1, . . . , sl�.
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Proof. It suffices to show that Γ′ = γ−1
− Γγ−1

+ admits a Birkhoff factorization Γ′ = Γ′
−Γ′

+. 
Expanding Γ′ and Γ′

± in power series in s1, . . . , sl, one can determine the coefficients 
recursively from the equation Γ′ = Γ′

−Γ′
+. �

Applying the above lemma to I+(y, z), we see that I+(y, z) with yr ∈ U◦
+ admits a 

Birkhoff factorization

I+(y, z) = L+(y, z)−1Υ+(y, z) (5.19)

where

L+(y, z) ∈ End(H•
CR(X+)) ⊗OU◦

+ [z−1]�λ1, . . . , λm, y1, . . . , yr−1�,

Υ+(y, z) ∈ End(H•
CR(X+)) ⊗OU◦

+ [z]�λ1, . . . , λm, y1, . . . , yr−1�

and L+(y, ∞) = id. Using the homogeneity equation (5.18), we find that the Birkhoff 
factors L+, Υ+ are also homogeneous of degree zero. Also the chosen RT -basis {φf,i} of 
H•

CR,T (X+) defines a splitting H•
CR,T (X+) ∼= H•

CR(X+) ⊗RT , and via this splitting, one 
may naturally regard L+, Υ+ as End(H•

CR,T (X+))-valued functions. It follows that:

L+(y, z) ∈ End(H•
CR,T (X+)) ⊗RT

(OU◦
+ ⊗RT )�z−1� �y1, . . . , yr−1�,

Υ+(y, z) ∈ End(H•
CR,T (X+)) ⊗RT

(OU◦
+ ⊗RT )[z]�y1, . . . , yr−1�.

Comparing (5.19) with (5.15), we obtain

L+(τ+(y), z)−1∣∣
Q=1= eσ+/zL+(y, z)−1. (5.20)

The mirror map τ+(y) is given by τ+(y) = σ+ + τ̃+(y) with τ̃+(y) determined by:

L+(y, z)−11 = 1 + τ̃+(y)z−1 + O(z−2).

We have τ̃+(0) = 0 and τ̃+(y) ∈ H•
CR,T (X+) ⊗ (OU◦

+ ⊗ RT )�y1, . . . , yr−1�. The first 
column of (5.19) gives I+(y, z) = zL(τ(y), z)|Q=1Υ+

0 , where Υ+
0 is the first column of Υ+. 

(Here we assume that the first column corresponds to the basis vector φ0,1 = 1 and the 
differential operator P+

0,1 = 1.)

Remark 5.24. Equation (5.20) is an equality in the ring:

End(H•
CR,T (X+)) ⊗RT

RT [log y1, . . . , log yr]�z−1� �y�.

Note that the substitution τ = τ+(y) in L+|Q=1 makes sense: see §3.2.
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By equation (5.20), L+(y, z) determines the quantum connection pulled-back by the 
mirror map τ+(y). Set τ∗+∇+ = d +z−1A+(y). The connection 1-form A+(y) is computed 
by:

A+(y) := −zd(L+(y, z)e−σ+/z)eσ+/zL+(y, z)−1

= −z(dL+(y, z))L+(y, z)−1 + L+(y, z)(dσ+)L+(y, z)−1

where the term dσ+ gives a logarithmic singularity (see equation (5.10)):

dσ+ =
�+∑
i=1

θ+(p+
i )dyi

yi
−
∑
j∈S+

λj
dxj

xj
.

Thus the connection form A+(y) is a global 1-form on M̃+ satisfying the properties in 
Theorem 5.14.

Remark 5.25. Note that A+(y) is independent of z: in the formal neighbourhood of 
P+ = {y1 = · · · = yr = 0} this follows from the fact that d +z−1A+(y) is the pulled-back 
quantum connection, and this is true everywhere by analytic continuation.

Finally we see that E+ corresponds to E+. Choose a homogeneous RT -basis {φi} of 
H•

CR,T (X+) such that φ0 = 1 and φi = θ(p+
i ) for 1 ≤ i ≤ �+ and write τ i+(y) for the 

ith component of τ+(y) with respect to this basis. One needs to check that E+τ i+(y) =
(1 − 1

2 degφi)τ i+(y) +ρi, where ρ =
∑N

i=0 ρ
iφi. The homogeneity of L−1

+ shows that τ̃+(y)
is homogeneous of (real) degree two: this implies that E+τ̃ i+(y) = (1 − 1

2 degφi)τ̃ i+(y). 
The rest is a straightforward computation. This completes the proof of Theorem 5.14.

Remark 5.26. For the existence of a global quantum connection in Theorem 5.14 and 
other main results in this paper, we do not need Assumption 5.20. Let us write M̃S

+ for 
M̃+ to emphasize the dependence on the extension data S. Then one has:

S ⊂ S′ =⇒ M̃S
+ ⊂ M̃S′

+

Suppose that an S-extended stacky fan does not satisfy Assumption 5.20. By taking 
a bigger S′ ⊃ S, we can achieve Assumption 5.20 and construct a global quantum 
connection on M̃S′

+ . Then we obtain a global quantum connection on M̃S
+ by restriction. 

In this way, the global quantum connections form a projective system over all extension 
data S. Assumption 5.20 ensures that F+ is generated by a section Υ+

0 and its covariant 
derivatives. For the convenience of discussion, we will sometimes use Assumption 5.20
in the rest of the paper, but this does not affect the final conclusion.

6. The Crepant Resolution Conjecture

We now come to the main result in this paper. In Theorem 5.14, we constructed a 
global quantum connection (F+, ∇+, E+) for X+ on M̃◦

+, where M̃◦
+ is an open subset 
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of the universal cover M̃+ of (Û+ \ {ye = c})/μB . By applying Theorem 5.14 to X−
rather than X+, we obtain a global quantum connection (F−, ∇−, E−) for X− on M̃◦

−, 
where M̃◦

− is an open subset of the universal cover M̃− of (Û− \ {ye = c})/μA. We 
now show that these two global quantum connections are gauge-equivalent on a common 
covering M̃: the universal cover of M̂reg \ {ye = 0, c, ∞}.

M̃
π+ π−

M̃+ M̂reg \ {ye = 0, c,∞} M̃−

(Û+ \ {ye = c})/μB (Û− \ {ye = c})/μA

Moreover, we show that the analytic continuation of flat sections is induced by a 
Fourier–Mukai transformation FM : K0

T (X−) → K0
T (X+) through the equivariant in-

tegral structure in §3.1. We establish the gauge-equivalence of the two global quantum 
connections in several steps, beginning in §6.1 by expressing the gauge transformation 
involved as a linear symplectomorphism U between the Givental spaces for X+ and 
X−. In §6.2 we use the Mellin–Barnes method to analytically continue the I-function 
I+, deducing from this a formula for U. In §6.3 we construct a Fourier–Mukai trans-
formation FM : K0

T (X−) → K0
T (X+) associated to the toric birational transformation 

X+ ��� X−. Finally in §6.4 and §6.5 we complete the proof of gauge-equivalence, and 
of the Crepant Resolution Conjecture in the toric case, by showing that the symplectic 
transformation U coincides, via the equivariant integral structure, with the Fourier–
Mukai transformation FM.

6.1. The global quantum connections are gauge-equivalent

Let U± denote the underlying topological space of M̃±. The space U+ is the universal 
cover of {yr ∈ C : yp+

r ·e
r �= c} and U− is the universal cover of {ỹr ∈ C : ỹp−

r ·(−e)
r �= c−1}. 

The underlying topological space of M̃ is the universal cover U of Creg \ {ye = 0, c, ∞}. 
We have natural maps π± : U → U± and set

U◦ := π−1
+ (U◦

+) ∩ π−1
− (U◦

−) ⊂ U

M̃◦ := M̃|U◦

where U◦
± ⊂ U± is the open dense subset from Theorem 5.14. Note that U\U◦ is a discrete 

set. Since we use P± ∈ Creg as base points of the universal covers U±, we need to specify 
a path from P+ to P− in Creg \ {ye = c} in order to identify the maps U → U± between 
universal covers. We consider a path in the log(ye)-plane starting from log(ye) = −∞
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Fig. 1. The path γ of analytic continuation on the log(ye)-plane.

and ending at log(ye) = ∞ such that it avoids log(c) + 2πiZ. We use a path γ as in 
Fig. 1 passing through the interval(

log |c| + πi(w − 1), log |c| + πi(w + 1)
)

in the log(ye)-plane, where w := −1 −
∑

j:Dj ·e<0(Dj · e) = −1 +
∑

j:Dj ·e>0(Dj · e).

Theorem 6.1. Let H(X±) = H•
CR,T (X±) ⊗RT

RT ( (z−1) ) denote Givental’s symplectic vec-
tor space for X± (see §2.5) without Novikov variables, i.e. with Q specialized to 1. There 
exists a degree-preserving12 RT ( (z−1) )-linear symplectic transformation U : H(X−) →
H(X+) such that:

(1) I+(y, z) = UI−(y, z) after analytic continuation in ye along the path γ in Fig. 1;
(2) U ◦ (g�−v∪) = (g�+v∪) ◦ U for all v ∈ H2

T (X0), where g± : X± → X0 is the common 
blow-down appearing in the diagram (1.3);

(3) there exists a Fourier–Mukai transformation FM : K0
T (X−) → K0

T (X+) such that 
the following diagram commutes:

K0
T (X−) FM

Ψ̃−

K0
T (X+)

Ψ̃+

H̃(X−) U H̃(X+)

(6.1)

where the vertical map Ψ̃± : K0
T (X±) → H̃(X±) is the map

Ψ̃±(E) = z−μ±
zρ

±
(
Γ̂X± ∪ (2πi)

deg0
2 inv∗ c̃h(E)

)
taking values13 in the “multi-valued Givental space”:

12 We use the usual grading on H•
CR,T (X±), RT = H•

T (pt) and set deg z = 2.
13 Cf. Corollary 2.6.
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H̃(X±) = H•
CR,T (X±) ⊗RT

RT [log z]((z−1/k))

Here k ∈ N is an integer such that all the eigenvalues of kμ+, kμ− are integers.

Theorem 6.1 will be proved in §6.2 and §6.3. The Fourier–Mukai kernel will be de-
scribed in §6.3: it is given by a toric common blow-up X̃ of X±.

Notation 6.2. In Theorem 6.1, ρ± = cT1 (TX±) ∈ H2
T (X±), μ± is the grading operator 

(2.4) on H•
CR,T (X±) and deg0 : H••

T (IX±) → H••
T (IX±) is the degree operator as in §3.1.

Theorem 6.3. Let (F±, ∇±, E±) be the global quantum connections for X± over 
M̃◦

±(RT [z]) from Theorem 5.14. We have that E+ = E− on M̃(RT ). There exists a 
gauge transformation

Θ ∈ Hom
(
H•

CR,T (X−), H•
CR,T (X+)

)
⊗RT

(OU◦ ⊗RT )[z]�y1, . . . , yr−1�

over M̃◦(RT [z]) such that:

• ∇− and ∇+ are gauge-equivalent via Θ, i.e. ∇+ ◦ Θ = Θ ◦∇−;
• Θ is homogeneous of degree zero, i.e. Gr+ ◦Θ = Θ ◦Gr− with Gr± := z ∂

∂z +E±+μ±;
• Θ preserves the orbifold Poincaré pairing, i.e. (Θ(y, −z)α, Θ(y, z)β) = (α, β).

