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1. Introduction 

When two elastic waves intersect at certain angles, a third wave with a frequency 

and wavevector equal to the sum or difference of those of the intersecting waves is 

generated due to the material nonlinearity. This phenomenon is called non-collinear 

interaction and has attracted much attention as a promising tool for nondestructive 

testing, since it is advantageous compared to the conventional nonlinear acoustic 

techniques such as the use of higher-order harmonic generation [1–3]: in the 

conventional techniques, it is usually difficult to isolate signals due to the material 

nonlinearity to be detected since they are measured along with the incident wave which 

contains signals caused by the nonlinearities of measuring systems such as transducers 

and amplifiers. In contrast, the third wave generated by the non-collinear interaction 

propagates in different directions from the incident waves. Furthermore, it can have 

different frequency components from those of higher harmonics of incident waves. The 

signals due to the material nonlinearity can be hence more easily isolated from the 

system nonlinearities by appropriate choice of driving frequencies. 

   The non-collinear interaction has been studied for bulk waves in isotropic elastic 

media theoretically [4–8] as well as numerically [9,10], leading to the derivation of the 

so-called resonance condition for the occurrence of third waves, i.e., the ratio of driving 

frequencies, the angle of intersection, and the combination of the incident and third 

wave modes. The third waves generated by the non-collinear interaction were 

experimentally observed by Rollins et al. [11], and the influence of applied stress on the 

generation behavior of third wave was investigated by Hirao et al. [12]. More recently, 

the amplitude of third waves has been shown to vary sensitively with the concentration 

of micro cracks in polymethyl methacrylate [9], fatigue damage of aluminum alloy [13], 
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physical ageing of thermoplastics [14,15], and oxidative ageing state of concrete [16]. 

The non-collinear mixing method was also applied to a contacting interface between 

two solids for a sensitive evaluation of imperfect interfaces [9,17,18]. These foregoing 

works [4–18] dealt with the non-collinear interaction of non-dispersive bulk waves, i.e., 

pure longitudinal and pure shear waves. 

For plate-like structures, which are widely used in aerospace, automotive, marine, 

and civil engineering, nonlinear acoustic phenomena have been extensively studied such 

as the higher-harmonic generation [19–34] and the collinear interaction [21,35,36] of 

guided waves, while the corresponding issue for the non-collinear interaction has rarely 

been addressed: Furgason and Newhouse [37] experimentally demonstrated that the 

non-collinear mixing of Lamb waves in a lead zirconate titanate plate could generate a 

third wave for certain combinations of Lamb modes. Since the behavior of non-collinear 

interaction in plate-like structures can be more complicated than that in bulk media due 

to their multimode as well as dispersive nature, in-depth theoretical investigation of this 

issue is important academically as well as practically to apply the non-collinear mixing 

method to the nondestructive evaluation of plate-like structures. 

   In this paper, the nonlinear wave propagation in a homogeneous and isotropic elastic 

plate is analyzed theoretically to elucidate the non-collinear interaction of guided waves. 

For the collinear mixing of two plate wave modes, a perturbation analysis for the third 

wave generation was presented in the two-dimensional framework by de Lima and 

Hamilton [21]. Extending this procedure for arbitrary propagation directions of primary 

waves, the generation behavior of third waves due to the non-collinear interaction is 

investigated. The formulation is laid down in Section 2, and an expression for the modal 

amplitude of the nonlinearly generated third wave is described in Section 3. The 
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influence of the frequency, the intersection angle, and the primary wave modes on the 

modal amplitude is presented in Section 4 for the interaction of lowest-order plate wave 

modes. 

It is noted that throughout this paper, the summation convention is used unless 

otherwise stated. 

 

2. Linearization of governing equations for a nonlinear isotropic plate 

The present study analyzes the three-dimensional nonlinear wave propagation in a 

plate of thickness 2h with stress-free surfaces. When the Cartesian coordinate system 

X1–X2–X3 is set in the reference configuration as shown in Fig. 1, the governing 

equations in the absence of body forces are given by 

 , , , , , , , , , 1, 2, 3, (1)

where ρ0 is the mass density of the plate, Uj are the particle displacement components, 

and t is the time. The overdot denotes the time derivative, and the subscript “, k” 

denotes the spatial derivative with respect to Xk. Furthermore, Pjk in Eq. (1) are the 

components of the first Piola-Kirchhoff stress tensor given by 

 
, , , , , , 1, 2, 3, (2)

where δjl is Kronecker’s delta, Elk (X1, X2, X3, t) = (Ul,k + Uk,l + Us,l Us,k)/2 (l, k = 1, 2, 3) 

are the components of the Green-Lagrange strain tensor, and W is the strain energy 

density of the plate. Assuming that the plate possesses isotropic elasticity with the 

quadratic nonlinearity, W is expressed as 



5 
 

 
2 3 3

, (3)

where λ and μ are Lamé’s elastic constants, and , , and  are the third-order elastic 

constants [38,39]. The stress-free boundary conditions on the top (X3 = h) and bottom 

