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Fine-grained optimization method for crystal structure
prediction
Kei Terayama 1,2,3, Tomoki Yamashita4,5, Tamio Oguchi4,5 and Koji Tsuda1,2,4

Crystal structure prediction based on first-principles calculations is often achieved by applying relaxation to randomly generated
initial structures. Relaxing a structure requires multiple optimization steps. It is time consuming to fully relax all the initial structures,
but it is difficult to figure out which initial structure leads to the optimal solution in advance. In this paper, we propose a
optimization method for crystal structure prediction, called Look Ahead based on Quadratic Approximation, that optimally assigns
optimization steps to each candidate structure. It allows us to identify the most stable structure with a minimum number of total
local optimization steps. Our simulations using known systems Si, NaCl, Y2Co17, Al2O3, and GaAs showed that the computational
cost can be reduced significantly compared to random search. This method can be applied for controlling all kinds of local
optimizations based on first-principles calculations to obtain best results under restricted computational resources.
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INTRODUCTION
In designing new crystalline materials, crystal structure prediction
(CSP) for a given chemical composition is the most fundamental
task. A large number of physical properties can be predicted using
first-principles calculations with a given atomic configuration.
However, CSP is quite a difficult problem due to the exponential
increase of the number of potential energy minima with respect to
the system size.1 A great deal of effort has been devoted to
overcoming this problem. To date, several searching algorithms in
CSP have been successfully developed such as random search,2–4

simulated annealing,5,6 basin hopping,7 minima hopping,8,9

evolutionary algorithm (EA),10–12 particle-swarm optimization
(PSO),13,14 and Bayesian optimization (BO).15 Ab initio random
structure searching by Pickard and Needs is quite simple but still
one of the most efficient approaches even today. EA and PSO are
also popular and efficient algorithms as implemented in USPEX10–
12 and CALYPSO.13,14

Even now, CSP is quite a time-consuming problem: to find the
most stable structure, in existing methods, local optimizations of
all the structures are performed to evaluate their energies. First-
principles density-functional-theory (DFT) codes such as VASP16

and QUANTUM ESPRESSO17 calculate the force of each atom for a
given structure. Relaxation is performed with the forces by using
gradient methods such as the quasi Newton or conjugate gradient
methods. Figure 1a shows how to obtain optimized energies by
relaxing all the generated structures until convergence to local
minima in structure space. However, if the final relaxed energy of a
structure can be predicted in the middle of its calculation, we can
skip unpromising calculations by stopping their optimizations and
reduce the total CSP calculation by giving preference to promising
structures as shown in Fig. 1b.

In this paper, we propose a method to very roughly estimate
the final energy during local optimization, and we show that the
total computational cost can be reduced by controlling the local
optimization step based on that estimated energy. Generally, it is
a hard to predict the energy after relaxation during local
optimization. We obtain a rough estimate of the final energy
with a quadratic approximation from current energy and force,
focusing on the fact that, not only the energy but also the force on
each atom, can be calculated by DFT calculations. In the proposed
method, called Look Ahead based on Quadratic Approximation
(LAQA), we first generate a large number of candidate structures,
then select promising structures based on the energy estimation
method, and proceed to calculate them preferentially. When
performing CSP, if the calculation is judged insufficient, we may
not find a stable structure, and need to perform additional
calculation for newly generated candidate structures. To deal with
such a procedure, we also propose a method to increase the
number of candidate structures gradually, called sequential LAQA
(sLAQA).
To show the effectiveness of the proposed methods, we

conducted CSP simulations, using 7 typical systems: Si (8 and 16
atoms in unit cell), NaCl (16 and 32 atoms), ferromagnetic Y2Co17
(19 atoms), Al2O3 (10 atoms), and GaAs (16 atoms). We randomly
generated hundreds of candidate structures in these systems and
calculated all the local optimization steps. We then investigated
how much of a computational cost reduction can be obtained
with our proposed methods, compared with the widely used
random searching approach, which repeatedly generate random
structures and performs full local optimizations. The total local
optimization steps using LAQA are reduced by a factor ranging
from 2.02 up to 21.4, compared to random searching.
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RESULTS
Local optimization controlled by Greedy, LAQA, and sLAQA
In CSP, we compare the total energies evaluated by first-principles
DFT calculations among a number of generated structures, and
finally predict the minimum energy structure as the global
minimum structure of the system. We propose approaches to
efficiently perform CSP by preferentially relaxing structures that
are predicted to have a low-final energy such as stable structures
based on the basic idea shown in Fig. 1.
One of the simplest approaches of local optimization control is

