
 1 

Eigenvalue sensitivity analysis capabilities with the differential operator 1 

method in the superhistory Monte Carlo method 2 

 3 

Toshihiro Yamamoto* 4 

 5 

Research Reactor Institute, Kyoto University, 2 Asashiro Nishi, Kumatori-cho, 6 

Sennan-gun, Osaka, 590-0494, Japan 7 

 8 

Abstract 9 

 This paper applies the first-order differential operator method to the Monte Carlo 10 

keff-eigenvalue sensitivity analyses. The effect of the perturbed fission source 11 

distribution due to the change of a cross section on the sensitivity coefficients can be 12 

accurately estimated by introducing the source perturbation iteration method. However, 13 

a prohibitively huge memory is required for the source perturbation iteration method if a 14 

large number of sensitivity coefficients are calculated at the same time. For a reduction 15 

of the memory requirements, the superhistory method is applied to incorporate the 16 

effect of the source perturbation into the differential operator method for sensitivity 17 

analyses. In the superhistory method, one source particle and its progenies are followed 18 

over super-generations within one cycle calculation. It is not necessary to wait or store a 19 

large amount of information until all histories in each cycle are terminated. Although 20 

the superhistory method increases the variance of the sensitivity coefficients with the 21 

super-generation, the memory requirement can be dramatically reduced by introducing 22 

the superhistory method. The first-order differential operator method combined with the 23 

superhistory method is verified through some numerical examples where a localized 24 

cross section change significantly affects the sensitivity coefficients. 25 
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1. Introduction 4 

 There has been a growing interest in sensitivity and uncertainty analysis of 5 

keff-eigenvalue or neutron general responses performed with the Monte Carlo method. 6 

Additionally, there has been much research and techniques developed to date. The 7 

sensitivity analysis methods are now implemented into production-level Monte Carlo 8 

codes such as SCALE (Rearden, 2004; Perfetti, 2012; Perfetti and Rearden, 2016), 9 

MCNP (Kiedrowski et al., 2011; Kiedrowski and Brown, 2013), SERPENT (Aufiero et 10 

al., 2015), MORET (Jinaphanh et al., 2016), McCARD (Shim and Kim, 2011), and 11 

RMC (Qiu et al., 2015; Qiu et al., 2016a; Qiu et al., 2016b). The calculation of the 12 

adjoint flux, which is necessary for sensitivity analysis, was considered difficult for the 13 

continuous-energy Monte Carlo. The iterated fission probability (IFP) method was 14 

developed for estimating the adjoint flux in the continuous energy Monte Carlo and the 15 

method is now implemented in many Monte Carlo codes (Truchet, et al., 2015; 16 

Terranova and Zoia, 2017). The IFP method calculates the expected number of neutrons 17 

caused by a neutron at a location in phase space as the adjoint function. The 18 

contribution method, which was originally developed for shielding applications and is 19 

implemented in the SCALE code, determines the importance of an event by simulating 20 

secondary particles at the site of the event and tracking the number of fission neutrons 21 

created by each secondary particle (Williams, 1977). A method implemented in the 22 

SERPENT code is based on the “collision-history based method” where all cross 23 

sections involved in the sensitivity calculations are artificially increased. Another 24 

method that this paper focuses on is the differential operator method (Rief, 1984; 25 

McKinney and Iverson, 1996; Densmore et al., 1997; Nagaya and Mori, 2005; Raskach, 26 
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2009; Raskach, 2010; Jinaphanh et al., 2016). The unique feature of the differential 1 

operator method is that the calculation of the adjoint flux can be circumvented and the 2 

first derivative of keff-eigenvalue with respect to nuclear data can be estimated directly. 3 

Furthermore, the differential operator method is applicable to estimating responses of 4 

wide range of calculation characteristics: keff, reaction rates and their ratios both in the 5 

eigenvalue problem and in the problem of a subcritical system driven by an external 6 

neutron source (Raskach, 2010). On the other hand, the IFP method is applicable to 7 

computing keff derivatives and sensitivities only. The differential operator method has 8 

been previously implemented in the MCNP code. However, the differential operator 9 

method was replaced by another method; presumably, because it produces inaccurate 10 

sensitivity coefficient estimates for complex systems. The sensitivity coefficient is the 11 

first derivative of keff-eigenvalue or general responses. The first derivative is exactly 12 

sampled in the differential operator method. Nevertheless, the inaccuracy in the 13 

differential operator method is caused by neglecting the perturbation of the fission 14 

source distribution that cannot be taken into account unless a special technique is 15 

employed for considering the perturbation. A method for implementing the source 16 

perturbation effect was developed in (Nagaya and Mori, 2005; Nagaya and Mori, 2011; 17 