(X3 = –h) surfaces of the plate are given by 

 , , , 0, 1, 2, 3. (4)

   Assuming that the nonlinearity is weak and that the solution of Eq. (1) is given as 

 ,						 ≫ , 1, 2, 3, (5)

where the superscripts “L” and “NL” denote the primary and secondary solutions, 

respectively, the governing equations for  and  are given by performing the 

perturbation analysis for Eqs. (1)–(4) [21] as 

For ; ,
, , (6a)

 , , , , 0, 1, 2, 3, (6b)

For ; ,
, , , (7a)

 , , , , , , , , , 1, 2, 3, (7b)

where the double sign in Eq. (7b) applies in the same order. In the above expressions, 

,  (w = L, NL) and ,  denote the linear and the quadratic terms of the stress 

tensor in terms of the displacement gradient, respectively, which are given as 
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,
, , , , (8a)

,

2 , , 2 , , , , , ,

4 , , , , 4 , , , , , , . 
(8b)

Furthermore, ,  in Eq. (7a) is given as 

,
,
,

4 , , , , 2 , ,

4 , , , , , ,

4 , , , , 2 , , . 

(9)

The perturbation solution of Eqs. (1)–(4),  in Eq. (5), can be sought by first 

solving the linear problem of Eq. (6a) in the absence of body forces with the stress-free 

boundary conditions of Eq. (6b) for the primary solution , and then solving Eqs. (7a) 

and (7b) for the secondary solution , which are also linear but have a body force 

term as well as tractions on the plate surfaces consisting of the primary solution. 

Note here that the present analysis focuses on the generation behavior of secondary 

wave fields which occur as the first-order perturbation of Eq. (5), while the tertiary and 

higher-order ones [36] can be analyzed by accounting for the next higher-order 

corrections in Eq. (5). 
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3. Non-collinear interaction of two plate modes 

3.1  Primary solution 

Since the problem of Eq. (6) governs the wave propagation in a linear elastic 

isotropic plate, the primary solution  can be given as the superposition of four types 

of plate wave modes, i.e., symmetric and antisymmetric Rayleigh-Lamb modes, and 

symmetric and antisymmetric shear horizontal modes. In what follows, the generation 

behavior of wave fields due to the non-collinear interaction of two plate modes 

propagating in arbitrary directions is analyzed. Namely, the primary solution  is 

assumed to be written as 

, , ,
1
2

exp i cos sin c. c., 

1, 2, 3,    (10)

where the superscript α denotes the two primary wave modes, i the imaginary unit, and 

c.c. the complex conjugate. In the above expression, κ(α) and ω(α) are the wavenumber 

and the angular frequency, respectively, which satisfy any one of the following 

dispersion equations [40,41]: 

Rayleigh-Lamb modes: 
tan
tan

4 1 ∶ symmetric,							
1 ∶ antisymmetric, 

(11a)

Shear horizontal modes: 
2

0, 2, 4, … ∶ symmetric, 		
1, 3, 5, … ∶ antisymmetric, (11b)

where 
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, , (12)

and 2 /  and /  are the longitudinal and shear wave 

velocity in the plate, respectively. The present study assumes that primary waves are 

both propagating modes with the positive frequency, i.e., Im[κ(α)] = 0 and ω(α) > 0. In Eq. 

