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Abstract 10 

 Direction-dependent diffusion coefficients generated using a Monte Carlo method that 11 

explicitly solves a heterogeneous B1 equation are validated in this paper. The validation is 12 

conducted by comparing the direction-dependent neutron leakage using directional diffusion 13 

coefficients with the results of a neutron transport calculation. This paper develops a new 14 

method for critical buckling search calculation to solve a heterogeneous B1 equation for an 15 

asymmetric unit cell in which the critical bucking has a complex value. A complex-valued 16 

critical buckling can be searched using the differential operator sampling method for 17 

estimating the sensitivity coefficients of keff with respect to the buckling. In an asymmetric 18 

unit cell, the neutron flux and the neutron current also have complex values. The real part of 19 

the neutron flux obtained by a critical buckling search calculation represents the neutron 20 

spectrum in the center portion of the finite geometry composed of the unit cells. 21 
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 2 

analyses has been usually performed with deterministic core design codes. Development of 1 

the use of continuous energy Monte Carlo calculations for generating group constants has 2 

been widely performed because of its computational rigor with respect to the treatment of the 3 

geometry and neutron energy (Ilas and Rahnema, 2003; Yun and Cho, 2010; Fridman and 4 

Leppänen, 2011; Yoshioka et al., 2010; Tohjoh et al., 2005; Yamamoto, 2012; Park et al., 5 

2012; Leppänen et al., 2016; Liu et al., 2018). Continuous energy Monte Carlo calculations 6 

are capable of generating accurate homogenized group constants for unit fuel pin cells or fuel 7 

assemblies with less approximation for the neutron spectrum and three-dimensional flux 8 

distribution. The calculations for generating group constants are usually performed with a unit 9 

fuel pin cell or a fuel assembly. In certain cases, however, several types of fuel cells or 10 

assemblies are gathered to construct a subset to take into account the interference effect 11 

between them. In the calculations for group constant generation, perfectly reflective or 12 

periodic boundary conditions are usually imposed on the outer surfaces, which implies that 13 

axial and radial neutron leakages are not considered. Because an actual reactor core has a 14 

finite dimension and is usually operated at keff =1, the neutron leakage has to be considered to 15 

generate the group constants corresponding to the operating state. One of the difficulties in the 16 

calculations is to incorporate the effect of neutron leakage that is ignored in the infinite array 17 

of a unit pin cell or a fuel assembly. 18 

Several leakage-corrected Monte Carlo calculation techniques have been developed thus 19 

far (Gelbard and Lell, 1977; Gelbard, 1983). A method proposed by Yun and Cho (2010) 20 

introduced the effect of neutron leakage by adjusting the albedo on the outer surfaces of a fuel 21 

pin cell or a fuel assembly. During the course of a Monte Carlo criticality calculation, the 22 

albedo is updated at each cycle such that keff =1. 23 

The present paper focuses on the B1 method for leakage-corrected group constant 24 

generations by the Monte Carlo method. The B1 method is generally used for representing the 25 

neutron leakage in many deterministic calculations (Duderstadt and Hamilton, 1976; Deniz, 26 
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1986; Petrovic and Benoist, 1996; Rimpault et al., 2002; Hébert, 2009; van Rooijen and Chiba, 1 

2011; Faure and Marleau, 2017). Implementation of the B1 method into the Monte Carlo 2 

method encounters difficulty in treating complex-valued neutron flux or neutron current. 3 

McCARD code (Shim et al., 2012; Park et al., 2012; Park et al., 2013) and Serpent code 4 

(Fridman and Leppänen, 2011; Dorval and Leppänen, 2015; Leppänen et al., 2016; Dorval, 5 

2016a) are based on the homogeneous B1 method for few-group constant generations. The 6 

procedure consists of two stages. First, a continuous energy Monte Carlo calculation is 7 

performed to produce fine-group homogenized cross-sections, which are subsequently used to 8 

solve the homogeneous B1 equations. The fine-group homogenized cross sections are 9 

calculated under an environment without neutron leakage correction. Second, the 10 

homogeneous B1 equations are solved to obtain the neutron spectrum and critical buckling 11 

corresponding to the critical state. The leakage-corrected neutron spectrum is used to generate 12 

few-group constants. The diffusion coefficients are also calculated based on the homogeneous 13 

B1 method. This method is semi-deterministic, and the leakage-correction is not explicitly 14 

considered at the stage of the Monte Carlo calculation. The diffusion coefficients generated 15 

by the homogeneous B1 method are isotropic and not direction-dependent. No statistical 16 

uncertainty in the fine-group Monte Carlo based cross-sections is not accounted for (nor 17 

propagated to the final few-group cross-sections). Thus, the advantage of the Monte Carlo 18 

method is not fully utilized. 19 

The capability of calculating direction-dependent diffusion coefficients is desirable 20 

because the direction dependence of diffusion coefficients is notable in a fertile fuel assembly 21 

(Faure and Marleau, 2017) and a void containing fuel pin cell (Yamamoto, 2012). Previous 22 

works on the directional diffusion coefficients by the Monte Carlo method are based on 23 

various techniques, and they are published in Milgram (1997), Gelbard and Pego, (1979), 24 

Yamamoto (2012), Dorval and Leppänen (2015), Dorval (2016a), and Dorval (2016b). In 25 

Yamamoto (2012), the neutron transport equation for the heterogeneous B1 method is 26 
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explicitly solved by introducing complex-valued weights in the random walk process of a 1 

Monte Carlo calculation for leakage-corrected calculations. The leakage-corrected neutron 2 

spectrum for a fuel pin cell or a fuel assembly was obtained by the Monte Carlo method 3 

during a critical buckling search calculation. The method was validated by comparing the 4 

neutron spectrum with a deterministic reactor analysis code SRAC (Okumura et al., 2007). 5 

However, the directional diffusion coefficients calculated with the Monte Carlo method were 6 

not fully validated in Yamamoto (2012) because of the lack of the reference solutions at the 7 

time of the publication. One of the objectives of the present paper is to validate the directional 8 

diffusion coefficients generated by the heterogeneous B1 method using the Monte Carlo 9 

method. 10 

 The Monte Carlo algorithm for the heterogeneous B1 method developed in Yamamoto 11 

(2012) has a limitation in that it can be only applied if a unit cell has a plane of symmetry. 12 