to progress relaxation in accordance with the order of energies. In
many cases, if a structure is close to its stable state, its energy is
considered to be relatively low. Therefore, if local optimization is
done from a structure with low energy, it is expected that a stable
structure will be obtained at a relatively early stage. We refer to
this simplest idea based CSP method as greedy method (Greedy),
as such an approach is called greedy algorithm in the field of
reinforcement learning.18 In this method, we first generate a
sufficient number of structures, N, that are expected to contain at
least one structure that will relax to the most stable structure and
then calculate the first local optimization step for them. We search
a stable structure by performing local optimization in accordance
with the order of their calculated energies.
However, the Greedy method does not always work well

because an initial energy of a structure that will relax to a stable
structure is not necessarily low as the blue local optimization step
in Fig. 1a. On the other hand, during such a local optimization step
from initial high to final low energy, it is expected that a relatively
large force may be applied to each atom. This is because it is
thought that each atom moves greatly until it is fully relaxed. It is
expected that we can preferentially select structures that have
final low energies, not only using just energy as Greedy, but also
other information such as the above-mentioned force and stress
applied to a cell.
In this paper, we propose a method (LAQA) to control local

optimization based on the following score as the simplest and the
most versatile method using energy and force. Figure 2a shows
the flowchart of LAQA. First, we generate a sufficient number of
structures, N, that are expected to contain at least one structure
that will relax to the most stable structure. We calculate the first
local optimization step for all the structures (Initialization). Next,
we calculate rough estimates of the final energies to select a
structure on which to proceed with local optimization (Scoring).
For each structure i and local optimization step t, we denote by Ei,t
the total energy of the structure divided by formula unit (f.u.), and
by Fi,t the sum of forces on atoms divided by formula unit. Fi,t is
calculated by averaging the norms of the force applied to each
atom. We calculate the score Li,t of each structure i after T steps as

follows:

Li;T ¼ min
1�t�T

Ei;t � F2i;T
2ΔFi;T

ðnot optimizedÞ
1 ðfully optimizedÞ

0
@ (1)

where ΔFi,T= |Fi,T− Fi,T−1|. We fix ΔFi,T= 1 for T= 1 and ΔFi,T=
10−6 if the values of Fi,T and ΔFi,T−1 are the same. In our approach,
we preferentially proceed local optimization of structures with low
values of the score. As can be seen from the first term in Eq. (1), we
give priority to structures with low energy. The reason why it is
taking minimum value of E is that a spike-like exceptionally large
value is often obtained in the calculation process. According to the
second term in Eq. (1), the total score decreases as the force
applied to each atom increases. Additionally, if the force does not
change significantly even if step changes, that is, if it can be
thought that large structural change is continuing, the score
decreases. For a structure that has been fully optimized, infinity is
assigned as its score to avoid additional calculation for it. This
score can be regarded as a rough estimation of the fully optimized
energy of the system with quadratic approximation. According to
this score, the structure which has the minimum score is selected
(Selection) and calculation of one local optimization step is
performed (Calculation). Note that fully optimized structures,
having a score of +∞, are not selected.
Since holding large amount of candidate structures simulta-