(10),  represent the normalized displacement profile in the thickness direction 

when the corresponding plate wave mode propagates in the X1 direction, which are 

given by [41] 

Symmetric Rayleigh-Lamb modes: 

 
i

cos
sin

2 cos
sin

, 

0, 

sin
sin

2 sin
sin

, 

(13a)

Antisymmetric Rayleigh-Lamb modes: 

 
i

sin
cos

2 sin
cos

, 

0, 

cos
cos

2 cos
cos

, 

(13b)
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Symmetric shear horizontal modes: 

 0, cos , (13c)

Antisymmetric shear horizontal modes: 

 0, sin , (13d)

where Ck (k = 1, 2, 3, 4) are the normalization factors which are determined so that the 

corresponding wave field has the unit time-averaged energy flux density per unit surface 

area perpendicular to the X1 direction, i.e., the following relation is satisfied: 

1
8

, , d 1, no	sum	on	 , (14)

where “	∙	” denotes the complex conjugate, i  the particle velocity 

profile, and ,  the stress profile calculated by Eq. (8a) with  on the right-hand 

side replaced by exp i cos sin . Furthermore, A(α) and θ(α) 

in Eq. (10) are the complex modal amplitude and the propagation angle from the X1 axis 

of the corresponding mode, respectively, and  represent the elements of 3 × 3 

transformation matrix describing the counter-clockwise rotation of the coordinate axes 

through an angle φ about the X3 axis given by 

 cos sin 0
sin cos 0
0 0 1

. (15)

3.2  Secondary solution 

   By substituting Eq. (10) into Eqs. (8b) and (9) and carrying out the cumbersome but 
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straightforward calculation, the quadratic term of the stress tensor and its divergence 

can be written in the following forms: 

 , , , ,
1
2

 

1
2

exp 2i cos sin  

1
2

exp 2i cos sin  

1
2

exp i cos sin  

1
2

exp i cos sin c. c.		, 

, 1, 2, 3, 

(16a)

 , , , ,
1
2

 

1
2

exp 2i cos sin 	 

1
2

exp 2i cos sin 	 

1
2

exp i cos sin  

1
2

exp i cos sin c. c.		, 

1, 2, 3. 

(16b)

It should be noted that in the above expressions, c.c. represents the complex conjugate 

of the sum of the preceding terms. In Eq. (16), κ± and θ± are given by 
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cos cos sin sin , (17a)

cos
cos cos

,  (17b)

sin
sin sin

, (17c)

where the double sign applies in the same order and 

 ≡
1, 0,
1, 0. (18)

The coefficients  and  (M = 0, 2ω(1), 2ω(2), +, and –) in Eq. (16) represent 

the thickness distributions of the driving forces for the nonlinear interaction, but their 

expressions are too lengthy to be described in this paper. Equation (16) clearly indicates 

that the driving terms for the secondary wave field consist of the DC component (ω = 0), 

the double-frequency components (ω = 2ω(1) and ω = 2ω(2)) due to the self-interaction 

of each primary mode, and the sum- and difference-frequency components (ω = ω(1) + 

ω(2) and ω = |ω(1) – ω(2)|) due to the mutual interaction of two primary modes. Since the 

present interest is in examining the generation behavior of secondary waves due to the 

non-collinear interaction, Eq. (16) is rewritten with the DC and the second-harmonic 

terms omitted as follows: 

 , 1
2

exp i cos sin c. c.		, (19a)
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 , 1
2

exp i cos sin c. c.		, (19b)

where ω± = |ω(1) ± ω(2)| and the superscripts “+” and “–” correspond to the sum- and 

difference-frequency components, respectively. 

Equation (19) indicates that the secondary wave field can be expressed as a 

superposition of plate wave modes propagating in the θ± direction. By introducing a 

new coordinate system X1´–X2´–X3´ which is given by rotating the X1–X2–X3 system 

through an angle θ± about the X3 axis as shown in Fig. 1 (X3´ = X3), the Xj´ components 

of the secondary solution, denoted by ′ , are written as 

′ , , ,
1
2

′ exp i c. c. , 1, 2, 3, 

(20)

where ′  represent the Xj´ components of normalized displacement profile of the 

mth plate wave mode with the wavenumber κm and the angular frequency ω± 

propagating in the X1´ direction, whose expressions are given by Eq. (13) with p and q 

given by Eq. (12) with ω = ω± and κ = κm. Note that when the wave mode is the 

propagating mode, the displacement profile is normalized in accordance with Eq. (14) 

as in the case of the primary waves. On the other hand, when the wave mode becomes 

evanescent with Im 0, the normalization based on Eq. (14) is inapplicable since 

the corresponding mode has no power flow. Hence, ′  of such modes are assumed 

to be normalized so that the following relation is satisfied instead of Eq. (14) [40]: 
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1
8

′ ′ ′ , ∗ ′ ′ ∗ ′ ′ , ′ d ′ 1, (21)

where ′ i ′  ( ′ , ) and ′ ∗ i ′ ∗  ( ′ , ∗ ) represent 

the particle velocity (stress) profile of the wave modes with the wavenumber  and 

, respectively. 

