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Abstract

Betacyanins have been reported as water-soluble, nitrogenous pigments found in the order

Caryophyllales, and they are known for powerful natural antioxidant. The biofortification of

secondary metabolites such as anthocyanins and betacyanins has recently been performed

in food crops by metabolic engineering through genetic modification. However, the distribu-

tion of genetically modified foods is strictly regulated. Therefore, we aimed to develop a new

method for biofortifying natural antioxidants, betacyanins, without genetic modification. We

first detected the presence of betacyanins in red-tube spinach (Spinacia oleracea) through

ultraviolet-visible spectroscopy and mass spectrometry. We then hydroponically cultivated

plants in the presence of three candidate compounds for betacyanin biofortification: dopa-

mine, Ca2+, and sucrose. Liquid chromatography–tandem mass spectrometry (LC–MS/MS)

and antioxidant activity analyses showed that sucrose was most successful in biofortifying

betacyanins, and reverse transcription polymerase chain reaction (RT-PCR) indicated that

several genes involved in betacyanin biosynthesis were induced by sucrose. Therefore,

strategic hydroponics represents a new approach for cultivating betacyanin-enriched

vegetables.

Introduction

Plant pigments are of interest to both biologists and food scientists [1]. Red colors in plants are

mainly derived from two types of pigments: anthocyanins, which are broadly distributed

among plants, and betacyanins, which are only found in plants in the order Caryophyllales,
such as red beet (Beta vulgaris var. cicla) and amaranthus (Amaranthus spp.) [2,3]. Betacyanins

are the general term for a class of pigments, and betanin is known as a principle one. Betacya-

nins are structurally different from anthocyanins, and are characterized by the inclusion of

nitrogen in their chemical structure (Fig 1A). These pigments also have different biosynthesis

pathways, with anthocyanins being synthesized from phenylalanine and betacyanins being

synthesized from tyrosine (Fig 1B) [2].
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Though the biological functions of anthocyanins are well known [2,4], both the biological

functions and biosynthesis mechanisms of betacyanins remain poorly understood [5]. How-

ever, some studies have reported that betacyanins have stronger antioxidant activity than

anthocyanins or other secondary metabolites that are generally known as strong antioxidants

[6]. Moreover, it has recently been shown that betacyanins also have anticarcinogenic proper-

ties and are able to suppress malignant cell proliferation in vitro [7,8]. Consequently, their bio-

logical functions are receiving increasing attention.

The biofortification of red pigments in plants has recently been achieved by manipulating

the biosynthetic process using two different approaches. In the first approach, biotic or abiotic

elicitors are used to increase the production of anthocyanins or betacyanins. However, to date,

this approach has only been successfully applied to plant cell cultures or callus cultures [9,10],

with no report on its application in individual plants. The second approach involves genetic

modification. For example, Tohge et al. successfully transformed the Delila (Del) and Rosea1

(Ros1) genes, which are known to elevate transcript levels of anthocyanin biosynthetic genes,

from snapdragon (Antirrhinum majus) to tomato (Solanum lycopersicum) [11], resulting in the

transformed tomatoes accumulating anthocyanins at levels that were substantially higher than

wild-type tomatoes, which are unable to produce anthocyanins, and at comparable levels to

those found in blackberries (Rubus spp.) and blueberries (Cyanococcus spp.) [12]. Further-

more, Harris et al. induced betacyanin production in potato by introducing DNA constructs

to cause the transient production of DOPA 4,5-dioxygenase (DOD), which converts L-dopa to

betalamic acid [13]. Betacyanin biofortification in tomato and potato (Solanum tuberosum)

has also been accomplished by transforming and overexpressing several genes that are

involved in the biosynthesis of betacyanins [14]. However, genetic modification techniques

were used in all of these studies, the production and distribution of the resultant crops would

be strictly regulated or restricted in many countries [15].