neously when performing LAQA may be costly, we also propose
an algorithm to gradually increase the number of optimization
structures. We call this approach sequential LAQA (sLAQA). Figure
2b shows the flowchart of sLAQA. We first fix the pooling number
Np and generate Np structures randomly. The structure to optimize
locally is chosen from the pooled structures. The initialization,
scoring, selection, and calculation steps are the same as LAQA.
After the calculation step, if the calculated structure is fully
optimized, we exclude it. Without elimination of unpromising
structures, the proportion they occupy in the pool would keep
increasing, we therefore simultaneously exclude the structure with
the highest score, i.e., the most unpromising structure. Then, we
generate two new structures randomly to keep the number of
pooled structures Np, and calculate the first local optimization step
for the new structures as initialization. Finally, we add them in the
structure pool. In LAQA, if the set of initial structures is the same,
the selected structure to calculate based on the L score is the
same. Therefore, the number of steps required to obtain a stable
structure does not change for the same set. On the other hand, in
sLAQA, even if the set of initial structures is the same, since a
structure to be added to the pool is newly chosen randomly, the
number of steps required to obtain the stable structure changes.
For actual CSP of unknown systems, we need to stop calculation

at a certain stage. It is difficult to identify the most stable structure,

Fig. 1 Basic idea of acceleration of CSP by controlling local
optimization steps. All the local optimizations are performed for
generated structures in existing approaches a. We can reduce total
local optimization steps by controlling each calculation of a
structure based on the prediction of the finally relaxed energy of
the structure b Fig. 2 Flowcharts of CSP using LAQA a and sLAQA b
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but when multiple relaxed structures with the lowest energy are
obtained, the structure is considered to be the most stable
structure with a high probability. Therefore, in LAQA, it is
considered to be practical to stop a search when structures above
mentioned are obtained. If such structures are not obtained and
final energies of fully relaxed structures become high, it is
considered effective to generate a new dataset of initial structures
and repeat the calculation using LAQA until such structures are
found. In sLAQA, it is considered practical to stop calculation if
such structures are obtained.

CSP using RS and BO
In order to examine the effectiveness of LAQA and sLAQA, we
introduce other approaches of CSP: random search (RS)2 and
Bayesian optimization based structure selection.15

In the RS approach, initial structures are randomly generated
and fully relaxed. Here, we first generate a number of initial
structure candidates, and perform RS-based CSP by randomly
selecting a structure to relax them. While RS is a simple and widely
used method, it may take a long time to find a stable structure.
BO is widely used as one of the global optimization methods,19

and in recent years its usefulness is also shown in the field of
materials science.20 In the CSP using BO,15 a stable structure is
searched by repeating a selection of an initial structure among
candidate initial ones and relaxation of it. Unlike LAQA, sLAQA,
and Greedy, a selected structure is fully optimized. In structure
selection, a structure that is expected to have lower final energy is
chosen by using the framework of BO based on structure data and
their relaxed energies previously calculated. To perform the
framework of BO, we adopted the fingerprint of Oganov and
Valle21 as the descriptor of structures in the previous work.15 A
fingerprint is a vector representation of a structure. The vector is
calculated by a fingerprint function that is invariant with respect
to shifts in the coordinate system, rotations, and reflections. The
fingerprint of Oganov and Valle21 was designed to map similar
structures to similar vectors. Compared with RS, it is expected to
speed up the calculation by efficiently searching for low energy
structures by BO-based search. In this paper, we repeated this CSP
trials 400 times for each system, and calculated the performance
of BO by calculating the average of structures to find a stable
structure.

Initial structure generation and local optimization
We randomly generated initial structures with specific space
groups, using CrySPY,22 as described by Yamashita et al.15 Once
the space group is specified, some lattice parameters are fixed by
the symmetry. The remaining unfixed lattice parameters are taken
at random. A combination of the Wyckoff positions corresponding
to the space group is randomly selected. The atoms are arranged
according to the selected Wyckoff positions under the constraint
of the minimum interatomic distance.
Total energy calculations and structure optimizations were

carried out using DFT with the projector augmented wave
method23 as implemented in VASP code.16 The internal atomic
coordinates as well as the cell parameters were fully optimized
(see Methods section for the details of DFT calculation).