Moreover, the analytic continuation of the K-theoretic flat sections in Definition 3.1
(with Novikov variables Q set to be one, see §3.2) is induced by the Fourier–Mukai 
transformation:

Θ
(
s(E)(τ−(y), z)

)
= s(FM(E))(τ+(y), z) for all E ∈ K0

T (X−)

where τ± are the mirror maps in Theorem 5.14.

Remark 6.4. The symplectic transformation U in Theorem 6.1 and the gauge transfor-
mation Θ in Theorem 6.3 are related by

L+(τ+(y), z)−1 ◦ Θ = U ◦ L−(τ−(y), z)−1 (6.2)

where L± is the fundamental solution for the quantum connection of X± in Proposi-
tion 2.4. The gauge transformation Θ sends the section Υ−

0 ∈ F− to the section Υ+
0 ∈ F+, 

where Υ±
0 are as in Theorem 5.14.

Remark 6.5. Theorems 6.1 and 6.3 can be interpreted as the statement that the symplec-
tic transformation U matches up the Givental cones L± associated to X± after analytic 
continuation of L±:
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U(−z)L− = L+. (6.3)

In fact, Remark 2.5 suggests that we may analytically continue the Lagrangian cones by 
the formula:

L± “=”
⋃

y∈M̃◦

zL±(τ±(y),−z)−1H+(X±)

and then equation (6.2) would imply (6.3). As discussed in the Introduction, to avoid 
subtleties in defining the analytic continuation of Givental cones in the equivariant set-
ting, in this paper we state our results in terms of analytic continuation of the I-function 
(Theorem 6.1) or in terms of the equivariant quantum connection and gauge transfor-
mations (Theorem 6.3).

Remark 6.6. Theorem 6.3 implies that the global quantum connections of X+ and X− can 
be glued together to give a flat connection over M̃◦. This flat connection descends to the 
formal neighbourhood M̂ of C in the secondary toric variety M via Galois symmetry 
as in Remark 5.10. This global connection, or D-module, on M̂ can be described by 
explicit GKZ-type differential equations: it is a completed version of Borisov–Horja’s 
better-behaved GKZ system14 [14]. In the papers [49,69], the toric quantum connection 
is described in terms of GKZ-type differential equations through mirror symmetry. The 
I-functions I±(q, z) are local solutions to these differential equations around the large 
radius limit points.

Proof that Theorem 6.1 implies Theorem 6.3. One can easily check that the change of 
variables (5.8) preserves degree, and that E+ = E−. By Theorem 6.1, we have

I+(y, z) = UI−(y, z) (6.4)

under analytic continuation along the path γ. The discussion in §5.5 (see Lemma 5.22, 
equation (5.17), and equation (5.19)) yields:⎡⎣ |

· · · z−1P+
f,iI+ · · ·
|

⎤⎦ = eσ+/zL+(y, z)−1Υ+(y, z). (6.5)

Similarly, the discussion in §5.5 applied to X− yields a global section Υ−
0 of F− and a 

(global) fundamental solution L−(y, z)e−σ−/z for ∇− = d + z−1A−(y) such that:

z−1I−(y, z) = eσ−/zL−(y, z)−1Υ−
0 (y, z)

14 The better-behaved GKZ system is in general generated by several elements. In our case, by adding 
enough extended vectors that Assumption 5.20 is satisfied, we can make it generated by a single standard 
generator 1, and in this case the better-behaved GKZ system is the same as the original GKZ system [39].
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Applying the differential operators P+
f,i to z−1I−(y, z), we obtain

⎡⎣ |
· · · z−1P+

f,iI− · · ·
|

⎤⎦ = eσ−/zL−(y, z)−1

⎡⎣ |
· · · P+

f,i(z∇
−)Υ−

0 · · ·
|

⎤⎦ (6.6)

where P+
f,i(z∇

−) is obtained from Pf,i by replacing z∂v with z∇−
v for vector fields v. Let 

Υ̃− denote the matrix with column vectors P+
f,i(z∇

−)Υ−
0 . Comparing (6.5) with (6.6)

and using (6.4), we obtain

eσ+/zL+(y, z)−1Υ+ = Ueσ−/zL−(y, z)−1Υ̃−

since U is independent of the base variables y. In particular, it follows that Υ̃− is invert-
ible. Setting Θ = Υ+(Υ̃−)−1, we obtain:(

eσ+/zL+(y, z)−1
)

Θ(y, z) = U

(
eσ−/zL−(y, z)−1

)
. (6.7)

Since eσ±/zL−1
± are fundamental solutions for ∇±, Θ gives a gauge transformation be-

tween ∇− and ∇+, i.e. Θ ◦∇− = ∇+ ◦ Θ. One may assume that the first columns of 
Υ+ and Υ̃− are given respectively by Υ+

0 and Υ−
0 , and therefore Θ(Υ−

0 ) = Υ+
0 .

Next we see that Θ preserves the grading and the pairing. Part (2) in Theorem 6.1
implies that U ◦ θ−(p−i ) = θ+(p+

i ) ◦U for i = 1, . . . , r− 1, since p+
i = p−i lies on the wall 

W for 1 ≤ i ≤ r − 1. Therefore

e−σ+/z ◦ U ◦ eσ−/z = e−θ+(p+
r ) log yr/z ◦ U ◦ eθ−

(∑r
i=1 p−

i log ỹi−
∑r−1

i=1 p+
i log yi

)
/z

= e−θ+(p+
r ) log yr/z ◦ U ◦ eθ−(p+

r ) log yr/z

where we used 
∑r

i=1 p+
i log yi =

∑r
i=1 p−i log ỹi. This together with (6.7) implies that:

L+(y, z)−1Θ(y, z) =
(
e−θ+(p+

r ) log yr/z ◦ U ◦ eθ−(p+
r ) log yr/z

)
L−(y, z)−1

Since deg yr = 0, we know that all of the factors in this equation except for Θ are 
homogeneous of degree zero; thus Θ is also homogeneous of degree zero. The fundamental 
solutions eσ±/zL−1

± preserve the pairing by Proposition 2.4 (we saw in §5.5 that they 
coincide with the fundamental solutions from Proposition 2.4 via the mirror maps τ±) 
and U also preserves the pairing. Thus Θ preserves the pairing.

Finally we consider the analytic continuation of K-theoretic flat sections. Note that 
the flat section s(E)(τ−(y), z) is analytically continued along M̃◦ by the right-hand side 
of the formula

s(E)(τ−(y), z) = 1
dim X−/2 L−(y, z)e−σ−/zΨ̃−(E)
(2π)
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where Ψ̃− is the map in Theorem 6.1. Using (6.7), we obtain:

Θ(s(E)(τ−(y, z))) = 1
(2π)dim X−/2 L+(y, z)e−σ+/zU

(
Ψ̃−(E)

)
Part (3) of Theorem 6.1 shows that this is equal to s(FM(E))(τ+(y), z). �
6.2. Mellin–Barnes analytic continuation

In this section, we compute the analytic continuation of the I-function and determine 
the linear transformation U in Theorem 6.1.

6.2.1. The H-function
It will be convenient to introduce another cohomology-valued hypergeometric function 

called the H-function. Noting that coefficients of the I-function can be written in terms 
of ratios of Γ-functions:

I+(y, z) := zeσ+/z
∑
d∈K+

yd
z(D1+···+Dm)·d

⎛⎝ m∏
j=1

Γ
(
1 + uj

z − 〈−Dj · d〉
)

Γ
(
1 + uj

z + Dj · d
)
⎞⎠ 1[−d]

zι[−d]

we set:

H+(y) := e
σ+
2πi

∑
d∈K+

yd
⎛⎝ m∏

j=1

1
Γ
(
1 + uj

2πi + Dj · d
)
⎞⎠1[d]

and similarly for H−. Formally speaking, H+ belongs to the space:∏
p

Hp
T (IX+)[log y1, . . . , log yr]�y1, . . . , yr�

Noting that the T -equivariant Gamma class of X+ is given by

Γ̂X+ =
⊕

f∈K+/L

⎛⎝ m∏
j=1

Γ(1 + uj − 〈Dj · f〉)

⎞⎠1f

we obtain the relationship between the H-function and the I-function:

z−1I+(y, z) = z−
c0(λ)
2πi − dim X+

2 z−μ+
zρ

+
(
Γ̂X+ ∪ (2πi)

deg0
2 inv∗ H

(
z−

deg y
2 y
))

(6.8)

where ρ+, μ+, deg0 are as in Notation 6.2 and

z−
deg y

2 y = (z−
deg y1

2 y1, . . . , z
− deg yr

2 yr).

The relationship between H− and I− is similar.
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Remark 6.7. The H-function H+ has analytic properties analogous to those of the 
I-function stated in Lemma 5.13. Namely e−σ+/(2πi)H+(y) is a formal power series in 
y1, . . . , yr−1 with coefficients of the form 

∑N
i=0 fi(λ, yr)φi where {φi} is an RT -basis of 

H•
T (IX+) and fi(λ, yr) is analytic in (λ1, . . . , λr, yr) ∈ Cm×U+. Note that the H-function 

has better analytic behaviour with respect to λ. The analytic continuation of H-functions 
performed below should be understood as analytic continuation of the coefficient func-
tions fi(λ, yr).

6.2.2. Restriction of the H-function to T -fixed points
Recall that the T -fixed points on X+ are indexed by minimal anticones δ ∈ A+, and 

that the T -fixed points on the inertia stack IX+ are indexed by pairs (δ, f) with δ ∈ A+
a minimal anticone and f ∈ K+/L satisfying Di · f ∈ Z for all i ∈ δ. The minimal 
anticone δ determines a T -fixed point xδ on X+ and the pair (δ, f) determines a T -fixed 
point x(δ,f) on the component Xf

+ of the inertia stack IX+. Let iδ and i(δ,f) denote the 
inclusion maps xδ → X+ and x(δ,f) → IX+ respectively. Set uj(δ) = i�δuj ∈ H2

T (pt), 
noting that uj(δ) = 0 if and only if j ∈ δ. We have that:

i�(δ,f)H+ =
∑

d∈K+:[d]=f

yd∏
j∈δ Γ

(
1 + Dj · d

) e
1

2πiσ+(δ)∏
j /∈δ Γ

(
1 + uj(δ)

2πi + Dj · d
) (6.9)

where σ+(δ) := i�δσ+. Consider the factor 
∏

j∈δ Γ
(
1 + Dj · d

)−1 in the summand: since 
d ≡ f mod L and since Dj · f ∈ Z for all j ∈ δ, the term Dj · d here is an integer. Thus 
the factor 

∏
j∈δ Γ

(
1 + Dj · d

)−1 vanishes unless d ∈ δ∨, where

δ∨ := {d ∈ L⊗Q : Dj · d ∈ Z≥0 for all j ∈ δ}.

The H-function is a sum over the subset Keff
+ of K+,

Keff
+ =

{
f ∈ L⊗Q :

{
i ∈ {1, 2, . . . ,m} : Di · f ∈ Z≥0

}
∈ A+

}
which is in general quite complicated, but the restriction i�(δ,f)H+ of H+ to a T -fixed 
point in IX+ is a sum over the much simpler set δ∨.