Nagaya et al., 2015; Raskach, 2009). However, the method requires the iteration 18 

procedure similar to IFP to obtain the converged perturbed fission source distribution. 19 

The iteration procedure is similarly required in the IFP method where the fission chain 20 

is tracked for a number of generations to compute the adjoint-weighted tallies. The 21 

iteration procedure in the differential operator method or in the IFP method results in an 22 

increase in the memory requirements if the sensitivity coefficients of many isotopes, 23 

reactions, and fine energy groups are calculated at the same time. 24 

 Several techniques for reducing the huge memory requirements have been 25 
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developed and installed in the Monte Carlo codes. In MCNP, a sparse data handling 1 

scheme is employed, reducing the memory requirement by a factor of 10 to 100 for 2 

many problems (Kiedrowski and Brown, 2013). In McCARD (Shim and Kim, 2011; 3 

Choi and Shim, 2016a; Choi and Shim, 2016b), a memory-efficient adjoint estimation 4 

method was developed by applying the IFP concept for the Monte Carlo Wielandt 5 

method (Yamamoto and Miyoshi, 2004). In RMC (Wang, et al., 2015; Qiu et al., 2015; 6 

Qiu et al., 2016a; Qiu et al., 2016b), the superhistory method (Brissenden and 7 

Garlick,1986) as well as the Wielandt method was adopted to reduce the memory 8 

consumption. 9 

 While the sensitivity analysis methods for generalized responses in the Monte 10 

Carlo method have been developed (Choi and Shim, 2016b; Qiu, et al., 2016a; Perfetti 11 

and Rearden, 2016; Aufiero et al., 2016), the present paper focuses on the sensitivity 12 

analysis of keff-eigenvalue. This paper scrutinizes the source perturbation effect on a 13 

sensitivity coefficient due to the change of nuclear data through the multi-group Monte 14 

Carlo calculations. A method to include the source perturbation effect in the sensitivity 15 

coefficients and a memory reduction technique using the superhistory method are 16 

discussed in the following sections. 17 

 18 

2. Methodology of keff-eigenvalue sensitivity calculation with the differential 19 

operator method 20 

2.1 The differential operator method without perturbed source effect 21 

This section presents a theory of keff-eigenvalue sensitivity calculation using the 22 

Monte Carlo differential operator method. The differential operator method for the 23 

perturbation calculation with the source perturbation being implemented was already 24 

established in previous research (Rief, 1984; Nagaya and Mori, 2005; Nagaya and Mori, 25 

2011; Raskach, 2009; Jinaphanh et al., 2016). The capability of the differential operator 26 
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method was expanded to the second and higher orders (Nagaya and Mori, 2011). In a 1 

Monte Carlo code, MVP (Nagaya et al., 2015), the order of the differential operator 2 

method was uniquely expanded to the 8th order. The reactivity change due to a local 3 

perturbation can be accurately obtained by the differential operator method by 4 

introducing the source perturbation and by expanding the higher order Taylor series. For 5 

sensitivity analyses, only the first-order derivatives are required. In this section, the 6 

method to calculate the sensitivity coefficient is repeatedly presented as follows; 7 

although, it is the duplication of the previously published papers. The formalism to 8 

calculate the first derivative of keff-eigenvalue with respect to a parameter was presented 9 

in detail in previous publications (e.g., Nagaya and Mori, 2005). This paper only 10 

presents the minimum explanations for coding a Monte Carlo program to calculate the 11 

first derivative of keff-eigenvalue. 12 

The differential operator method scores an estimate of each differential coefficient 13 

at each flight path or each collision point within a perturbed region. The estimates that 14 

are scored during the course of the random walk process are shown as follows. First, a 15 

particle starts from a fission source site r. The angle is determined isotropically using a 16 

random number. The particle moves to a collision point r  that is determined by the 17 

transport kernel: 18 

)exp()( sT tt  rr ,                       (1) 19 

where t the macroscopic total cross section, s = the flight distance. When the 20 

particle travels a distance s through the perturbed region and undergoes a collision, the 21 

