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• Videography and E. coli data are col-
lected for farmers using human excreta.

• Data are used to simulate E. coli concen-
trations on hands over time.

• Farmers' left and right hands contacted
a mean 360 and 401 objects per hour.

• Microbial exposures vary substantially
between farmers.

• E. coli in excreta and on tools, and hand-
to-mouth contact frequency, most im-
pacted risk.
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Infectious disease transmission is frequently mediated by the environment, where people's movements through
and interactions with the environment dictate risks of infection and/or illness. Capturing these interactions, and
quantifying their importance, offers important insights into effective interventions. In this study, we capture high
time-resolution activity data for twenty-five Vietnamese farmers during collection and land application of
human excreta for agriculture. Although human excreta use improves productivity, the use increases risks of en-
teric infections for both farmers and end users. In our study, the activity data are integrated with environmental
microbial sampling data into a stochastic-mechanistic simulation of E. coli contamination on hands and E. coli
ingested. Results from the study include frequent and variable contact rates for farmers' hands (from 34 to
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1344 objects contacted per hour per hand), including highly variable hand-to-mouth contact rates (from 0 to 9
contacts per hour per hand). The frequency of hand-to-mouth contacts was substantially lower than the
widely-used frequency previously reported for U.S. Office Workers. Environmental microbial contamination
data highlighted ubiquitous E. coli contamination in the environment, including excreta, hands, toilet pit, hand-
held tools, soils, surfaces, and water. Results from the simulation suggest dynamic changes in E. coli contamina-
tion on hands, and wide variation in hand contamination and E. coli ingested amongst the farmers studied.
Sensitivity analysis suggests that E. coli contamination on hands and ingested doses are most influenced by con-
tamination of handheld tools, excreta, and the toilet pit as well as by frequency of hand-to-mouth contacts. The
study findings are especially relevant given the context: no farmers reported adequate storage time of human ex-
creta, and personal protective mask availability did not prevent hand-to-mouth contacts. Integrating high time-
resolution activity data into exposure assessments highlights variation in exposures amongst farmers, and offers
greater insight into effective interventions and their potential impacts.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Transmission of many infectious diseases, such as enteric diseases, is
mediated by human-environment interactions. People's movement
through, and contact with, the environment contributes to fate, trans-
port, and transmission of infectious diseases. Quantitative microbial
risk assessment (QMRA) is one example of a framework used to inte-
grate human-environment interaction data to quantify risks associated
with specific activities, understand relative contributions of various ex-
posure pathways, and identify effective infection control strategies
(Haas et al., 2014; WHO, 2016). Within this framework, exposure as-
sessment is the process of estimating magnitude and frequency of
people's exposures to pathogens (Haas et al., 2014;WHO, 2016). The as-
sessment is based on pathogen contamination estimates, treatment
and/or intervention efficacy, and human-environment interaction data
(WHO, 2016). Examples of human-environment interaction data in-
clude estimates of the amount ofwater and/or food ingested (intention-
ally or unintentionally) and frequency of hand-to-mouth contacts
(Amha et al., 2015; Fuhrimann et al., 2016; Mattioli et al., 2015).

Exposure assessments, and in particular human-environment
interaction data, are often based on simplified assumptions. For exam-
ple, interaction data estimates (i.e., water, food, and soil intake; hand-
to-mouth frequency) may be based on expert opinion, estimates from
studies conducted in different contexts or study populations, or de-
scribed as simplistic, linear, series of events (Amha et al., 2015;
Genthe et al., 1999;Mattioli et al., 2015; Schönning et al., 2007). Increas-
ingly, research is recognizing the need for improved human-
environment interaction data (i.e., drinking water consumption, waste-
water contacts), leading to more robust, evidence-based, exposure and
risk estimates (Gretsch et al., 2016; Kwong et al., 2016; Teunis et al.,
2016).

One approach to improving human-environment interaction data is
the collection of high time-resolution (per second) activity data via vid-
eography and video translation (Ferguson et al., 2006; Julian et al., n.d.;
Zartarian et al., 1995). In brief, study participants are observed using
videography, and translators (aided by software) convert the video
into a detailed (second-by-second) time series of the study participants'
environmental interactions. The resulting data is referred to as
microlevel activity time series, orMLATS. Themethod can be used to es-
timate dermal, inhalation, non-dietary ingestion, and/or dietary inges-
tion exposures, as shown in chemical risk assessments (Beamer et al.,
2009; Ferguson et al., 2013, 2006). The method has also been applied
to microbial risks, primarily in the context of non-dietary ingestion ex-
posures (Beamer et al., 2015; Julian et al., 2009; Julian and Pickering,
2015).

Here, we apply MLATS to model farmers' risks from use of human
excreta in agriculture in Vietnam. Human excreta is used extensively
for agriculture and aquaculture in Southeast Asia, and Vietnam in partic-
ular (Do et al., 2007; Giang et al., 2015). Use of excreta is driven in part
by financial benefits of nutrient recovery. Excreta use offsets fertilizer
purchases and improves crop yield (Jensen et al., 2010). Use of human
excreta in agriculture is also globally beneficial, as it captures and recy-
cles nutrients. Nutrient capture diverts environmental pollution andoff-
sets reliance on finite resources like phosphate rock (Cordell et al., 2011;
Fuhrmeister et al., 2015; Heinonen-Tanski et al., 2005; Langergraber
and Muellegger, 2005).

Despite the benefits, human excreta poses a health risk for farmers
and end consumers. Excreta contains high concentrations of enteric
pathogens including diarrheagenic Escherichia coli, Salmonella spp., ro-
tavirus, norovirus, and Campylobacter spp.; hepatitis (hepatitis A and
E); poliovirus; Toxoplasma gondii; and parasitic worms (Lam et al.,
2015). Previous studies have identified increased risks of diarrheal dis-
ease generally, and helminth, hookworm, and Trichuris Trichuria infec-
tions specifically, for farmers reliant on human excreta (Blumenthal
and Peasey, 2002; Do et al., 2007; Pham-Duc et al., 2014; Pham Duc
et al., 2011).