6.2.3. Analytic continuation of the H-function
The Localization Theorem in T -equivariant cohomology [3,8,45] implies that one can 

compute the analytic continuation of H+ by computing the analytic continuation of 
the restriction i�(δ,f)H+ to each T -fixed point x(δ,f) ∈ IX+. The restriction i�(δ,f)H+ is 
a H••

T (pt)-valued function. During the course of analytic continuation, we regard the 
equivariant parameters λ1, . . . , λm as generic complex numbers. There are two cases:

• δ ∈ A+ ∩ A−;
• δ ∈ A+ but δ /∈ A−.



T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087 1057
The anticone δ determines a T -fixed point xδ in X+, and in the first case it also deter-
mines a fixed point in X−. In the first case the birational transformation ϕ : X+ ��� X−
is an isomorphism in a neighbourhood of xδ, and it is clear from (6.9) that i�(δ,f)H+ =
i�(δ,f)H−, noting that uj(δ) is the same for X+ and X−. In the second case xδ lies in 
the flopping locus of ϕ, and we will see that the analytic continuation of i�(δ,f)H+ is a 
linear combination of restrictions i�(δ−,f−)H− for appropriate δ− ∈ A− and f− ∈ K−. 
Note that in the second case, δ has the form {j1, . . . , jr−1, j+} with Dj1 , . . . , Djr−1 ∈ W

and15 Dj+ · e > 0 (see Lemma 5.2).

Definition 6.8. Let δ+ ∈ A+ and δ− ∈ A− be minimal anticones. We say that δ+ is 
next to δ−, written δ+|δ−, if δ+ = {j1, . . . , jr−1, j+} and δ− = {j1, . . . , jr−1, j−} with 
Dj1 , . . . , Djr−1 ∈ W , Dj+ · e > 0, and Dj− · e < 0. In this case δ+ /∈ A− and δ− /∈ A+.

Definition 6.9. Let (δ+, f+) index a T -fixed point on IX+ and (δ−, f−) index a T -fixed 
point on IX−. We say that (δ+, f+) is next to (δ−, f−), written (δ+, f+)|(δ−, f−), if δ+|δ−
and there exists α ∈ Q such that f− = f+ + αe in L ⊗Q/L.

The analytic continuation of i�(δ,f)H+ is a linear combination of i�(δ−,f−)H− such that 
(δ, f) is next to (δ−, f−).

Notation 6.10. Fix lifts K+/L → K+ and K−/L → K− such that, for any pairs (d+, d−) ∈
K+ ×K− with d+ − d− ∈ Qe, the lifts of [d+] and [d−] differ by a rational multiple of e.

Lemma 6.11. Let δ+ ∈ A+ and δ− ∈ A− be minimal anticones such that δ+|δ−, and let 
j− be the element of δ− such that j− /∈ δ+. Then for any j, one has:

uj(δ+) = uj(δ−) + Dj · e
Dj− · euj−(δ+).

Proof. Write δ− = {j1, . . . , jr−1, j−}. Since Dj1 , . . . , Djr−1 , Dj− form a basis of L∨ ⊗Q, 
we can write:

Dj = c1Dj1 + · · · + cr−1Djr−1 + c−Dj−

Since Dj1 , . . . , Djr−1 are on the wall, pairing with e yields:

Dj · e = c−(Dj− · e). (6.10)

Applying the homomorphism θ± from (4.8), we obtain

15 Recall that e ∈ L is the primitive lattice vector in W⊥ such that e > 0 on C+ and e < 0 on C−.
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uj − λj = c1(uj1 − λj1) + · · · + cr−1(ujr−1 − λjr−1) + c−(uj− − λj−)

on both X+ and X−. Restricting to xδ+ ∈ X+ and xδ− ∈ X−, we get the two relations:

uj(δ+) − λj = −c1λj1 − · · · − cr−1λjr−1 + c−(uj(δ+) − λj−),

uj(δ−) − λj = −c1λj1 − · · · − cr−1λjr−1 − c−λj− .

Comparing the two equations, we get uj(δ+) = uj(δ−) + c−uj−(δ+). The conclusion now 
follows from equation (6.10). �
Corollary 6.12.

(1) Let δ be a minimal anticone such that δ ∈ A+ ∩ A−. Then σ+(δ) = σ−(δ).
(2) Let δ+ ∈ A+, δ− ∈ A− be minimal anticones such that δ+|δ− and let j− ∈ δ− be an 

element such that j− /∈ δ+. Then:

σ+(δ+) = σ−(δ−) + log ye
Dj− · euj−(δ+)

Proof.

(1) As we discussed, uj(δ) is the same for X+ and X− whenever δ ∈ A+∩A−. Therefore 
i�δθ+(Dj) = i�δθ−(Dj) for all j. In particular i�δθ+(p) = i�δθ−(p) for every p ∈ L∨⊗C. 
Setting p =

∑r
i=1 p+

i log yi =
∑r

i=1 p−i log ỹi, we obtain (1).
(2) Lemma 6.11 shows that

i�δ+θ+(p) = i�δ−θ−(p) + p · e
Dj− · euj−(δ+) (6.11)

for all p ∈ L∨ ⊗ C. Setting again p =
∑r

i=1 p+
i log yi =

∑r
i=1 p−i log ỹi, we ob-

tain (2). �
Theorem 6.13. Let (δ+, f+) index a T -fixed point on IX+. If δ+ ∈ A+ ∩ A− then:

i�(δ+,f+)H+ = i�(δ+,f+)H−.

Otherwise, after analytic continuation along the path γ in Fig. 1, we have:

i�(δ+,f+)H+ =
∑

(δ−,f−):
(δ+,f+)|(δ−,f−)

C
δ−,f−
δ+,f+

i�(δ−,f−)H−

where:
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C
δ−,f−
δ+,f+

= e
πiw

Dj−·e
(uj− (δ+)

2πi +Dj− ·(f+−f−)
)

×
sin π

(
uj− (δ+)

2πi + Dj− · (f+ − f−)
)

(−Dj− · e) sin π
−Dj− ·e

(
uj− (δ+)

2πi + Dj− · (f+ − f−)
) ∏

j:Dj ·e<0
j 
=j−

sin π
(

uj(δ+)
2πi + Dj · f+

)
sin π

(
uj(δ−)

2πi + Dj · f−
)

with w := −1 −
∑

j:Dj ·e<0 Dj ·e = −1 +
∑

j:Dj ·e>0 Dj ·e and j− ∈ δ− given by the unique 
element such that Dj− · e < 0.

Remark 6.14. The coefficient Cδ−,f−
δ+,f+

does not depend on the choice of lifts f+ ∈ K+ and 
f− ∈ K− such that f+ − f− ∈ Qe (see Notation 6.10).

Proof of Theorem 6.13. The first statement follows immediately from (6.9) and Corol-
lary 6.12. In this case, i�(δ+,f+)H+ (respectively i�(δ+,f+)H−) is a formal power series in 
y1, . . . , yr−1 (respectively in ỹ1, . . . , ̃yr−1) with coefficients that are polynomials in yr (re-
spectively in ỹr), and the series i�(δ+,f+)H+, i�(δ+,f+)H− match under the change (5.8) of 
co-ordinates. Consider now

i�(δ+,f+)H+ = e
σ+(δ+)

2πi

∑
d∈δ∨+:
[d]=f+

yd 1∏m
j=1 Γ

(
1 + uj(δ+)

2πi + Dj · d
)

where δ+ ∈ A+ but δ+ /∈ A−. We can write d ∈ δ∨+ uniquely as d = d+ + ke with k a 
non-negative integer, d+ ∈ δ∨+, and d+ − e /∈ δ∨+. Then:

i�(δ+,f+)H+ =
∑

d+∈δ∨+:
d+−e/∈δ∨+
[d+]=f+

yd+

∞∑
k=0

e
σ+(δ+)

2πi (ye)k∏m
j=1 Γ

(
1 + uj(δ+)

2πi + Dj · d+ + kDj · e
) (6.12)

Consider the second sum here. This is:

∞∑
k=0

e
σ+(δ+)

2πi (ye)k
∏

j:Dj ·e<0

(−1)kDj ·e sin π
(
− uj(δ+)

2πi −Dj · d+
)

π

×
∏

j:Dj ·e<0 Γ
(
−uj(δ+)

2πi −Dj · d+ − kDj · e
)

∏
j:Dj ·e≥0 Γ

(
1 + uj(δ+)

2πi + Dj · d+ + kDj · e
) (6.13)

where we used Γ(y)Γ(1 − y) = π/(sin πy). Thus (6.13) is:
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Fig. 2. The contour C.

∞∑
k=0

e
σ+(δ+)

2πi Ress=k Γ(s)Γ(1 − s)eπis(ye)s
∏

j:Dj ·e<0

eπis(Dj ·e) sin π
(
− uj(δ+)

2πi −Dj · d+
)

π

×
∏

j:Dj ·e<0 Γ
(
−uj(δ+)

2πi −Dj · d+ − sDj · e
)

∏
j:Dj ·e≥0 Γ

(
1 + uj(δ+)

2πi + Dj · d+ + sDj · e
) ds. (6.14)

Consider now the contour integral

e
σ+(δ+)

2πi

∫
C

Γ(s)Γ(1 − s)
∏

j:Dj ·e<0 Γ
(
−uj(δ+)

2πi −Dj · d+ − sDj · e
)

∏
j:Dj ·e≥0 Γ

(
1 + uj(δ+)

2πi + Dj · d+ + sDj · e
) (e−πiwye

)s
ds

(6.15)

where the contour C, shown in Fig. 2, is chosen such that the poles at s = n are on the 
right of C and the poles at s = −1 − n and at

s = 1
−Dj− ·e

(
uj− (δ+)

2πi + Dj− · d+ − n
)

for j− such that Dj− · e < 0 (6.16)

are on the left of C; here n is a non-negative integer. Note that all poles of the integrand 
are simple. By assumption we have that 

∑m
j=1 Dj ∈ W , and hence that 

∑m
j=1 Dj · e = 0. 

Let c ∈ C be the conifold point (5.13). Lemma A.6 in [12] implies that:

• the contour integral (6.15) is convergent and analytic as a function of ye in the 
domain {ye : | arg(ye) − wπ| < π};

• for |ye| < |c|, the integral is equal to the sum of residues on the right of C; and
• for |ye| > |c|, the integral is equal to minus the sum of residues on the left of C.
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The residues at s = −1− n vanish, where n is a non-negative integer: each such residue 
contains a factor ∏

j∈δ+

Γ
(
1 + Dj ·

(
d+ − (n + 1)e

))−1

and d+ − (n + 1)e /∈ δ∨+, so at least one of the Γ-functions is evaluated at a negative 
integer. After analytic continuation in ye, therefore, (6.14) becomes minus the sum of 
residues at the poles (6.16). The residue at the pole

p = 1
−Dj− ·e

(
uj− (δ+)

2πi + Dj− · d+ − n
)

is:

− e
σ+(δ+)

2πi (ye)peπip(1+Dj− ·e)
sin π

(
uj− (δ+)

2πi + Dj− · d+

)
sin πp

1
(−Dj− · e)

(−1)n

n!