In a previous report, we constructed a hydroponic cultivation system to develop nutritious

vegetables by adjusting the composition of liquid fertilizer [16]. In that study, we successfully

produced biofortified spinach with a two-fold greater content of folate by hydroponically culti-

vating spinach plants in a nutrient solution containing phenylalanine [16]. This approach has

the advantages of not involving genetic modification, meaning that circulation of the resultant

biofortified vegetables will not be restricted in the market, as well as being easy to perform at a

reasonable cost through the use of inexpensive compounds.

In this study, we detected the production of betacyanins in red-tube spinach (Spinacia ore-
lacea L.) and aimed to develop a novel method for biofortifying the betacyanin content of red-

tube spinach (Spinacia orelacea L.) through hydroponic cultivation to examine the broader

applicability of our recently developed biofortification method [16] and to improve our under-

standing of the mechanism of betacyanin biosynthesis.

Results

Identification of betacyanins

Since spinach belongs to the order Caryophylalles, it has been assumed that the red pigments

that occur in red-tube varieties are betacyanins [3]. However, there was no report showing that

red pigments in S. orelacea is derived from betacyanins. Therefore, pigments were extracted

from two strains of red-tube spinach (Sosei salad akari and Banchu akakuki minster) as well as

one strain of green-tube spinach (NPL08) as a control (S1 Fig). It is known that betacyanins

have a characteristic maximum absorption peak at a wavelength of 538 nm [17]. No character-

istic peak was found at 538 nm in the green-tube spinach, whereas multiple peaks derived
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from betacyanins were detected at 538 nm in both red-tube spinach strains as well as the red

beet extract that was used as a positive control (Fig 2). Mass spectra was shown in S2 Fig.

Enrichment of betacyanins in red-tube spinach

To investigate whether the betacyanin content of red-tube spinach could be biofortified, three

candidate compounds that were expected to increase the amount of betacyanins were added to

the hydroponic culture system: dopamine, which is a precursor of 2-decarboxybetanin (Fig

1B) [18] and the supply of which increases the demand for betalamic acid, resulting in activa-

tion of 2-decarboxybetanin or betanin synthesis [19]; calcium ions (Ca2+), which are known to

Fig 1. Characteristics of betacyanins. (A) The chemical structure of betanin, the most common betacyanin. Isobetanin is a structural isomer at the point marked

“15.” (B) The biosynthesis pathway of betacyanins in plants showing the following enzyme steps: A, tyrosinase; B, 4,5-DOPA dioxygenase; C, cyclo-DOPA

5-glucoside transferase; D, 5-glucoside transferase.

https://doi.org/10.1371/journal.pone.0203656.g001
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be the best abiotic elicitor for increasing betacyanin contents [10]; and sucrose, which is

known to be the best carbohydrate for secondary metabolite production [20]. We determined

the doses of compounds based on these previous studies, and the biofortification schema on

our previous study [16].

Biofortification of betanin in red-tube spinach

Red-tube spinach plants were hydroponically cultivated in liquid fertilizer supplemented with

three candidate compounds that were expected to enhance betacyanin production (Fig 3A).

Spinach cultivated in the Ca2+-added treatments showed similar growth to the control sam-

ples, whereas spinach cultivated in the dopamine- or sucrose-added treatments exhibited

slightly lower growth than the control samples (Table 2).

The betanin contents of the dopamine- and sucrose-added samples were significantly

increased by 3.2- and 4.8-fold, respectively, compared with the control samples, whereas that

of the Ca2+-added samples remained unchanged (Fig 3B).

Antioxidant activity of biofortified red-tube spinach

Since betacyanins are known to be powerful antioxidants [6], the antioxidant activity of the

biofortified spinach was evaluated using the Folin-Ciocalteu method, which quantifies the

total polyphenol contents. The dopamine- and sucrose-added samples exhibited significantly

higher levels of antioxidants than the control samples for both strains of red-tube spinach,

whereas in the case of the Ca2+-added samples, only one strain (Banchu akakuki minster) had

significantly higher levels (Fig 4). There was a correlation between the betanin content and

antioxidant activity (Fig 5). We measured antioxidant activity by two additional methods:

Oxygen Radical Antioxidant Capacity (ORAC) assay and Trolox Equivalent Antioxidant

Capacity (TEAC) assay. As a result, we confirmed similar increasing tendency of antioxidant

activity of the biofortified red-tube spinach (S3 Fig).