Assuming that the displacements of secondary wave are zero at X1´ = 0, the modal 

amplitude  in Eq. (20) is given by making use of the orthogonality of the plate 

wave modes as [21,32,33,40], 

 

2
sinc

2
exp i

2
	 (22)

where 

 1
4

′ ∗ ′ , (23a)

 1
4

′ ∗ ′ d , (23b)

represent the power flux through the surface and volume of the plate due to the primary 

wave. In Eq. (23), 

 ′ , (24a)

 ′ , 1, 2, 3, (24b)
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where the double sign applies in the same order. The secondary solution expressed in 

the original X1–X2–X3 coordinate system can be given as ′  (j = 1, 2, 3). 

   From Eq. (22), the modal amplitude grows in proportion with the distance in the X1´ 

direction if 0 and the wavevector of the primary modes and the plate 

wave mode used in the expansion of the secondary solution, denoted by κ(α) = (κ(α) cos 

θ(α), κ(α) sin θ(α), 0) (α = 1, 2) and κm = (κm
 cos θ±, κm

 sin θ±, 0), respectively, satisfies 

 . (25)

The above relation is equivalent to the so-called resonance condition for the occurrence 

of non-collinear resonant interaction of bulk elastic waves [4]. Note that Eq. (25) 

includes the condition for the collinear resonant interaction of plate wave modes derived 

by de Lima and Hamilton [21] as a special case for θ(1) = θ(2) = 0. Furthermore, Eq. (25) 

can be satisfied only when the secondary wave mode is the propagating mode with 

Im 0  since the primary waves are assumed to be the propagating modes 

with	Im 0 in the present study. 

3.3  Symmetry property of the secondary wave mode 

   When the primary wave modes are both symmetric or both antisymmetric, ′  

and ′  in Eq. (24) have the following symmetric properties irrespective of their 

propagation angles θ(α): 

 ′

′

′

∶
A
A
S

,							
′

′

′

∶
S
S
A
, (26)
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where “S” and “A” denote that the corresponding component is symmetric and 

antisymmetric with respect to X3´ = 0, respectively. This indicates from Eqs. (13b), 

(13d), and (23) that 0  for all antisymmetric modes used in the 

expansion of the secondary wave field. Therefore, the interaction of two symmetric or 

two antisymmetric modes can produce only the symmetric modes. In contrast, when the 

primary wave consists of a pair of symmetric and antisymmetric modes, ′  and ′  

become 

 ′

′

′

∶
S
S
A

,							
′

′

′

∶
A
A
S
. (27)

The resulting secondary wave field, hence, consists of only the antisymmetric modes 

from Eqs. (13a), (13c), and (23). 

 

4. Results and discussions for the interaction of lowest-order modes 

In this section, the generation behavior of secondary wave field due to the 

non-collinear interaction in an aluminum alloy plate is examined. The elastic properties 

of the plate are shown in Table 1. Note that Eq. (22) can be applied to calculate the 

modal amplitude of evanescent modes, while the present study deals only with the 

propagating modes in the secondary wave field. 

The dispersion relation of plate wave modes in Eq. (11) is shown for a lower 

frequency range in Fig. 2, where the horizontal and vertical axes represent the 

non-dimensional wavenumber K = 2κh and the non-dimensional frequency Ω = 

2ωh/(πcT), respectively. The analysis below focuses on a low-frequency range where the 

lowest-order symmetric and antisymmetric Rayleigh-Lamb waves (RLS0 and RLA0) 



16 
 

and the lowest-order symmetric shear horizontal wave (SHS0) are the only propagating 

modes for the primary as well as the secondary wave fields. Specifically, the 

non-dimensional frequencies of two primary modes, denoted by Ω(α) = 2ω(α)h/(πcT) (α = 

1, 2), are assumed to be 

 , , , ⊂ 0, 1 , (28)

where Ω = 1 corresponds to the cut-off frequency of the first-order antisymmetric 

Rayleigh-Lamb (RLA1) as well as the lowest-order antisymmetric shear horizontal 

(SHA0) modes. 

