非線形超音波法による非破壊検査・評価

固体接触面の非線形力学特性と高調波発生挙動

琵琶 志朗 京都大学大学院エネルギー科学研究科

Nonlinear Mechanical Properties and Harmonic Generation Behavior of Contacting Surfaces

Shiro BIWA Graduate School of Energy Science, Kyoto University

キーワード 非線形超音波,接触面,接触面剛性,反射率,界面波,高調波

1. はじめに

固体材料において見られる非線形超音波特性として、金属 結晶の非調和性や転位運動の非線形性による高調波発生が 知られている。音弾性応力測定の基礎原理である超音波伝 搬速度の応力依存性も金属結晶の非調和性に由来している。

一方,1990年代になると,岩石などの微視的弱結合界 面を有する固体材料や,固体接触界面における顕著な音響 非線形性に注目が集まり始めた¹⁾。また,比較的最近では, 閉口き裂や不完全接合面・接着面が非線形超音波計測の適 用対象として活発に研究されている^{2),3)}。これらに共通 するのは,いずれも界面の開閉口振動に起因して音響非線 形性が発現していることで,上に述べた非調和性や転位運 動による非線形性に比べて大きいオーダーの高調波を発生 する。また,強化材ー母材境界や層間のはく離を有する複 合材料や,マイクロクラックを多数含むコンクリートなど も,同じ接触/弱結合界面型欠陥の非破壊評価対象の範疇 に入ると考えられる。

非線形超音波特性に基づいてこれらの接触/弱結合界面 型欠陥の検査・評価を行うに際しては,非線形特性が発現 するメカニズムを正しく理解する必要がある。そこで,本 稿では,接触/弱結合界面型欠陥における高調波発生の素 過程としての固体表面同士の接触開閉口をともなう超音波 応答とその非線形効果に関して,最近の研究による知見を 紹介する。

2. 固体接触面の線形超音波特性

2.1 固体接触面のスプリング界面モデル

固体表面は多かれ少なかれ粗さ(凹凸)を有するから, 固体間の接触面では,分布した突起部同士が押し付けあっ て接触荷重を支えており,見かけの接触圧力pが増すと, 突起部がさらに押し付けられて変形するとともに,新たな 突起部が接触し始めることにより,真実接触部が増大しな がら表面間距離(空隙幅 h)が縮小する(図1)。

静的な接触圧力 p_0 が負荷された平衡状態(空隙幅 h_0) に微小振幅の超音波が入射すると,接触面は平衡状態の近 くで微小振動する。そのとき,空隙幅と接触圧力は次式に したがって変化する。

$$p - p_0 = -K_N (h - h_0), \quad K_N = -\frac{dp}{dh}\Big|_{h = h_0}$$
 (1)

上式の係数 K_N は、空隙幅の微小変化に対する接触面の抵抗(接触面剛性)であり、平衡状態におけるp-h関係の局所的な傾きとして与えられる。

式(1)を接触面における境界条件として用いることは,接触界面を剛性 K_N のスプリング界面と見なすことを意味する。ここで, $K_N \rightarrow \infty$ のとき完全接合状態を,一方 $K_N \rightarrow 0$ のとき自由表面を意味するから,有限な K_N は不完全な結

図1 固体接触面における接触圧カー空隙幅関係の模式図(左)とスプリング界面としてのモデル化(右)

合状態を表す。このようなモデル化は,表面凹凸の寸法ス ケールに対して十分長い波長の超音波を問題にするときに は有効である。

上に導入した接触面剛性 K_N は接触面に垂直方向の剛性 を表す。接触面に対して接線方向の相対的運動に対して は,接触して凝着した突起部のせん断変形にともなう抵抗 があるから,接線方向の剛性 K_T も存在する。すなわち, 境界条件として,

$$\sigma_{y}^{(+)} = \sigma_{y}^{(-)} = K_{N} (v^{(+)} - v^{(-)}), \qquad (2)$$

$$\tau_{xy}^{(+)} = \tau_{xy}^{(-)} = K_{T} (u^{(+)} - u^{(-)})$$

となる(図1右図参照)。上式で σ_y , τ_{xy} はそれぞれ接触面 に働く垂直・せん断応力であり, u, vはそれぞれ接触面 に平行, 垂直方向の変位である。また,上添字の(+)と (-) は接触面の上側,下側の固体表面を指す。

2.2 垂直入射波の透過・反射特性

同じ材質の半無限固体(密度 ρ ,縦波音速 c_L ,横波音速 c_T)が垂直剛性 K_N ,接線剛性 K_T のスプリング界面で結合 している状態を考える。これに角周波数 ω の縦波調和波 が垂直に入射したとき、変位振幅で見た透過率 T_L ,反射 率 R_L (絶対値)は、