Quantification of transcript levels by real-time PCR

To clarify the mechanism underlying the effect of sucrose on betacyanin synthesis, the relative

transcript levels of four target genes that encode enzymes involved in betacyanin biosynthesis

(Fig 1B: genes encoding enzymes A–D) were quantified using RT-PCR. Sucrose had a ten-

dency to increase the levels of all of these genes, suggesting that it activated the metabolic path-

way for betacyanin synthesis (Fig 6).

Fig 2. High-performance liquid chromatography (HPLC) chromatograms of (A) the green-tube spinach (Spinacia oleracea) strain NPL08, (B) the red-tube

spinach strain Sosei salad akari, (C) the red-tube spinach strain Banchu akakuki minster, and (D) red beet (Beta vulgaris) extract (positive control)

monitored at 538 nm. Possible betacyanins (1 and 1’) were identified using mass spectrometry (see Table 1).

https://doi.org/10.1371/journal.pone.0203656.g002

Table 1. Betacyanins contained in red-tube spinach (Spinacia oleracea).

no.a compoundb retention time (min) m/z (M+H+)

1 betanin 3.4 551

1’ isobetanin 4.5 551

a These numbers correspond to the peaks shown in Fig 2.
b Each compound was identified based on its retention time andm/z [18].

https://doi.org/10.1371/journal.pone.0203656.t001
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Fig 3. Biofortification of betanin. (A) Cultivation scheme for the compound-added spinach (Spinacia oleracea).

Triangles indicate the addition of each compound. In the dopamine-added treatment, 2 mM dopamine was added

twice to give a final concentration of 4 mM; in the Ca2+-added treatment, 1 mM calcium lactate was added twice to

give a final concentration of 2 mM; and in the sucrose-added treatment, 10 mM sucrose was added twice to give

a final concentration of 20 mM. (B) Relative betanin concentration in the spinach samples. Bars indicate the

means ± standard deviations of three biological replicates. The statistical significance of differences between the

compound-added samples and the control samples (no addition of compounds) was determined by Dunnett’s test

(� p< 0.05). Control means each red-tube spinach without addition of compounds. Akari, Sosei salad akari; Minster,

Banchu akakuki minster.

https://doi.org/10.1371/journal.pone.0203656.g003
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Discussion

Betacyanins have never been reported to co-occur with anthocyanins [21] and are only found

in plants in the order Caryophyllales [1], such as red beet and love-lies-bleeding (Amaranthus
caudatus). In the phylogenic view, it has been assumed that the red pigments that occur in red-

tube spinach, which belong to the Caryophyllales, are derived from betacyanins. However,

identification of red pigments in red-tube spinach has not been reported. According to the

UV-vis spectra and MS data, we found that red-tube spinach contains several betacyanins (Fig

2B), with the largest peak being derived from betanin. Similarly, betacyanins have been

Table 2. Growth of red-tube spinach (Spinacia oleracea) in different compound-added solutions.

no. added compound strain plant length (mm) fresh weight (g)

1 no addition Akari 188 ± 5.9 7.5 ± 1.0

Minster 158 ± 1.2 7.5 ± 1.1

2 dopamine Akari 132 ± 5.1� 3.6 ± 0.4�

Minster 118 ± 4.2� 3.3 ± 0.6�

3 Ca2+ Akari 190 ± 15.4 8.7 ± 1.2

Minster 159 ± 5.0 8.0 ± 0.3

4 sucrose Akari 144 ± 11.2� 4.6 ± 0.4�

Minster 127 ± 2.9� 4.2 ± 0.4�

Samples were cultured following the schedule shown in Fig 2A. Data represent the means ± standard deviations of three biological replicates. The statistical significance

of differences between the compound-added samples and the control samples (no addition of compounds) was determined by Dunnett’s test (� p< 0.05). Akari, Sosei

salad akari; Minster, Banchu akakuki minster.