There are two reasons for that limitation. If the unit cell has a plane of symmetry, the 13 

imaginary part of the integrated flux within the unit cell vanishes due to the positive/negative 14 

symmetry of the imaginary part when the flux is integrated over the whole unit cell. Thus, the 15 

imaginary part of the fission source does not need to be considered, which makes the 16 

conventional power iteration algorithm available in an existing Monte Carlo code without any 17 

special modifications to it (Yamamoto, 2012; Yamamoto, 2013). Another reason is that as 18 

Tommasi (2015) noted, the critical buckling becomes a complex value in an asymmetric unit 19 

cell in order to obtain a real-valued keff-eigenvalue. In other words, the real and imaginary 20 

parts of the complex-valued eigenvalue need to be unity and zero, respectively, by 21 

simultaneously adjusting the real and imaginary parts of the complex-valued critical buckling. 22 

A new Monte Carlo algorithm for the critical buckling search needs to be developed to apply 23 

the B1 method to an asymmetric unit cell, which is another objective of this paper. 24 

 The outline of this paper is briefly as follows. First, multi-group directional diffusion 25 

coefficients generated from the B1 method that uses the Monte Carlo algorithm in Yamamoto 26 
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(2012) are used in a diffusion calculation. The neutron leakage obtained by the diffusion 1 

calculation is compared with that in the actual heterogeneous critical core with a finite 2 

dimension. How closely the diffusion calculation can reproduce the neutron transport 3 

calculation for the heterogeneous geometry will be investigated. Second, a new Monte Carlo 4 

algorithm for critical buckling search in an asymmetric unit cell is proposed, and numerical 5 

tests are performed to validate the new algorithm. 6 

 7 

2. Monte Carlo algorithm for leakage-corrected calculation 8 

2.1 Critical buckling search and directional diffusion coefficient in a symmetric 9 

geometry 10 

A Monte Carlo algorithm for leakage-corrected keff-eigenvalue calculations using the B1 11 

method has been presented in previously published literature report (Yamamoto, 2012). In 12 

this section, the algorithm is only briefly explained, and some parts of (Yamamoto, 2012) are 13 

duplicated. In the heterogeneous B1 method, the angular neutron flux is factorized as 14 

                                                                             

where  = the position vector,  = the particle direction, E = the neutron energy,      , 15 

and         = the spatial fine structure of the neutron flux within a unit cell. The buckling 16 

vector B is defined as 17 

                                                                                

where              the geometric buckling in the i-direction, and               18 

the unit vector in the i-direction. Substituting Eq. (1) into a neutron transport equation for 19 

keff-eigenvalue and dividing the equation by          , we obtain 20 
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(3) 

where    the macroscopic total cross section,    the macroscopic scattering cross section, 1 

   the macroscopic fission cross section,   the fission neutron spectrum, and   the 2 

number of neutrons per fission. Eq. (3) is highly similar to the ordinary transport equation for 3 

keff-eigenvalue, except that the last term on the right-hand side is added. To solve Eq. (3) with 4 

the Monte Carlo method, the last term in Eq. (3) needs to be included during the random walk 5 

processes of the Monte Carlo calculation. There can be several ways to include this term. One 6 

is proposed by Rouchon et al. (2017). This paper adopts another way as follows. In the 7 

ordinary Monte Carlo algorithm, the particle weight remains unchanged during the free flight 8 

distance. However, in the Monte Carlo algorithm for Eq. (3), the particle weight changes 9 

continuously during the flight distance. When a particle flies a distance    in the jth flight 10 

path with a direction   , the initial weight    changes to 11 

                                                                 

In the ordinary Monte Carlo algorithm, the neutron flux is obtained simply by the sum of 12 

the product of the flight distance and the particle weight     if the track length estimator is 13 

used. In the algorithm for Eq. (3), however, the particle weight changes continuously. Thus, 14 

the product for the jth flight distance is calculated by integrating Eq. (4) with   : 15 

                   
     

 
  

 

   

                

     
                    

The flight distance is determined in the same manner as the usual Monte Carlo 16 

calculations: 17 
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where   = uniform pseudo random number from (0, 1). A particle with a complex weight is 1 

transported to the next collision site. At each collision site, the weight is reduced as 2 

  
    

  

  
       

  

  
         

  

  
                                          

where   
 = the weight after weight reduction at the (j−1)th collision site, Re[∙] =the real part, 3 

and Im[∙] = the imaginary part. The Russian roulette game is applied separately to the real and 4 

imaginary parts when either or both of       
    and       

    are less than a lower weight 5 

boundary. When either the real or imaginary part is killed but the other part survives, the 6 

particle is continually transported. Although either of the two parts is killed, it returns when 7 

the other surviving part is transported to the next collision site as can be seen in Eq. (4). The 8 

particle is killed only when both parts are killed at the same time. 9 

 At each collision point, the number of fission source points n that will be used in the next 10 

cycle is calculated as 11 

            
   

  
                                                            

where Int(∙)= the integer part. As discussed in (Yamamoto, 2012), if the unit cell has an 12 

orthogonal symmetry plane, the imaginary part of the fission sources does not need to be 13 

stored due to the cancellation in a symmetric geometry. The determination of the fission 14 

sources in an asymmetric geometry is discussed in Sec. 2.2. In addition, as indicated in Eq. (8), 15 

the fission sources caused by a negative weight can be omitted. In (Yamamoto, 2012 and 16 

Yamamoto, 2013), it is conjectured from some numerical tests that the omission of the 17 

negative weights involves no biases. It follows that the conventional Monte Carlo algorithm 18 

for determination of the fission sources for the next cycle can be utilized for leakage-corrected 19 

calculations using the B1 method. 20 

 keff-eigenvalue is calculated at the end of each cycle as 21 
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where the summation is carried out for all trajectories or all collisions within the cycle, and 1 

M= the sum of the weights of the starting particles from the fission source sites. 2 

 Suppose that the directional bucklings,    and   , are fixed and    is searched such 3 

that we obtain keff =1. The buckling    used for the next cycle is determined so that keff 4 

approaches unity as 5 

                                                                      

where m is the cycle number and c is an arbitrary positive value. An appropriate value for the 6 

parameter c can be easily found by several trial runs. 7 

 The directional diffusion coefficients of the gth energy group are calculated during the 8 

critical buckling search calculation as (Yamamoto, 2012) 9 

     
 

  

    