Recommendations for reducing health risks fromhuman excreta use
are rarelymet. Examples include storage of excreta for at least 6months
prior to use to allows sufficient time for inactivation of pathogens; in-
corporating additives (kitchen ash, waste, and/or lime) to reduce mois-
ture, smell, increase pH, and combat flies; and using personal protective
equipment (PPE), (masks, gloves, and boots) to reduce farmers' expo-
sures to excreta (Mackie Jensen et al., 2008; Phuc et al., 2006;
Winblad, 2004). In Vietnam, excreta is rarely stored for the recom-
mended 6 months (Jensen et al., 2010; Mackie Jensen et al., 2008).
One reason is the misalignment between recommended storage times
and seasonal timing or frequency of required land application (Jensen
et al., 2010; Mackie Jensen et al., 2008). Personal protective equipment,
although perceived to be beneficial, is also often neglected due to costs
and/or perceived convenience (Knudsen et al., 2008). Another contrib-
uting factor is the prevailing belief that smell is indicative of health
risks; once smell has dissipated, concerns over health decline
(Knudsen et al., 2008). Therefore, recommended infection control pre-
cautions should be optimized to decrease pathogen exposureswhile ac-
counting for farmers' logistical, cultural, and behavioral concerns
(Mackie Jensen et al., 2008).

In this study, we evaluate the use of high time-resolution activity
data to estimate farmers' exposures to the fecal bacteria E. coli while
using human excreta in Hanoi, Vietnam. Videography is used to capture
detailed high time-resolution data, which is used as the basis for a
stochastic-mechanistic simulation. The simulation is parameterized
using both primary data collection (measured E. coli contamination on
hands, surfaces, water, and excreta) and previously published data
(transfer efficiency of pathogens, surface area of contacts). Results ob-
tained from the stochastic-mechanistic exposure simulation are com-
pared to more traditional approaches to estimate exposure. The
comparison is used to evaluate the use of high time-resolution
human-environment interaction data. Finally, the simulation is used
to identify factors that contribute to increased exposure, and to reaffirm
infection control practices that can reduce farmers' exposures and risks.

http://creativecommons.org/licenses/by/4.0/
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2. Materials and methods

2.1. Ethics

The following protocol was approved by the Ethics Commission of
the Swiss Federal Institute of Technology in Zurich. Twenty-five (25)
farmers were contacted through local village chiefs based on who was
performing relevant agricultural activities (human excreta collection,
transport, and/or land application). The farmers were provided with
specific information about the research and research protocol. At the
end of data collection, the farmers were also provided with general in-
structions on ameliorating risks from contact with human excreta. All
information was provided in Vietnamese (translated from English)
and was accompanied by a verbal explanation by a native Vietnamese
speaker. Research proceeded only after written consent was obtained.

2.2. Study site

The study was conducted from November 2015 until February 2016
in Trai Hamlet, Van Tu commune, Phu Xuyen district in Hanoi, Vietnam.
Trai Hamlet is a farming villagewith N240households that relies heavily
on human and animal excreta for agriculture (Giang et al., 2012). The
primary occupation for most households is domestic-scale agriculture,
including animal farming. Of the village's 56 ha land area, N90% is de-
voted to paddy fields and fish ponds (Giang et al., 2012). More than
half (56%) of the households use dry toilets for sanitation, and most
(93%) of these households use the human excreta for agriculture
(Giang et al., 2012). The study dates were chosen to coincide with the
seasonal cultivation of major crops within the region, including beans,
rice, and other vegetables.

2.3. Cohort

In total, 25 farmers were enrolled in the study for activity data col-
lection (i.e., videography): 11 farmers collected human excreta from
their latrine, 12 applied excreta to land, and 2 both collected and applied
excreta. Of these, 15 (60% of the 25 total) also provided hand rinse sam-
ples for enumerating E. coli contamination of hands. The vast majority
(96%) of farmers were female, and the median [min, max] age was 56
[38, 64].

2.4. Simulation framework

An exposure assessment simulation was developed that estimates
time series of E. coli contamination on the hands and E. coli ingested
due to hand-to-mouth contact events. The simulation framework is
mechanistic and incorporates stochasticity of model parameters to cap-
ture variability and uncertainty, following a previously established
model for estimating microbial transfer between hands and objects
(Julian and Pickering, 2015). In brief, themodel simulates E. coli concen-
trations on hands by tracking the transfer of E. coli between hands the
environment. The time series of sequential contact events (termed
microlevel activity time series, or MLATS) responsible for transfer is de-
termined using videography and videotranslation (see Activity Data)
(Julian et al., n.d.; Zartarian et al., 1995). We assume each contact be-
tween an object and a hand transfers bacteria to or from the hands
based on: 1) bacteria contamination on the hands, 2) bacteria contam-
ination on the object, 3) material properties of the object, and 4) the
area of the hands involved in hand-to-object contact. Transfer for each
contact event is modeled assuming bacterial transfer is a function of
the difference (or gradient) in bacterial concentration between the
hand and the object (Julian et al., 2009; Julian and Pickering, 2015).
For surfaces, transfer was modeled as:

CHf ¼ CHi þ T ∙SOH CO−CHið Þ ð1Þ
where CHfCHfis the final bacterial concentration on the hands (CFU/cm2),
CHiCHiis the initial concentration on the hands (CFU/cm2), T, transfer ef-
ficiency, is the proportion of bacteria that transfers between the object
and the hands (unitless or g/cm2), SOH is the fractional surface area of
the hand in contact with the object, and CO is the concentration on the
object (CFU/cm2 or CFU/g).

For bulk materials (ash, excreta, mud) and water, transfer is
modeled as:

CHf ¼ CHi þ SOH TBCB−CHið Þ ð2Þ

where TB is the transfer efficiency of bulk materials or water to hands
(g/cm2 or ml/cm2), and CB is the concentration of the bulk material or
water (CFU/g or CFU/ml).

Dose of E. coli ingested by the farmers is assumed to occur during
hand-to-mouth contacts. Although object-to-mouth contacts may also
increase dose, nonewere observed (see Activity Data). Dose is modeled
using:

Dose ¼ THM∙SHM ∙CHf ð3Þ

where THM is the proportion of bacteria that transfers between the
hands and the mouth (unitless), SHMis the surface area of the hand in
contact with the mouth (cm2), and CHfCHfis the bacterial concentration
on the hands (CFU/cm2).

The simulation includes stochastic parameters, relying on Monte
Carlo methods to incorporate variability and uncertainty. Parameter
values are chosen fromdistributionswhich reflect variability and uncer-
tainty for each parameter. Specifically, E. coli contamination of objects is
randomized at the start of each simulation, whereas both transfer effi-
ciency and surface area of the contact are randomized prior to each con-
tact event. To instantiate the simulation, initial (t = 0) E. coli
concentration on hands are assumed to be 0.01 CFU E. coli/cm2, in-
formed by E. coli measurements obtained at the start of videography
(see Microbial contamination).

The primary outcomes from the simulation are the time series of E.
coli concentration on the hands and ingested dose, defined here as the
quantity of E. coli transferred to the mouth from hand-to-mouth
contacts.