4.1  Intersection angle for the resonant interaction 

For the frequency range given in Eq. (28), the existence of intersection angles which 

satisfy the resonance condition in Eq. (25) is summarized in Table 2. The secondary 

modes which are not generated because of the symmetry relation mentioned in Section 

3.3 are labeled “NG.” Besides these forbidden modes, the generation of the SHS0 mode 

due to the interaction of two SHS0 modes is also impossible and labeled “NG” since 

′ ′ 0 is always satisfied, i.e., 0 for this mode. For the other 

cases, the existence of the intersection angle satisfying the resonance condition is 

examined by seeking for a numerical solution of Eq. (25) for the assumed elastic 

parameters. In Table 2, the label “R/NR” indicates that such angles are found for a 

certain range of primary frequencies, and “NR” that no intersection angles satisfying the 

resonance condition are found for any combinations of primary frequencies. It is noted 

that the existence of the resonant angle depends on the linear dispersion relations of the 

plate in Eq. (11), and determined by Poisson’s ratio of the plate. Therefore, the 

classification of “R/NR” and “NR” in Table 2 is for the specific material parameters 
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assumed here, while the label “NG” holds irrespective of them. 

From Table 2, five combinations of primary and secondary wave modes have 

resonant angles for the sum-frequency component, and six combinations do for the 

difference-frequency component. As a general trend, these angles exist when the phase 

velocity of the secondary mode with the sum- and difference-frequencies is faster and 

slower than the primary modes, respectively. The variations of these angles with the 

primary frequencies are depicted in Figs. 3 and 4. Likewise, the frequency dependence 

of resonant angles for the non-collinear interaction of bulk longitudinal and shear waves 

[4], denoted by “L” and “T”, respectively, is shown for comparison in Fig. 5. Note that 

there is essentially no need to restrict the frequency for the interaction of bulk waves 

without cut-off frequencies, but the results are depicted in Fig. 5 only for the frequency 

range given by Eq. (28) in order to compare with the interaction of guided waves in Figs. 

3 and 4. Furthermore, it appears in Figs. 3–5 that the numerically obtained resonant 

angles for some mode combinations have their limits for the null primary frequencies, 

such as for Ω(2) → 0 in Figs. 3(d), 4(c), 5(b), and 5(d). In these cases, however, the sum- 

and difference-frequency components are not generated since both ,  and ,  in 

Eq. (19) vanish. 

For the bulk wave interaction in an isotropic solid in Fig. 5, two and three 

interaction cases have resonant angles for the sum- and difference-frequency 

components, respectively, and they are governed by the ratio of primary frequencies [4]. 

In contrast, those for the plate wave interaction in Figs. 3 and 4 are influenced by the 

magnitude of two primary frequencies due to their dispersive nature. Comparing Figs. 3 

and 4 with Fig. 5, the resonant angles for the interaction of RLS0 and SHS0 modes in 

Figs. 3(a), 3(d), 4(a), 4(c), and 4(d) exhibit the frequency dependence similar to that for 
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the interaction of L and T modes in Figs. 5(a)–5(e). This is because of the weak 

dispersion of RLS0 mode in the present low-frequency range and the non-dispersive 

nature of SHS0 mode. On the other hand, it can be clearly seen in Figs. 3(b), 3(c), 3(e), 

4(b), and 4(f) that the resonant angles for the interaction involving the RLA0 mode vary 

markedly with the magnitude of the primary frequencies due to its more significant 

dispersive nature. 

Most of the mode combinations in Figs. 3 and 4 have a wide range of resonant 

angles depending on the primary frequencies. When the primary modes are SHS0 and 

RLA0 in Fig. 3(e) and when they are both RLA0 in Fig. 4(b), however, the resonant 

interaction is localized at very small intersection angles of less than 10° and 5°, 

respectively. 

4.2  Modal amplitude of secondary wave field 

Based on the results for the resonant angles mentioned above in Section 4.1, the 

generation behavior of secondary wave due to the non-collinear interaction is examined 

below in more detail for some representative combinations of primary plate wave 

modes. 

The modal amplitudes of the sum- and difference-frequency components of RLS0 

and SHS0 modes generated by the RLS0–SHS0 interaction are calculated by Eq. (22) 

for fixed primary frequencies (wavenumbers) of Ω(1) = 0.5 (K(1) = 2κ(1)h = 0.91) and Ω(2) 

= 0.2 (K(2) = 2κ(2)h = 0.63) for the RLS0 and SHS0 modes, respectively. Their variation 

with the intersection angle is shown for different propagation distances in Fig. 6, 

together with the propagation angle as well as the wavenumber of the secondary wave. 