weighting coefficient to be scored is 22 
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where a is a perturbation parameter. For simplicity, the variables for the energy and the 24 

direction are omitted. If the sensitivity coefficient with regard to a microscopic capture 25 
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cross section of a nuclide i is sought, a = ic,  and it Na  /  where ic,  the 1 

microscopic capture cross section of the nuclide i, iN the atom number density of the 2 

nuclide i. If a = the macroscopic capture cross section c , 1/  at . If the particle 3 

passes through the perturbed region without undergoing a collision, only the second 4 

term on the right-hand side of Eq. (2), as t  / , is scored. 5 

 Unless the particle is killed at the collision point, the particle undergoes a scattering 6 

reaction. The weighting coefficient for the scattering kernel ts  /  is 7 
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where s the macroscopic scattering cross section.  9 

 The keff-eigenvalue is the sum of tf w    at each collision point in a cycle 10 

where w = the weight of the colliding particle,  the number of neutrons per fission, 11 

and f the macroscopic fission cross section. Thus, the perturbation of f  or t  12 

contributes to the change of keff. To include this effect in the sensitivity coefficient, the 13 

following weighting coefficient is scored at each collision: 14 
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 The scorings of Eqs. (2), (3), and (4) are repeated at each flight and collision until 16 

the particle is discarded. As a result, the first derivative of the keff-eigenvalue with 17 

respect to the perturbation parameter a for the mth particle history is given by 18 
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where iw  the particle weight of the ith collision, and 20 
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where 
sa   0 if sa  , = 1 if sa  . The subscript NP denotes that Eq. (5) 22 

does not include the effect of the source perturbation caused by the change of the cross 23 
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sections. The summation symbol on the right-hand side of Eq. (5) means that the 1 

summation is carried out at every collision point during the mth history. The second 2 

term on the right-hand side of Eq. (6) means the sum of alsls  //1 ,,   until the ith 3 

collision where ls,  is the macroscopic scattering cross section for the lth scattering. 4 

The last term on the right-hand side of Eq. (6) means the sum of as ktk  /,  in the 5 

kth flight distance of the perturbed region until the ith collision. The term 6 

att  //1   in Eq. (2) cancels out the same term in Eq. (3) or (4). Thus, the term 7 

does not explicitly appear in Eq. (6). Eq. (6) is represented for some perturbation 8 

parameters as follows: 9 
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Eq. (10) represents the sensitivity coefficient with respect to the fission spectrum in the 11 

gth group, and applies only when a particle starting from the fission site in the perturbed 12 

region belongs to the gth group. After all the particles starting from the fission source 13 

sites for one cycle are exhausted, the sensitivity coefficient in the cycle is calculated: 14 
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where M = the number of particle histories in one cycle. 16 

 17 

2.2 The differential operator method with perturbed source effect 18 

 A perturbation of a cross section changes the fission source distribution whose 19 

effect is not taken into account in Eq. (11). The fission source distribution )( 0rS  is 20 

perturbed by the change of a cross section. The source perturbation effect of the first 21 
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derivative of the keff-eigenvalue in the mth history in the jth cycle is scored at each 1 

collision point: 2 
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where NjmPSw ,,, the score for aSS  /)()(/1 00 rr  and it is obtained in the previous 4 

cycle. NjmPSw ,,,  in Eq. (12) depends on the perturbed fission source distribution that 5 

is caused by the change of the cross section. It needs to be calculated by an iteration 6 

procedure. The subscript N in NjmPSw ,,,  stands for an index of the iteration for the 7 

source perturbation. The number of iteration N should be as large as 10 for estimating 8 

an accurate source perturbation effect (Nagaya and Mori, 2005). In the jth cycle, 9 

1,1,,  njmPSw  , which is used for the next (j+1)th cycle, is calculated as follows. At a 10 

point where the lth fission neutron in the jth cycle is born in the mth history, the 11 

following quantity is scored: 12 

jiNPnjl
f ww ,,,,  ,       for n = 1,                     (13) 13 

njmPSjiNPnjl
f www ,,,,,,,  , for 2 nN ,               (14) 14 

where jiNPw ,,  is the same one as defined in Eq. (6) except that the cycle index j is 15 

added. njmPSw ,,, is inherited from the previous (j-1)th cycle. The subscript n stands for 16 

the index of iteration for the source perturbation. In each cycle, njl
fw ,,  is stored for 17 