Tested systems
We performed test simulations of CSP for five typical systems: Si (8
and 16 atoms in unit cell), NaCl (16 and 32 atoms), Y2Co17 (19
atoms), Al2O3 (10 atoms), and GaAs (16 atoms). We denote these
systems by Si8, Si16, Na8Cl8, Na16Cl16, Y2Co17, Al4O6, and Ga8As8.
The most stable structures of Si, NaCl, Y2Co17, Al2O3, and GaAs are
the rocksalt, diamond, Th2Zn17-type, corundum (α-Al2O3), and zinc
blend structure, respectively. Y2Co17 is a ferromagnetic inter-
metallic compound and its space group is R3m.24 For GaAs, the

wurtzite structure whose energy is quite close to the one of the
zinc blend structure is also taken into consideration as a stable
structure.
We randomly prepared 500, 700, 500, 500, 700, 1000, and 1000

candidate structures for Si8, Si16, Na8Cl8, Na16Cl16, Y2Co17, Al4O6,
and Ga8As8 as listed in Table 1 and evaluated their total energy.
When generating the candidate structures, we imposed con-
straints on interatomic distance. We used a 1.8 Å distance for Si16,
Na8Cl8, Na16Cl16, Y2Co17, Al4O6, and Ga8As8 and 2.0 Å for Si8. We
compared generated initial structures by calculating the finger-
print.21 For each system, almost all of them are different each
other. Although only two structures in Na8Cl8 are the same, we
performed local optimization for them as different structures.
Figure 3 shows the result of the locally optimized energies for all
the generated initial structures of the Si8 (a), Si16 (b), Na8Cl8 (c),
Na16Cl16 (d), Y2Co16 (e), Al4O6 (f), and Ga8As8 (g) systems. In each
system, the differences of the optimized energies (eV/f.u.) from
the energy of the most stable structure are plotted. For Al4O6, we
show the enlarged result (eV/atom) in Fig. 3h. This result
corresponds to the one of the black square region in Fig. 3f. The
basic information for these systems is listed in Table 1. Eventually,
we optimized 7, 3, 18, 17, 1, and 2 structures to stable structure,
for Si8, Si16, Na8Cl8, Na16Cl16, Y2Co17, and Al4O6, respectively. For
Ga8As8, two stable (zinc blend) structures and two wurtzite
structures were obtained. We also collected the total energy and
the force on atoms in each local optimization step. The average
steps of local optimization for all structures are also listed in Table
1.

Simulation results
To show the effectiveness of the proposed method, we performed
CSP simulations on the calculated dataset of the Si8, Si16, Na8Cl8,
Na16Cl16, Y2Co17, Al4O6, and Ga8As8 systems. In the CSP trials, local
optimization is controlled by different algorithms: random
sampling (baseline method), LAQA, sLAQA, Greedy, and BO.
Instead of actually generating the structure randomly in each CSP
trial, we evaluated their performances by randomly choosing from
prepared structures. Figure 4 illustrates the control and reduction
of local optimization steps by using LAQA for the Y2Co17 system.
Each line shows energy as a function of local optimization step
from an initial structure. Bold black lines show the local
optimization steps needed to reach the stable structure. Figure
4a shows all the local optimization steps of the Y2Co17 system. The
number of total steps is 91,423. LAQA controls local optimization
steps as shown in Fig. 4b for the same system. Stable structure is
already optimized after only 3300 steps (~3.6%) and most
unpromising structures are not optimized. Figure 4c, d are
enlarged results of Fig. 4a, b.
Figure 5a shows the average number of total local-optimization

steps required to find the stable structure with random search
(blue), LAQA (green), sLAQA (orange, red, purple), Greedy (light

Table 1. Basic information for tested systems. The number in
parentheses indicates the number of wurtzite structures for Ga8As8