  
                                                              

   and      are calculated as follows: 10 

                 
 

    

  

                                                    

                       
    

   
                                    

where j is summed over all flight paths in energy band           within the whole 11 

domain, and      the direction cosine for the k-axis. 12 

 13 

2.2 Monte Carlo method for complex-valued buckling in an asymmetric geometry 14 

 The critical buckling and the keff are both real in a critical buckling search calculation in a 15 

symmetric unit cell. For an asymmetric cell, however, the buckling that is parallel to the 16 

direction having asymmetry must be complex in order to obtain a real-valued keff (Hughes, 17 

1979). If we persisted in the real-valued buckling in an asymmetric cell, keff would have to be 18 
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complex (Tommasi, 2015). The global flux shape corresponding to the complex-valued 1 

buckling is 2 

                                                                      

where the asterisked buckling denotes a complex-valued buckling (i.e.,          ). The 3 

real part of the complex-valued buckling stands for the buckling of symmetric cosine 4 

distribution, and the imaginary part stands for the neutron drift in a preferred direction. When 5 

we consider a one-dimensional geometry for simplicity, the complex-valued buckling implies 6 

that the global flux shape is represented by                           . 7 

 In this section, a Monte Carlo algorithm to search a complex-valued buckling 8 

corresponding to keff =1 is presented below. 9 

At the beginning of a critical buckling search calculation, the initial guess for the fission 10 

source distribution and the geometric buckling are given. These values can all be real values, 11 

even though the converged source distribution and the buckling eventually become complex 12 

values. A particle emitted from the source site repeatedly flies and undergoes a collision until 13 

it is killed by the Russian roulette game. In the same manner as in a symmetric cell, after the 14 

flight of a distance   , the particle weight    changes to 15 

                     

                                                           

where           and          . Then, the complex-valued weight is reduced by a 16 

factor of a non-absorbing probability according to Eq. (7). Whereas a fission source with a 17 

negative or imaginary weight can be omitted in a symmetric cell, these must be explicitly 18 

treated in an asymmetric cell. To determine fission sources with complex-valued weights in 19 

the following cycle, a technique dubbed as a “binning procedure” is adopted (Yamamoto, 20 

2009). In the “binning procedure”, each fissile region is divided into a large number of small 21 

bins where positive and negative weights are summed up and cancelled. This technique has 22 

been used for Monte Carlo calculations that handle complex-valued weights (Yamamoto, 23 
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2013; Yamamoto and Sakamoto, 2014; Yamamoto and Sakamoto, 2015). A region where 1 

fission reactions can occur is divided into a large number of small bins so that the flux 2 

distribution within any bin can be deemed almost flat. At each collision point in a fission 3 

region, the weight for the fission source is accumulated in the nth bin: 4 

    
   

  
  

 
                                                                     

where j is summed over all collisions in the nth bin during one cycle and     the 5 

complex-valued weight that undergoes a collision in the nth bin. After all source particles 6 

from the fission source sites in a cycle are exhausted, the fission sources for the next cycle are 7 

determined as follows. First, the fission source in each bin is normalized: 8 

  
    

 

     
 
   

                                                                     

where M = the nominal number of source particles per cycle, N = the number of total bins and 9 

            
        

     . The number of source particles in the nth bin,   , is 10 

determined as 11 

         
    

     
 
   

                                                             

and the weight of each source particle in the next cycle is given by   
    . The position of 12 

each source particle is distributed randomly and uniformly within each bin. 13 

 The flowchart of the Monte Carlo algorithm for one particle history is presented in Fig. 1. 14 
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 1 

Fig. 1 Flowchart of one particle history for Monte Carlo B1 calculation. 2 

 3 

2.3 Critical buckling search method in an asymmetry geometry 4 

 A critical buckling can be easily searched for a symmetric cell as shown in Eq. (11). On 5 

the other hand, in a critical buckling search calculation for an asymmetric cell, the real and 6 

imaginary bucklings,    and   , need to be searched simultaneously in such a way that 7 

Re[keff]= 1 and Im[keff]= 0. Let us search a complex-valued buckling only in the x-direction 8 

with the bucklings in the two other directions being kept constant. Suppose that we now have 9 

Re[keff] (    and Im[keff] (    for a tentative buckling,     and    . Given the sensitivity 10 

coefficients of Re[keff] and Im[keff] with respect to     and     and introducing a linear 11 

approximation, the corrections of     and     that will lead to the critical buckling are 12 

obtained by 13 

  
    

    
   

        

        
   

 
 
                                                   

where A is a matrix composed of the sensitivity coefficients: 14 

Start a particle from a 

fission source site

Determine a flight 

distance using Eq. (6)

The weight changes 

according to Eq. (16)

Weight reduction by implicit 

capture (Eq. (7)) at the collision site

Russian roulette game

Killed?*

No

Terminate this 

particle’s history

Yes *Whether the real and imaginary parts 

are killed at the same time or not.

Move the particle to the 

next collision site

Determine fission 

sources using Eqs. 

(18) and (19)

Score the differential 

coefficients, Eqs. 

(26) and (27)
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At the end of each cycle, the bucklings are corrected for the next cycle as 1 

   
                                                                               

   
                                                                               

where 2 

 
    

    
      

          

         
                                                       

A deterministic method would require a perturbation theory to calculate the sensitivity 3 

coefficients. In the Monte Carlo method, approximate sensitivity coefficients can be easily 4 

obtained using the differential operator sampling (DOS) method (Rief, 1984; Favorite, 2002; 5 

Nagaya and Mori, 2011; Yamamoto, 2018). The DOS method is often used for estimating 6 

reactivity due to cross section changes. Yamamoto and Sakamoto (2018) recently extended 7 

the DOS to estimating the reactivity due to geometry change. This paper newly proposes a 8 

method to calculate the sensitivity coefficients of keff with respect to complex-valued 9 

buckling. 10 

The DOS method estimates a differential coefficient of the transport or collision kernel at 11 

each flight path and collision point with respect to a perturbed parameter. When a particle 12 

moves from position r to collision point   , the transport kernel is given by 13 

                                                                        

where         . In ordinary Monte Carlo calculations,              in Eq. (25) is not 14 

included in the transport kernel. In Monte Carlo calculations for the B1 method, this term has 15 

to be multiplied because the particle weight changes during its flight as seen in Eq. (16). The 16 

differential coefficients of the transport kernel with respect to     and     are, respectively, 17 