https://doi.org/10.1371/journal.pone.0203656.t002

Fig 4. Assessment of the antioxidant activity of red-tube spinach (Spinacia oleracea) grown in different

compound-added solutions. Two strains of red-tube spinach were cultured in dopamine-, Ca2+-, and sucrose-added

solutions following the schedule shown in Fig 2A. Bars represent the means ± standard deviations of three biological

replicates. The statistical significance of differences between the compound-added samples and the control samples

(no addition of compounds) was determined by Dunnett’s test (� p< 0.05). Akari, Sosei salad akari; Minster, Banchu

akakuki minster.

https://doi.org/10.1371/journal.pone.0203656.g004
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reported in red beet and amaranthus [18,22], among which betanin is also the most abundant

[23].

The hydroponic cultivation of red-tube spinach in compound-added solutions showed that

the addition of both dopamine and sucrose significantly increased the betanin content (Fig 3).

In addition, Folin-Ciocalteu analysis showed that the total polyphenol contents of the spinach

plants increased in the presence of all three additives (Fig 4). The effect of sucrose addition on

the betanin content is thought to be complex, with two potential mechanisms being involved.

First, it is possible that sucrose acts as an endogenous trigger, modulating the expression of

betacyanin biosynthetic genes. It has previously been shown that plants grown on a sucrose-

containing medium exhibit high levels of secondary metabolites such as anthocyanins [24],

and it has been suggested that several genes involved in the biosynthesis of anthocyanins are

induced by sucrose [25,26]. Similarly, in the present study, real-time PCR showed that some of

the genes that are involved in betacyanin biosynthesis were induced by sucrose (Fig 6), includ-

ing the myeloblastosis protein (MYB) gene. MYB is known to be a transcriptional regulator

that is involved in the biosynthesis of flavonoid pigments in plants [27]. Furthermore, the

sucrose-specific induction of anthocyanin biosynthesis via MYB regulators has been observed

Fig 5. Correlation between the betanin content and antioxidant activity of two strains of red-tube spinach. Akari, Sosei

salad akari; Minster, Banchu akakuki minster.

https://doi.org/10.1371/journal.pone.0203656.g005
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in Arabidopsis [26] and Lloyd et al. suggested that an anthocyanin-regulating MYB could also

regulate the betalain pigment pathway [28], with three enzymatic steps associated with beta-

cyanin biosynthesis potentially being regulated by MYB. Then, we inferred that activation of

the MYB transcription factor was induced, and several enzymatic steps were activated by the

addition of sucrose, resulting in increased betacyanin biosynthesis (Fig 7). However we don’t

exclude the involvements of other transcription factors, and further research will be necessary.

Second, it is possible that betacyanins are produced during intensive cell division [29]. Previ-

ous studies using suspension cultures have suggested that plant growth regulators and nutri-

tional factors affect not only growth but also the production of secondary metabolites [30],

and it has also been shown that there is a positive correlation between betacyanin accumula-

tion and cell division [31].

Dopamine also increased the betacyanin content of red-tube spinach. Dopamine is a pre-

cursor of 2-decarboxybetanin which is synthesized from 3,4-dihydroxyphenylalanine (DOPA)

and tyrosine (Fig 1B). Kobayashi et al. showed that the administration of dopamine activates

tyrosinase and the production of 2-decarboxybetanin and betanin [19]. Moreover, betalamic

acid, which is a precursor of most betacyanins, is required for 2-decarboxybetanin synthesis

(Fig 1B). Therefore, it seems likely that dopamine administration increased the amount of

betalamic acid, which was then used for the synthesis of other betacyanins such as betanin.