∏
j:Dj ·e<0
j 
=j−

eπip(Dj ·e) sin π
(

uj(δ+)
2πi + Dj · d+

)
sin π

(
uj(δ+)

2πi + Dj · d+ + p(Dj · e)
) ∏

j:j 
=j−

1
Γ
(
1 + uj(δ+)

2πi + Dj · d+ + p(Dj · e)
)

(6.17)

This simplifies dramatically. Set n = k(−Dj− · e) + l with 0 ≤ l < (−Dj− · e),

d− = d+ + Dj− · d+ − l

−Dj− · e e

and δ− = {j1, . . . , jr−1, j−}, where δ+ = {j1, . . . , jr−1, j+} with Dj1 · e = · · · = Djr−1 ·
e = 0. Note that Dj− · d− = l ∈ Z≥0 but Dj− · (d− + e) < 0, and therefore d− ∈ δ∨− but 
d− + e /∈ δ∨−. Lemma 6.11 implies that:

uj(δ+)
2πi + Dj · d+ + p(Dj · e) = uj(δ−)

2πi + Dj · d− − k(Dj · e)

and thus the residue (6.17) is:

−e
σ−(δ−)

2πi yd−−d+−kee
πiw

Dj−·e
(uj− (δ+)

2πi +Dj− ·(d+−d−)
)

×
sin π

(
uj− (δ+)

2πi + Dj− · (d+ − d−)
)

(−Dj− · e) sin π
−Dj− ·e

(
uj− (δ+)

2πi + Dj− · (d+ − d−)
)

×
∏

j:Dj ·e<0
j 
=j−

sin π
(

uj(δ+)
2πi + Dj · d+

)
sin π

(
uj(δ−)

2πi + Dj · d−
) m∏

j=1

1
Γ
(
1 + uj(δ−)

2πi + Dj · d− − k(Dj · e)
) (6.18)

where we used p = 1
(

uj− (δ+) + Dj− · (d+ − d−)
)
− k and Corollary 6.12.
−Dj− ·e 2πi
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Let f− denote the equivalence class of d− in K−/L, noting that (δ+, f+)|(δ−, f−) and 
that

d+ = f+ − f− + Ne + d−

for some integer N . (Here we used Notation 6.10.) The dependence of (6.18) on N cancels, 
giving:

−e
σ−(δ−)

2πi yd−−d+−ke 1∏m
j=1 Γ

(
1 + uj(δ−)

2πi + Dj · d− − k(Dj · e)
) C

δ−,f−
δ+,f+

and minus the sum of these residues gives the analytic continuation of (6.14). After 
analytic continuation in ye = yp+

r ·e
r , therefore, we have that:

i�(δ+,f+)H+

=
∑

(δ−,f−):
(δ+,f+)|(δ−,f−)

∑
d−∈δ∨−:

d−+e/∈δ∨−
[d−]=f−

yd−

∞∑
k=0

e
σ−(δ−)

2πi (ye)−k∏m
j=1 Γ

(
1 + uj(δ−)

2πi + Dj · d− − kDj · e
) Cδ−,f−

δ+,f+

Comparing with (6.12) gives the result. �
6.2.4. Analytic continuation of the I-function and the symplectic transformation U

Set R̂T = H••
T (pt) and let ŜT be the completion of ST in §3.1. Define an ŜT -linear 

transformation UH : H••
T (IX−) ⊗R̂T

ŜT → H••
T (IX+) ⊗R̂T

ŜT by

UH(α) =
∑
(δ,f):

δ∈A+∩A−

(i�(δ,f)α) · 1δ,f

eT (Nδ,f )

+
∑

(δ+,f+):
δ+∈A+\A−

∑
(δ−,f−):

(δ,f−)|(δ+,f+)

C
δ+,f−
δ−,f−

· (i�(δ−,f−)α) · 1δ+,f+

eT (Nδ+,f+)

(6.19)

where (δ, f) and (δ+, f+) index T -fixed points in IX+, 1δ,f = i(δ,f)�1 and Nδ,f :=
Tx(δ,f)X

f
+. Then Theorem 6.13 can be restated as:

H+ = UHH−

Define the linear transformation U so that the following diagram commutes:
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H••
T (IX−) ⊗R̂T

ŜT

UH

Ψ̃′
−

H••
T (IX+) ⊗R̂T

ŜT

Ψ̃′
+

H•
CR,T (X−) ⊗RT

ST [log z]((z−1/k)) U
H•

CR,T (X+) ⊗RT
ST [log z]((z−1/k))

(6.20)

where the vertical maps are defined by Ψ̃′
±(α) = z−μ±

zρ
±(Γ̂X± ∪ (2πi)

deg0
2 inv∗ α) and 

k ∈ N is as in Theorem 6.1. The relationship (6.8) between the H-function and the 
I-function implies part (1) of Theorem 6.1:

I+ = UI−. (6.21)

Since the I-function contains neither log z nor non-integral powers of z, it follows that 
U is in fact a linear transformation:

U : H•
CR,T (X−) ⊗RT

ST ((z−1)) → H•
CR,T (X+) ⊗RT

ST ((z−1))

Diagram (6.20) gives that U is automatically degree-preserving. We show that U satisfies 
part (2) of Theorem 6.1. Noting that p+

i = p−i , i = 1, . . . , r − 1 are on the wall W , it 
suffices to show that θ+(p+

i ) ◦ U = U ◦ θ−(p−i ) for 1 ≤ i ≤ r − 1. This follows from 
equation (6.21) and the monodromy properties of the I-functions:

I+
∣∣
yj �→e2πiyj

= e2πiθ+(p+
j )/zI+

I−
∣∣
ỹj �→e2πiỹj

= e2πiθ−(p−
j )/zI−

for 1 ≤ j ≤ r − 1. Note that yj → e2πiyj corresponds to ỹj → e2πiỹj under the change 
(5.8) of variables. It remains to show that:

• U is symplectic;
• U is defined over RT ( (z−1) ), i.e. that U admits a non-equivariant limit.

These properties follow from the identification of UH with the Fourier–Mukai transfor-
mation defined in the next section. We will discuss these points in §6.5 below.

6.3. The Fourier–Mukai transform

We now construct a diagram (1.1) canonically associated to the toric birational trans-
formation ϕ : X+ ��� X−, where X̃ is a toric Deligne–Mumford stack and f+, f− are 
toric blow-ups, and compute the Fourier–Mukai transformation:

FM : K0
T (X−) → K0

T (X+) FM := (f+)�(f−)�
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In §6.4 below we will see that this transformation coincides, via the equivariant integral 
structure in Definition 3.1, with the transformation U from §6.2.4 given by analytic 
continuation.

6.3.1. The common blow-up of X+ and X−
Recall from §4.2 that X+ and X− are defined in terms of an exact sequence:

0 L Zm
β

N 0

where the map L → Zm is given by (D1, . . . , Dm). This sequence defines an action of 
K = (C×)r on Cm, and X± =

[
Uω±

/
K
]

for appropriate stability conditions ω+, ω− ∈
L∨ ⊗ R. Let b1, . . . , bm denote the images of the standard basis elements for Zm under 
the map β. Consider now the action of K ×C× on Cm+1 defined by the exact sequence:

0 L⊕ Z Zm ⊕ Z
β̃

N 0

where the map L ⊕ Z → Zm ⊕ Z is given by (D̃1, . . . , D̃m+1),

D̃j =

⎧⎪⎪⎨⎪⎪⎩
Dj ⊕ 0 if j < m + 1 and Dj · e ≤ 0
Dj ⊕ (−Dj · e) if j < m + 1 and Dj · e > 0
0 ⊕ 1 if j = m + 1

The map β̃ is the direct sum of β with the map Z → N defined by the element

bm+1 =
∑

j:Dj ·e>0
(Dj · e)bj

so the images of the standard basis elements for Zm⊕Z under the map β̃ are b1, . . . , bm+1. 
Consider the chambers C̃+, C̃−, and C̃ in (L ⊕ Z)∨ ⊗ R that contain, respectively, the 
stability conditions

ω̃+ = (ω+, 1) ω̃− = (ω−, 1) and ω̃ = (ω0,−ε)

where ω0 is a point in the relative interior of W ∩ C+ = W ∩ C− as in §5.1, and ε is a 
very small positive real number. Let X̃ denote the toric Deligne–Mumford stack defined 
by the stability condition ω̃.

Lemma 6.15. Recall the notation A±, A0, Athick
0 , Athin

0 , M0, M± in Lemma 5.2. The set 
of anticones for the stability conditions ω̃±, ω̃ are given by

Aω̃± = {I 
 {m + 1} : I ∈ A±}
Aω̃ =

{
I 
 {m + 1} : I ∈ Athick

0
}


{
I ∈ Athick

0 : I ∩M0 ∈ Athin
0
}
.
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Proof. Straightforward. �
Lemma 6.16. We have the following statements.

(1) The toric Deligne–Mumford stack corresponding to the chamber C̃+ is X+.
(2) The toric Deligne–Mumford stack corresponding to the chamber C̃− is X−.
(3) There is a commutative diagram as in (1.1), where:

• f+ : X̃ → X+ is a toric blow-up, arising from wall-crossing from the chamber C̃
to C̃+; and

• f− : X̃ → X− is a toric blow-up, arising from wall-crossing from the chamber C̃
to C̃−.

Proof. In view of §4.1, the description of Aω̃± in Lemma 6.15 proves (1) and (2). 
The birational transformations f+ : X̃ ��� X+ and f− : X̃ ��� X− determined by the 
toric wall-crossings are each morphisms which contract the toric divisor defined by the 
(m + 1)-st homogeneous co-ordinate. Indeed, f+ is induced by the identity birational 
map Uω̃ ��� Uω̃+ , and a point (z1, . . . , zm, zm+1) ∈ Uω̃+ is equivalent to the point 
(z1z

l1
m+1, . . . , zmzlmm+1, 1) ∈ Uω+ × {1} under the action of the C×-subgroup of K × C×

corresponding to e ⊕ 1 ∈ L ⊕ Z, where we set li := max(−Di · e, 0) for 1 ≤ i ≤ m. 
Therefore f+ is induced by a morphism

Uω̃ → Uω+ (z1, . . . , zm, zm+1) �→ (z1z
l1
m+1, . . . , zmzlmm+1) (6.22)

which is equivariant with respect to the group homomorphism (quotient by the 
C×-subgroup given by e ⊕ 1)

φ+ : K × C× → K (g, λ) �→ g · λ−e. (6.23)

Using Lemma 6.15, one can easily check that the map (6.22) indeed sends Uω̃ to Uω+ . We 
obtain a similar description for f− by considering the C×-subgroup given by 0 ⊕1 ∈ L ⊕Z

instead of e ⊕ 1. �
Remark 6.17. Torus fixed points on X̃ lying on the exceptional divisor {zm+1 = 0} of 
f± correspond to minimal anticones δ̃ ∈ Aω̃ such that δ̃ ∈ Athick

0 and δ̃ ∩ M0 ∈ Athin
0 . 