 

 

 

    
                                                                   

 

 

 

    
                                                                        



 13 

Scoring Eqs. (26) and (27) is repeated for each flight path until the particle is discarded in 1 

terms of the Russian Roulette method. The first derivatives of the complex-valued 2 

keff-eigenvalue with respect to     and     for the mth particle history are respectively 3 

given by 4 

 

    
        

    

   
     

 

                                                          

 

    
        

    

   
     

 

                                                          

where     the particle weight of the jth collision. The summation for j is carried out at 5 

every collision point during the mth history. The scores at the jth collision are 6 

            

 

                                                                 

          

 

                                                                       

where the subscript k denotes the kth flight path and the summation is carried out for every 7 

flight path until the jth collision. As a result, we have the following relations of the elements 8 

in the matrix A in Eq. (21): 9 

 

    
           

 

    
                                                           

 

    
            

 

    
                                                       

After all particles coming from the fission source sites for one cycle are exhausted, the 10 

sensitivity coefficients of keff with respect to     and     in the cycle are calculated as 11 

 

    
         

 

    
         

 

  
 

 

    
          

 

   

                        

 

    
          

 

    
         

 

  
 

 

    
          

 

   

                   

where M = the number of starting particles in one cycle and     the total sum of the 12 

starting particle’s weights (complex value). These sensitivity coefficients obtained by Eqs. 13 

(34) and (35) are used as the elements of the matrix A.    
  in Eq. (22) and    

  in Eq. (23) 14 

are used as the complex-valued buckling in the next cycle calculation. Fig. 2 shows a 15 



 14 

flowchart of calculation in one cycle.  1 

 2 

Fig. 2 Flowchart of calculation in one cycle. 3 

 4 

A change in the buckling causes perturbations of the fission source distribution, which is 5 

not considered in Eqs. (34) and (35). Thus, the sensitivity coefficients in Eqs. (34) and (35) 6 

are approximate ones. The fission source perturbation effect is important to estimate an 7 

accurate change of keff (Nagaya and Mori, 2005; Kiedrowski, 2017; Yamamoto, 2018). The 8 

estimation of the fission source perturbation effect requires iterative calculations over several 9 

cycles. The formulation for the fission source perturbation effect is cumbersome. Then, the 10 

fission source perturbation effect is omitted in the sensitivity coefficients. While the fission 11 

source perturbation effect becomes significant for a localized perturbation, the perturbation 12 

due to the change of the buckling affects the fission source distribution uniformly over the 13 

whole domain. Thus, the source perturbation effect is considered to be minor for the 14 

sensitivity coefficients with respect to the buckling. In addition, the sensitivity coefficients are 15 

used for the correction of the buckling based on the linear approximation. Approximate 16 

sensitivity coefficients without the fission source perturbation effect are sufficient for critical 17 

Inherit the fission sources and

the bucklings, and

from the previous cycle

Perform all particles’ history in a cycle 

Correct the bucklings using Eqs. 

(22) and (23), and prepare the 

fission sources for the next cycle 

Start a cycle 

Go to the next cycle
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buckling search calculations. 1 

 2 

3. Numerical tests for directional diffusion coefficient 3 

 Although the leakage-corrected calculation method using the B1 method is already 4 

incorporated into a production-level Monte Carlo code MCNP 4C (Yamamoto, 2012), one- or 5 

two-dimensional two-energy group systems are treated using an in-house test Monte Carlo 6 

program throughout this paper. 7 

 8 

3.1 Validation of the Monte Carlo method for the B1 method in a symmetric cell 9 

 Before calculations for the diffusion coefficients, the critical buckling search method 10 

presented in Sec. 2.1 is validated for a symmetric cell that was used in Tommasi (2015). The 11 

one-dimensional slab geometry and the group constants are shown in Fig. 3 and Table 1, 12 

respectively. Periodic boundary conditions are imposed on the external surfaces of the slab. 13 

This slab cell is symmetric with respect to two symmetry planes as shown in Fig. 3. The 14 

critical buckling was calculated using a finite difference Sn transport code in Tommasi (2015). 15 

The critical buckling search is performed for the same problem using the Monte Carlo method. 16 

The number of histories per cycle is 80,000 and the total active cycles after skipping the initial 17 

30 cycles are 4,000. For the “binning procedure, the entire region is equally divided into 2,100 18 

bins where the weight cancellation is performed. The critical bucklings and keff’s obtained 19 

with the Monte Carlo method and the Sn transport code are compared in Table 2. A good 20 

agreement is achieved between the Monte Carlo method and the deterministic method. The 21 

Monte Carlo calculation is not stable for this problem because the absorber and the fuel are 22 

transparent to fast neutrons, and the flight distance of a fast neutron that flies in the vertical 23 

direction is occasionally too long in the regions. That lack of stability is why the standard 24 

deviations of the critical buckling and keff are relatively large. 25 



 16 

 1 

Fig. 3 Symmetric unit cell in Tommasi (2015) (The vertical dash-dot lines indicate the 2 

symmetry planes). 3 
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Table 1 Two-group constants for the one-dimensional slab (Tommasi, 2015) 1 

  Moderator Absorber Fuel 

Total cross 

section 

    (cm
-1

) 1.01 0.0 0.0 

    (cm
-1

) 1.0 10.0 10.0 

Production 

cross section 

     (cm
-1

)  0.0 0.0 0.0 

     (cm
-1

) 0.0 0.0 
17.365

*
 

(23.875)
**

 

Absorption 

cross section 

    (cm
-1

) 0.0 0.0 0.0 

    (cm
-1

) 0.2 10.0 10.0 

Group transfer 

cross section 

  
   (cm

-1
) 0.01 0.0 0.0 

  
   (cm

-1
) 1.0 0.0 0.0 

Fission 

spectrum 

       1.0 

       0.0 
*
for the symmetric cell in Fig. 3 2 

  
**

for the asymmetric cell in Fig. 6 3 

 4 

Table 2 Critical bucklings and keff for the 1D symmetric slab. 5 

 Buckling (cm
−1

) Re[keff] 