System Generated
structures

Optimized to stable
structures

Avg. of local
opt. steps

Si8 500 7 68.91

Si16 700 3 92.81

Na8Cl8 500 18 121.7

Na16Cl16 500 17 177.7

Y2Co17 700 1 130.6

Al4O6 1000 2 83.49

Ga8As8 1000 2 (2) 113.4
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blue), and BO (yellow). For Ga8As8, we calculated performances by
using these algorithms to find the stable structure (Ga8As8
(stable)), a wurtizite structure (Ga8As8 (wurtzite)) and at least
one of both stable structures and wurtzite structures (Ga8As8
(both)). The values of total steps for LAQA and Greedy are
calculated using all the prepared structures as generated ones. We
calculated the average numbers for sLAQA by changing the
number of pooling Np. We estimated them by repeating CPS trials
2000 times and averaging their total local-optimization steps. To
compare the performance of RS and BO with the others, we
converted averaged number of structures to find a stable structure
and a wurtzite structure into local optimization steps based on the
average of local optimization steps for each system in Table 1. We
also show the frequency distribution of number of trials required
to find the most stable structure using random search, LAQA, and
sLAQA in Fig. 5b. The result of random search obtained from the
expected values in frequency theory is shown as blue circles. The
total number of frequencies is normalized to 100. Green bars and
orange histograms show the result of LAQA and sLAQA. The
number of steps to find a stable structure in sLAQA is not
constant. This is because the set of initial structures with a certain
pool number changing in each trial and a structure that newly
enters the pool is randomly chosen. The distributions of the result
using sLAQA are biased to smaller numbers of trials and the
number of local optimization steps can be reduced.
The total steps required to find the stable structure using LAQA

were reduced by a factor of 4.23, 10.1, 3.79, 4.78, 14.0, 2.02, and

6.85 compared to the result of random search for Si8, Si16, Na8Cl8,
Na16Cl16, Y2Co17, Al4O6, and Ga8As8, respectively. For Ga8As8
(wurtzite) and Ga8As8 (both), the total steps were reduced by a
factor of 21.4 and 9.60. Since the proposed methods basically
calculates preferentially structures expected to have lower final
energies, not only stable structures but also wurtzite structures for
Ga8As8 were also obtained at an early stage. The results using
Greedy were almost the same as using LAQA for Si16 and Na8Cl8,
but were worse for Si8, Na16Cl16, Y2Co17, Al4O6, and Ga8As8. These
differences result from the acceleration effect of local optimization
for stable structures by using LAQA. Figure 6 shows the changes of
fully optimized order of structures when using Greedy or LAQA.
Each dot shows the orders of full optimization for an initial
structure, i.e., how many structures were fully optimized before it,
using these algorithms. Dark blue and green dots are stable and
wurtzite structures. If a structure is plotted below the diagonal, it
shows that optimization order is accelerated by using LAQA
compared to Greedy. The blue dots in the green squares indicate
stable structures whose local optimizations were preferentially
made, using LAQA. The structure in the orange circle of Si16 was
not preferentially relaxed, compared to Greedy. While the initial
energy of this structure was relatively high, the force exerted on
each atom was small, and as a result it was fully relaxed gradually
with relatively long steps (166 steps). This is longer than the
average one of Si16 (92.81 steps) and that of the structure in the
black circle (44 steps). Therefore, the score of LAQA became
relatively high for the structure of the orange circle, so its

Fig. 3 Locally optimized total energies from randomly generated structures for the Si8 a, Si16 b, Na8Cl8 c, Na16Cl16 d, Y2Co17 e, Al4O6 f, and
Ga8As8 g systems. In each system, the differences of the optimized energies (eV/f.u.) from the energy of the most stable structure are plotted.
F.u. is the abbreviation for formula unit. For Al4O6, we show the enlarged result (eV/atom) in h, where several states exist less than 0.1 eV/atom
above the ground-state structure. This result corresponds to the one of the black square region in f. Red circles show total energies of fully
optimized structures other than stable structures. Blue and green circles show total energies of stable and wurtzite structures for Ga8As8,
respectively. The number of stable structures and wurtzite structures for each system are listed in Table 1
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relaxation did not proceed preferentially. From these results, the
total steps to find the stable structure and wurtzite structures for
Si8, Na16Cl16, Y2Co17, Al4O6, and Ga8As8 can be reduced by LAQA
compared to Greedy. For Si16 and Na8Cl8 in Fig. 6, there are
structures that are optimized immediately by Greedy and LAQA
(structures in black circles). Since LAQA requires some exploratory
calculations to find promising structures using the LAQA score, the
results of Greedy were better than those of LAQA. However, even
for these systems, the total steps using LAQA were reduced by a
factor of 10.1 and 3.79 compared to those of random search.
These results suggest the efficiency of the local optimization
control and the rough estimation of fully optimized energy in
LAQA.