2.5. Parameter estimation

2.5.1. Activity data
Activity data were collected following the method of Julian and

Pickering (2015). In brief, video cameras on head straps (GoPro Digital
Hero 4, Woodman Labs, San Mateo, CA) were worn by farmers. Video
- in first person perspective – of the range of motion of the farmers'
hands and the lower portion of their face was captured for the duration
of their activity. The farmerswere instructed to perform their typical ac-
tivities as they usuallywould. Between 26 and 344min of datawere col-
lected for each farmer.

The videos were translated using Virtual Timing Device Software for
the Personal Computer (VTDPC, University of Arizona), which was
based on the Virtual Timing Device Software (SamaSama Consulting,
Sunnyvale, CA) (Julian et al., n.d.; Zartarian et al., 1995). Translation
was performed by two researchers (co-authors HSKV and MLC) as pre-
viously described (Julian and Pickering, 2015; Zartarian et al., 1995).
Both researchers were trained on the use of the software, with results
from initial 10 min segment validated by a third researcher (AKP). For
comparison, 30 min of the data were translated by both researchers
(see Activity data and Supporting information, Comparison of
Translators).

2.5.2. Microbial contamination
Microbial contamination was indicated by the fecal bacteria E. coli

because it is a commonly used fecal indicator bacteria, and there are
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multiple, reliable, and field-portable measurementmethods. E. coli con-
tamination was measured on surfaces, in bulk materials, in water, and
on hands followingmethods specified in the Supplemental information
(Supplemental information, Methods). Although E. coli is not necessar-
ily pathogenic, pathogenic strains (enteropathogenic, enterotoxigenic,
and enterohemorrhagic) are amongst the leading causes of diarrheal
disease (Kotloff et al., 2013). E. coli are also expected to be present in
high concentrations in surfaces, bulk materials, and water in environ-
ments reliant on human excreta for agriculture.

2.5.2.1. Probability distribution functions. E. coli measurements from sur-
faces, bulkmaterials, andwaterwere fit to probability distribution func-
tions, defined for each object category. Probability distribution function
parameters were estimated using the fitdistr package in R (R Core Team,
2016). When E. coli were detectable on 40% or more of a sample cate-
gory, a normal distributionwas fit to the log-transformed E. coli concen-
trations, with data below and above the limits of detection treated as left
and right censored data, respectively. When b40% of samples had de-
tectable E. coli contamination, the data were input directly into the sim-
ulation and resampled with replacement, with data below the limits of
detection assumed to be uncontaminated (0 CFU/g or cm2).

2.5.3. Transfer
Transfer of E. coli, defined by the proportion transferred between the

hands and objects on contact, was estimated based on a literature re-
view (Table 1). Transfer (%) between surfaces and hands was assumed
to be normally distributed, based on previous estimates of transfer
rates (Julian et al., 2009; Lopez et al., 2013). Mean and standard devia-
tion estimates are based on previously published experimental work
using E. coli, Acinetobacter baumanni, or Serritia rubidea (Greene et al.,
2015; Lopez et al., 2013).
Table 1
Distributions of transfer efficiency used tomodel transfer of either E. coli or bulkmaterial betwe
transfer, E. coli transfer was modeled based on both the mass of bulk material transferred and t
viation for normal (N) distributions or minimum and maximum for uniform (U) distributions.

Category Surface Reference organism

Surfaces (%)
Bicycle Stainless steel E. coli
Footwear Rubber A. baumannii
Cloth Cotton E. coli
Door/wall Laminate E. coli
Grass Paper currency E. coli
Handheld tools Laminate E. coli
Mask Cotton E. coli
Phone Phone S. rubidea

Paper currency Paper currency E. coli
Bucket (plastic) Polypropylene A. baumannii
Polysacks bag Polyester E. coli
Polyethene bag Polypropylene A. baumannii
Rice seeds Granite E. coli
Toilet paper Paper currency E. coli
Toilet pit Laminate E. coli

Water (ml/cm2)
Water/surface Water –
Water/drinking Water –

Bulk materials (mg/cm2)
Excreta Soil –
Mud Mud –
Ash Soil –

Body (%)
Hands Fingerpad A. baumannii
Face Fingerpad A. baumannii
Mouth Lip S. rubidea
Limited data were available to estimate transfer of E. coli between
most bulk materials (ash, excreta) and hands, and between water and
hands. Therefore, E. coli transfer wasmodeled based on themass or vol-
ume of the bulk material transferred to the hands after contact and the
concentration of E. coli in the material (Table 1) (U.S. EPA, 2011; Finley
et al., 1994).

Only surface typewas considered as a factor that influenced transfer:
other characteristics like inoculum size, contact pressure, contact fric-
tion, and surface wetness were neglected in line with previous work
(Jarvis et al., 2010; Julian and Pickering, 2015). When literature values
were not found for surfaces observed in the video, transfer efficiency
were assumed from existing literature values for similar surfaces. For
example, transfer between hands and rice seedswas assumed tobe sim-
ilar to transfer between hands and loose granite (Table 1).

2.5.4. Surface areas
Distributions for surface areas in contactwith the hands are based on

the expected grip type and corresponding fractional surface area as de-
scribed by AuYeung et al. (2008) (Table 2) (AuYeung et al., 2008;
Beamer et al., 2015; U.S. EPA, 2011). Contact surfaces of the area of
hand-to-mouth contact events are assumed to be partial finger immer-
sions of between 2 and 3 fingers (Table 2). Surface areas of hands are as-
sumed to be 910 cm2, the center point of the recommended range for
women (760–1060 cm2) as the vast majority (96%) of farmers studied
were women) (AuYeung et al., 2008; Beamer et al., 2015; U.S. EPA,
2011).