Monte Carlo  0.10609 ± 0.00018 0.99985± 0.00005 

Sn code  

(Tommasi, 2015) 
0.10650 0.99978 

 6 

3.2 Validation of the Monte Carlo method for directional diffusion coefficients 7 

 In the numerical example in the previous section, the one-dimensional slab extends 8 

infinitely in the vertical direction and there is no leakage in the direction. In other words, the 9 

buckling in the vertical direction is zero. Another numerical example proposed in this section 10 

treats a two-dimensional square. The unit cell with a width of 1 cm is shown in Fig. 4, and the 11 

group constants are shown in Table 3. A square with a side length of 11 cm is constructed by 12 

repeating the unit cell eleven times as shown in Fig. 5. Vacuum boundary conditions are 13 

imposed on the four sides.      in Table 3 is determined such that the keff of this square is as 14 

close to unity (i.e., critical) as possible. The keff of this two-dimensional 11-cell square is 15 
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1.00012 ± 0.00003. 1 

 2 

Fig. 4 Symmetric unit cell for the two-dimensional calculation (The vertical dash-dot lines 3 

indicate the symmetry planes). 4 

 5 

Fig. 5 Two-dimensional 11-cell square for calculating directional diffusion coefficients. 6 
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Table 3 Two-group constants for the two-dimensional square. 1 

  Moderator Fuel 

Total cross 

section 

    (cm
-1

) 0.1 1.0 

    (cm
-1

) 0.2 2.0 

Production 

cross section 

     (cm
-1

) 0.0 0.0 

     (cm
-1

) 0.0 0.75079 

Absorption 

cross section 

    (cm
-1

) 0.0 0.07 

    (cm
-1

) 0.0 0.38 

Group transfer 

cross section 

  
   (cm

-1
) 0.06 0.651 

  
   (cm

-1
) 0.04 0.279 

Fission 

spectrum 

     1.0 

     0.0 

 2 

The critical buckling search calculation is performed for this unit cell with a fixed 3 

vertical bucking of By = 0.24159 (cm
−1

). Periodic boundary conditions are imposed on all four 4 

sides. This vertical buckling is determined such that Bx is almost equal to By. The critical 5 

buckling in the horizontal direction obtained with the Monte Carlo calculation is 0.24154 ± 6 

0.00002 (cm
−1

) and keff = 1.00000 ± 0.00005. As seen in Table 3, the total cross sections of the 7 

moderator are one-tenth those of the fuel. Thus, the neutron’s mean free path significantly 8 

depends on its direction, and it is anticipated that the diffusion coefficients exhibit a direction 9 

dependence. Table 4 shows the diffusion coefficients in the horizontal and vertical directions 10 

calculated with Eq. (12). The difference between the vertical and horizontal diffusion 11 

coefficients in the 2nd group is much larger than that in the 1st group. The neutron spectrum 12 

obtained by the critical buckling search calculation is considered to represent the neutron 13 

spectrum in the center of the critical core with a finite dimension. The neutron spectra are 14 

calculated in a region with a dimension of 0.5 cm × 11 cm. The region is positioned at the 15 

center in the vertical direction as shown in Fig. 5. The ratios of the flux in the 1st group to the 16 

flux in the 2nd group,      , in the moderator and fuel regions calculated with the two 17 
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methods are compared in Tables 5 and 6, respectively. The ratios calculated with the critical 1 

buckling search agree well with those in the centermost cell (Cell No. 6). 2 

Table 4 Diffusion coefficients. 3 

 1st group 2nd group 

Horizontal (cm) 0.56954 ± 0.00008 0.29698 ± 0.00006 

Vertical (cm) 0.59894 ± 0.00009 0.37262 ± 0.00008 

Isotropic (cm) 0.59987 ± 0.00009 0.29993 ± 0.00008 

 4 

Table 5       in the moderator. 5 

Cell No.* 2D calculation Critical buckling search  

1 1.760  

2 1.415  

3 1.379  

4 1.362  

5 1.361  

6 1.357 1.357 

7 1.360  

8 1.358  

9 1.362  

10 1.381  

11 1.428  

*The cell number is shown in Fig. 5. 6 

 7 

Table 6       in the fuel. 8 

Cell No.* 2D calculation Critical buckling search  

1 1.583  

2 1.479  

3 1.459  

4 1.453  

5 1.450  

6 1.448 1.448 

7 1.450  

8 1.454  

9 1.460  

10 1.486  

11 1.636  

*The cell number is shown in Fig. 5. 9 

 10 

 The unit cell, which is composed of the moderator and the fuel, is homogenized using the 11 



 21 

flux distribution calculated with the critical buckling search. The homogenized two-group 1 

constants are shown in Table 7. For comparison, the unit cell is homogenized using the flux 2 

distribution that is calculated for the infinite array of the unit cell. The homogenized 3 

two-group constants, which include no neutron leakage effect, are also shown in Table 7. 4 

Using the homogenized total cross sections, isotropic diffusion coefficients are obtained by 5 

       . The isotropic diffusion coefficients are shown in Table 4. Using the homogenized 6 

two-group constants and the directional diffusion coefficients in Table 4, a diffusion 7 

calculation is performed for the square with a dimension of 11 cm × 11 cm. An in-house finite 8 

difference calculation code that is tailored to treat directional diffusion coefficients is used for 9 

the calculation. The number of meshes for the square is 200 × 200. The boundary condition 10 

on the external surfaces is              , which is often used for a vacuum boundary. 11 

The objective of this diffusion calculation is to demonstrate how accurately the directional 12 

diffusion coefficients reproduce the neutron leakage obtained with a transport calculation for 13 

the direction-dependent heterogeneous configuration shown in Fig. 5. The ratios of the 14 

vertical leakage to the horizontal leakage from the outer surface are calculated with the 15 

diffusion code and the Monte Carlo code. The results are compared in Table 8. Of course, 16 

precise agreement cannot be expected between the diffusion calculation and the transport 17 

calculation. There is no criterion for judging whether the agreement is good enough. Thus, 18 

judgement should be reserved as to whether the agreement between the two methods are 19 

sufficiently good. It can be said that the direction dependency of the neutron leakage can be 20 

reproduced to some extent. The keff of the diffusion calculation for the homogenized square 21 

agrees with the transport calculation for the heterogeneous square within 0.4%. Table 8 also 22 

shows the keff calculated using the homogenized group constants without neutron leakage 23 

effect and the isotropic diffusion coefficients. The keff is overestimated by 0.88% as compared 24 

to the anisotropic diffusion calculation. 25 

  26 
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Table 7 Two-group constants for the homogenized cell. 1 