と与えられる。一方,横波が垂直入射したときの同様な透過 率 T_T ,反射率 R_T は,式(3)で $K_N/(\rho c_L \omega)$ を $K_T/(\rho c_T \omega)$ に置き換えることにより得られる。

これらの関係を図2に示す。ここから,低周波数(高剛性)

図2 スプリング界面における透過率と反射率

ほど透過しやすく,高周波数(低剛性)ほど反射しやすい ことがわかる。

2.3 界面波伝搬特性

固体同士の結合面に沿った伝搬モードとしては, Stoneley 波が良く知られているが, このモードは同種固体同士の境 界面では存在しない。しかしながら,境界面が式(2)の スプリング界面のとき,同種固体の境界面においても導波 モードが存在する。これには,図3に振動形態を模式的に 示すように,対称モード(開閉口モード)と反対称モード (ずりモード)があることが知られている⁴⁾。

図3 接触界面に沿った超音波伝搬モード

このうち,反対称モードは,境界面の端で境界面に垂直 な方向にせん断型の加振を行うことによって励起できる。 図3の右側の図は,左端の横波探触子から送信された波が 伝搬する様子を差分法による数値シミュレーション⁵⁾で 解析した例である。送信探触子から横波波面が広がりなが ら伝搬するが,境界面上では横波より少し遅れて,高い振 幅を持った界面波が伝搬している。反対称モード界面波の 位相速度 *c*_A は次の特性方程式で与えられる⁴⁾。

ここで $\xi_A = c_T/c_A$, $\zeta = c_T/c_L$ である。反対称モード界面 波は分散性を有し、その伝搬速度は縦横音速比 ζ のほか、 $K_T/(\rho c_T \omega)$ に依存する。

対称および反対称モードの界面波の分散特性を図4に示 す。反対称モード界面波の位相速度は高周波数(低接線剛 性)極限では Rayleigh 波速度に,低周波数(高接線剛性) 極限では横波速度に近づく傾向を持っている。一方,対称 モード界面波の位相速度は,高周波数(低垂直剛性)極 限では Rayleigh 波速度となるが,低周波数(高垂直剛性) になるにしたがって横波速度を超え,漏洩モードとして伝 搬する。

図4 スプリング界面における界面波位相速度(横波/縦波音 速比が 0.5 の場合)

3. 接触面剛性の接触圧力依存性

以上に述べた理論関係式から,接触面における超音波透 過・反射率や界面波速度を測定することにより,垂直・接 線方向の接触面剛性を評価することができる。

著者らは、図5のような方法で,静的に負荷した接触圧 力を変化させながら固体ブロック同士の接触面における縦 波反射率,横波反射率,界面波位相速度を測定する実験を 行った⁶⁾。PMMA(アクリル樹脂)ブロック同士の接触 面に対して,周波数0.7MHzにおける縦波反射率,横波反 射率,界面波位相速度と接触圧力との関係を図6に示す。 接触圧力の増加とともにこれらのパラメータが顕著に変化 しているのがわかる。

図7に,縦波反射率から求めた垂直剛性,横波反射率お よび界面波速度から求めた接線剛性と接触圧力の関係を示 す。図7からわかる通り,接触圧力の増加とともに,接触 面の剛性が顕著に増加している。また,横波反射率と界面 波速度から求めた接線剛性がよく一致することは,反射率, 界面波速度それぞれの測定による接触面剛性評価の妥当性

図 6 PMMA-PMMA 接触面の縦波・横波反射率,界面波位相 速度と接触圧力の関係(周波数 0.7MHz)

図 7 PMMA-PMMA 接触面の垂直・接線剛性の接触圧力依存 性(周波数 0.7MHz)

を定量的に裏付けている。

図8には、アルミニウムブロック同士の接触面に対して 反射率から求めた接触面剛性を示す(周波数2.25MHzに おける測定値)⁷⁾。また、ブロック表面を異なる粗さ状態 にして接触させたところ、接触表面の粗さの違いにより垂 直・接線剛性の接触圧力依存性が大きく異なることも確認 している⁸⁾。