   From Eqs. (17b) and (17c) with κ(1) > κ(2) and ω(1) > ω(2), the propagation angle of 

secondary wave from the first primary mode shown in Fig. 6(a) becomes positive and 
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negative for the sum- and difference-frequency components, respectively. The 

horizontal dotted and chain lines in Fig. 6(b) represent the wavenumber of the plate 

wave modes used in the expansion of the secondary wave; namely, the intersection 

angles where the curves of 2κ±h cross these lines correspond to the resonant angles. For 

the sum-frequency component, the resonant angle for the RLS0 mode is 67° and the one 

for the SHS0 mode does not exist. Likewise, the resonant angles for the RLS0 and 

SHS0 modes are 36° and 73°, respectively, for the difference-frequency component. 

These angles are indicated by vertical lines in Figs. 6(c), 6(d), and 6(f). It is seen in Figs. 

6(c), 6(d), and 6(f) that the modal amplitudes exhibit the monotonic growth with the 

propagation distance at around the resonant angles, while such a trend is not seen in the 

absence of the resonant angle in Fig. 6(e). 

   The corresponding results for the SHS0–RLA0 interaction are shown in Fig. 7, 

where the primary frequencies (wavenumbers) are Ω(1) = 0.2 (K(1) = 0.63) for the SHS0 

mode and Ω(2) = 0.7 (K(2) = 2.9) for the RLA0 mode. From Eqs. (17b) and (17c) with 

κ(1) < κ(2) and ω(1) < ω(2), the propagation angles of both sum- and difference-frequency 

components in Fig. 7(a) become positive and increase monotonically from 0° to 180° 

with the intersection angle. As shown in Table 2, the only propagating mode produced 

by this interaction is the RLA0 mode, for which the resonant angles of the sum- and 

difference-frequency components are 9.6° and 3.1°, respectively, from Fig. 7(b). It is 

found in Figs. 7(c) and 7(d) that the modal amplitudes grow with the propagation 

distance near the resonant angles as in the case of the RLS0–SHS0 interaction in Fig. 6, 

while the intersection angles for the maximum amplitude deviate from the resonant 

angles. This trend was also presented by Matsuda and Biwa [33] regarding the 

frequency dependence of the second-harmonic generation of a monochromatic 
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Rayleigh-Lamb wave. These authors showed that the second-harmonic amplitude 

becomes maximal for the frequency deviated from the one satisfying the 

phase-matching condition between the fundamental and its second-harmonic modes. 

The reason for such behavior is that the amplitude of secondary wave is governed by 

not only the resonance condition but also the factors representing the power flux from 

the primary to the secondary waves,  and  [33]. As can be seen in Figs. 7(c) 

and 7(d), the locations of peak amplitude approach the resonant angles as the 

propagation distance increases, since the influence of resonance condition becomes 

dominant for larger propagation distance as represented by the cardinal sine function in 

Eq. (22). The contribution of the resonance condition also depends on the choice of the 

primary wave modes. In contrast to the SHS0-RLA0 interaction in Fig. 7, the 

RLS0-SHS0 interaction in Fig. 6 shows negligible deviation of the maximum amplitude 

angle from the resonant angle. 

   For the mode combinations shown in Figs. 3 and 4, the modal amplitude is 

calculated with various intersection angles θ(2) – θ(1) and the second primary frequencies 

Ω(2) when the first primary frequency and the propagation distance are fixed as Ω(1) = 

0.5 and X1´/h = 100, respectively. The results are illustrated in Figs. 8 and 9, together 

with the resonance conditions by dotted lines. 

As mentioned above in Fig. 7, the modal amplitude in Figs. 8(e), 9(b), and Fig. 9(f) 

(for Ω(2) > 0.5) becomes large for the intersection angle and the primary frequencies 

away from the resonance condition due to the short propagation distance. For the other 

interaction cases in Figs. 8(a)–8(d), 9(a), and 9(c)–9(e), the locations of large amplitude 

agree well with the resonance conditions, except that the modal amplitude becomes 

vanishingly small in certain ranges even when the resonance condition is satisfied, such 
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as at around (θ(2) – θ(1), Ω(2)) = (139°, 0.15) in Fig. 8(a) and (θ(2) – θ(1), Ω(2)) = (90°, 0.2) 

in Fig. 9(a). This is due to the fact that  becomes vanishingly small therein: 

for example, in the case of the SHS0–SHS0 interaction producing the RLS0 mode in 

Fig. 8(a), the straightforward calculation of Eq. (23) results in that 0 when 

 

tan , (29)

and 0 when 

 
tan

2 4 2
2 2

. (30)

Using the elastic properties in Table 1 and assuming that 0 ≤ θ(2) – θ(1) ≤ 180°,  

vanishes at θ(2) – θ(1) = 40.2° and 139.8°, and  does at θ(2) – θ(1) = 41.4° and 138.6°, 

so  drops to very low levels at around θ(2) – θ(1) = 139°. Note that the 

intersection angles for 0 and 0 in Eqs. (29) and (30) are independent 

of the frequency, while those for the other mode combinations are influenced by not 

only the elastic constants but also the primary frequencies. 