  Critical buckling No leakage 

Total cross 

section 

    (cm
-1

) 0.56439 0.55568 

    (cm
-1

) 1.0995 1.11136 

Production cross 

section 

     (cm
-1

) 0.0 0.0 

     (cm
-1

) 0.37520 0.38013 

Absorption cross 

section 

    (cm
-1

) 0.036119 0.035442 

    (cm
-1

) 0.18990 0.19240 

Group transfer 

cross section 

  
   (cm

-1
) 0.36495 0.35923 

  
   (cm

-1
) 0.16332 0.16101 

 2 

Table 8 keff and the ratios of the vertical leakage to the horizontal leakage calculated with the 3 

three methods. 4 

  
Diffusion  

(anisotropic) 
Monte Carlo 

Diffusion  

(isotropic) 

keff 0.99676 1.00012 ± 0.00003 1.00560 

      
1st group 1.0467 1.0241 ± 0.0002 1.0 

2nd group 1.1421 1.1339 ± 0.0002 1.0 

 5 

4. Numerical tests for the B1 method in an asymmetric geometry 6 

4.1 Validation of sensitivity coefficient calculations 7 

 A criticality buckling search calculation in an asymmetric cell requires estimates of 8 

sensitivity coefficients of Re[keff] and Im[keff] with respect to     and    . Before 9 

performing critical buckling search calculations, the DOS method for calculating sensitivity 10 

coefficients, which is defined in Eqs. (34) and (35), is validated. The test problem in Tommasi 11 

(2015) is used again in this paper. The geometry of the problem is shown in Fig. 6. This 12 

problem was originally proposed by Gelbard and Lell (1977). The group constants in Fig. 6 13 

are the same as in Table 1, except for  .      for this problem is also listed in Table 1. This 14 

problem has no symmetry plane as seen in Fig. 6. Reference solutions for the sensitivity 15 

coefficients to be compared with the DOS method are obtained by calculating the difference 16 
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of Re[keff] and Im[keff] for slightly perturbed    . Figs. 7 and 8 show Re[keff] and Im[keff] as 1 

a function of     . The reference sensitivity coefficients are obtained by linear fitting as 2 

shown in Figs. 7 and 8. In Table 9, the sensitivity coefficients by the DOS method are 3 

compared with the references. Note that the DOS method neglects the fission source 4 

perturbation effect and the reference solutions are based on the linear approximation. It is 5 

found that Re[keff] and Im[keff] are not as sensitive to     and     respectively as to     6 

and    . In other words,                 and                are much smaller than 7 

               and               . Although the reference solution of                8 

or                has a larger statistical uncertainty because of its smallness, the DOS 9 

method agrees with the reference within the statistical uncertainty. Additionally,           10 

     or                agrees well with the reference solution. In conclusion, sensitivity 11 

coefficients calculated with the DOS method can be utilized for a complex-valued buckling 12 

search calculation in an asymmetric cell. 13 

 14 

Fig. 6 Asymmetric unit cell in Tommasi (2015). 15 
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 1 

Fig. 7 Re[keff] as a function of      in the asymmetric cell. 2 

 3 

Fig. 8 Im[keff] as a function of      in the asymmetric cell. 4 
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Table 9 Sensitivity coefficients calculated by DOS and linear fitting. 1 

 DOS Reference 

 

    
         

 

    
         −0.16295 ± 0.00005 −0.1635 ± 0.0038 

 

    
          

 

    
         0.00815 ± 0.00003 0.00897 ± 0.0081 

 2 

Using the technique in Sec. 2.3, a complex-valued critical buckling search calculation is 3 

performed for the asymmetric cell shown in Fig. 6. The complex-valued buckling and keff are 4 

listed in Table 10. Reference values calculated with the deterministic method in Tommasi 5 

(2015) are presented for comparison. The newly proposed Monte Carlo method precisely 6 

reproduces the complex-valued critical buckling in Tommasi (2015). 7 

 8 

Table 10 Critical bucklings and keff for the 1D asymmetric slab in Tommasi (2015). 9 

     (cm
−1

)     (cm
−1

) Re[keff] Im[keff] 

Monte Carlo  
0.10689  

± 0.00013 

−0.14566 

± 0.00003 

0.99994 

± 0.00006 

0.00004  

± 0.00001 

Sn code  

(Tommasi, 2015) 
0.10703 −0.14870 0.99978 −0.00046 

 10 

4.2 Leakage-corrected spectrum calculation in an asymmetric cell 11 

  As mentioned in Sec. 3.1, the numerical example in the previous section is unstable for 12 

the neutron flux calculation because it has a transparent material for fast neutrons. Then, 13 

another asymmetric one-dimensional cell is proposed for the numerical test in this section. 14 

The unit cell is composed of moderator, absorber, and fuel materials, with each having a 15 

thickness of 0.2 cm, as shown in Fig. 9. A one-dimensional slab whose width is 6.6 cm is 16 

constructed by repeating the unit cell eleven times as shown in Fig. 10. A vacuum boundary 17 

condition is imposed on the left and right surfaces. The slab is vertically infinite, and a 18 

periodic boundary condition is imposed on the upper and lower surfaces. The group constants 19 

of the materials are shown in Table 11.      is determined such that the keff of this 20 
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one-dimensional finite system is equal to unity. The keff of this slab calculated with the Monte 1 

Carlo method is 0.999948 ± 0.000053. The flux distribution in this slab is shown in Fig. 11. A 2 

neutron drift in the left direction that is introduced due to the asymmetry of the unit cell is 3 

clearly observed in Fig. 11. The critical buckling search calculation for this asymmetric cell is 4 

performed to obtain the complex-valued critical buckling and the keff-eigenvalue, and they are 5 

given in Table 12. In such an asymmetric unit cell, the flux and the current obtained by a 6 

critical buckling search calculation are complex. A question arises as to what the real and 7 

imaginary parts of the flux or the current represent. In Tables 13, 14, and 15, the flux ratio of 8 

the real part of the flux,              , in each region is compared with the flux ratio in the 9 

one-dimensional finite slab. The ratio,      , varies with position in the slab. The variation 10 

is particularly notable in the absorber. Tables 13, 14, and 15 indicate that the flux ratio, 11 