These minimal anticones take the form

δ̃ = {j1, . . . , jr−1, j+, j−}

where Dj1 , . . . , Djr−1 ∈ W , Dj+ · e > 0 and Dj− · e < 0. The birational morphism f±
maps the corresponding torus fixed point xδ̃ ∈ X̃ to the torus fixed point xδ± ∈ X± with

δ+ = {j1, . . . , jr−1, j+} ∈ A+, δ− = {j1, . . . , jr−1, j−} ∈ A−.
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Torus fixed points on X̃ lying away from the exceptional divisor {zm+1 = 0} corresponds 
to minimal anticones δ̃ ∈ Aω̃ of the form δ̃ = δ ∪ {m + 1}, δ ∈ Athick

0 = A+ ∩ A−. The 
morphisms f± are isomorphisms in neighbourhoods of these fixed points, and the torus 
fixed point xδ̃ maps to the fixed point xδ in X+ or in X−.

Remark 6.18. The stacky fan Σ̃ for X̃ is obtained from the stacky fans Σ± for X± by 
adding the extra ray bm+1 =

∑
j:Dj ·e>0(Dj · e)bj where

∑
j:Dj ·e>0

(Dj · e)bj =
∑

j:Dj ·e<0
(−Dj · e)bj

is a minimal linear relation (or circuit) in Σ±, see Remark 5.3. So our discussion here is 
a rephrasing in terms of GIT data of the material in [12, §5].

6.3.2. A basis for localized T -equivariant K-theory
Recall that T = (C×)m acts on X± through the diagonal T -action on Cm. We consider 

the T -action on X̃ induced from the inclusion T = T × {1} ⊂ T × C× and the (T ×
C×)-action on Cm+1. Then all the maps in the diagram (1.1) are T -equivariant. The 
T -equivariant K-groups K0

T (X±), K0
T (X̃) are modules over K0

T (pt), which is the ring 
Z[T ] of regular functions (over Z) on the algebraic torus T .

The T -invariant divisor {zi = 0} on Xω defined in (4.6) determines a T -equivariant line 
bundle O({zi = 0}) on Xω, and we denote the class of this line bundle in T -equivariant 
K-theory by Ri. For the spaces X+, X−, and X̃ we write these classes as

R+
1 , . . . , R

+
m ∈ K0

T (X+) R−
1 , . . . , R

−
m ∈ K0

T (X−) and R̃1, . . . , R̃m+1 ∈ K0
T (X̃).

Let us write:

S+
j := (R+

j )−1 S−
j := (R−

j )−1 and S̃j := R̃−1
j

An irreducible K-representation p ∈ Hom(K, C×) = L∨ defines a line bundle L(p) → Xω:

L(p) = Uω × C
/
(z, v) ∼ (g · z, p(g)v), g ∈ K

This line bundle is equipped with the T -linearization [z, v] �→ [t · z, v], t ∈ T and thus 
defines a class in K0

T (Xω). We write L+(p) for the corresponding line bundle on X+ and 
L−(p) for the corresponding line bundle on X−. We have

R±
i = L±(Di) ⊗ eλi

where eλi ∈ C[T ] stands for the irreducible T -representation given by the ith projection 
T → C×. In particular we have cT1 (L±(p)) = θ±(p) for the map θ in (4.8). Similarly 
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a character (p, n) ∈ Hom(K × C×, C×) = L∨ ⊕ Z defines a T -equivariant line bundle 
L(p, n) → X̃ and we have:

R̃i = L(D̃i) ⊗ eλi 1 ≤ i ≤ m

R̃m+1 = L(D̃m+1) = L(0, 1)

The classes L±(p) (respectively the classes L(p, n)) generate the equivariant K-group 
K0

T (X±) (respectively K0
T (X̃)) over Z[T ].

Let δ− ∈ A− be a minimal anticone, xδ− be the corresponding T -fixed point on X−, 
iδ− : xδ− → X− be the inclusion of the fixed point, and Gδ− be the isotropy group of 
xδ− . We have that xδ−

∼= BGδ− , and that i�δ−Ri = 1 for i ∈ δ−. A basis for K0
T (X−), 

after inverting non-zero elements of Z[T ], is given by:{
(iδ−)�� : � an irreducible representation of Gδ− , δ− ∈ A−

}
(6.24)

We need to specify a T -linearization on (iδ−)��. Choosing a lift �̂ ∈ Hom(K, C×) = L∨

of each Gδ−-representation � : Gδ− → C×, we write any element in (6.24) in the form:

eδ−,� := L−(�̂)
∏
i/∈δ−

(
1 − S−

i

)
Then {eδ−,�} is a basis for the localized T -equivariant K-theory of X−. There is an 
entirely analogous basis {eδ+,�} for the localized T -equivariant K-theory of X+. We will 
describe the action of the Fourier–Mukai transform in terms of these bases.

6.3.3. Computing the Fourier–Mukai transform
Consider the diagram (1.1) and the associated Fourier–Mukai transform FM:

K0
T (X−) → K0

T (X+). In this section we prove:

Theorem 6.19. If δ− ∈ A− is a minimal anticone such that δ− ∈ A+ then

FM(eδ−,�) = eδ−,�

where on the left-hand side of the equality δ− is regarded as a minimal anticone for X−
and on the right-hand side δ− is regarded as a minimal anticone for X+. If δ− is a 
minimal anticone in A− such that δ− /∈ A+ then FM(eδ−,�) is equal to

1
l

∑
t∈T

⎛⎜⎜⎝1 − S+
j−

1 − t−1 · L+(�̂)t�̂·e ·
∏
j /∈δ−

Dj ·e<0

(1 − S+
j ) ·

∏
i/∈δ−

Di·e≥0

(
1 − t−Di·eS+

i

)⎞⎟⎟⎠
where j− is the unique element of δ− such that Dj− · e < 0, l = −Dj− · e and

T =
{
ζ · (R+

j−
)1/l : ζ ∈ μl

}
.
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Remark 6.20. We have

1
l

∑
t∈T

tn =
{

(R+
j−

)n/l if l divides n;
0 otherwise.

Thus 1
l

∑
t∈T f(t) makes sense as an element of K0

T (X+) for a Laurent polynomial f(t)
in t. Note that each summand appearing in the formula for FM(eδ−,�) is in fact a Laurent 
polynomial in t, since the factor 1 − t−1 divides 1 − S+

j−
= 1 − t−l.

Borisov–Horja have computed how non-equivariant versions of the classes R−
i change 

under pullback [13, Proposition 8.1]. We have parallel results in the equivariant setting.

Proposition 6.21. For p ∈ L, we have:

f�
−(L−(p)) = L(p, 0) and f�

+(L+(p)) = L(p,−p · e)

Let ki := max(Di · e, 0) and li := max(−Di · e, 0). Then:

f�
−R

−
i = R̃iR̃

ki
m+1 and f�

+R
+
i = R̃iR̃

li
m+1.

Proof. These statements follow from the description of f± : X̃ → X± in the proof of 
Lemma 6.16; see (6.22) and (6.23). �

We now analyze the push-forward of classes supported on torus fixed points of X̃.

Proposition 6.22. Consider minimal anticones

δ̃ = {j1, . . . , jr−1, j+, j−} ∈ Aω̃ for X̃

δ+ = {j1, . . . , jr−1, j+} ∈ A+ for X+

such that {j1, . . . , jr−1, j+, j−} ⊂ {1, . . . , m}, Dj1 · e = · · · = Djr−1 · e = 0, Dj− · e < 0
and Dj+ · e > 0. Let iδ̃ : BGδ̃ → X̃ and iδ+ : BGδ+ → X+ denote the inclusions of the 
corresponding T -fixed points and let f+,δ̃ : BGδ̃ → BGδ+ denote the map induced on the 
fixed points.

(1) The map f+,δ̃ exhibits BGδ̃ as a μl-gerbe over BGδ+ , where l = −Dj− · e.
(2) We have:

(f+,δ̃)�(iδ̃)
�L(p, n) =

{
(iδ+)�L+(p)(R+

j−
)(p·e+n)/l if l divides p · e + n;

0 otherwise.
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(3) Let g be a Laurent polynomial in m + 1 variables. Then:

(f+,δ̃)�(iδ̃)
�L(p, n)g

(
R̃1, . . . , R̃m+1

)
= (iδ+)� 1

l

∑
t∈T

L+(p)tp·e+ng
(
t−l1R+

1 , . . . , t
−lmR+

m, t
)

Proof. The stabilizers Gδ̃ and Gδ+ are given, as subgroups of K × C× and K, by

Gδ̃ = {(g, λ) ∈ K × C× : Dj(g)λ−Dj ·e = 1 for all j ∈ δ+, Dj−(g) = 1}
Gδ+ = {h ∈ K : Dj(h) = 1 for all j ∈ δ+}

where we regard Dj as a character of K. The homomorphism Gδ̃ → Gδ+ is induced by 
φ+ : (g, λ) �→ h = g ·λ−e in (6.23). The kernel of the homomorphism is {(λe, λ) : λ ∈ μl}
and we obtain an exact sequence:

1 μl Gδ̃ Gδ+ 1

Therefore f+,δ̃ exhibits BGδ̃ as a μl-gerbe over BGδ+ .
For part (2), notice that (f+,δ̃)� maps a Gδ̃-representation to its μl-invariant part. 

The character (p, n) ∈ Hom(K × C×, C×) induces a μl-character λ �→ λp·e+n via the 
inclusion μl ⊂ Gδ̃ ⊂ K ×C×. Therefore (f+,δ̃)�(ιδ̃)�L(p, n) vanishes if l does not divide 

p · e + n. On the other hand, Proposition 6.21 gives (f+)�R+
j−

= R̃j−R̃
l
m+1 and hence, if 

l divides p · e + n,

(f+,δ̃)
�(iδ+)�L+(p)(R+

j−
)(p·e+n)/l = (iδ̃)

�L(p,−p · e)(R̃j−)(p·e+n)/l(R̃m+1)p·e+n

= (iδ̃)
�L(p,−p · e)(R̃m+1)p·e+n = (iδ̃)

�L(p, n).

Therefore the Projection Formula gives (f+,δ̃)�(iδ̃)�L(p, n) = (iδ+)�L+(p)(R+
j−

)(p·e+n)/l. 
This proves (2).

For part (3) it suffices to take g to be a monomial: g(R̃1, . . . , R̃m+1) =
∏m+1

i=1 R̃ni
i . In 

this case:

L(p, n)g(R̃1, . . . , R̃m+1) = L(p +
∑m

i=1 niDi, n + nm+1 −
∑m

i=1 niki) ⊗ e
∑m

i=1 niλi

(6.25)

Part (2) can be restated as:

(f+,δ̃)�(iδ̃)
�L(p, n) = (iδ+)� 1

l

∑
t∈T

L+(p)tp·e+n

Combining this with (6.25) yields (3). �
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Proof of Theorem 6.19. Suppose first that δ− ∈ A+ ∩ A−. Then, as discussed, ϕ gives 
an isomorphism between neighbourhoods of the fixed points corresponding to δ−. Thus 
FM(eδ−,�) = eδ−,�.