 

5. Conclusions 

Non-collinear interaction of guided elastic waves in an isotropic plate has been 

analyzed theoretically in this paper. Using the perturbation analysis, an explicit 

expression for the modal amplitude of the secondary wave having the sum or difference 

frequency of the primary waves has been derived, and the resulting amplitude has been 

shown to increase linearly with the propagation distance when the resonance condition 
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is satisfied. It has been shown that the interaction of two symmetric or two 

antisymmetric modes produces the symmetric modes only, while a pair of symmetric 

and antisymmetric primary modes does the antisymmetric modes only. The modal 

amplitude has been calculated for various intersection angles, primary frequencies, and 

mode combinations for a low-frequency range where the lowest-order symmetric and 

antisymmetric Rayleigh-Lamb waves and the lowest-order symmetric shear horizontal 

wave are the only propagating modes. It has been shown that the modal amplitude for 

short propagation distance can be maximal at the intersection angles deviated from the 

resonant angles. Furthermore, the modal amplitude can be very small even when the 

resonance condition is satisfied if the power flux from the primary to the secondary 

wave is small. 

In the case of the second-harmonic generation of Rayleigh-Lamb waves in an 

isotropic plate, the phase matching between the fundamental and its second-harmonic 

modes for the cumulative growth of the second harmonics with the propagation distance 

is satisfied only above the cut-off frequencies of the lowest-order modes [20,29,31]. On 

the other hand, the resonance condition for the non-collinear interaction can be met even 

below these cut-off frequencies by selecting the appropriate primary frequencies and 

intersection angles as shown in Section 4.2. This is practically an important feature in 

order to measure the nonlinear effect in plate-like structures with their complicated 

multimode nature suppressed. 

This paper assumed the plane primary waves with infinite beam widths as a 

fundamental study to investigate the non-collinear interaction in plates. From a practical 

point of view, the interaction of plate waves with finite beam widths is an important 

issue to be explored. In this situation, the cumulative growth of secondary waves with 
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the propagation distance presented in this paper is expected to occur only in a limited 

volume where the two primary waves interact. In the case of non-collinear interaction of 

bulk waves [4,7], the resonance condition derived on the basis of plane-wave theory 

was shown to be still valid for the primary waves with finite beam widths, and the 

amplitude of secondary waves propagating in the direction determined by this condition 

was shown to increase linearly with the volume of interaction of two primary waves. In 

light of these features, the resonance condition derived in the present study can be 

expected to play an important role even in the interaction of plate waves with finite 

beam widths. This issue can be investigated by extending the analysis presented in this 

paper to a finite region of intersection as in Refs. [4] and [7], which is left for the future 

work. Furthermore, this paper dealt with the non-collinear interaction of monochromatic 

plate waves, while the transient response when mixing pulse waves is another issue to 

be investigated by, for example, performing numerical simulations. 
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Table 1  Material properties of the aluminum alloy plate [42]. 

ρ0 (kg/m3) λ (GPa) μ (GPa)  (GPa)  (GPa)  (GPa) 

2,700 56.0 26.5 –408 –197 –114 

 

Table 2  Existence of intersection angles for the non-collinear resonant interaction of 

lowest-order plate modes a. 

Pair of 

primary modes 

Secondary modes 

RLS0 SHS0 RLA0 

Ω(1) + Ω(2) |Ω(1) – Ω(2)| Ω(1) + Ω(2) |Ω(1) – Ω(2)| Ω(1) + Ω(2) |Ω(1) – Ω(2)|

RLS0 & RLS0 NR NR NR R/NR NG NG 

SHS0 & SHS0 R/NR NR NG NG NG NG 

RLA0 & RLA0 R/NR NR R/NR R/NR NG NG 

RLS0 & SHS0 R/NR R/NR NR R/NR NG NG 

RLA0 & RLS0 NG NG NG NG NR R/NR 

SHS0 & RLA0 NG NG NG NG R/NR R/NR 

a R/NR: the interaction angles satisfying the resonance condition are numerically found 

for a certain range of primary frequencies. NR: no intersection angles satisfying the 

resonance condition are numerically found for any combinations of primary frequencies. 