By contrast, the Ca2+-added solution had no effect on the betanin contents of red-tube spin-

ach. Previous reports have shown that Ca2+ acts as an abiotic elicitor for increasing the produc-

tion of secondary metabolites such as betacyanins [32]. However, it is possible that the amount

of Ca2+ that was used in the present study was insufficient to increase the production of beta-

cyanins. Therefore, further research is required to determine the optimal concentration that

will enhance betacyanin production without causing a growth disorder. In addition, further

research will be important to evaluate other potential elicitors such as Cu2+ which is contained

in tyrosinase.

Red-tube spinach plants that were cultivated in sucrose- and dopamine-added solutions

exhibited reduced growth compared with control plants (Table 2). White turbidity was

Fig 6. Relative expression levels of genes involved in betacyanin biosynthesis in two strains of red-tube spinach

(Spinacia oleracea) grown in sucrose-added solution. The fold-change values are relative to control samples with no

addition of sucrose (expression level = 1). Error bars indicate the standard errors from three independent experiments.

The statistical significance of differences between the sucrose-added samples and the control samples was determined

by Student’s t-test (� p< 0.05). Tyrosinase (enzyme A in Fig 1B), tyrosinase gene; 4,5-DOPA (enzyme B in Fig 1B),

4,5-DOPA dioxygenase gene; 5GT (enzyme D in Fig 1B), 5-glucoside transferase gene; cDOPA (enzyme C in Fig 1B),

cyclo-DOPA gene; MYB, MYB (myeloblastosis protein) family protein gene; Akari, Sosei salad akari; Minster, Banchu

akakuki minster.

https://doi.org/10.1371/journal.pone.0203656.g006
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observed in the sucrose-added fertilizer (data not shown), which was thought to have resulted

from the growth of microorganisms. Therefore, it is possible that these microorganisms may have

used the sucrose as a carbon source, leading to lower growth of the spinach. In terms of dopamine,

catecholamines such as dopamine and epinephrine have been shown to be toxic to callus cultures

of tobacco (Nicotiana tabacum) and three other plant species due to the regulation of cytokinin

activity in the plant cells [33]. However, Protacio et al. suggested that the addition of catechol-

amines at low concentrations greatly stimulates the growth of tobacco [34]. Therefore, it may be

possible to prevent growth disorders by lowering the concentration of sucrose and dopamine in

the solution, indicating that additional experiments will be required to determine the optimal con-

centrations of these additives. In addition, octcloth, a silver-coated cloth pesticide, could be added

to the nutrient solution tank to restrict the growth of microorganisms [16].

In this study, it was demonstrated for the first time that betacyanins occur in red-tube spinach

and can be biofortified in hydroponic culture by manipulating the composition of the liquid fertil-

izer. We believe that this approach could be applied to many types of crops that can be cultivated

hydroponically, greatly contributing to the development of additional functional foods.

Materials and methods

Reagents

Betanin (red beet extract diluted with dextrin) (Product number, P.N. CDS000584) was pur-

chased from Sigma-Aldrich (St. Louis, MO, USA). 3,4-Dihydroxyphenethylamine

Fig 7. Possible pathway by which sucrose biofortifies red-tube spinach (Spinacia oleracea) via MYB transcription

factors. Each arrow indicates the activation of a particular gene or reaction. The yellow ellipse indicates the

transcription factor and blue ellipses indicate the genes involved in betacyanin synthesis. Tyrosinase, tyrosinase gene;

4,5-DOPA, 4,5-DOPA dioxygenase gene; 5GT, 5-O-glucoside transferase gene; cDOPA, cyclo-DOPA gene, MYB,

MYB family protein.

https://doi.org/10.1371/journal.pone.0203656.g007
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hydrochloride (P.N. 62317), sucrose (P.N. 57501), sodium carbonate (P.N. 497198), methanol

(P.N. 67561), acetonitrile (P.N. 75058), formic acid (P.N. 64186), and ultrapure water (P.N.

7732185) were purchased from Wako Pure Chemical Industries (Osaka, Japan). Calcium lac-

tate for the Ca2+-added treatments (P.N. 814802) and trifluoroacetic acid (TFA) (P.N. 350709)

were purchased from Nacalai Tesque Inc. (Kyoto, Japan). Folin-Ciocalteu phenol reagent (P.