Suppose now that δ− ∈ A− but δ− /∈ A+, so that δ− = {j1, . . . , jr−1, j−} with 
Dj1 · e = · · · = Djr−1 · e = 0 and Dj− · e < 0. Proposition 6.21 gives:

(f−)�eδ−,� = L(�̂, 0)
∏
i/∈δ−

(
1 − S̃ki

m+1S̃i

)
where the index i in the product satisfies i ≤ m. This restricts to zero at a fixed point 
xδ̃ ∈ X̃ unless xδ̃ is in f−1

+ (xδ−), that is, unless δ̃ has the form δ−∪{j+} with Dj+ ·e > 0. 
The Localization Theorem in T -equivariant K-theory [32] gives:

(f−)�eδ−,� =
∑
δ̃

(iδ̃)�(iδ̃)
�

[
L(�̂, 0)

∏
i/∈δ−

(
1 − S̃ki

m+1S̃i

)
(1 − S̃m+1)

∏
j /∈δ−,j 
=j+

(1 − S̃j)

]
(6.26)

where i, j ≤ m and the sum runs over δ̃ = δ− ∪{j+} such that Dj+ · e > 0. Restricted to 
such a T -fixed point, S̃j+ becomes trivial, so the numerator in (6.26) contains a factor 
(iδ̃)�(1 − S̃

kj+
m+1) that is divisible by (iδ̃)�(1 − S̃m+1). Thus (6.26) depends polynomially 

on S̃m+1. Now:

(f+)�(f−)�eδ−,� =
∑

δ+:δ+|δ−

(iδ+)�(f+,δ̃)�(iδ̃)
�

[
L(�̂, 0)

∏
i/∈δ−

(
1 − S̃ki

m+1S̃i

)
(1 − S̃m+1)

∏
j /∈δ−,j 
=j+

(1 − S̃j)

]

=
∑

δ+:δ+|δ−

(iδ+)�(iδ+)�
[

1
l

∑
t∈T

L+(�̂)t�̂·e
∏

i/∈δ−

(
1 − tli−kiS+

i

)
(1 − t−1)

∏
j /∈δ−,j 
=j+

(1 − tljS+
j )

]

where we used part (3) of Proposition 6.22. This is:

∑
δ+:δ+|δ−

(iδ+)�(iδ+)�

⎡⎢⎣ 1
l

∑
t∈T

1−S+
j−

1−t−1 · L+(�̂)t�̂·e ·
∏

j /∈δ−

(
1 − t−kjS+

j

)∏
j /∈δ+

(1 − S+
j )

⎤⎥⎦ .
Applying the Localization Theorem again gives the result. Here we need to check that 
the restriction of

1 − S+
j−

1 − t−1 ·
∏
j /∈δ−

(
1 − t−kjS+

j

)
to the fixed point corresponding to δ ∈ A+ ∩ A− vanishes. If there exists j ∈ δ with 
j /∈ δ− and Dj · e ≤ 0 then the restriction vanishes since i�δS

+
j = 1. Otherwise one has 
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δ \ δ− ⊂ M+. In this case j− ∈ δ and there exists j0 ∈ δ ∩ M+. Thus the restriction 
contains the factor

i�δ

[
1 − S+

j−

1 − t−1 (1 − t−Dj0 ·eS+
j0

)
]

= i�δ

[
(1 − S+

j−
)1 − t−Dj0 ·e

1 − t−1

]

which vanishes. �
6.4. The Fourier–Mukai transform matches with analytic continuation

We now show that the analytic continuation formula in Theorem 6.13 matches with 
the Fourier–Mukai transform in Theorem 6.19. More precisely we show:

Theorem 6.23. Let UH be the linear transformation in §6.2.4 given by the analytic con-
tinuation of H-functions. Then UH induces a map UH : H••

T (IX−) → H••
T (IX+) and 

the following diagram commutes:

K0
T (X−) FM

c̃h

K0
T (X+)

c̃h

H••
T (IX−)

UH

H••
T (IX+)

(6.27)

We start by computing the Chern characters of certain line bundles. It is easy to see 
that:

c̃h(L±(�̂)) =
⊕

f∈K±/L

e2πi�̂·feθ±(�̂)1f

c̃h(S±
j ) =

⊕
f∈K±/L

e−2πiDj ·fe−uj1f

In view of this, we define

c̃h(t) :=
⊕

f∈K+/L

ζe2πiDj− ·f/leuj−/l1f

for t = ζ(R+
j−

)1/l ∈ T appearing in Theorem 6.19. Here we fix lifts K+/L → K+, 
K−/L → K− as in Notation 6.10 and identify f ∈ K+/L with its lift in K+.

Lemma 6.24. Suppose that (δ+, f+) indexes a T -fixed point on X+, that (δ−, f−) indexes 
a T -fixed point on X−, and that (δ+, f+)|(δ−, f−). Let j− ∈ δ− be the unique index such 
that Dj− · e < 0 and write l = −Dj− · e. Setting t = e−2πiDj− ·f−/l(R+

j )1/l, we have:

−
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i�(δ+,f+) c̃h
(
L+(�̂)t�̂·e

)
= i�(δ−,f−) c̃h (L−(�̂))

i�(δ+,f+) c̃h
(
S+
j t−Dj ·e) = i�(δ−,f−) c̃h(S−

j )
(6.28)

We also have:

i�(δ+,f+) c̃h

⎡⎣L+(�̂)t�̂·e
∏
j /∈δ−

(1 − t−Dj ·eS+
j )

⎤⎦ = i�(δ−,f−) c̃h(eδ−,�) (6.29)

and:

i�(δ+,f+)c̃h

⎡⎢⎢⎣ 1 − S+
j−

l(1 − t−1) ·
∏
j /∈δ−

Dj ·e<0

1 − S+
j

1 − S+
j t−Dj ·e

⎤⎥⎥⎦ = C
(δ−,f−)
(δ+,f+) (6.30)

where C(δ−,f−)
(δ+,f+) are the coefficients appearing in Theorem 6.13.

Proof. This is just a calculation. Recall from Notation 6.10 that f− = f+ +αe for some 
α ∈ Q. Then Dj · (f+ − f−) = −αDj · e and Dj− · (f+ − f−) = lα. The formulae (6.28)
easily follow from Lemma 6.11 and (6.11). The formula (6.29) is an easy consequence of 
(6.28). To see (6.30), we calculate, using (6.28),

LHS = 1
l

1 − e−uj− (δ+)−2πi(Dj− ·f+)

1 − e−
1
l (uj− (δ+)+2πiDj− ·(f+−f−))

∏
j /∈δ−

Dj ·e<0

1 − e−uj(δ+)−2πiDj ·f+

1 − e−uj(δ−)−2πiDj ·f−

= 1
l

sin π
(

uj− (δ+)
2πi + Dj− · (f+ − f−)

)
sin π

l

(
uj− (δ+)

2πi + Dj− · (f+ − f−)
) ∏

j /∈δ−
Dj ·e<0

sin π
(

uj(δ+)
2πi + Dj · f+

)
sin π

(
uj(δ−)

2πi + Dj · f−
)

× e
− 1

2 (1− 1
l )(uj− (δ+)+2πiDj− ·(f+−f−))+

∑
j /∈δ−,Dj ·e<0

( 1
2 (uj(δ−)−uj(δ+))+πiDj ·(f−−f+)

)

where we used the fact that Dj− · f− ∈ Z. Using Lemma 6.11 again to calculate the 

exponential factor, we arrive at the expression for C(δ−,f−)
(δ+,f+) in Theorem 6.13. �

Proof of Theorem 6.23. We first show that the commutative diagram holds over ŜT . 
Then it follows that UH has a non-equivariant limit, as FM does. Consider the element 
eδ,� ∈ K0

T (X−) with δ ∈ A+ ∩ A−. Theorem 6.19 and the definition (6.19) of UH show 
that

c̃h(FM(eδ,�)) = c̃h(eδ,�) = UH(c̃h(eδ,�)).

Consider now eδ−,� ∈ K0
T (X−) for δ− ∈ A− \ A+. It is clear that c̃h(FM(eδ−,�)) is 

supported only on fixed points x(δ+,f+) ∈ IX+ such that δ+|δ−. By the definition (6.19)
of UH , it suffices to show that:
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i�(δ+,f+) c̃h
(
FM(eδ−,�)

)
=

∑
f−∈K−/L:

(δ+,f+)|(δ−,f−)

C
δ−,f−
δ+,f+

· i�(δ−,f−) c̃h(eδ−,�) (6.31)

We may rewrite the result in Theorem 6.19 as

FM(eδ−,�) = 1
l

∑
t∈T

⎛⎜⎜⎝1 − S+
j−

1 − t−1

∏
j /∈δ−

Dj ·e<0

1 − S+
j

1 − t−Dj ·eS+
j

· L+(�̂)t�̂·e
∏
i/∈δ−

(1 − t−Di·eS+
i )

⎞⎟⎟⎠
(6.32)

We have a one-to-one correspondence between the index of summation f− in (6.31) and 
the index of summation t ∈ T in (6.32) given by

f− ←→ t = e−2πiDj− ·f−/l(R+
j−

)1/l

where j− ∈ δ− is the unique element satisfying Dj− · e < 0 and l = −Dj− · e. Therefore 
(6.31) follows from (6.32), (6.29) and (6.30). The Theorem is proved. �
6.5. Completing the proof of Theorem 6.1

Combining the commutative diagrams (6.20) and (6.27), we obtain the commutative 
diagram (6.1) in Theorem 6.1. Since the Fourier–Mukai transformation FM can be de-
fined non-equivariantly, U also admits a non-equivariant limit. Finally we show that U
is symplectic, i.e. that (U(−z)α, U(z)β) = (α, β) for all α, β. Since FM is induced by 
an equivalence of derived categories [32], it preserves the Euler pairing χ(E, F ) given in 
(3.5). The proof of Proposition 3.2 shows that the vertical maps Ψ̃± in (6.1) preserve 
the pairing in the sense that:(

Ψ̃±(E)|z→e−πiz, Ψ̃±(F )
)

= χz(E,F ).

The commutative diagram (6.1) now shows that U is symplectic. This completes the 
proof of Theorem 6.1.

7. Toric complete intersections

We now turn to the Crepant Transformation Conjecture for toric complete inter-
sections. Consider toric Deligne–Mumford stacks X± of the form 

[
Cm/ /ωK

]
, where 

K = (C×)r is a complex torus, and consider a K-equivalence ϕ : X+ ��� X− deter-
mined by a wall-crossing in the space of stability conditions ω as in §5. We use notation 
as there, so that L = Hom(C×, K) is the lattice of cocharacters of K; the space of stabil-
ity conditions is L∨ ⊗ R; and the birational map ϕ is induced by the wall-crossing from 
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a chamber C+ ⊂ L∨ ⊗ R to a chamber C− ⊂ L∨ ⊗ R, where C+ and C− are separated 
by a wall W . Consider characters E1, . . . , Ek of K such that:

• each Ei lies in W ∩ C+ = W ∩ C−;
• for each i, the line bundle LX+(Ei) → X+ corresponding to Ei is a pull-back 

from the coarse moduli space |X+|;
• for each i, the line bundle LX−(Ei) → X− corresponding to Ei is a pull-back 

from the coarse moduli space |X−|;

(7.1)

where LX±(Ei) are the line bundles on X± associated to the character Ei in §6.3.2. Let:

E+ :=
k⊕

i=1
LX+(Ei) E− :=

k⊕
i=1

LX−(Ei)

Let s+, s− be regular sections of, respectively, the vector bundles E+ → X+ and E− →
X− such that:

• s+ and s− are compatible via ϕ : X+ ��� X−;
• the zero loci of s± intersect the flopping locus of ϕ transversely;

and let Y+ ⊂ X+, Y− ⊂ X− be the complete intersection substacks defined by s+, s−. 
The birational transformation ϕ then induces a K-equivalence ϕ : Y+ ��� Y−. In this 
section we establish the Crepant Transformation Conjecture for ϕ : Y+ ��� Y−.