図 8 AI-AI 接触面の垂直・接線剛性の接触圧力依存性(周波 数 2.25MHz) PMMA 同士の接触面とアルミニウム同士の接触面を比 較すると,前者では負荷,除荷にともなうヒステレシスが 極めて顕著である。このヒステレシスは負荷,除荷を繰り 返しても存続することを確認した。一方,後者の接触面の 測定結果は,初期負荷・除荷におけるヒステレシスを除外 するために,数回負荷・除荷を行ってから測定したもので あり,ヒステレシスはそれほど顕著ではない。ただし,粗 い表面同士の接触面では,相対的に顕著なヒステレシスが 観察されるという結果を得ている⁸⁾。

4. 固体接触面における高調波発生

4.1 固体接触面の非線形力学モデル

以上に示したように,固体接触面の剛性 K_N は p の増加 関数(hの減少関数)である。通常の非破壊評価に用いる 超音波の変位振幅は極めて小さいので,式(1)で仮定し たように一定の剛性 K_N のもとで接触面は開閉口振動する と考えてよい。ところが,非線形超音波計測においては, 超音波入射による開閉口振動のあいだ,剛性 K_N は一定で なく,空隙幅 h により変化する。

このような開閉口振動を解析するにあたって,接触面に 対していくつかのモデル化が行われている(図9)。

(I) 一方向接触モデル

接触面が開いているとき (h > 0) はp = 0,閉じてい るとき (h = 0) は正の圧力が接触面を通じて伝達される (p > 0) とする。これは接触表面の凹凸を無視して,閉 じるときの接触面剛性を無限大とすることに相当する。一 方向接触界面における非線形透過解析⁹⁾,およびこのモデ ルを適用した閉口き裂の弾性波散乱解析^{10,11)} や,有限要 素解析に組み込むための特異要素の定式化¹²⁾ が行われて いる。

(Ⅱ)空隙幅(接触圧力)依存型剛性モデル

接触面剛性が空隙幅または接触圧力に依存して変化する と仮定する。これは図1で平衡状態まわりの空隙幅(圧 力)変化にともなう接触面剛性の変化を連続関数で表すも ので,前節までで紹介した実験的知見を反映させて,表面 粗さ状態や接触負荷状態の違いを解析に反映させることが できる。この場合の高調波発生解析もこれまでに報告され ている¹³⁻¹⁵。

このほか,閉口き裂における反発力,凝着力をモデル化 した非線形超音波挙動の解析も行われている^{16,17)}。

以下では,空隙幅依存型剛性モデルを用いた高調波発生 解析の概要を紹介する。

4.2 空隙幅依存型剛性モデルによる高調波発生¹⁵⁾

接触面の圧力ー空隙幅関係を平衡状態のまわりでTaylor 展開し、次式のように二次の項まで考えることにする。

$$K_{1} = \frac{dp}{dh}\Big|_{h = h_{0}}, \quad K_{2} = \frac{1}{2} \frac{d^{2} p}{dh^{2}}\Big|_{h = h_{0}}, \quad \beta = \frac{K_{2}}{K_{1}}$$

ここで K_1 はこれまでの議論で扱った垂直剛性であり、 K_2 や β は非線形性の程度を表すパラメータである。

式(5)で表される非線形スプリング界面に調和波(振幅 u_0 ,角周波数 ω)が垂直入射したときの透過・反射特性を一次元弾性波伝搬問題として解析すると,界面の開閉口振動 $Y(t) = h(t) - h_0$ を支配する以下の微分方程式が導かれる。

$$\frac{dY}{dt} = 2u_0 \omega \sin \omega t - \frac{2K_1}{\rho c_L} (1 - \beta Y) Y \quad (7)$$

ここで、開閉口振動による接触面剛性の変化を表す無次 元パラメータ $\varepsilon = u_0\beta$ が小さいとして、摂動法を適用して 得られる結果によると、入射波振幅 u_0 の二乗のオーダー まで考慮した透過波 u^{tra} は

$$u^{tra}(x,t) = \frac{u_0^2 \beta}{1 + 4\tilde{K}^2} + \frac{2\tilde{K}u_0}{\sqrt{1 + 4\tilde{K}^2}} \cos(kx - \omega t + \delta_1) - \frac{u_0^2 \beta \tilde{K}}{(1 + 4\tilde{K}^2)\sqrt{1 + \tilde{K}^2}} \sin(2kx - 2\omega t + 2\delta_1 - \delta_2)$$
(8)

$$\tilde{K} = \frac{K_1}{\rho c_L \omega}, \quad \delta_1 = \arctan\left(\frac{1}{2\tilde{K}}\right), \quad \delta_2 = \arctan\left(\tilde{K}\right)$$
.....(9)