N. 02195186) was purchased from MP Biomedicals (Santa Ana, CA, USA). High-TEMPO Ar

and High-TEMPO Cu were developed for liquid fertilizer by Mitsubishi Plastics Agri Dream

Co. (Tokyo, Japan), as described previously [16].

Hydroponic cultivation

The green-tube spinach strain NPL08 (Mitsubishi Plastics Agri Dream Co.) and the red-tube

spinach strains Sosei salad akari (TAKII & Co., Ltd., Kyoto, Japan) and Banchu akakuki min-

ster (Nakahara Seed Product Co., Ltd., Fukuoka, Japan) were used in this study (S1 Fig). All

spinach samples were cultivated using the indoor hydroponic cultivation system Napper-

land1 (Mitsubishi Plastics Agri Dream Co.), as described previously [16]. In brief, spinach

seeds were germinated and grown for 3 days on granular rock wool, following which the

young seedlings were grown for a further 11 days at 22˚C under artificial light. The seedlings

were then planted in a hydroponic cultivation system in which the liquid temperature was set

to 20˚C and the fertilizer was replaced 2 days before harvesting. The protocols that were used

in the compound-added cultivation experiments are described in the Results section. Spinach

samples were harvested at around noon on the 11th day and the fresh weight was measured.

The samples were then stored at −80˚C. Changes in pH during the hydroponic cultivation are

described in the S1 Table.

Extraction of metabolites for betacyanin identification

For identification of betacyanins by LC–MS, metabolites were extracted from each sample by

grinding 5.0 g of stem to a fine powder in liquid nitrogen, transferring the powder to a 200-mL

flask, and adding 100 mL of ultrapure water. Extraction was then facilitated by vortexing and

sonicating the sample five times for 30 sec using a BIORUPTOR UCD-250 (Cosmo Bio). Fol-

lowing this, the sample was transferred to a 50-mL tube and centrifuged at 4˚C and 8,000 × g
for 20 min. The supernatant was then purified and fractionated on a C18 cartridge (GL Sci-

ences, Kyoto, Japan) according to the following procedure. The C18 cartridge was first acti-

vated using 3 mL of 90% methanol with 0.1% TFA and 3 mL of 50% methanol with 0.1% TFA,

and was then rinsed with 3 mL of 2% methanol with 0.1% TFA. The samples were applied to

the column and rinsed again with 2% methanol with 0.1% TFA. The betacyanin fraction was

then eluted with 70% methanol with 0.1% TFA and evaporated under reduced pressure. The

purified betacyanin sample was dissolved in 200 μL of ultrapure water and analyzed by liquid

chromatography–mass spectrometry (LC–MS) with an ultraviolet-visible (UV-vis) detector.

Extraction and quantification of betanin

To quantify the betanin content and antioxidant activity of each sample, 100 mg of stem was

ground to a fine powder in liquid nitrogen and transferred to a 1.5-mL tube to which 1.0 mL

of ultrapure water was added. Extraction was then facilitated by vortexing and sonicating the

sample five times for 30 sec using a BIORUPTOR UCD-250 (Cosmo Bio). The resultant solu-

tion was centrifuged at 4˚C and 14,000 × g for 20 min, and the supernatant was analyzed by liq-

uid chromatography–tandem mass spectrometry (LC–MS/MS) or using the Folin-Ciocalteu

method.
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LC–MS analysis

Betacyanins were identified by LC (Nexera system; Shimadzu, Kyoto, Japan)–triple quadru-

pole mass spectrometry (LCMS-8060; Shimadzu). Samples (5 μL) were injected into an Inert-

Core C18 column (150 mm × 2.1 mm I.D., 2.4 μm particle size; GL Sciences) at a flow rate of

400 μL/min. A gradient was produced by changing the mixing ratio of the two eluents: A, 0.1%