2.6. Dose assessment

Estimates of the E. coli ingested by the farmers based on the
stochastic-mechanistic simulation are compared to models informed
by assumptions of uniform exposure frequencies (Mattioli et al., 2015;
en objects (surfaces or bulkmaterials) and hands for each contact event. For bulkmaterial
he concentration of E. coli in thematerial. Parameters specified are mean and standard de-

Parameters Reference

N(54,23) Lopez et al. (2013)
N(35,19) Greene et al. (2015)
N(13,12) Lopez et al. (2013)
N(27,30) Lopez et al. (2013)
N(0.1, 0.3) Lopez et al. 2013
N(27,30) Lopez et al. (2013)
N(13,12) Lopez et al. (2013)
N(38,10) Rusin et al. (2002) (mean),

Greene et al. (2015)
(standard deviation)

N(0.1, 0.3) Lopez et al. (2013)
N(21,13) Greene et al. (2015)
N(0.7,0.8) Lopez et al. (2013)
N(21,13) Greene et al. (2015)
N(37,39) Lopez et al. (2013)
N(0.1, 0.3) Lopez et al. (2013)
N(27,30) Lopez et al. (2013)

U[0.00214–0.00499] U.S. EPA (2011)
U[0.00214–0.00499] U.S. EPA (2011)

U[0.16–0.28] U.S. EPA (2011)
N(0.49,0.54) Finley et al. (1994)
U[0.16–0.28] U.S. EPA (2011)

N(33,12) Greene et al. (2015)
N(33,12) Greene et al. (2015)
N(34,25) Rusin et al. (2002) (mean),

Julian et al. (2010)
(standard deviation)



Table 2
Modeled E. coli contamination and surface area of contact events for the surface, bulk material, and body categories contacted during the videography. E. coli contamination probability
distribution functions were based on microbial sample collection. Surface area probability distribution functions were based on expected grip type and corresponding fractional surface
area of contact, as described by AuYeung et al. (2008). 1Sample size (n) used to estimate distributions. 2Parameters specified are log10-transformedmean and standard deviation for nor-
mal distributions (N (log10)) or minimum and maximum for uniform distributions. Resample refers to random selection with replacement of one of the observed values which are spec-
ified in the array. 3Grip types are defined by Auyeung et al. (2008) with associated uniform distributions specifying minimum and maximum.

Category n1 E. coli contamination2 Surface area3

Distribution Parameters Grip type Parameters

Surfaces (CFU/100cm2)
Bicycle 12 Resample [0,0,0,0,0,0,0,360,5480] Closed hand grip [0.1, 0.17]
Cloth 9 N(log10) (1.68, 0.75) Front partial fingers [0.04,0.06]
Door/wall 10 N(log10) (2.48, 1.03) Partial front palm w/ fingers [0.07, 0.14]
Footwear 10 N(log10) (1.94, 1.93) Front partial fingers [0.04,0.06]
Grass and rice seeds 10 N(log10) (0.55, 1.50) Partial front palm w/ fingers [0.07, 0.14]
Handheld tools 10 N(log10) (3.22, 1.21) Closed hand grip [0.1, 0.17]
Mask 11 Resample [0,0,0,0,0,0,0,0, 200,240] Front partial fingers [0.04,0.06]
Phone 10 Resample [0,0,0,0,0,0,0,720,1280] Closed hand grip [0.1, 0.17]
Paper currency 10 Point 0 Front partial fingers [0.04,0.06]
Bucket (plastic) 10 N(log10) (1.03, 1.21) Closed hand grip [0.1, 0.17]
Polysacks bag 23 N(log10) (2.03, 1.70) Front partial fingers [0.04,0.06]
Polythenes bag 10 Resample [0,0,0,0,0,0,0,40,840,4000] Front partial fingers [0.04,0.06]
Toilet paper 10 Point 0 Front partial fingers [0.04,0.06]
Toilet pit 10 N(log10) (3.76, 1.04) Open hand grip [0.1,0.21]

155

Bulk materials (†CFU/100 ml or ‡CFU/g-dry)
Surface water† 24 N(log10) (3.91, 0.84) Partial finger immersion [0.26, 0.30]
Domestic water† 32 N(log10) (0.12, 0.79) Partial finger immersion [0.26, 0.30]
Excreta‡ 20 N(log10) (4.00, 2.14) Full front palm with fingers [0.13, 0.25]
Mud‡ 20 N(log10) (2.02, 1.40) Full front fingers [0.04,0.1]
Ash‡ 10 Resample [0,0,0,0,0,8,9336, 657] Full front palm with fingers [0.13, 0.25]

106

Body (CFU/100cm2)
Hands From model Closed hand grip [0.1, 0.17]
Face Point 0 Front partial fingers [0.04,0.06]
Mouth Not relevant Partial finger immersion (2–3 fingers) [0.10, 0.18]
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Özkaynak et al., 2010). The arithmetic approach estimates dose assum-
ing:

Dose ¼ ∑n
k¼1 S � T � CHð Þ ð4Þ

where CH is the concentration of bacteria on the hands (CFU/cm2) for
the kth hand-to-mouth contact, T is the transfer efficiency of bacteria
on contact (unitless), S is the fractional surface area of the hand
(unitless), and n is the number of hand-to-mouth contact events per
unit time (#/hr).

Four separate sets of assumptions about E. coli contamination on
hands and frequency of hand-to-mouth contacts are compared to the
stochastic-mechanistic simulation (Table 3). The goal of the comparison
was to determine the impact of using the stochastic-mechanistic simu-
lation presented here relative to the generalizable approach used else-
where, and to determine the impact of assumptions about model
parameters. For the comparison, other values (surface area and trans-
fer) are assumed to be the same across all models (Table 3). Specifically,
E. coli concentrations on the hands are described by either simulated
Table 3
Alternative models used to estimate ingested E. coli dose based on the traditional arithmetic a
simulation (Models 1 and 2, see Results) or measured E. coli hand contamination (Models 3 and
frequencies as compared to the stochastic-mechanistic simulation (Model 5). Parameters spec
distributions; shape and scale for Weibull distributions; and minimum and maximum for unif

Model Surface area (S, cm2) Transfer (T, %) E. coli on hand (CH, CFU/cm

Collection

1 U[0.10, 0.18] N(0.34,0.25) Simulated: LNORM(1.4, 1.3
2
3 Measured: LNORM(−1.4,1
4
5 Stochastic-mechanistic mod
(Models 1 and 2) or measured (Models 3 and 4) E. coli concentrations.
The simulated E. coli concentrations were determined by assuming a
lognormal distribution describable by the E. coli concentrations across
all farmers' hands at the end of the simulations (see Excreta collection
and Land application). The measured E. coli concentrations were deter-
mined by assuming a lognormal distribution describable by the E. coli
concentrations measured on the hands of the farmers (see Hands).

Probability distributions for frequency of hand-to-mouth con-
tacts were based on either previously published estimates for adult
hand-to-mouth contacts, or fit to data obtained from videography
(Table 3). Published data were obtained from Jones (2011), who fit
a Weibull distribution with shape of 0.76 and scale of 7.07 to ob-
served adult hand-to-mouth contact data amongst United States of-
fice workers (Jones, 2011; Nicas and Best, 2008). Videographic data
on hand-to-mouth contact frequency for each farmer were fit to a
Weibull distribution (shape = 0.93, scale = 0.98) using the
fitdistcens R package (R Core Team, 2016) (Table 3), with the data
left censored at the limit of detection (1 contact per length of
video) for farmers with no observed contacts.
pproach using E. coli hand contamination data estimated from our stochastic-mechanistic
4) and published (Models 1 and 3) or collected (Models 2 and 4) hand-to-mouth contact

ified are log10 mean and log10 standard deviation for normal (N) and lognormal (LNORM)
orm distributions. 1Refers to Jones et al. (2011) reference.