             , reproduces well the flux ratio,      , in the centermost cell (Cell No. 6) of 12 

the finite slab. The results suggest that the neutron spectrum in the center of a critical core is 13 

reproduced by the critical buckling search calculation for the unit cell and that the real part of 14 

the complex-valued flux represents the product of the global flux shape, 15 

                    , and the local flux shape. 16 

 17 

Fig. 9 Asymmetric unit cell for the test problem. 18 
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 1 

 2 

Fig. 10 One-dimensional finite slab composed of the unit cell in Fig. 9. 3 

 4 

 5 

Fig. 11 Flux distributions in the one-dimensional finite slab. 6 
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Table 11 Two-group constants for the 1D asymmetric slab in Sec. 4.2. 1 

  Moderator Absorber Fuel 

Total cross 

section 

    (cm
-1

) 5.0 1.0 1.0 

    (cm
-1

) 10.0 3.0 3.0 

Production 

cross section 

     (cm
-1

) 0.0 0.0 0.0 

     (cm
-1

) 0.0 0.0 5.0127 

Absorption 

cross section 

    (cm
-1

) 0.0 0.2 0.0 

    (cm
-1

) 0.0 3.0 2.0 

Group transfer 

cross section 

  
   (cm

-1
) 0.0 0.8 1.0 

  
   (cm

-1
) 5.0 0.0 0.0 

Fission 

spectrum 

       1.0 

       0.0 

 2 

Table 12 Critical bucklings and keff for the asymmetric unit cell. 3 

    (cm
−1

) 0.45154 ± 0.00010 

    (cm
−1

) 0.15551 ± 0.00004 

Re[keff] 0.999983 ± 0.000029 

Im[keff] 0.000005 ± 0.000011 

 4 

Table 13       in the moderator. 5 

Cell No.* 
1D calculation 

Critical buckling 

search  

                    

1 0.4221  

2 0.4486  

3 0.4466  

4 0.4456  

5 0.4451  

6 0.4446 0.4444 

7 0.4440  

8 0.4436  

9 0.4428  

10 0.4419  

11 0.4440  

*The cell number is shown in Fig. 10. 6 

  7 
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 1 

Table 14       in the absorber.  2 

Cell No.* 
1D calculation 

Critical buckling 

search  

                    

1 2.141  

2 1.900  

3 1.818  

4 1.775  

5 1.741  

6 1.713 1.720 

7 1.684  

8 1.651  

9 1.600  

10 1.512  

11 1.204  

*The cell number is shown in Fig. 10. 3 

 4 

Table 15       in the fuel.  5 

Cell No.* 
1D calculation 

Critical buckling 

search  

                    

1 2.227  

2 2.253  

3 2.264  

4 2.270  

5 2.275  

6 2.281 2.274 

7 2.288  

8 2.293  

9 2.303  

10 2.334  

11 3.295  

*The cell number is shown in Fig. 10. 6 

 7 

5. Conclusions 8 

 This paper proposes the implementation of the B1 method into the Monte Carlo method, 9 

which is one of the Monte Carlo techniques for generating group constants, including 10 

diffusion coefficients. The proposed method is featured by generating leakage-corrected 11 

directional diffusion coefficients. In the numerical test of this paper, leakage-corrected 12 
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horizontal and vertical diffusion coefficients that are generated with the critical buckling 1 

search calculation are used for the diffusion calculation in a two-dimensional geometry. The 2 

directional dependence of the neutron leakage is well reproduced by using the 3 

direction-dependent diffusion coefficients. The Monte Carlo technique with the B1 method 4 

implemented can be an effective tool for generating diffusion coefficients and other group 5 

constants that will subsequently be used for full core calculations. 6 

 A critical buckling in a unit cell where the symmetry operation changes the buckling 7 

vector B to B or −B can be real value; otherwise it has to be complex as noted in previous 8 

studies. The critical buckling search calculation in an asymmetric unit cell needs to search the 9 

real and imaginary parts of the complex-valued buckling at the same time. A new Monte 10 

Carlo perturbation method for calculating the sensitivity coefficients of keff with respect to the 11 

buckling is proposed for a critical buckling search calculation. The new method uses the 12 

differential operator sampling method for calculating the sensitivity coefficients. The 13 

leakage-corrected neutron spectrum obtained by a B1 calculation represents the spectrum in 14 

the center portion of the finite system that is composed of the repeated unit cells. In an 15 

asymmetric unit cell, the neutron flux and the current integrated over the domain are complex. 16 

The neutron spectrum in the center portion is represented by the real part of the neutron flux 17 

obtained by the critical buckling search calculation. 18 

 Future research and development will focus on the theory of how to define diffusion 19 

coefficients in an asymmetric cell, which has not been established to date. The method 20 

proposed in this paper requires the “binning procedure” to determine the complex-valued 21 

weights and positions of fission source for the next cycle as discussed in Sec. 2.2. A new 22 

technique not requiring the “binning procedure” should be developed to enhance the 23 

availability of this method so that it can be easily implemented into a variety of Monte Carlo 24 

codes. 25 

 26 
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Fig. 1 Flowchart of one particle history for Monte Carlo B1 calculation. 
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Fig. 2 Flowchart of calculation in one cycle. 
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Fig. 3 Symmetric unit cell in Tommasi (2015) (The vertical dash-dot lines indicate the 

symmetry planes). 
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Fig. 4 Symmetric unit cell for the two-dimensional calculation (The vertical dash-dot lines 

indicate the symmetry planes). 
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Fig. 5 Two-dimensional 11-cell square for calculating directional diffusion coefficients. 
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Fig. 6 Asymmetric unit cell in Tommasi (2015). 
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Fig. 7 Re[keff] as a function of      in the asymmetric cell. 
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Fig. 8 Im[keff] as a function of      in the asymmetric cell. 
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Fig. 9 Asymmetric unit cell for the test problem. 
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Fig. 10 One-dimensional finite slab composed of the unit cell in Fig. 9. 
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Fig. 11 Flux distributions in the one-dimensional finite slab. 
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Table 1 Two-group constants for the one-dimensional slab (Tommasi, 2015) 

  Moderator Absorber Fuel 

Total cross 

section 

    (cm
-1

) 1.01 0.0 0.0 

    (cm
-1

) 1.0 10.0 10.0 

Production 

cross section 

     (cm
-1

)  0.0 0.0 0.0 

     (cm
-1

) 0.0 0.0 
17.365

*
 

(23.875)
**

 

Absorption 

cross section 

    (cm
-1

) 0.0 0.0 0.0 

    (cm
-1

) 0.2 10.0 10.0 

Group transfer 

cross section 

  
   (cm

-1
) 0.01 0.0 0.0 

  
   (cm

-1
) 1.0 0.0 0.0 

Fission 

spectrum 

       1.0 

       0.0 
*
for the symmetric cell in Fig. 3 

  
**

for the asymmetric cell in Fig. 6 

 

 

Table 2 Critical bucklings and keff for the 1D symmetric slab. 