(v/v) formic acid; and B, acetonitrile containing 0.1% (v/v) formic acid. The gradient was

started with 5% B with a 4-min hold; this was then increased to 30% B for 30 min and then

increased immediately to 100% B with a 3-min hold, following which the mobile phase was

immediately adjusted to its initial composition and held for 4 min to re-equilibrate the col-

umn. The column temperature was set at 40˚C. The autosampler (kept at 4˚C) was equipped

with a black door to prevent the samples from being exposed to light. Data acquisition for the

estimation of betacyanins was performed at λ = 538 nm with a UV-vis high-performance liq-

uid chromatography (HPLC) detector coupled with positive ion electrospray ionization LC–

MS analysis (electrospray voltage, 4.0 kV; capillary temperature, 300˚C; sheath gas, N2, 10 L/

min).

Multiple reaction monitoring analysis by LC–MS/MS

Betanin was quantified using the multiple reaction monitoring (MRM) mode by LC (Nexera

system; Shimadzu, Kyoto, Japan)–triple quadrupole mass spectrometry (LCMS-8060; Shi-

madzu). Each parameters were shown below: precursor ion (m/z), 551.05; product ion (m/z),
389.20; Q1 pre bias, −30 V; Q3 pre bias, −27 V; collision energy, −29 V. Under the LC condi-

tions described above, the retention time of betanin was 3.4 min and betanin showed much

better sensitivity in positive mode than in negative mode.

Assessment of antioxidant activity

The Folin-Ciocalteu assay is widely used to assess the total polyphenol content of samples [35].

This assay relies on the transfer of electrons from phenolic compounds to phosphomolybdic/

phosphotungstic acid complexes in an alkaline medium to form blue complexes that are

detected spectroscopically at 700 nm. This assay was used to assess the antioxidant activity of

the spinach samples by adding 200 μL of each extracted sample to 500 μL of Folin-Ciocalteu

reagent and leaving it for 5 min at room temperature. Following this, 500 μL of 10% sodium

carbonate solvent in ultrapure water was added to each sample, mixed by vortex, and left for 1

h at room temperature. Color development was then determined at 700 nm using a spectro-

photometer (UV-1700 PharmaSpec; Shimadzu). We measured antioxidant activity by two

additional methods: Oxygen Radical Antioxidant Capacity (ORAC) assay (Cell BIOLABS,

INC, CA, USA) and Trolox Equivalent Antioxidant Capacity (TEAC) assay (Cayman Chemi-

cal Company, MI, USA). In ORAC assay, samples and standards were measured with a fluo-

rescent microplate reader (Fluoroskan Ascent FL, Thermo Fisher Scientific, USA) at 37˚C

with an excitation wavelength of 480 nm and an emission wavelength of 520 nm. In TEAC

assay, color development measured at 405 nm using a spectrophotometer (UV-1700 PharmaS-

pec, Shimadzu).

Isolation of RNA and preparation of cDNA

Total RNA was extracted from each spinach sample using the RNeasy Plant Mini Kit (QIA-

GEN, Hilden, Germany), according to the manufacturer’s protocol. cDNA was prepared using

the High-Capacity cDNA Reverse Transcription Kit with genomic DNA remover (Applied
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Biosystems, Carlsbad, CA, USA). The reaction was performed according to the manufacturer’s

protocol using 500 ng of total RNA as a template.

Quantitative reverse transcription polymerase chain reaction (RT-PCR)

analysis

Quantitative RT-PCR was performed using the Power SYBR1 Green PCR Master Mix

(Applied Biosystems) in the 7500 Real-Time PCR System (Applied Biosystems). The glyceral-

dehyde-3-phosphate dehydrogenase (GAPDH) gene was used as an endogenous control to

normalize the expression data for each gene and the primers were designed using the Gen-

Script Real-time PCR (TaqMan) Primer Design tool (GenScript, New Jersey, USA) (see S2

Table). Sequences of the target genes were obtained from SpinachBase (http://www.

spinachbase.org/cgi-bin/spinach/genome/search.cgi) [36].
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