2) Freq. hand-mouth contacts (fH-M, #/hr)

Application

) Simulated: LNORM(0.8,1.5) Published:Weibull (0.76, 7.07)1

Videography: Weibull (0.93, 0.98)
.3) Measured: LNORM(−0.4,1.2) Published:Weibull (0.76, 7.07)1

Videography: Weibull (0.93, 0.98)
el
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Dose assessmentmodels are compared using cumulative probability
distribution functions. The cumulative distribution function for the
stochastic-mechanistic simulation was derived from aggregating final
dose estimates for 100 simulations of each of the 13 (collection) or 15
(application) farmers (1300 and 1500 total simulations). The number
of simulations was sufficient for convergence of estimates of E. coli con-
tamination on hands (Supporting information, Fig. S7). The cumulative
distribution functions for the arithmetic models are derived from the
equivalent number of simulations: 1300 or 1500 for collection and ap-
plication, respectively.

2.7. Sensitivity analysis

The simulation sensitivity analysis was conducted using a modified
method of (Xue et al., 2006). In brief, parameter values (object contam-
ination, transfer efficiency, and surface area) for each of the objectswere
set to themedian (p50) point value of the probability distribution func-
tion, and the median E. coli concentrations on the hands of all farmers
(exposure, in units of log10 CFU/cm2) and the summed total E. coli
ingested for all farmers (dose, in units of CFU) were calculated
(Supporting information Table S2). Each parameter was then individu-
ally adjusted to the 10th (p10) or 90th (p90) percentile values based on
the probability distribution function, and the corresponding exposure
and dose were calculated. The percentage change in exposure and
dose were then calculated using the ratios of p90:p50 and p50:p10,
and the parameterswere rank ordered by themagnitude of the percent-
age change.

Because the simulation used the MLATS data directly as opposed to
drawing the data from a probability distribution function, a different ap-
proach was used to estimate impact of activity data on the simulation
outcomes. Specifically, we assumed the observed activity frequency
for each object category was equivalent to the median (p50) point
value (obs., Supporting information Table S2). We defined the 10th
(p10) and 90th (p90) percentile point values based on ordering the ob-
served frequencies for the individual farmers. The relative impact of the
activity frequencywasdetermined by estimating the percentage change
in the outcomes (exposure and dose) using the ratios p90:observed fre-
quency and observed frequency:p10 (Supporting information Table S2).
Fig. 1. Distributions from 100 simulations for final (top) E. coli hand contamination and (bot
highlight median and interquartile ranges with whiskers extending up to 1.5 times the interq
the median. E. coli contamination on hands was measured for a subset (n = 6) of farmers
represent standard deviations. The use of personal protective equipment by the farmers is not
the bottom of each figure indicate farmers' ID.
3. Results

3.1. Excreta treatment

Of the 25 farmers enrolled in the study, 1 (4%) reported storing
human excreta for b2months, 9 (36%) reported b3months, 12 (48%) re-
ported b4months, and3 (12%) did not respond. Noone reported storing
human excreta for N6 months, the recommended minimum storage
time (Mackie Jensen et al., 2008; Phuc et al., 2006; Winblad, 2004).

3.2. Parameter estimation

3.2.1. Microbial contamination

3.2.1.1. Hands. For all 30 hand samples collected (15 farmers, samples
collected before and after videography), the average [standard devia-
tion] of E. coli concentrations measured was 2.3 [1.2] log10 MPN E. coli
per hand. Four (13%) samples were below the limit of detection (b3
MPN E. coli per hand) and two (7%) samples were above the limit of de-
tection (N104 MPN E. coli per hand) (Figs. 1 and 2).

Left hand contamination was not significantly different than right
hand contamination (Wilcoxon rank sum test, p = 0.83). Farmers
collecting excreta had lower hand contamination than farmers applying
excreta to fields (mean [standard deviation] 1.4 [1.1] log10 MPN E. coli
per hand as compared to 2.6 [1.1], Wilcoxon rank sum test, p = 0.01).

3.2.1.2. Surfaces. Of the 155 surface samples collected, 81 (52%) were
below the lower limit of detection (5 CFU/100 cm2). For the 14 surface
categories, two (paper currency and toilet paper) had no detectable E.
coli on any of the samples tested, and four (bicycle, mask, phone, and
polyethene bags) had 40% or fewer of the samples with detectable E.
coli (Table 2). Contamination was modeled using sampling with re-
placement (Table 2). Microbial samples for the other eight surface cate-
gories (cloth, door/wall, footwear, grass and rice seeds, handheld tools,
bucket (plastic), polysacks bag, and toilet pit) were fit to lognormal,
base 10, distributions with means [standard deviations] ranging from
0.54 [1.54] (grass and rice seeds) to 3.76 [1.03] (toilet pit) (Table 2).
tom) E. coli dose for farmers (n = 13) collecting human excreta from latrines. Boxplots
uartile range beyond the median. Outliers are N1.5 times the interquartile range beyond
for either the left or right hand before (red) and after (blue) videography. Error bars
ed by shading the background indicating (top) gloves or (bottom) masks. The number at



Fig. 2. Simulated distributions from 100 simulations for final (top) E. coli hand contamination and (bottom) E. coli dose for farmers (n = 14) applying human excreta to land. Boxplots
highlight median and interquartile ranges with whiskers extending up to 1.5 times the interquartile range beyond the median. Outliers are N1.5 times the interquartile range beyond
the median. E. coli contamination on hands was measured for a subset (n = 9) of farmers for either the left or right hand before (red) and after (blue) videography. Error bars
represent standard deviations. The use of personal protective equipment by the farmers is noted by shading the background (top) indicating gloves and (bottom) indicating masks.
The number at the bottom of each figure indicate farmers' ID.
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3.2.1.3. Bulk materials. Of the 106 bulk material samples collected, 28
(26%) were below the lower limit of detection. E. coli contamination of
most materials (surface and domestic water, excreta, and mud) were
fit to lognormal, base 10, distributionswithmeans [standard deviations]
ranging from 0.12 [0.79] CFU/100 ml (drinking water) to 4.00 [2.14]
CFU/g (excreta) (Table 2). Because only 4/10 (40%) of ash samples
contained detectable E. coli, ash contaminationwasmodeled using sam-
pling with replacement (Table 2).