 Buckling (cm
−1

) Re[keff] 

Monte Carlo  0.10609 ± 0.00018 0.99985± 0.00005 

Sn code  

(Tommasi, 2015) 
0.10650 0.99978 

 

Table 3 Two-group constants for the two-dimensional square. 

  Moderator Fuel 

Total cross 

section 

    (cm
-1

) 0.1 1.0 

    (cm
-1

) 0.2 2.0 

Production 

cross section 

     (cm
-1

)  0.0 0.0 

     (cm
-1

) 0.0 0.75079 

Absorption 

cross section 

    (cm
-1

) 0.0 0.07 

    (cm
-1

) 0.0 0.38 

Group transfer 

cross section 

  
   (cm

-1
) 0.06 0.651 

  
   (cm

-1
) 0.04 0.279 

Fission 

spectrum 

     1.0 

     0.0 

 

Table



Table 4 Diffusion coefficients. 

 1st group 2nd group 

Horizontal (cm) 0.56954 ± 0.00008 0.29698 ± 0.00006 

Vertical (cm) 0.59894 ± 0.00009 0.37262 ± 0.00008 

Isotropic (cm) 0.59987 ± 0.00009 0.29993 ± 0.00008 

 

 

Table 5       in the moderator. 

Cell No.* 2D calculation Critical buckling search  

1 1.760  

2 1.415  

3 1.379  

4 1.362  

5 1.361  

6 1.357 1.357 

7 1.360  

8 1.358  

9 1.362  

10 1.381  

11 1.428  

*The cell number is shown in Fig. 5. 

 

Table 6       in the fuel. 

Cell No.* 2D calculation Critical buckling search  

1 1.583  

2 1.479  

3 1.459  

4 1.453  

5 1.450  

6 1.448 1.448 

7 1.450  

8 1.454  

9 1.460  

10 1.486  

11 1.636  

*The cell number is shown in Fig. 5. 

 

  



Table 7 Two-group constants for the homogenized cell. 

  Critical buckling No leakage 

Total cross 

section 

    (cm
-1

) 0.56439 0.55568 

    (cm
-1

) 1.0995 1.11136 

Production cross 

section 

     (cm
-1

) 0.0 0.0 

     (cm
-1

) 0.37520 0.38013 

Absorption cross 

section 

    (cm
-1

) 0.036119 0.035442 

    (cm
-1

) 0.18990 0.19240 

Group transfer 

cross section 

  
   (cm

-1
) 0.36495 0.35923 

  
   (cm

-1
) 0.16332 0.16101 

 

 

Table 8 keff and the ratios of the vertical leakage to the horizontal leakage calculated with the three 

methods. 

  
Diffusion  

(anisotropic) 
Monte Carlo 

Diffusion  

(isotropic) 

keff 0.99676 1.00012 ± 0.00003 1.00560 

      
1st group 1.0467 1.0241 ± 0.0002 1.0 

2nd group 1.1421 1.1339 ± 0.0002 1.0 

 

 

Table 9 Sensitivity coefficients calculated by DOS and linear fitting. 

 DOS Reference 

 

    
         

 

    
         −0.16295 ± 0.00005 −0.1635 ± 0.0038 

 

    
          

 

    
         0.00815 ± 0.00003 0.00897 ± 0.0081 

 

 

Table 10 Critical bucklings and keff for the 1D asymmetric slab in Tommasi (2015). 

     (cm
−1

)     (cm
−1

) Re[keff] Im[keff] 

Monte Carlo  
0.10689  

± 0.00013 

−0.14566 

± 0.00003 

0.99994 

± 0.00006 

0.00004  

± 0.00001 

Sn code  

(Tommasi, 2015) 
0.10703 −0.14870 0.99978 −0.00046 

 

 



 

Table 11 Two-group constants for the 1D asymmetric slab in Sec. 4.2. 

  Moderator Absorber Fuel 

Total cross 

section 

    (cm
-1

) 5.0 1.0 1.0 

    (cm
-1

) 10.0 3.0 3.0 

Production 

cross section 

     (cm
-1

)  0.0 0.0 0.0 

     (cm
-1

) 0.0 0.0 5.0127 

Absorption 

cross section 

    (cm
-1

) 0.0 0.2 0.0 

    (cm
-1

) 0.0 3.0 2.0 

Group transfer 

cross section 

  
   (cm

-1
) 0.0 0.8 1.0 

  
   (cm

-1
) 5.0 0.0 0.0 

Fission 

spectrum 

       1.0 

       0.0 

 

 

Table 12 Critical bucklings and keff for the asymmetric unit cell. 

    (cm
−1

) 0.45154 ± 0.00010 

    (cm
−1

) 0.15551 ± 0.00004 

Re[keff] 0.999983 ± 0.000029 

Im[keff] 0.000005 ± 0.000011 

 

Table 13       in the moderator. 

Cell No.* 
1D calculation 

Critical buckling 

search  

                    

1 0.4221  

2 0.4486  

3 0.4466  

4 0.4456  

5 0.4451  

6 0.4446 0.4444 

7 0.4440  

8 0.4436  

9 0.4428  

10 0.4419  

11 0.4440  

*The cell number is shown in Fig. 10. 



 

Table 14       in the absorber. 

Cell No.* 
1D calculation 

Critical buckling 

search  

                    

1 2.141  

2 1.900  

3 1.818  

4 1.775  

5 1.741  

6 1.713 1.720 

7 1.684  

8 1.651  

9 1.600  

10 1.512  

11 1.204  

*The cell number is shown in Fig. 10. 

 

 

Table 15       in the fuel.  

Cell No.* 
1D calculation 

Critical buckling 

search  

                    

1 2.227  

2 2.253  

3 2.264  

4 2.270  

5 2.275  

6 2.281 2.274 

7 2.288  

8 2.293  

9 2.303  

10 2.334  

11 3.295  

*The cell number is shown in Fig. 10. 

 