式(8)によると、入射波の角周波数 ω の成分(基本 波成分)が式(3)にすでに示した変位振幅透過率で透過 波に含まれている。これに加えて、式(8)右辺第一項の 静的開口変位(整流成分)と,第三項の角周波数2 ω の波(二 次高調波成分)が透過波に含まれている。また、基本波成 分の振幅が入射波振幅 u_0 に比例するのに対して、整流成 分および二次高調波成分は入射波振幅 u_0 の二乗に比例し ているから、非線形効果は u_0 が小さければ無視できるが、 u_0 が大きくなれば顕著に発現することが理論的に裏付け られる。

4.3 固体接触面における高調波発生の実験的評価

上に示した計算結果の妥当性を検討するため,図5と同様の負荷装置(図10)で二個のアルミニウムブロックを 対向接触させ,片側からバースト波を送信した場合の透過 波に含まれる二次高調波成分を調べた^{18,19)}。

図10 固体接触面におけるバースト波透過測定

具体的には,静的接触負荷を変化させながら,縦波トラ ンスデューサを周波数 5MHz,30 周期のトーンバースト 信号で駆動して接触面にバースト波を入射し,透過波を反 対側に設置した公称周波数 10MHz の縦波トランスデュー サで受信し収録した。収録透過波形の振幅スペクトルの 解析により基本波成分 (5MHz) および二次高調波成分 (10MHz) の大きさを求めた。

図11は三段階の異なる出力で送信トランスデューサを 駆動した場合の,透過波信号における二次高調波成分と基 本波成分の振幅比を接触圧力に対して示す。実験結果は送 信強度が高いほどこの振幅比が高くなることを示してい る。これは,式(8)より予測される変位振幅(基本波A₁, 二次高調波A₂)の比

$$\frac{A_2}{A_1} = \frac{u_0 \beta}{2\sqrt{1+4\tilde{K}^2}\sqrt{1+\tilde{K}^2}}$$
(10)

が入射波振幅 u0 に比例していることともよく対応する。

図 11 透過波信号における二次高調波と基本波の振幅比

なお,図11では接触圧力の増加とともに比が3%程度 のレベルに落ち着いているが,これは二個の対向試験片対 のかわりに単一のブロックを用いて同測定を行うことによ り評価した,測定機器および接触面以外の超音波伝搬経路 の非線形性による高調波レベルと同程度であることを確認 している。

また,式(8)から

$$\frac{A_2}{A_1^2} = \frac{\beta}{4\tilde{K}\sqrt{1+\tilde{K}^2}}$$
 (11)

となるから、二次高調波振幅を基本波振幅の二乗で除すと 入射波振幅の大きさに関係しない、接触状態固有の値にな ることが予想される。そこで、本実験であわせて測定した 垂直剛性と接触圧力の関係から β を見積もり¹⁹⁾,式(11) に代入して、 A_2/A_1^2 と接触圧力の関係を理論的に評価し た。この計算結果および実験データを図12に示す。図12 に示すように、計算結果、実験結果ともに、送信強度の異 なるデータがほぼ同一曲線状にならぶ結果となり、また、 接触圧力依存性の定性的な傾向も一致する。

なお、この実験の段階では、圧電トランスデューサで 記録した電圧波形から非線形性を抽出しているので、入射 波振幅の絶対値は定量化できておらず、また、受信トラン スデューサの周波数特性の影響を受けた形となっているの で、変位振幅に関して得られる理論解析結果とは直接定量 的な比較を行っていない。現在、レーザドップラ振動計測 に基づく変位振幅の定量化により、上記の曖昧さを除いた 理論と実験の対応づけを試みているところである。

なお、本稿に示した接触面剛性の実測結果は、接触圧 力増減にともなう接触面剛性変化にヒステレシスが存在す ることを示唆しており、これは接触圧力変化と空隙幅変化 の関係が、ここで仮定したような一価関数では表せないこ とを意味している。剛性変化におけるヒステレシスと、高 次高調波発生まで含めた非線形超音波特性との関連性は、 今後さらに検討して明らかにすべき課題として残されて いる。

図 12 透過波信号における二次高調波振幅/(基本波振幅)²の 接触圧力依存性

5. おわりに

本稿では,固体接触面の超音波応答およびその非線形効 果としての高調波発生現象について,理論モデルによる解 析と実験結果との対応に関して得られた知見を中心に述べ た。一見全く異なる超音波特徴量のように思える反射(透 過)率,界面波伝搬速度,高調波振幅が,接触面の剛性お よびその空隙幅(接触圧力)依存性を通じて互いに結びつ いていることは興味深く,これらの特徴量をうまく用いれ ば接触状態の評価を相補的に行えることが期待できる。