1 nN  and 1 lL  where L = the total number of fission neutrons born in the jth 18 

cycle. The memory requirement is N × L × bytes per variable for each cross section and 19 

each energy group.  20 

The number of fission neutrons for use as the source points in the next cycle is 21 

determined at the ith collision point as: 22 
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where 1jk  keff calculated in the previous cycle, = pseudo random number between 24 

0 and 1. At the end of the jth cycle, njl
fw ,,  calculated by Eq. (13) or (14) is 25 
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normalized and we obtain 1,1,,  njlPSw  for the next cycle: 1 
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This normalization process is to keep the size of the sampling constant in each cycle. At 3 

the end of the jth cycle, the first derivative of the keff-eigenvalue with respect to a with 4 

the source perturbation effect included is calculated: 5 
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Finally, the first derivative of the keff-eigenvalue in the jth cycle is the sum of Eq. (12) 7 

(without the source perturbation effect) and Eq. (17) (with the source perturbation 8 

effect): 9 
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2.3 Memory reduction with the superhistory method 12 

 If the effect of the source perturbation is negligibly small, the differential operator 13 

method can omit the iteration procedure for the source perturbation and the memory 14 

requirement does not cause a significant problem. However, the effect of the source 15 

perturbation needs to be considered by introducing the iteration procedure like the IFP 16 

method. If the reactivity change due to the perturbation of cross sections is sought to be 17 

known, the memory requirement is (the number of iterations for source perturbation, 18 

~10) × (the number of histories per cycle) × (the number of perturbed cross sections) × 19 

(bytes per variable). The memory requirement for a perturbation calculation is not 20 

serious, because the number of cross sections to be perturbed is not generally so large 21 

for the reactivity change. On the other hand, for a calculation of sensitivity coefficients, 22 

the number of cross sections is (the number of isotopes) × (the number of reactions) × 23 

(the number of energy groups). Thus, the memory requirement becomes prohibitively 24 

huge if the calculation is performed at one time. This is because njl
fw ,,  (defined in 25 
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Eq. (13) or (14)) needs to be stored for 1 nN  and 1 lL  until 1,1,,  njlPSw  1 

(defined in Eq. (16)) is obtained at the end of the cycle. In this section, the superhistory 2 

method, which is adopted for memory reduction in a calculation of sensitivity 3 

coefficients (Qiu et al., 2016a; Qiu, et al., 2016b), is introduced to exclude the memory 4 

consuming iteration procedure. The superhistory method was originally invented to 5 

decrease the biases of keff-eigenvalue (Brissenden and Garlick, 1986). It was also 6 

applied to accelerate the source convergence in keff-eigenvalue calculations (Blomquist 7 

and Gelbard, 2002; She, et al., 2012). In the superhistory method, the fission neutrons in 8 

a cycle are tracked over NS (>1) fission generations, which is called a “supergeneration”. 9 

The keff calculated in the NSth supergeneration (i.e., the last supergeneration of the cycle) 10 

is adopted as the keff of the cycle, and the fission neutrons generated in the NSth 11 

supergeneration are inherited to the next cycle as the fission sources. 12 

 The iteration procedure for the source perturbation shown in Sec. 2.2 can be 13 

implemented into the information transfer process between supergenerations in the 14 

superhistory method. At the first supergeneration of the jth cycle, when the lth fission 15 

neutron is born at the ith collision, 1,,iNPw , which is defined in Eq. (6) for the ith 16 

collision in the history, is assigned to the fission neutron as 17 

1,,1,, iNPjl
s ww  ,                          (18) 18 

where 1,, jl
sw = the weighting coefficient of the lth fission neutron in the first 19 

supergeneration of the jth cycle. The number of fission neutrons in each supergeneration 20 

is determined using Eq. (15) as in the conventional power iteration method. The total 21 

number of fission neutrons in each supergeneration is nearly constant, because  is 22 

divided by keff in the previous cycle in Eq. (15). 23 

In the second supergeneration, 1,, jl
sw , which is assigned to the lth source neutron, 24 

is further transferred to an l th fission neutron for use in the third supergeneration as 25 
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1,,2,, jl
s

jl
s ww  .                         (19) 1 

In this way, 1,,iNPw  is transferred to a fission neutron in the next supergeneration. This 2 

procedure is repeated until the final supergeneration of the jth cycle. At the end of the 3 

final supergeneration, the first derivative of keff for the mth superhistory in the jth cycle 4 

is given by 5 
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where the summation is performed at each collision point in the Nth supergeneration 7 

and Njm
sw ,,  is for the mth superhistory in the Nth supergeneration. The first derivative 8 

given by Eq. (20) implicitly consists of the sum of the following two terms defined by 9 