3.2.2. Activity data
In total, 18.2 h of video were collected and translated from 25

farmers. Individual video lengths ranged from 0.17 to 1.62 h. Of the
18.2 h, 0.5 h was translated by both coders for comparison. The dual
comparison showed approximately 15% deviation in frequency of the
coding (see Supplemental information Table S1, Fig. S1). This is above
theminimum recommended inter-observer agreement for video trans-
lation as described by Ferguson et al. (2006), but as shownby Sensitivity
Fig. 3. Frequency of contacts (number of contacts per hour) observed for (a) excreta collection a
extending up to 1.5 times the interquartile range beyond the median. Outliers are N1.5 times t
Analysis (see Sensitivity Analysis) likely has no meaningful impact on
outcomes (Ferguson et al., 2006).

The mean [standard deviation] of a farmer's left and right hand-
object contacts were 360 [136] and 401 [284] times per hour, respec-
tively, during collection of human excreta from dry toilets (Table 1).
During land application of excreta, the left and right hands contacted
an object 342 [198] and 848 [340] times per hour, respectively. The dra-
matically higher contact frequency of the right hand during land appli-
cation is attributable to observed rapid, repeated, motions
(i.e., spreading excreta, seeding).

The most common categories contacted during both excreta collec-
tion and land application were handheld tools (i.e., shovel, rakes),
polysacks bag, and human excreta (Fig. 3). The toilet pit was frequently
contacted only during excreta collection, while mud and surface waters
were frequently contacted only during land application (Fig. 3).

Contacts with body parts (hand-to-hand, hand-to-face, and hand-
to-mouth) were infrequent (Fig. 3, Table 4). Notably, only 2/14 (14%)
nd (b) land application. Boxplots highlight median and interquartile rangeswith whiskers
he interquartile range beyond the median.



Table 4
Frequency (number per hour) for contacts with anything (All Contacts), Hands, Face, and Mouth for the left and right hands of farmers during excreta collection and land application.

Activity Hand All Contacts Hands Face Mouth

Mean (sd) Median [range] Mean (sd) Median [range] Mean (sd) Median [range] Mean (sd) Median [range]

Collection Left 360 (136) 342 [105, 579] 1.4 (4.4) 0 [0,15] 2.2 (5.8) 0 [0,19.3] 0 (0) 0 [0,0]
Right 401 (284) 327 [146, 1256] 0.4 (0.9) 0 [0, 2.4] 1.6 (4.2) 0 [0,12.5] 1.1 (2.9) 0 [0,9.2]

Application Left 342 (198) 262 [88,804] 7.3 (13.9) 0 [0, 40.5] 0.9 [1.4] 0 [0, 3.8] 0.3 (0.6) 0 [0,1.7]
Right 848 (340) 880 [34, 1344] 7.5 (13.6) 0 [0,42.0] 0.8 (1.8) 0 [0, 6.0] 0 (0.1) 0 [0, 0.5]
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and 3/15 (20%) of farmers contacted theirmouths during excreta collec-
tion and land application, respectively. The observed frequency was
much lower than the frequency estimated for office workers in the U.S
(Jones, 2011; Nicas and Best, 2008). Probability distribution functions
of the frequency of hand-to-mouth contacts observed for farmers in
Vietnam (Weibull distribution, shape = 0.93, scale = 0.98) as com-
pared to the probability distribution function for U.S. office workers
(Weibull distribution, shape= 0.76, scale = 7.07) highlight the dispar-
ity (Fig. 4). This is notable because hand-to-mouth contacts are primar-
ily route for ingested dose, and therefore primarily responsible for risk,
from pathogen exposures.

Personal protective equipment, specifically use of masks, was unex-
pectedly high. During excreta collection, 1/13 (8%) of farmers used a
glove and 10/13 (77%) used a mask (Fig. 1, shading). During land appli-
cation, 4/14 (29%) of farmers used gloves and 8/14 (57%) used masks
(Fig. 2, shading).

3.3. Exposure simulation

E. coli concentrations were simulated for both the left and right
hands of 25 farmers, 11 who collected excreta, 12 who applied excreta
to land, and 2 who both collected and applied excreta. E. coli concentra-
tions ranged from b10−4 to 1010 CFU/cm2 over 100 simulations for all 25
farmers (Supporting information, Fig. S2). For example, the E. coli con-
tamination on the left and right hands of Farmer ID 112 during land ap-
plication varied between b10–2.5 to 105 CFU/cm2 over 100 simulations
(Fig. 5). E. coli contamination on hands is dynamic, with large variation
over time, as well as between different farmers.

3.3.1. Excreta collection
Overall, the simulation (100 simulations per farmer) predicted final

E. coli concentrations across all farmers for both hands of mean [stan-
dard deviation] of 1.4 [1.3] log10 CFU/cm2 during excreta collection as
shown in Fig. 1. Concentrations for left and right hands ranged across
farmers from median [interquartile range, IQR] of 0.2 [−0.7,0.7] and
0.6 [−0.1,1.4] log10 CFU respectively, for Farmer ID 110 to 1.9 [1.2,2.4]
and 1.8 [1.4,2.4] log10 CFU, respectively, for Farmer ID 106 (Fig. 1). The
simulated median E. coli concentrations on hands were statistically sig-
nificantly higher than measured E. coli concentrations by an average
Fig. 4. Cumulative probability of hand-to-mouth frequency per hour from the observed in
this study (solid line) and the published by Jones (2011) (dashed line).
[standard deviation] of 2.1 [1.5] log10 CFU (n = 15, p = 0.0003, paired
Wilcoxon rank sum test).

Only two farmers (Farmers 112 and 113) contacted their mouths (2
and 3 times, respectively), resulting in estimated E. coli ingestion of me-
dian [IQR] of 2.0 [0.5,10.0] and 0.7 [0.1, 4.2] CFU (Fig. 1).

3.3.2. Land application
The simulation of E. coli contamination on hands after land applica-

tion predicted concentrations across all farmers, for both hands, of
mean (standard deviation) 0.8 (1.5) log10 CFU/cm2 as shown in Fig. 2.
Concentrations for left and right hands on farmers ranged frommedian
[IQR] of −1.1 [−1.9, −0.4] and −1.2 [−2.0, −0.4] log10 CFU respec-
tively (Farmer 112) to 1.4 [0.4,2.4] and 1.3 [0.4, 2.4] log10 CFU, respec-
tively (Farmer 118). The estimated median E. coli concentrations on
hands were statistically significantly higher than measured E. coli con-
centrations by an average [standard deviation] of 1.3 (1.5) log10 CFU
(p = 0.03, paired samples t-test). Simulated E. coli concentrations fol-
lowing land application were statistically significantly less than simu-
lated concentrations following excreta collections (p b 0.001, t-test),
which was the reverse of what was observed for measured E. coli con-
centrations (see Hands).