NG: the secondary mode is not generated since 0. 
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Figure captions 

Fig. 1  Homogeneous and isotropic elastic plate of thickness 2h. The plate has infinite 

length in the X1 and X2 directions. 

Fig. 2 Dispersion curves of Rayleigh-Lamb and shear-horizontal waves for an 

aluminum alloy plate. 

Fig. 3  Frequency dependence of intersection angles for the resonant interaction of the 

sum-frequency component. (a) SHS0 and SHS0 interaction producing RLS0; 

(b) RLA0 and RLA0 interaction producing RLS0; (c) RLA0 and RLA0 

interaction producing SHS0; (d) RLS0 and SHS0 interaction producing RLS0; 

(e) SHS0 and RLA0 interaction producing RLA0. The regions in white color 

have no intersection angles satisfying the resonance condition. 

Fig. 4  Frequency dependence of intersection angles for the resonant interaction of the 

difference-frequency component. (a) RLS0 and RLS0 interaction producing 

SHS0; (b) RLA0 and RLA0 interaction producing SHS0; (c) RLS0 and SHS0 

interaction producing RLS0; (d) RLS0 and SHS0 interaction producing SHS0; 

(e) RLA0 and RLS0 interaction producing RLA0; (f) SHS0 and RLA0 

interaction producing RLA0. The regions in white color have no intersection 

angles satisfying the resonance condition or correspond to Ω(1) – Ω(2) = 0, which 

is out of the frequency range in Eq. (28). 

Fig. 5  Frequency dependence of intersection angles for the resonant interaction of 

bulk longitudinal (L) and shear (T) waves. (a) T and T interaction producing L 

with sum frequency; (b) L and T interaction producing L with sum frequency; 

(c) L and L interaction producing T with difference frequency; (d) L and T 

interaction producing L with difference frequency; (e) L and T interaction 
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producing T with difference frequency. The regions in white color have no 

intersection angles satisfying the resonance condition or correspond to Ω(1) – 

Ω(2) = 0, which is out of the frequency range in Eq. (28). 

Fig. 6  Effects of intersection angle on the RLS0 and SHS0 interaction. (a) Propagation 

angle of secondary wave; (b) wavenumber of secondary wave; (c) modal 

amplitude of the secondary RLS0 with sum frequency; (d) modal amplitude of 

the secondary RLS0 with difference frequency; (e) modal amplitude of the 

secondary SHS0 with sum frequency; (f) modal amplitude of the secondary 

SHS0 with difference frequency. The primary frequencies are Ω(1) = 0.5 and Ω(2) 

= 0.2 for the RLS0 and SHS0 modes, respectively. 

Fig. 7  Effects of intersection angle on the SHS0 and RLA0 interaction. (a) 

Propagation angle of secondary wave; (b) wavenumber of secondary wave; (c) 

modal amplitude of the secondary RLA0 with sum frequency; (d) modal 

amplitude of the secondary RLA0 with difference frequency. The primary 

frequencies are Ω(1) = 0.2 and Ω(2) = 0.7 for the SHS0 and RLA0 modes, 

respectively. 

Fig. 8  Variation of the modal amplitudes of sum-frequency secondary wave with the 

intersection angle and the second primary frequency when Ω(1) = 0.5 and X1´/h 

= 100. (a) RLS0 produced by SHS0 and SHS0 interaction; (b) RLS0 produced 

by RLA0 and RLA0 interaction; (c) SHS0 produced by RLA0 and RLA0 

interaction; (d) RLS0 produced by RLS0 and SHS0 interaction; (e) RLA0 

produced by SHS0 and RLA0 interaction. The dotted lines indicate the 

resonance conditions. 

Fig. 9  Variation of the modal amplitudes of difference-frequency secondary wave with 
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the intersection angle and the second primary frequency when Ω(1) = 0.5 and 

X1´/h = 100. (a) SHS0 produced by RLS0 and RLS0 interaction; (b) SHS0 

produced by RLA0 and RLA0 interaction; (c) RLS0 produced by RLS0 and 

SHS0 interaction; (d) SHS0 produced by RLS0 and SHS0 interaction; (e) 

RLA0 produced by RLA0 and RLS0 interaction; (f) RLA0 produced by SHS0 

and RLA0 interaction. The dotted lines indicate the resonance conditions and 

the regions in white color correspond to Ω(1) – Ω(2) = 0, for which the 

non-collinear interaction produces the static displacements. 
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