Eqs. (5) and (12): 10 
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The final result of the first derivative of keff that includes the source perturbation effect 12 

can be obtained one by one in each superhistory. Thus, it is not necessary to wait or 13 

store a large amount of information until all histories in each cycle are terminated. The 14 

memory requirement for the superhistory method can be reduced by a factor of (the 15 

number of histories per cycle) × (the number of iterations for source perturbation) 16 

compared to the method in Sec. 2.2. The normalization at the end of each 17 

supergeneration is performed by dividing the number of fission neutrons by effk  as 18 

seen in Eq. (15). 19 

 20 

3. Numerical tests for sensitivity coefficient calculations 21 

3.1 Perturbation source method 22 

 In this paper, some numerical examples for the calculations of keff-sensitivity 23 

coefficients are presented using three-energy group calculations. Fig. 1 shows the 24 

geometry for the calculations is a two-dimensional rectangular shape. The inner and 25 
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outer regions consist of a homogenized light-water moderated mixed oxide fuel rod 1 

array and a homogenized UO2 fuel rod array, respectively. Table 1 shows the 2 

three-energy group constants. The group constants are prepared with a standard thermal 3 

reactor analysis code SRAC (Okumura et al., 2007). The sensitivity coefficients are 4 

calculated with respect to the macroscopic cross sections or fission spectrum in the 5 

inner region. The source perturbation effect on the sensitivity coefficients is emphasized, 6 

because the perturbed cross section is localized within the inner region, which may be a 7 

good example for testing the capability of the source perturbation. 8 

[Fig. 1][Table 1] 9 

 The reference calculations for the sensitivity coefficients are performed with a 10 

discrete ordinates transport code DANTSYS (Alcouffe et al., 1995) using the same 11 

group constants. The three-energy group forward and adjoint fluxes are calculated with 12 

the Sn order 8. Then, the sensitivity coefficients are calculated based on the linear 13 

perturbation theory: 14 
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where x = a cross section, Φ the forward flux, *
Φ the adjoint flux,   the 16 

integration over all phase space, F  the production operator, and S the scattering 17 

operator. 18 

 The sensitivity coefficients to the capture cross section, to the fission cross section, 19 

to the scattering cross section, and to the fission spectrum are calculated with 20 

DANTSYS and the Monte Carlo method. They are compared in Tables 2, 3, 4, and 5, 21 

respectively. In these tables, the row of “MC/DANTSYS” shows the ratio of the 22 

sensitivity coefficient of the Monte Carlo method to that of DANTSYS. The sensitivity 23 

coefficients to the fission spectrum are unconstrained ones. The Monte Carlo 24 
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calculations are performed with an in-house research-purpose program developed by the 1 

author, which is only available for the purpose of this study. The keff is calculated with 2 

the track length estimator. The number of histories per cycle is 60,000 and the total 3 

active cycles after skipping the initial 20 cycles are 2,000. The program employs the 4 

implicit capture with Russian roulette. When a particle’s weight falls below 0.1, Russian 5 

roulette game is played. The number of iterations for the source perturbation is 14. 6 

Tables 2, 3, 4, and 5 show the results of the Monte Carlo method, which are the 7 

coefficients without the source perturbation and the coefficients with the source 8 

perturbation. Table 4 shows the effect of the source perturbation is notable especially in 9 

the sensitivity coefficient to the scattering cross section. The sensitivity coefficient with 10 

the source perturbation is larger than that without the source perturbation. Fig. 2 shows 11 

the sensitivity coefficient with the source perturbation, Sps
, to the scattering coefficient 12 

of the first group as a function of the number of iterations. This figure indicates that the 13 

sensitivity coefficient with the source perturbation converges approximately after 7 14 

iterations. The results with DANTSYS agree in most cases with those with the Monte 15 