3.4. Dose assessment

Within the stochastic-mechanistic simulation, the majority of
farmers (20/25, or 80%) did not have an observed hand-to-mouth con-
tact event, and so did not ingest E. coli during observation (Figs. 1 and 2).
Of the remaining five farmers, two (Farmers 112 and 113) contacted
their mouths during excreta collection, resulting in estimated E. coli in-
gestion of mean [95% Confidence Interval] 3.1 [1.9, 4.8] and 0.9 [0.5, 1.6]
CFU (Fig. 1). Normalized to length of video, this corresponds to 10.4 [6.5,
16.4] and 3.2 [1.9, 5.5] CFU/hr. Four farmers (Farmers 108, 109, 112 and
117) contacted their mouths during land application, resulting in esti-
mated E. coli ingestion of mean [95% Confidence Interval] of 1.2 [0.7,2],
4.2 [2.7,6.5], 3.0 [1.6,6.1], and 0.6 [0.3,1.3] CFU, respectively (Fig. 2). Nor-
malized to video length, this corresponds to 0.7 [0.4,1.3], 2.9 [1.8,4.4],
2.2 [1.2,4.4], and 0.7 [0.3,1.5] CFU/h. Notably, during Land Application,
two of the farmers with hand-to-mouth contacts (109 and 117) wore
masks for some, but not all, of the recording.

Dose estimates using distinct assumptions about parameter values
highlight the impact of exposure and concentration data sources on es-
timated exposures (Fig. 6). The arithmetic models (Models 1–4) gener-
ally assume more frequent low dose exposures than the stochastic-
mechanistic simulation (Model 5). Dose estimates are higherwhen sim-
ulated E. coli hand contamination (Models 1,2) is used as compared to
measured E. coli hand contamination (Models 3,4), reflecting the over-
estimation of the stochastic-mechanistic simulation (see Exposure
simulation). Similarly, dose estimates are higher when published
hand-to-mouth frequencies are used (Models 1,3, see Table 3 and
Fig. 4 for the two probability distribution functions (published and ob-
served) as compared to observed hand-to-mouth frequencies (Models
2,4). Notably, for doses above 0.1 CFU E. coli/hr, the stochastic-
mechanistic simulation (Model 5) aligned with the arithmetic model
using observed hand-to-mouth frequency data with measured E. coli
contamination data (Model 4).



Fig. 5.Median (solid, black) and 95% range (dashed, black) E. coli concentrations on (top) left and (bottom) right hands of Farmer ID 112 during land application of excreta to agricultural
fields from 100 simulations (solid, gray).
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3.5. Sensitivity analysis

Sensitivity analysis highlighted the importance of E. coli contamina-
tion in the environment (specifically, E. coli contamination of excreta,
handheld tools, and the toilet pit) on both E. coli contamination of the
hands (exposure) and E. coli ingested (dose) (Table 5, Figs. S3–S6). Ac-
tivity data were also influential for E. coli contamination of hands (spe-
cifically the frequency of contacts with excreta, the toilet pit, or surface
water) and E. coli ingested (the frequency of hand-to-mouth contacts).
Neither surface area nor transfer efficiency influenced model outputs
(Table 5, Figs. S3–S6).
Fig. 6. Empirical cumulative distribution functions (ECDF) for the estimated ingested E. coli dose
coli hand contamination and literature values for hand-to-mouth frequency, (Model 2) simulate
E. coli hand contamination and literature values for hand-to-mouth frequency, and (Model 4
compared to (Model 5) stochastic-mechanistic exposure and dose simulation. Line thickness is
4. Discussion

The study highlights substantial inter-individual variation in E. coli
on hands and ingested E. coli for twenty-five farmers using human ex-
creta for agriculture in Vietnam. The large variation is attributed to mi-
crobial contamination in the environment and hand-to-mouth contact
frequency. Specifically, E. coli contamination of excreta and other fre-
quently contacted objects (i.e., handheld tools, toilet pits) strongly influ-
enced hand contamination. E. coli contamination of excreta and hand-
to-mouth contact frequency influenced ingested dose. Notably, hand-
to-mouth contact frequency was substantially less than previously
(log10 CFU) over 1 h as modeled using arithmeticmodels based on (Model 1) simulated E.
d E. colihand contamination and observed hand-to-mouth frequency, (Model 3)measured
) measured E. coli hand contamination and observed hand-to-mouth frequency data, as
an artifact of the step-function used to derive the ECDF. See Table 3 for model details.
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observed in other settings. Our findings align with an epidemiological
study showing increased risks for farmers composting excreta for
b3 months (paralleling high pathogen concentrations), and not using
PPE or never or rarely washing hands with soap (paralleling impact of
frequent hand-to-mouth exposures) (Pham-Duc et al., 2014).

Control of human excreta through adequate treatment (i.e., addition
of lime or ash, sufficient storage time) to reduce pathogen concentra-
tions is likely the most effective intervention for excreta land applica-
tion, as the sensitivity analysis of the impact of E. coli concentrations
of human excreta on dose demonstrated. In our simulation, shifting es-
timated E. coli contamination of human excreta over the range of E. coli
concentration values observed from microbial sampling dramatically
influenced ingested E. coli estimates. Other potential control options
such as PPE, though promising, likely have limited efficacy. PPE's pri-
mary role is to reduce exposure and dose by impacting hand-to-
mouth contacts. However, we observed that PPE did not always prevent
against hand-to-mouth contact events due to imperfect compliance.
Two farmers (Farmer IDs 109 and 117) used masks but still ingested
E. coli. Furthermore, containment of excreta is also likely an effective in-
tervention for excreta collection. Our simulation showed the highest
sensitivity of toilet pit E. coli concentration on thedose during collection.

Surprisingly, hand contamination was higher during land applica-
tion than excreta collection. This is likely due to more frequent contacts
with E. coli from media other than human excreta, such as handheld
tools, polysacks bags, mud, and surface or irrigation water. This asser-
tion is supported in our finding that E. coli contamination on hands
was influenced by E. coli contamination of manymoremedia during ap-
plication than during collection. It is possible that some of these other
media may contain E. coli from non-human sources, such as from ani-
mals and/or growth in the environment (Ishii et al., 2010, 2006). Studies
employing pathogen detection and/or source tracking assays may be
Table 5
Sensitivity analysis rank and value for a subset of parameters used in the simulation of E. coli co
excreta (Collection) and application on agricultural land (Application). The subset of paramete
ative to the median (p50) simulation values (see Table S2).