7.1. The ambient part of quantum cohomology

Under our standing hypotheses on the ambient toric stacks X±, the complete in-
tersections Y± automatically have semi-projective coarse moduli spaces, and so the 
(non-equivariant) quantum products on H•

CR(Y±) are well-defined. Thus we have a well-
defined quantum connection

∇ = d + z−1
N∑
i=0

(φi�τ )dτ i (7.2)

where �τ is the non-equivariant big quantum product, defined exactly as in (2.2). This 
is a pencil ∇ of flat connections on the trivial H•

CR(Y±)-bundle over an open set in 
H•

CR(Y±); here, as in the equivariant case, z ∈ C× is the pencil variable, τ ∈ H•
CR(Y±)

is the co-ordinate on the base of the bundle, φ0, . . . , φN are a basis for H•
CR(Y±), and 

τ0, . . . , τN are the corresponding co-ordinates of τ ∈ H•
CR(Y±), so that τ =

∑N
i=0 τ

iφi. 
We consider now a similar structure on the ambient part of H•

CR(Y±), that is, on:

H•
amb(Y±) := im ι�± ⊂ H•

CR(Y±)
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where ι± : Y± → X± are the inclusion maps. If τ ∈ H•
amb(Y±) then the big quantum 

product �τ preserves H•
amb(Y±) [51, Corollary 2.5], and so (7.2) restricts to give a well-

defined quantum connection on the ambient part of H•
CR(Y±). The restriction of the 

fundamental solution L±(τ, z) for (7.2), defined exactly as in (2.8), gives a fundamental 
solution Lamb

± (τ, z) for the quantum connection on the ambient part.
There is also an ambient part of K0(Y±), given by K0

amb(Y±) := im ι�±, and an ambient 
K-group framing (cf. Definition 3.1)

s : K0
amb(Y±) → H•

amb(Y±) ⊗ C[log z]((z−1/k))�Q, τ�

given by

s(E)(τ, z) = 1
(2π)dim Y±/2L

amb
± (τ, z)z−μzρ

(
Γ̂Y± ∪ (2πi)

deg0
2 inv∗ c̃h(E)

)
where μ and ρ are the grading operator and first Chern class for Y±, k ∈ N is such that 
the eigenvalues of kμ are integers, and Γ̂Y± is the non-equivariant Γ̂-class of Y±. As in §3, 
the image of s is contained in the space of flat sections for the quantum connection on 
the ambient part of H•

CR(Y±) which are homogeneous of degree zero.

7.2. I-functions for toric complete intersections

Recall from §5.4 that the GIT data for X+ determine a cohomology-valued hyperge-
ometric function I+. The I-function IX+ := I+ is a multi-valued function of y1, . . . , yr, 
depending analytically on yr and formally on y1, . . . yr−1, defined near the large-radius 
limit point (y1, . . . , yr) = (0, . . . , 0) in M̂reg. The GIT data for the total space of 
E∨

+ (regarded as a non-compact toric stack) is obtained from the GIT data for X+

by adding extra toric divisors −E1, . . . , −Ek. It is easy to see that the correspond-
ing I-function IE∨

+
is also a multi-valued function of y1, . . . , yr, depending analytically 

on yr and formally on y1, . . . yr−1, which is defined near the same large-radius limit 
point (y1, . . . , yr) = (0, . . . , 0) in M̂reg. The global quantum connections for X+ and 
E∨

+ were constructed, in §5.5, using the I-functions IX+ and IE∨
+
. We now introduce 

a closely-related I-function, defined in terms of GIT data for X+ and the characters 
E1, . . . , Ek, that will allow us to globalize the quantum connection on the ambient part 
of H•

CR(Y±).
With notation as in §5.4, except with ui now denoting the non-equivariant class 

Poincaré-dual to the ith toric divisor (4.6) and with vj ∈ H2(X+), 1 ≤ j ≤ k, 
given by the non-equivariant first Chern class of the line bundle corresponding to 
the character Ej , define a H•

CR(X+)-valued hypergeometric series Itemp
X+,Y+

(σ, x, z) ∈
H•

CR(X+) ⊗ C( (z−1) )�Q, σ, x� by:
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Itemp
X+,Y+

(σ, x, z) = zeσ/z
∑
d∈K

eσ·dQd
∏
j∈S

x
Dj ·d
j

⎛⎝ m∏
j=1

∏
a:〈a〉=〈Dj ·d〉,a≤0(uj + az)∏

a:〈a〉=〈Dj ·d〉,a≤Dj ·d(uj + az)

⎞⎠
×

⎛⎝ k∏
j=1

Ej ·d∏
a=1

(vj + az)

⎞⎠1[−d]

Note that for each d ∈ K and each j ∈ {1, 2, . . . , k}, Ej ·d is a non-negative integer. (The 
subscript ‘temp’ here again reflects the fact that this notation for the I-function is only 
temporary: we are just about to change notation, by specializing certain parameters.) 
Under our hypotheses (7.1) on the line bundles LX+(Ej), we have a Mirror Theorem for 
the toric complete intersection Y+:

Theorem 7.1 ([30]). ι�+I
temp
X+,Y+

(σ, x, −z) is a C�Q, σ, x�-valued point on LY+ .

We define the I-function IX+,Y+ to be the function obtained from Itemp
X+,Y+

by the 
specialization Q = 1, σ = σ+ := θ+(

∑r
i=1 p+

i log yi) where θ+ is as in (4.8). Thus:

IX+,Y+(y, z)

:= zeσ+/z
∑
d∈K+

yd
⎛⎝ m∏

j=1

∏
a:〈a〉=〈Dj ·d〉,a≤0(uj + az)∏

a:〈a〉=〈Dj ·d〉,a≤Dj ·d(uj + az)

⎞⎠⎛⎝ k∏
j=1

Ej ·d∏
a=1

(vj + az)

⎞⎠1[−d]

where (y1, . . . , yr) are as in §5.4. Repeating the analysis in Lemma 5.13 shows that 
IX+,Y+ , just like IX+ and IE∨

+
, is a multi-valued function of y1, . . . , yr that depends 

analytically on yr and formally on y1, . . . yr−1, defined near the large-radius limit point 
(y1, . . . , yr) = (0, . . . , 0) in M̂reg. The arguments in §5.5 can now be applied verbatim 
to IY+ := ι�+IX+,Y+ , and thus we construct a global version of the quantum connection 
on the ambient part H•

amb(Y+), defined over the base M̃◦
+. The analog of Theorem 5.14

holds, with the same proof:

Theorem 7.2. There exist the following data:

• an open subset U◦
+ ⊂ U+ such that P+ ∈ U◦

+ and that the complement U+ \ U◦
+ is a 

discrete set; we write M̃◦
+ = M̃+|U◦

+ ;
• a trivial H•

amb(Y+)-bundle F+ over M̃◦
+(C[z]):

F+ = H•
amb(Y+) ⊗OU◦

+ [z]�y1, . . . , yr−1�;

• a flat connection ∇+ = d + z−1A+(y) on F+ of the form:

A+(y) =
�+∑
i=1

Bi(y)
dyi
yi

+
∑
j∈S+

Cj(y)dxj

with Bi(y), Cj(y) ∈ End(H•
amb(Y+)) ⊗OU◦ �y1, . . . , yr−1�;
+
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• a vector field E+ on M̃+, called the Euler vector field, defined by:

E+ =
r∑

i=1

1
2(deg yi)yi

∂

∂yi
;

• a mirror map τ+ : M̃+ → H•
amb(Y+) of the form:

τ+ = ι�+σ+ + τ̃+ τ̃+ ∈ H•
amb(Y+) ⊗OU◦

+ �y1, . . . , yr−1�

τ̃+|y1=···=yr=0 = 0

such that ∇+ equals the pull-back τ∗+∇+ of the (non-equivariant) quantum connection 
∇+ on the ambient part of H•

CR(Y+) by τ+, that is:

Bi(y) =
N∑

k=0

∂τk+(y)
∂ log yi

(φk�τ+(y)) 1 ≤ i ≤ �+

Cj(y) =
N∑

k=0

∂τ̃k+(y)
∂xj

(φk�τ+(y)) j ∈ S+

and that the push-forward of E+ by τ+ is the (non-equivariant) Euler vector field E+ on 
the ambient part H•

amb(Y+). Moreover, there exists a global section Υ+
0 (y, z) of F+ such 

that

IY+(y, z) = zLamb
+ (τ+(y), z)−1Υ+

0 (y, z)

where Lamb
+ (τ, z) is the ambient fundamental solution from §7.1.

Remark 7.3. Here, as in Theorem 5.14, the Novikov variable Q has been specialized to 1.

Remark 7.4. Entirely parallel results hold for Y−.

7.3. Analytic continuation of I-functions

To prove the Crepant Transformation Conjecture in this context, we need to establish 
the analog of Theorem 6.1. To do this, we will compare the analytic continuation of the 
I-functions IX±,Y± with the analytic continuation of IE∨

±
. Let T = (C×)m denote the 

torus acting on X±, and T̃ = (C×)m+k denote the torus acting on E∨
±. The splitting 

T̃ = T × (C×)k gives RT̃ = RT [κ1, . . . , κk] where κj , 1 ≤ j ≤ k, is the character of (C×)k
given by projection to the jth factor of the product (C×)k. We regard T̃ as acting on 
X± via the given action of T ⊂ T̃ and the trivial action of (C×)k ⊂ T̃ , so that:

Z[T̃ ] = Z[T ][e±κ1 , . . . , e±κk ] and K0
T̃
(X±) = K0

T (X±) ⊗Z[T ] Z[T̃ ]
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Lemma 7.5. The Fourier–Mukai transformations

FM : K0(X−) → K0(X+) FM : K0(E∨
−) → K0(E∨

+)

coincide under the natural identification of K0(X±) with K0(E∨
±). The same statement 

holds equivariantly.

Proof. Consider the fibre diagram:

Ẽ∨

E∨
− X̃

f− f+

E∨
+

X− X+

where the bottom triangle is (1.1) and the top triangle is the analog of (1.1) for E∨
±, and 

apply the flat base change theorem. �
Let UE∨ be the symplectic transformation from Theorem 6.1 applied to E∨

±. Combin-
ing Lemma 7.5 with Theorem 6.1 gives a commutative diagram:

K0
T̃
(X−) FM

K0
T̃
(X+)

K0
T̃
(E∨

−)

z−μ−zρ− Γ̂E∨
−
∪(2πi)

deg0
2 inv∗ c̃h(−)

FM
K0

T̃
(E∨

+)

z−μ+zρ+ Γ̂E∨
+
∪(2πi)

deg0
2 inv∗ c̃h(−)

H̃(E∨
−)

UE∨
H̃(E∨

+)

(7.3)

where ρ± ∈ H2
T̃
(E∨

±) is the T̃ -equivariant first Chern class of E∨
± and μ± are the 

T̃ -equivariant grading operators. Recall that

Γ̂E∨
±

= Γ̂X± Γ̂(E∨
±) ρ± = ρX± + cT̃1 (E∨

±)

and that the Chern roots of E∨
± are pulled back from the common blow-down X0 of X±. 