また,このような理解の枠組みが整備されることにより, 閉口き裂や不完全接合面に対して非線形超音波特性に基づ く新しい評価手法を開発し,測定データを正しく解釈する ための見通しが得られれば幸いである。

参考文献

- R. A. Guyer and P. A. Johnson : Nonlinear Mesoscopic Elasticity: Evidence for a New Class of Materials, Physics Today, April 1999, pp.30-36, (1999)
- 2) A. M. Sutin and V. E. Nazarov : Nonlinear Acoustic Methods of Crack Diagnostics, Radiophys. Quantum Elect., 38, pp.109-120, (1995)
- 川嶋紘一郎:線形および非線形超音波を用いたき裂面および微細損傷の画像化(研究展望),日本機械学会論文集(A編), 72(724), pp.1812-1818,(2006)
- 4) B. Gu, K. T. Nihei, L. R. Myer and L. J. Pyrak-Nolte : Fracture Interface Waves, J. Geophys. Res., 101, pp.827-835, (1996)
- 5) A. Suzuki, S. Biwa and N. Ohno : Numerical and Experimental Evaluation of Ultrasonic Wave Propagation Characteristics

at Contact Interface, JSME Int. J., Series A, 48(1), pp.20-26, (2005)

- 6) S. Biwa, A. Suzuki and N. Ohno : Evaluation of Interface Wave Velocity, Reflection Coefficients and Interfacial Stiffnesses of Contacting Surfaces, Ultrasonics, 43, pp.495-502, (2005)
- 7)平岩峻介,琵琶志朗,松本英治:超音波反射率と界面波速 度による固体接触面剛性の評価,日本非破壊検査協会平成 18年度秋季大会講演概要集,pp.43-44,(2006)
- 8) 平岩峻介,琵琶志朗,松本英治:超音波スペクトル解析に よる接触粗面の垂直・接線剛性の評価,日本非破壊検査協 会第14回超音波による非破壊評価シンポジウム講演論文 集,pp.33-34,(2007)
- 9) J. M. Richardson : Harmonic Generation at an Unbonded Interface : I. Planar Interface between Semi-Infinite Elastic Media, Int. J. Eng. Sci., 17, pp.73-85, (1979)
- S. Hirose and J. D. Achenbach : Higher Harmonics in the Far Field due to Dynamic Crack-Face Contacting, J. Acoust. Soc. Am., 93, pp.142-147, (1993)
- 11) 中畑和之,廣瀬壮一:時間域 BEM による界面剥離部の超 音波伝播シミュレーション,日本非破壊検査協会第12回超 音波による非破壊評価シンポジウム講演論文集,pp.17-20, (2005)
- 12) J. Okada, T. Ito, K. Kawashima and N. Nishimura : Finite Element Simulation of Nonlinear Acoustic Behavior at Minute Cracks Using Singular Element, Jpn. J. Appl. Phys., 40, pp.3579-3582, (2001)
- 13) O. V. Rudenko and Chin An Vu : Nonlinear Acoustic Properties of a Rough Surface Contact and Acoustodiagnostics of a Roughness Height Distribution, Acoust. Phys., 40, pp.593-596, (1994)
- C. Pecorari : Nonlinear Interaction of Plane Ultrasonic Waves with an Interface between Rough Surfaces in Contact, J. Acoust. Soc. Am., 113, pp.3065-3072, (2003)
- S. Biwa, S. Nakajima and N. Ohno : On the Acoustic Nonlinearity of Solid-Solid Contact with Pressure-Dependent Interface Stiffness, Trans. ASME J. Appl. Mech., 71, pp.508-515, (2004)
- 16) Y. Ohara, T. Mihara and K. Yamanaka Effect of Adhesion Force between Crack Planes on Subharmonic and DC Responses in Nonlinear Ultrasound, Ultrasonics, 44, pp.194-199, (2006)
- 17)石川瑞生,平田荘周,杉浦壽彦:閉口き裂への超音波入射時に生じる音響非線形効果,日本非破壊検査協会平成18 年度春季大会講演概要集,pp.117-120,(2006)
- 18) 琵琶志朗,平岩峻介,松本英治:固体接触面における高調 波発生の理論解析と実験的評価,日本非破壊検査協会平成 17年度秋季大会講演概要集,pp.127-130,(2005)
- S. Biwa, S. Hiraiwa and E. Matsumoto : Experimental and Theoretical Study of Harmonic Generation at Contacting Interface, Ultrasonics, 44 (Suppl. 1), pp.e1319-e1322, (2006)

琵琶 志朗 <本誌 273 ページ参照>