Carlo method within two standard deviations. Consequently, the Monte Carlo method 16 

that incorporates the source perturbation method is verified through comparison with 17 

the deterministic method. 18 

[Fig. 2][Table 2][Table 3][Table 4][Table 5] 19 

3.2 Superhistory method 20 

 The superhistory method for incorporating the source perturbation effect into the 21 

differential operator method is applied for the numerical tests in Sec. 3.1. The 22 

sensitivity coefficient calculated by Eq. (20) approaches the converged value with the 23 

supergenerations. Fig. 3 shows the convergence situation of the sensitivity coefficients 24 

with the superhistory method for the perturbation of the cross sections in the first group. 25 
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For the convergence of the sensitivity coefficients, 10 supergenerations seem to be 1 

sufficient (Fig. 3). 2 

[Fig. 3] 3 

 The sensitivity coefficients with the superhistory method to the capture cross 4 

section, to the fission cross section, to the scattering cross section, and to the fission 5 

spectrum are compared with the results in Sec. 3.1 (Tables 6, 7, 8, and 9, respectively). 6 

The number of supergenerations is ten for the calculations. The superhistory method 7 

agrees with other two methods in Sec. 3.1 (DANTSYS and the source perturbation 8 

iteration method) within two standard deviations. 9 

[Table 6][Table 7][Table 8][Table 9] 10 

The relative figures of merit for the perturbation in the first group (Table 10) for 11 

several supergenerations. The figure of merit is defined by 12 

FOM
Ts2

1
 ,                           (22) 13 

where s = one standard deviation of the sensitivity coefficient and T = computation time. 14 

Table 10 shows the FOM decreases with the supergeneration. The relative FOM of the 15 

superhistory method after 10 supergenerations is 0.4 ~ 0.8 compared with the source 16 

perturbation iteration method. In the superhistory method, the information regarding the 17 

sensitivity coefficient is transferred between supergenerations, which makes the 18 

variance enlarge every time the supergeneration is updated. The superhistory method 19 

can reduce the memory requirement regardless of the decrease in the computational 20 

efficiency. Fig. 3 shows the sensitivity coefficient almost converges after the 8th 21 

supergeneration. If the supergeneration is updated even after the desirable convergence 22 

is reached, it would only exacerbate the computational efficiency without improving the 23 

accuracy. Thus, as soon as the sensitivity coefficient reaches the convergence, the 24 

supergeneration should be terminated to minimize the reduction of the computational 25 

efficiency. 26 
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 1 

4. Conclusions 2 

 The differential operator method is an easy and fast method to calculate the 3 

sensitivity coefficient of keff-eigenvalue, i.e., the first derivative of keff with respect to a 4 

cross section if the effect of the source perturbation is negligibly small. However, if the 5 

cross section whose sensitivity coefficient is sought to be calculated is localized, the 6 

source perturbation effect significantly affects the sensitivity coefficient. To incorporate 7 

the effect of the source perturbation in the sensitivity coefficient calculation, an iteration 8 

procedure needs to be introduced like the adjoint-based method such as the iterated 9 

fission probability (IFP) method that requires the fission chain to be followed over 10 

generations. The differential operator method with the source perturbation iteration 11 

requires a huge memory as with the IFP method if the sensitivity coefficients for a large 12 

number of isotopes and energy groups are calculated at the same time. The superhistory 13 

method, which has been previously adopted in other Monte Carlo techniques for the 14 

memory reduction technique, is introduced into the differential operator method. The 15 

sensitivity coefficient that includes the source perturbation effect can be calculated in a 16 

single particle history by tracking it over approximately ten supergenerations. There is 17 

no need to store a large amount of information until the end of a cycle. Thus, the 18 

memory requirement can be reduced per reaction by a factor of (particle histories per 19 

cycle) × (the number of iterations for source perturbation, ~10). The FOM decreases 20 

with the number of supergenerations. However, the reduction in the computational 21 

efficiency is not so large and may be acceptable. After the source perturbation effect 22 

converges, updating the supergeneration would increase the variance of the sensitivity 23 

coefficient. The iteration of the supergenerations should be terminated to optimize the 24 

computational efficiency after the convergence of the source perturbation is reached. 25 
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Although this paper deals with the sensitivity coefficients with respect to the 1 

multi-group macroscopic cross sections, the algorithm presented in this paper can be 2 

applied straightforwardly to sensitivity analyses in the continuous energy Monte Carlo. 3 

Future work will face the extension of the differential operator method to the 4 

sensitivity coefficient calculation of general responses (i.e., the generalized sensitivity 5 

coefficient).  6 

7 
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Fig. 1 Geometry for the numerical tests. 
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Fig. 2 Convergence of the sensitivity coefficient with the source perturbation to the scattering 

cross section in the first group. The standard deviation is smaller than the dot size. 
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Fig. 3 Relative sensitivity coefficients to the cross sections in the first group vs. supergeneration. 