Part (2) of Theorem 6.1 thus implies that we can factor out the contributions of Γ̂(E∨
±)

and cT̃1 (E∨
±) from the vertical maps in (7.3), replacing the vertical arrows by:

z−μX± zρX± Γ̂X± ∪ (2πi)
deg0

2 inv∗ c̃h(−)

This proves:



T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087 1079
Lemma 7.6. The transformations UX : H(X−) → H(X+) and UE∨ : H(E∨
−) → H(E∨

+)
coincide under the natural identifications of H(X±) with H(E∨

±). In particular, UE∨ is 
independent of κ1, . . . , κk.

The I-functions IX+,Y+ and IE∨
+

are related16 by:

IE∨
+
(y)
∣∣∣
λ=0,κ=−z

= eπic1(E
∨
+)/zIX+,Y+(±y)

where the subscript on the left-hand side denotes the specialization:{
λi = 0 1 ≤ i ≤ m

κj = −z 1 ≤ j ≤ k
(7.4)

and the ± on the right-hand side denotes the change of variables:

log yi �→ log yi − πi
k∑

j=1
lij 1 ≤ i ≤ r with Ej =

r∑
i=1

lijpi (7.5)

The specialization (7.4) is given by a shift S : κj �→ κj − z in the equivariant parameters 
followed by passing to the non-equivariant limit. Note that the change of variables (7.5)
maps yd to (−1)−c1(E∨

+)·dyd.
Recall from Theorem 6.1 that, after analytic continuation, we have IE∨

+
= UE∨IE∨

−
. 

Since UE∨ is independent of κj , 1 ≤ j ≤ k, it follows that UE∨ commutes with the 
shift S. Since the Chern roots of E∨ are pulled back from the common blow-down X0 of 
X±, it follows that

UE∨ eπic1(E
∨
−)/z = eπic1(E

∨
+)/z UE∨

Setting λ = 0 and κj = −z in the equality IE∨
+

= UE∨IE∨
−
, and replacing H(E∨

±) and 
UE∨ with their non-equivariant limits

H(E∨
±) := H•

CR(E∨
±) ⊗ C((z−1)) and UE∨ : H(E∨

−) → H(E∨
+)

we find that

IX+,Y+ = UE∨IX−,Y−

after analytic continuation. Thus:

IX+,Y+ = UXIX−,Y−

16 An analogous relationship holds between IX−,Y− and IE∨
−
.
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after analytic continuation; here UX denotes the non-equivariant limit of UX in the 
lemma above.

7.4. Compatibility of Fourier–Mukai transformations

For the analogue of part (3) of Theorem 6.1, we need to compare the Fourier–Mukai 
transformation associated to X+ ��� X− with the Fourier–Mukai transformation asso-
ciated to Y+ ��� Y−. This is a base change question (cf. Lemma 7.5), but this time we 
do not have flatness. By assumption, we have:

Ỹ
F− F+

ι̃

Y−

ι−

X̃

f− f+

Y+

ι+

X− X+

(7.6)

where the vertical maps are inclusions, the bottom triangle is (1.1) and the top triangle 
is the analog of (1.1) for Y±. The substacks Ỹ is defined by the vanishing of a section 
s̃ : X̃ → Ẽ, where Ẽ → X̃ is the direct sum of line bundles

Ẽ :=
k⊕

i=1
L
X̃

(Ei)

The line bundles E−, Ẽ, and E+ are all canonically identified via f�
− and f�

+, since they 
are all pulled back from the common blow-down X0 of X±. The section s̃ coincides both 
with the pullback of the section s+ via f+ and with the pullback of the section s− via f−. 
Since the zero loci of s± are assumed to intersect the flopping locus transversely, s̃ is a 
regular section of Ẽ and the substack Ỹ ⊂ X̃ is smooth.

Lemma 7.7. The following diagram commutes:

K0(X−) FM

ι	−

K0(X+)

ι	+

K0(Y−)amb
FM

K0(Y+)amb

(7.7)

where the top horizontal arrow is the Fourier–Mukai transformation (f+)�(f−)� from 
(7.6), and the bottom horizontal arrow is the Fourier–Mukai transformation (F+)�(F−)�
from (7.6).
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Proof. The pullback along f+ of the Koszul resolution of OY+ in X+ gives the Koszul 
resolution of OỸ in X̃. This implies that, in the right-hand square in (7.6), X̃ and Y+ are 
Tor-independent over X+ [72, Tag 08IA]. Tor-independent base-change [72, Tag 08IB]
now implies that:

(F+)� ◦ ι̃� = ι�+ ◦ (f+)�

Since F �
− ◦ ι�− = ι̃� ◦ f�

−, it follows that

(ι+)�(f+)�(f−)� = (F+)�(F−)�(ι−)�

which is the result. �
Remark 7.8. This argument in fact proves that the analog of diagram (7.7) for derived 
categories is commutative, but we only need the statement at the level of K-theory.

7.5. Completing the proof

Denote by UX the transformation from the non-equivariant version of Theorem 6.1 ap-
plied to X±. This is a map UX : H(X−) → H(X+) between the non-equivariant Givental 
spaces for X±:

H(X±) := H•
CR(X±) ⊗ C((z−1))

Let us remark again that the Chern roots of E± are pulled back from the common 
blow-down X0 of X±; the second part of Theorem 6.1 therefore gives:

UX Γ̂(E−) = Γ̂(E+)UX (7.8)

The results from §7.3 and §7.4 combine to give a commutative diagram:

K0(X−) FM

ι	−

K0(X+)

ι	+

H̃(X−)
UX

ι	−

H̃(X+)

ι	+

K0(Y−)amb
FM

K0(Y+)amb

H̃(Y−)amb H̃(Y+)amb
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where H̃(Y±)amb is the ambient part of the multi-valued Givental space:

H̃(Y±)amb := H•
amb(Y±) ⊗ C[log z]((z−1/k)) (7.9)

with k as in the statement of Theorem 6.1, and:

• the top diagonal maps are the K-theory framing maps from Definition 3.1 but with 
Γ̂X± replaced by Γ̂X±,Y± := Γ̂X± Γ̂(E±)−1;

• the bottom diagonal maps are the ambient K-group framing maps from §7.1.

Here:

• the top face is commutative, by Theorem 6.1 and (7.8);
• the back face is commutative, by Lemma 7.7;
• the sides are commutative, by the definition of the framing maps;

and we want to define the dotted arrow so that all faces commute. Define UY :
H̃(Y−)amb → H̃(Y+)amb to be the unique map such that the bottom face commutes. 
Chasing diagrams shows that the front face commutes also. Since IX+,Y+ = UXIX−,Y−

after analytic continuation and since IY± := ι�±IX±,Y± , we conclude that IY+ = UY IY−

after analytic continuation.

Theorem 7.9. Consider the ambient part of the (non-equivariant) Givental space for Y±
with the Novikov variable Q specialized to 1:

H(Y±)amb = H•
amb(Y±) ⊗ C((z−1))

Regard H(Y±)amb as a graded vector space, where we use the age-shifted grading on 
H•

amb(Y±) and set deg z = 2. There exists a degree-preserving C( (z−1) )-linear transfor-
mation

UY : H(Y−)amb → H(Y+)amb

such that:

(1) IY+(y, z) = UY IY−(y, z) after analytic continuation in ye along the path γ in Fig. 1;
(2) UY ◦(g�−v∪) = (g�+v∪) ◦UY for all v ∈ H2(X0), where X0 is the common blow-down 

of X± and g± : Y± → X0 is the composition of the inclusion ι± : Y± → X± with the 
blow-down X± → X0;
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(3) there is a commutative diagram

K0(Y−)amb
FM

K0(Y+)amb

H̃(Y−)amb
UY H̃(Y+)amb

where FM is the Fourier–Mukai transformation given by the top triangle in (7.6)
and the vertical arrows are the ambient K-group framing defined in §7.1.

If Y± is compact then UY intertwines the (possibly-degenerate) symplectic pairings on 
H(Y±)amb.

Proof. Everything has been proved except the statement that, if Y± is compact, then 
UY intertwines the pairings on H(Y±)amb. But:(

UY (−z)ι�−α,UY (z)ι�−β
)
Y+

=
(
ι�+UX(−z)α, ι�+UX(z)β

)
Y+

=
(
UX(−z)α, e(E+)UX(z)β

)
X+

=
(
UX(−z)α,UX(z)e(E−)β

)
X+

by Theorem 6.1(2)

=
(
α, e(E−)β

)
X−

=
(
ι�−α, ι

�
−β
)
Y−

�
Remark 7.10. If Y± is compact then the Givental space for Y± has a well-defined sym-
plectic pairing, but the restriction of this pairing to the ambient part is non-degenerate 
if and only if (ι±)� : H•

amb(Y±) → H•
CR(X±) is injective. This holds by the Hard Lef-

schetz Theorem when E± is a direct sum of ample line bundles, but our assumption 
only ensures that the line bundles are semiample and the question is more subtle in 
general. Injectivity holds when Y± is a regular semiample hypersurface by a result of 
Mavlyutov [64, Theorem 5.1].

Theorem 7.9 is the analog, for toric complete intersections, of Theorem 6.1. The analog 
of Theorem 6.3 also holds:

Theorem 7.11. Let (F±, ∇±, E±) be the global quantum connections for the ambient 
parts H•

amb(Y±) over M̃◦
±(C[z]) from Theorem 7.2. We have that E+ = E− on M̃. 

There exists a gauge transformation

ΘY ∈ Hom
(
H•

amb(Y−), H•
amb(Y+)

)
⊗OU◦ [z]�y1, . . . , yr−1�

over M̃◦(C[z]) such that:



1084 T. Coates et al. / Advances in Mathematics 329 (2018) 1002–1087
• ∇− and ∇+ are gauge-equivalent via ΘY , i.e. ∇+ ◦ ΘY = ΘY ◦∇−;
• ΘY is homogeneous of degree zero, i.e. Gr+ ◦ΘY = ΘY ◦ Gr− with Gr± := z ∂

∂z +
E± + μ±;

• if Y± are compact then ΘY preserves the (possibly-degenerate) orbifold Poincaré pair-
ing on H•

amb(Y±), i.e. (ΘY (y, −z)α, ΘY (y, z)β) = (α, β).

Moreover, the analytic continuation of flat sections coincides, via the ambient K-group 
framing defined in §7.1, with the Fourier–Mukai transformation:

ΘY

(
s(E)(τ−(y), z)

)
= s(FM(E))(τ+(y), z) for all E ∈ K0(Y−)amb

where τ± are the mirror maps from Theorem 7.2.

Theorem 7.11 follows from Theorem 7.9 exactly as Theorem 6.3 follows from Theo-
rem 6.1. The transformation UY in Theorem 7.9 and the gauge transformation ΘY in 
Theorem 7.11 are related by

Lamb
+ (τ+(y), z)−1 ◦ ΘY = UY ◦ Lamb

− (τ−(y), z)−1

where L± is the ambient fundamental solution from §7.1. The gauge transformation ΘY

sends the section Υ−
0 ∈ F− to the section Υ+

0 ∈ F+, where Υ±
0 are as in Theorem 7.2.
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