Parameter Exposure

Collection Applic

Rank Value Rank

Concentration
Excreta

p50:p10 3
p90:p50 3 0.59 1

Handheld tools
p50:p10 2
p90:p50 1 2.46

Toilet pit
p90:p50 4 0.5

Polysacks bag
p90:p50 4

Mud
p90:p50 5

Cloth
p90:p50 6

Water/surface
p90:p50 7

Bucket
p90:p50 8

Activity
Mouth

p50:p10
p90:p50

Excreta
p50:p10 2 0.61

Toilet pit
p90:p50 5 0.34

Water/surface
p90:p50 8
better positioned to estimate the relative risks of excreta collection as
compared to land application.

Exposure and risk assessments should incorporate high quality
human-environment interaction data. The observed hand-to-mouth
contact frequency obtained from videography for farmers was substan-
tially lower than the hand-to-mouth contact frequency reported in the
literature for adults (Jones, 2011; Nicas and Best, 2008). The study pop-
ulations (Vietnamese Farmers and United States Office Workers) and
target actions (excreta use and office work) are vastly different, and so
it is unsurprising that exposure factors are also vastly different. As the
farmers likely recognize a risk of excreta use to some degree, it is rea-
sonable that excreta users may be more considerate of risks from
hand-to-mouth contacts, resulting in the lower frequency observed. In-
creasingly, studies are highlighting differences in exposure factors
amongst different study populations, especially when comparing high
income populations to low or middle income country populations
(Kwong et al., 2016; Phillips and Moya, 2013). Here, we provide evi-
dence that context-specific, evidence-based, data for exposure assess-
ments is needed. Risk assessment studies reliant on exposure factors
data obtained from different contexts and/or expert opinion likely un-
derestimate the uncertainty associated with assumed exposure factors.

The stochastic-mechanistic simulation of hand contamination pro-
vides insights into the potential dynamism of E. coli contamination on
hands. Simulated E. coli contamination on hands frequently shifts dur-
ing the observation period. The simulation dynamics mirror findings
from experimental studies showing rapid temporal variability of E. coli
and other bacteria on hands (Pickering et al., 2011; Ram et al., 2011).
Additionally, the simulation suggests hand contamination is linked to
microbial contamination in the environment: wide variation between
simulations is largely attributable to variation in microbial contamina-
tion on objects. This finding also aligns with recent field work showing
correlations between E. coli on hands and E. coli in household soils
ntamination on hands (Exposure) and E. coli ingested (Dose) for both collection of human
rs shown represent parameters that increased or decreased exposure or dose by N30% rel-

Dose

ation Collection Application

Value Rank Value Rank Value

0.98
5.45 2 2389 1 3557

1.04
3 16.1 2 65

1 5129

0.76

0.63

0.59

0.52

0.39

5 1.0 4 1.0
4 3.8 3 3.0

0.4
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(Julian et al., 2013; Navab-Daneshmand et al., n.d.). This is additionally
important given frequent reports of E. coli contamination on surfaces
in households throughout low and middle income countries (Ercumen
et al., 2017; Julian et al., 2013; Navab-Daneshmand et al., n.d.;
Pickering et al., 2012; Sinclair and Gerba, 2011).

The simulation substantially overestimates hand contamination rel-
ative to measured E. coli data. E. coli contamination of surfaces and bulk
materials was measured at different times than videography and hand
samples, so it is possible that the environmental surfaces sampled
were more contaminated than the surfaces the farmers contacted dur-
ing videography. Another potential source of bias is the simulation as-
sumption that E. coli contamination on hands is uniformly distributed.
In reality, E. coli on hands is likely heterogeneous, and areas with
more frequent surface contacts (i.e., tips of fingers, front of hands)
may have relatively higher local E. coli contamination.

Another potential cause for overestimation includes inaccurate
curve fitting of E. coli contamination data. Collected E. coli contamina-
tion data included high rates of non-detects. When data were fit to
probability distribution functions, non-detects were assumed to be cen-
sored below the limit of detection. Maximum likelihood estimation of
the probability distribution functions models non-detects as contami-
nated at levels below the limit of detection. It is possible that these sur-
faces were not contaminated at all. Assuming any contamination, even
low levels, would lead to overestimation relative to assumptions of no
contamination. Sampling and analytical methods may need to be mod-
ified to improve data at the tails of the probability distribution functions.
Finally, the simulation assumes the proportion of E. coli transferred on
contact is a function of the gradient in E. coli contamination of the two
surface areas in contact. This assumption is not grounded in experimen-
tal literature, as transfer efficiency studies overwhelmingly study trans-
fer from a contaminated to uncontaminated surface (Julian et al., 2010;
Lopez et al., 2013; Rusin et al., 2002). More studies are needed to deter-
mine transfer dynamics between two contaminated surfaces.

Notable study limitations include the potential for introducing bias
into behaviours of the farmers, and the lack of coincident sampling,
both of which may have influenced the simulation outcomes. As the
farmers were asked to enroll in a study observing their behaviours, it
is highly likely that their behaviours were influenced during observa-
tion (e.g., reactivity). The high proportion of personal protective equip-
ment and relatively low frequency of hand-to-mouth contactsmay be at
least partially attributable to reactivity. In the context of handwashing,
for example, Ram et al. (2010) demonstrate study participant reactivity
in the presence of an observer (Ramet al., 2010). Another source of bias,
as previously discussed, is the collection of videography and hand sam-
pling data at different times, which may have introduced bias into the
simulation.

5. Conclusions

The primary finding from the study is that there is substantial inter-
individual variation in E. coli hand contamination and ingested dose
amongst farmers in Vietnam reliant on human excreta for agriculture.
Additional findings include:

● Frequency of hand-to-mouth contacts amongst Vietnamese farmers
substantially lower than thewidely-used exposure factor previously
reported for U.S. office workers.

● Variation in exposure and dose is driven bymicrobial contamination
and frequency of hand-to-mouth contacts.

● Stochastic-mechanistic simulation is beneficial in that it highlights
the dynamism of E. coli contamination on hands

● However, the simulation performs similar to simpler arithmetic
models for estimating population-level exposures, when context-
specific exposure factors are used.

● Exposure assessments should collect and integrate context-specific
exposure factors to improve exposure and risk estimates.
● In Vietnam, intervention strategies should focus on reducing patho-
gen contamination of human excreta and handheld tools and/or pre-
vent hand-to-mouth contacts.

● Personal protective equipment, though beneficial, is not completely
protective due to imperfect use.
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