Ssh: the superhistory method: Snps without the source perturbation: Sps with the source 

perturbation.  
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Table 1 Three-group constants for UO2 fuel rod array and MOX fuel rod array 

 

 
 

UO2 fuel rod 

array 

MOX fuel rod 

array 

Total cross 

section 

1t  (cm
-1

) 0.29829 
0.289397 

2t  (cm
-1

) 0.83334 
0.825987 

3t  (cm
-1

) 1.6389 
1.6600 

Fission cross 

section 

1f  (cm
-1

)  0.0030586 0.0025989 

2f  (cm
-1

) 0.0021579 0.0019544 

3f  (cm
-1

) 0.056928 0.070119 

Absorption 

cross section 

1a  (cm
-1

) 0.003385 0.003265 

2a  (cm
-1

) 0.011895 0.011435 

3a  (cm
-1

) 0.086180 0.12441 

Group transfer 

cross section 

21
s  (cm

-1
) 0.073843 0.071620 

32
s  (cm

-1
) 0.043803 0.044045 

Neutrons per 

fission 
  2.4 2.8 

Fission 

spectrum 

1  0.878198 0.878198 

2  0.121802 0.121802 

3  0 
0 

 

 

 

  

Table



Table 2 Sensitivity coefficients to the capture cross section. 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS −1.0603×10
−3

 −5.0217×10
−2

 −1.3207×10
−1

 

Differential operator (MC)    

Without source perturbation −8.8576×10
−4

 

(2.2×10
−7

)
*
 

−3.8184×10
−2 

(5×10
−6

) 

−9.3008×10
−2 

(2.3×10
−5

) 

Source perturbation effect −1.7581×10
−4

 

(4.5×10
−7

) 

−1.2071×10
−2

 

(1.4×10
−5

) 

−3.9113×10
−2

 

(6.5×10
−5

) 

Total −1.0616×10
−3

 

(5.0×10
−7

) 

−5.0255×10
−2

 

(1.5×10
−5

) 

−1.3212×10
−1

 

(7×10
−5

) 

MC/DANTSYS 1.001 

(0.001) 

1.001 

(0.001) 

1.000 

(0.001) 

*one standard deviation 

  



Table 3 Sensitivity coefficients to the fission cross section. 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS 1.4185×10
−2

 1.3389×10
−2

 1.3880×10
−1

 

Differential operator (MC)    

Without source perturbation 8.4897×10
−3

 

(1.3×10
−6

)
*
 

8.4553×10
−3 

(2.1×10
−6

) 

9.2866×10
−2 

(2.2×10
−5

) 

Source perturbation effect 5.6517×10
−3

 

(1.64×10
−5

) 

4.9375×10
−3

 

(3.01×10
−5

) 

4.6046×10
−2

 

(9.0×10
−5

) 

Total 1.4141×10
−2

 

(1.6×10
−5

) 

1.3393×10
−2

 

(3.0×10
−5

) 

1.3891×10
−1

 

(9×10
−5

) 

MC/DANTSYS 0.997 

(0.001) 

1.000 

(0.002) 

1.001 

(0.001) 

*one standard deviation 

 

  



Table 4 Sensitivity coefficients to the scattering cross section. 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS 3.8192×10
−2

 6.6733×10
−2

 
** 

Differential operator (MC)    

Without source perturbation 1.0443×10
−2

 

(9.0×10
−5

)
*
 

3.2650×10
−2 

(9.3×10
−5

) 

1.5980×10
−2 

(8.0×10
−5

) 

Source perturbation effect 2.7983×10
−2

 

(1.93×10
−4

) 

3.4129×10
−2

 

(2.26×10
−4

) 

6.9639×10
−3

 

(2.390×10
−4

) 

Total 3.8427×10
−2

 

(2.13×10
−4

) 

6.6780×10
−2

 

(2.44×10
−4

) 

2.2944×10
−2

 

(2.52×10
−4

) 

MC/DANTSYS 1.006 

(0.006) 

1.001 

(0.004) 

− 

*one standard deviation 

** This result is incorrect and omitted because of the small value in the numerator of Eq. (21).  

  



Table 5 Sensitivity coefficients to the fission spectrum. 

 1st Gr. 2nd Gr. 