DISCUSSION
For most of the systems, the average steps using sLAQA are
decreased as the pooling number Np is increased as shown in Fig.
5. This is because the larger Np, the higher probability of including
stable structures from the beginning of optimization. Note that
even if the pooling number is increased, the performance of
sLAQA is different from that of LAQA because sLAQA adds new
structures. The performances of sLAQA for Si Np are relatively poor.
This result is considered to be derived from the facts that there
were only two stable structures and the stable one in the orange
circle in Fig. 6 was not optimized by using LAQA score

preferentially. Although performances depend on the systems,
from these results, it was suggested that by using sufficient Np in
sLAQA, we can achieve performance far better than random
search.
The results of LAQA and sLAQA showed better performance

than those of BO in most cases, while the reduction effects of
calculation using BO were not very large compared to RS. It is
thought that the relatively low performance of BO is due to the
problem that an initial structure and the structure after relaxation
are different. In general, in BO based search, it is assumed that a
point (structure) in a search space and the value corresponding to
that point are in one-to-one correspondence. In CPS, however,
there are two structures initial and relaxed ones. Although a
calculated energy corresponds to a relaxed structure, we need to
choose a structure to calculate next from among candidates of
initial structures. This structural differences may adversely affect
the performance of BO. On the other hand, our approach in this
paper is completely different from BO, and the above-mentioned
problem does not become a problem.
In the present study, we have proposed LAQA, and its variants: a

novel approach for CSP that controls local optimization steps.
Results on seven crystalline systems have demonstrated that
LAQA and sLAQA can significantly reduce the total local
optimization steps, compared to random search. In future work,
we plan to combine our approach with effective structure
generation or selection methods such as EA, PSO, or BO. We

Fig. 4 Control of local optimization steps using LAQA for CSP. Each line shows energy as a function of local optimization step. Bold black lines
show the local optimization steps to the stable structure. The other thin lines indicate local optimization steps that were not relaxed to the
stable one. F.u. is the abbreviation for formula unit. a All local optimization steps for all initial structures (Y2Co17). The total number of steps is
91,423. b Controlled local optimization using LAQA. A structure is already optimized to the stable structure (bold black line) after 3300 steps
(~3.6%). c and d are enlarged results of a and b. c and d correspond to the ones of the black squares in a and b, respectively
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Fig. 5 Reduction result, from using LAQA. a Reduction of total local optimization steps required to find the most stable structure using
random search, LAQA, sLAQA, Greedy, and BO. For Ga8As8 (wurtzite) and Ga8As8 (both), the average steps are shown to find a wurtzite
structure and at least one of both stable and wurtzite structures, respectively. b Frequency distribution of number of trials required to find the
stable structure and a wurtzite structure with random search, LAQA, and sLAQA for Si8, Si16, Na8Cl8, Na16Cl16, Y2Co17, Al4O6, and Ga8As8
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would like to apply this approach to other tasks such as
identification of low-energy conformers of molecules.

METHODS
Details of DFT calculation
We employed the generalized gradient approximation by Perdew, Burke,
and Ernzerhof25 for exchange-correlation functional. The internal atomic
coordinates as well as the cell parameters were fully optimized until forces
acting on every atom became less than 0.01 eV/Å. The k-point meshes
were automatically generated using pymatgen.26 For Si, a cutoff energy of
307 eV for the plane-wave expansion of the wave function and k-point
mesh density of 80 Å−3 for reciprocal cells were used. For NaCl, a cutoff
energy of 328 eV and k-point mesh density of 80 Å−3 were used. Y2Co17
was treated as a ferromagnet, and 335 eV and 100 Å−3 were employed for
the cutoff energy and k-point mesh density, respectively. For Al2O3, a
cutoff energy of 500 eV and k-point mesh density of 100 Å−3 were used.
For GaAs, a cutoff energy of 261 eV and k-point mesh density of 100 Å−3

were used.

Data availability
Initial structures and calculated data are available at http://www.tsudalab.
org/files/csp_dataset.zip. Our implementation is available on Github at
http://github.com/Tomoki-YAMASHITA/CrySPY.
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