DANTSYS 3.0664×10
−1

 4.8818×10
−2

 

Differential operator (MC)   

Without source perturbation 2.5581×10
−1

 

(7×10
−5

)
*
 

3.7192×10
−2 

(2.1×10
−5

) 

Source perturbation effect 5.0886×10
−2

 

(1.26×10
−4

) 

1.1721×10
−2

 

(4.6×10
−5

) 

Total 3.0669×10
−1

 

(1.42×10
−4

) 

4.8913×10
−2

 

(5.1×10
−5

) 

MC/DANTSYS 1.000 

(0.001) 

1.001 

(0.001) 

*one standard deviation 

 

  



Table 6 Sensitivity coefficients to the capture cross section with the superhistory method. 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS −1.0603×10
−3

 −5.0217×10
−2

 −1.3207×10
−1

 

Differential operator (MC)    

Source perturbation iteration 

method 

−1.0616×10
−3

 

(5.0×10
−7

)
*
 

−5.0255×10
−2

 

(1.5×10
−5

) 

−1.3212×10
−1

 

(7×10
−5

) 

Superhistory method 

10 supergenerations 

−1.0602×10
−3

 

(6.9×10
−7

) 

−5.0247×10
−2

 

(3.3×10
−5

) 

−1.3229×10
−1

 

(1.0×10
−4

) 

MC/DANTSYS 1.000 

(0.001) 

1.001 

(0.001) 

1.002 

(0.001) 

*one standard deviation 

  



Table 7 Sensitivity coefficients to the fission cross section with the superhistory method. 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS 1.4185×10
−2

 1.3389×10
−2

 1.3880×10
−1

 

Differential operator (MC)    

Source perturbation iteration 

method 

1.4141×10
−2

 

(1.6×10
−5

)
*
 

1.3393×10
−2

 

(3.0×10
−5

) 

1.3891×10
−1

 

(9×10
−5

) 

Superhistory method 

10 supergenerations 

1.4195×10
−2

 

(5.0×10
−5

) 

1.3320×10
−2

 

(4.9×10
−5

) 

1.3880×10
−1

 

(1.4×10
−4

) 

MC/DANTSYS 1.001 

(0.003) 

0.995 

(0.004) 

1.000 

(0.001) 

*one standard deviation 

 

  



Table 8 Sensitivity coefficients to the scattering cross section with the superhistory method. 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS 3.8192×10
−2

 6.6733×10
−2

 
** 

Differential operator (MC)    

Source perturbation iteration 

method 

3.8427×10
−2

 

(2.13×10
−4

) 

6.6780×10
−2

 

(2.44×10
−4

) 

2.2944×10
−2

 

(2.52×10
−4

) 

Superhistory method 

10 supergenerations 

3.8120×10
−2

 

(3.38×10
−4

) 

6.7428×10
−2

 

(7.05×10
−4

) 

2.2848×10
−2

 

(6.33×10
−4

) 

MC/DANTSYS 0.998 

(0.009) 

1.011 

(0.011) 

− 

*one standard deviation 

** This result is incorrect and omitted because of the small value in the numerator of Eq. (21). 

  



Table 9 Sensitivity coefficients to the fission spectrum with the superhistory method. 

 1st Gr. 2nd Gr. 

DANTSYS 3.0664×10
−1

 4.8818×10
−2

 

Differential operator (MC)   

Source perturbation iteration 

method 

3.0669×10
−1

 

(1.42×10
−4

) 

4.8913×10
−2

 

(5.1×10
−5

) 

Superhistory method 

10 supergenerations 

3.0629×10
−1

 

(1.70×10
−4

) 

4.8770×10
−2

 

(7.4×10
−5

) 

MC/DANTSYS 0.999 

(0.001) 

0.999 

(0.002) 

*one standard deviation 

 

  



Table 10 Relative figure of merit of the superhistory method for the first group perturbations. 

 

 Capture Fission Scattering Fission 

spectrum 

Source perturbation iteration method 1.000 1.000 1.000 1.000 

2 supergenerations 3.102 4.842 2.540 3.275 

3 supergenerations 2.017 2.208 1.656 2.387 

4 supergenerations 1.398 1.298 1.283 1.814 

5 supergenerations 1.193 0.883 0.949 1.424 

8 supergenerations 0.822 0.526 0.553 1.030 

10 supergenerations 0.607 0.397 0.453 0.789 

 

 




